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ABSTRACT

We develop a flexible and bias-adjusted approach to jointly examine

skill, scalability, and value added across individual funds. We find

that skill and scalability (i) vary substantially across funds, and (ii)

are strongly related as great investment ideas are difficult to scale up.

The combination of skill and scalability produces a value added that

(i) is positive for the majority of funds, and (ii) approaches its optimal

level after an adjustment period possibly due to investors’ learning.

These results are consistent with theoretical models in which funds

are skilled and able to extract economic rents from capital markets.

The academic literature on mutual funds has largely focused on perfor-

mance, i.e., whether investors earn positive alphas when they buy mutual

fund shares.1 However, we know far less about value creation, i.e., whether

funds extract value from capital markets through their investment decisions.

Active funds create value when they trade based on superior information

(stock picking, factor timing), or when they provide liquidity to absorb sell-

ing pressure (see Pedersen (2015, ch. 3) for a discussion).

The study of value creation, or value added, is pioneered by Berk and van

Binsbergen (2015) (BvB hereafter). They define the fund value added as the

product of its gross alpha and size. As such, the value added is similar to

the economic rent of a firm defined as the markup price of its product times

the quantity sold. BvB show that the gross alpha gives a distorted view of

1A non-exhaustive list of papers on performance includes Barras, Scaillet, and Wer-

mers (2010), Carhart (1997), Elton et al. (1993), Harvey and Liu (2018), Jensen (1968),

Kosowski et al. (2006), Roussanov, Ruan, and Wei (2020), and Wermers (2000).
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value creation—measuring the value added across funds, they find that its

variation is mostly driven by cross-sectional differences in fund size.

In this paper, we provide the first fund-level analysis of skill, scalability,

and value added. Put simply, we propose an alternative decomposition of

the value added—instead of focusing on size and gross alpha as in BvB, we

focus on skill and scalability. Our analysis builds on the premise that the

value created by each fund ultimately depends on (i) skill, i.e., the fund’s

ability to identify profitable investment ideas, and (ii) scalability, i.e., the

fund’s exposure to scale constraints when it grows in size. The extensive

panel evidence documented by Zhu (2018) confirms the presence of such

diseconomies of scale.

Our joint analysis of skill, scalability, and value added contributes to

the literature in several ways. First, we quantify how many funds create

value and assess whether they do so with more profitable or scalable ideas.

Second, we examine whether funds create more value over time as investors

learn about skill and scalability. Third, we measure how far the fund value

added is from its optimal level determined by skill and scalability. Finally, we

examine whether the industry delivers negative alphas to investors because

it is populated by unskilled funds or by funds that scale their ideas too far.

To address these issues, we develop a new estimation approach to infer the

entire cross-sectional distributions of skill, scalability, and value added. Our

fund-level approach is key to incorporate the suspected vast heterogeneity

in skill and scalability across funds and determine how many of them are

able to create value. The estimation of each distribution is flexible and bias-

adjusted. It is flexible because we use a nonparametric approach which does
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not require to specify the shape of the true distribution. This flexibility is

essential because misspecification risk is large—a joint specification of skill,

scalability, and value added is a daunting challenge for which theory offers

little guidance. The estimation is also adjusted for the Error-in-Variable

(EIV) bias that largely distorts the shape of the estimated distribution. This

bias arises because of estimation noise, i.e., we can only use as inputs the

estimated fund measures instead of the true (unobservable) ones.2 Our EIV

bias adjustment rests on a theoretical asymptotic analysis and allows us to

conduct proper statistical inference in a large set of funds.

In our baseline specification, we follow Berk and Green (2004) and model

the gross alpha of each fund as αi,t = ai − biqi,t−1, where qi,t−1 is the lagged

fund size (in real terms). Skill is measured with ai—the gross alpha on the first

dollar invested in the fund. Scalability is measured with bi—the regression

slope that captures the fund’s sensitivity to diseconomies of scale. Finally,

the value added is given by vai = E [αi,tqi,t−1] = E [(ai − biqi,t−1)qi,t−1] . This

parametrization provides (i) an explicit link between skill, scalability, and

the value added, and (ii) a simple expression of its optimal value to make

normative statements on value creation.3 To compute these measures, we

use the four-factor model of Cremers, Petajisto, and Zitzewitz (2012). This

2This bias is reminiscent of the well-known EIV bias in the two-pass regression in

which we use the estimated betas to estimate risk premia (e.g., Shanken (1992)).

3To address concerns regarding the validity of our baseline specification αi,t = ai −

biqi,t−1, we conduct an extensive analysis using (i) daily fund returns, (ii) additional

variables that capture changes in the fund’s economic conditions, and (iii) a new formal

specification test (see Section V).
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index-based model is constructed from the SP500 and Russell indices which

are tradable and widely used as benchmarks by mutual funds.

Our analysis of US equity funds over the period 1975-2019 uncovers sev-

eral new insights about skill and scalability. First, mutual fund skill is

widespread and economically large—the skill coefficient is positive for 83.1%

of the funds and equal to 3.0% per year on average. Second, funds are highly

sensitive to diseconomies of scale—on average, a one standard deviation in-

crease in size reduces the gross alpha by 1.3% per year. Third, the skill and

scale coefficients vary substantially, both in the whole population and within

fund groups. The cross-sectional volatility of ai and bi is typically much

larger than the mean—a heterogeneity that contradicts the extensively-used

panel regression that imposes a constant scale coefficient b across funds (e.g.,

Chen et al. (2004), Yan (2008), Zhu (2018)). Fourth, the skill and scale co-

efficients are strongly positively correlated. In other words, great investment

ideas are difficult to scale up.

These results shape the cross-sectional distribution of the value added.

In line with their investment skills, 60.0% of the funds create value over the

sample period. This result helps to reconcile the seemingly puzzling evidence

in BvB showing that vai is positive on average, whereas the majority of

funds destroy value. This surprising discrepancy disappears with the EIV

bias adjustment. The unadjusted distribution is plagued by estimation noise

which distorts the fund proportion estimators and largely inflates the tail

probabilities. Our improved estimation has therefore implications for the

debate on the size of the active industry (e.g., Cochrane (2013), Greenhood

and Scharfstein (2013)). It shows that the proportion of funds that are
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unambiguously too large—those that destroy value—is not as high as initially

thought.

Our results shed new light on the value creation process. With correlated

skill and scale coefficients, the most valuable funds are not those with the

best investment ideas. Instead, their investment strategies balance skill and

scalability—their skill (scale) coefficients are slightly above (below) average.

We observe similar trade-offs among funds with different levels of liquidity

and turnover—two key determinants of the fund investment strategy (Pastor,

Stambaugh, and Taylor (2020)). For instance, small cap funds buy more illiq-

uid stocks which generate both higher mispricing and trading costs. With this

particular combination of skill and scalability—high ai and high bi—, we find

that small cap funds create more value than large cap funds. Finally, funds

directly sold to investors are more skilled and generate higher value added

than broker sold funds. This result is consistent with the view that direct

sold funds are more incentivized to generate superior returns (Del Guercio

and Reuter (2014)).

Next, we examine the dynamics of the value added as the fund gets

older. This analysis is important to capture the potential impact of investors’

learning—as discussed by Pastor and Stambaugh (2012), investors need time

to learn about skill and scalability and optimize their fund allocation. To

this end, we compare (i) the standard measure vai computed over the entire

fund’s life with (ii) the last subperiod measure computed over the last decile

of the fund’s observations and denoted by vai(10). The difference between

the two measures is economically large—on average, the gap between vai(10)

and vai equals $3.5M per year ($5.4M vs $1.9M) In particular, the standard
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measure is driven down during the early years when fund size is particularly

low. These results suggest that uncertainty about skill and scalability is an

important source of short-term capital misallocation across funds.

We also find that the value added approaches optimality as the fund gets

older. We examine the equilibrium predictions of the Berk and Green model

in which funds are skilled and set fees to maximize profits, or, equivalently,

the value added. In line with these predictions, we find that the last subpe-

riod value added represents more than 50% of the optimal level va∗i =
a2i
4bi

. In

contrast, Zhu (2018) finds that the ratio of actual to optimal value added is

below 1%. This striking difference emphasizes two elements that are essential

for uncovering the ability of the Berk and Green model to fit the data. First,

we focus on the last subperiod measure (vai(10) instead of vai) to control

for the investors’ learning process. Second, we account for the heterogeneity

in skill and scalability across funds—a feature that cannot be captured with

the extensively-used panel specification.

Finally, an important question for investors is whether they benefit, at

last partially, from the value created by funds. Our new estimation approach

combined with the index-based version of the four-factor model produces a

more optimistic performance evaluation than previous studies. However, we

still find that 62.9% of the funds exhibit negative net alphas. We find ev-

idence consistent with the view that unskilled funds exploit disadvantaged

investors among the worst performing funds. However, unskilled funds only

represent 16.9% of the population and thus cannot fully explain why many

funds exhibit both a positive value added and negative alpha. An explana-

tion in the context of the Berk and Green model is that investors tend to
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overestimate fund skill. In this case, funds still maximize the value added but

fees remain too high. An alternative explanation is that information frictions

prevent investors from searching for cheaper funds (Roussanov, Ruan, and

Wei (2020)). If these mechanisms are at play, the number of underperforming

funds may decrease over time as investors sharpen their evaluation of skill

and benefit from technological advances that reduce information frictions.

The remainder of the paper is as follows. Section I presents our frame-

work for measuring skill, scalability, and value added. Section II describes

our nonparametric approach. Section III presents the mutual fund dataset.

Section IV contains the empirical analysis, and Section V concludes. The in-

ternet appendix provides additional information regarding the methodology,

the construction of the database, and the empirical results.

I. Measuring Skill, Scalability, and Value

Added

A. Skill and Scalability

We consider a population of n funds over T observations, where we de-

note each fund by the subscript i (i = 1, ..., n) and each observation by the

subscript t (t = 1, ..., T ). To define our measures of skill and scalability, we

use the linear model proposed by Berk and Green (2004). For each fund,

the total benchmark-adjusted revenue from active management is given by

TRi,t = aiqi,t−1, where qi,t−1 denotes the lagged fund size measured in real

terms. The total cost of trading is modeled as a convex function of fund

size, i.e., TCi,t = biq
2
i,t−1. Taking the difference between TRi,t and TCi,t and
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dividing by qi,t−1, we obtain the following formulation:

αi,t = ai − biqi,t−1, (1)

in which the gross alpha αi,t varies linearly with the lagged fund size.

We measure skill using the coefficient ai which captures the profitability

of the fund’s investment ideas. This coefficient is equal to the gross alpha of

the first dollar (when qi,t−1 = 0). As such, it can be interpreted as a ”pa-

per” return that is unencumbered by the drag of real world implementation

(Perold and Salomon (1991)). We measure scalability using the coefficient bi

which captures the fund’s sensitivity to diseconomies of scale. This coefficient

determines how the gross alpha changes when the fund deploys more capital

on its investment ideas.

A key feature of our approach is that we allow both ai and bi to be fund-

specific. To do so, we treat ai and bi not as fixed parameters, but as random

realizations from their cross-sectional distributions φ(a) and φ(b). Our ap-

proach contrasts with previous studies which rely on a panel specification

and impose the restriction that the scale coefficient is constant across funds,

i.e., bi = b (e.g., Chen et al. (2004), Pastor, Stambaugh, and Taylor (2015),

Yan (2008), Zhu (2018)). Whereas this pooling assumption (if correct) helps

to reduce estimation errors, it is unclear from an economic perspective why

diseconomies of scale should be identical across all funds. Consistent with

this view, we find that the panel specification is strongly rejected in the data

(as discussed in Section IV.A).
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B. Value Added

We next turn to the measurement of the economic value created by the

fund based on its skill and scale coefficients. To this end, we follow BvB and

use the concept of value added. It is defined as the average product of the

fund gross alpha and size: vai = E[αi,tqi,t−1]. Replacing αi,t with ai− biqi,t−1,

we obtain

vai = aiE[qi,t−1]− biE[q2i,t−1] = aiplim
T→∞

qi − biplim
T→∞

qi,2, (2)

where qi = 1
T

∑T
t=1 qi,t−1 and qi,2 = 1

T

∑T
t=1 q

2
i,t−1 denote the time-series aver-

ages of the (real) fund size and its squared value, and plim denotes the limit

in probability.

The value added provides an intuitive measure that is strongly rooted in

economics. If the fund has bargaining power over investors, vai is identical

to the dollar profits of a monopolist, measured as the markup price of its

product multiplied by the total quantity sold. As such, it departs from the

gross alpha which does not control for the impact of size on value creation.

Put differently, using the gross alpha is akin to measuring the monopolist’s

profits with the markup price, regardless of how much quantity is sold.

The standard measure in Equation (2) captures the average value added

by the fund over its entire lifetime. As such, it may differ from the value

created at different stages of the fund’s lifecycle. For one, investors may

need time to learn about skill and scalability and allocate the right amount

of capital to each fund (Pastor and Stambaugh (2012)). To examine this

issue, we split the return history of each fund into S subperiods and measure
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the value added in each subperiod s as

vai(s) = aiqi(s)− biqi,2(s), (3)

where vai(s) is conditioned on the realized averages of the fund size and its

squared value denoted by qi(s) and qi,2(s) (s = 1, ..., S).4 Using Equation

(3), we can then measure the last subperiod value added vai(S) = aiqi(S)−

biqi,2(S) to examine whether the value added grows larger as the fund gets

older.5

Our approach for measuring value added is fund-specific. As both vai

and vai(s) inherit the randomness of ai and bi, we also treat them as random

realizations from the cross-sectional distributions φ(va) and φ(va(s)). Im-

portantly, our approach is based on the linear specification αi,t = ai− biqi,t−1

and thus departs from the approach of BvB which does not impose any func-

tional form on the gross alpha. This extra parametrization is necessary to

examine how the skill and scale coefficients drive the value added. It is also

required to make normative statements about the value added—that is, we

can follow Berk and Green (2004) and use Equation (1) to obtain a simple,

closed-form expression of the optimal value added (as discussed in Section

IV.C).

4Working conditionally on the realized values qi(s) and qi,2(s) for each subperiod is

similar to the approach used on short panels of assets when estimating ex post risk premia

with fixed T and large n (Shanken (1992), Raponi, Robotti, and Zaffaroni (2020)).

5Averaging over the last subperiod S instead of using the final value of fund size allows

us to smooth out short-term fluctuations in size caused by nonfundamental liquidity or

sentiment shocks (e.g., Ben-Rephael, Kandel, and Wohl (2012)).
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C. Remarks about the Specification

Our baseline specification αi,t = ai−biqi,t−1 in Equation (1) calls for some

comments. First, the estimation of ai and bi does not require to model the

determinants of skill and scalability across funds. For instance, skill can vary

because some funds are run by extremely talented managers or benefit from a

high speed of information dissemination within their family (Cicci, Jaspersen,

and Kempf (2017)). Similarly, the scale coefficient can vary because some

funds trade more efficiently or follow specific strategies.6 In this case, we

can simply interpret ai and bi as fund-specific functions of the characteristics

of the family/manager and the fund strategy such as liquidity and turnover

(e.g., Pastor, Stambaugh, and Taylor (2020)).7

Second, Equation (1) may omit variables that are useful in capturing the

time-variation in the skill and scale coefficients. For instance, skill could

depend on the fund’s economic environment including the levels of industry

competition and aggregate mispricing (e.g., Hoberg, Kumar, and Prabhala

(2018), Pastor, Stambaugh, and Taylor (2015, 2018)). Furthermore, the scale

coefficient may vary with fund size if the relation between the gross alpha

and size is nonlinear. To formalize this intuition, suppose that we have

6For instance, Dimensional Fund Advisors (DFA) highlights its ability to minimize the

costs of trading small-cap stocks by buying large share blocks from forced sellers (Cohen

(2002)). Its scale coefficient should therefore reflect its unique trading approach and its

specific strategy (small-cap stocks).

7It may still be informative to learn about the determinants of ai and bi. If we impose

a common panel structure across funds, we can then examine how the different fund

characteristics explain the cross-sectional variation in ai and bi (see Section IV.A).
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αi,t = ai,t − bi,tqi,t−1 = (ai + a′i,zzi,t−1) − (bi + b′i,zzi,t−1)qi,t−1, where zi,t−1 is

a demeaned vector of variables that drive the dynamics of ai,t and bi,t. In

this case, using Equation (1) is problematic because it omits the vector of

variables pi,t−1 = (z′i,t−1, z
′
i,t−1qi,t−1)

′. As a result, the estimated values of ai

and bi could be biased and lead to wrong conclusions regarding the prevalence

of skilled funds in the population or the magnitude of diseconomies of scale.

To address this issue, we conduct an extensive analysis presented in

Section IV. First, we use daily fund returns to estimate ai,t and bi,t over

short-time windows. This procedure allows us to gauge the extent of time-

variation in ai,t and bi,t without having to identify the additional variables

zi,t−1 (Lewellen and Nagel (2006))). Second, we consider several extensions

of Equation (1) which explicitly account for the impact of industry compe-

tition and changing aggregate mispricing. Third, we develop a new formal

specification test of the linear function αi,t = ai − biqi,t−1. This test borrows

from the strategy of a Hausman test (Hausman (1978)) and is based on a

comparison with the model-free alpha estimate of BvB. In short, this analysis

reveals that the empirical results are not driven by the omission of important

variables in Equation (1).

II. Methodology

A. Motivation for the Nonparametric Approach

We now describe our novel nonparametric approach for estimating the

cross-sectional distribution φ of each measure mi ∈ {ai, bi, vai, vai(s)}. Our

nonparametric approach imposes minimal structure on the true density φ and
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thus departs from a standard parametric/Bayesian approach which requires

a full specification of the shape of φ. The choice between a parametric and

nonparametric approach involves the usual trade-off between efficiency and

misspecification. If the structure imposed by the parametric approach is

correct, the estimated distribution is more precise. However, it can be heavily

biased if the imposed structure is wrong.

The analysis of skill, scalability, and value added favors a nonparamet-

ric approach because misspecification risk is large. Whereas theory predicts

that performance clusters around zero, it offers no such guidance here. In

principle, we can gain parametric flexibility by using normal mixture models

(e.g., Harvey and Liu (2018)). However, determining the correct number of

mixtures is difficult because (i) the parameters are estimated with signifi-

cant noise (Yan and Cheng (2019)), (ii) the numerical optimization of the

likelihood is non-standard (van der Vaart (1998, p. 74)), and (iii) the sta-

tistical inference is technically involved (Chen (2017)). Misspecification risk

further increases because we jointly study four measures (ai, bi, vai, vai(s)).

Therefore, a parametric/Bayesian approach involves the daunting task of cor-

rectly specifying a multivariate distribution whose marginals are potentially

mixtures of distributions with different supports.

In addition to its robustness to misspecification, the nonparametric ap-

proach brings several benefits. First, its implementation is simple and fast.

In contrast, parametric and Bayesian approaches require sophisticated and

computer-intensive Gibbs sampling and Expectation Maximization (EM)

methods (e.g., Harvey and Liu (2018), Jones and Shanken (2005)). Second,

it provides a unified framework for estimating both the distribution φ and
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its various characteristics (moments, proportions, quantiles). Third, it comes

with a full-fledged inferential theory. We derive the asymptotic properties of

each estimated quantity (distribution and characteristics) as the number of

funds n and the number of observations T grow large (simultaneous double

asymptotics with n, T → ∞). We can therefore conduct proper statistical

inference guided by econometric theory.

B. Estimation Procedure

B.1. Estimation of the Fund Measure

Our nonparametric estimation of the density φ consists of three main

steps. To begin, we need to estimate the measure mi for each fund. Using

Equation (1), we write the fund gross return (before fees) over the risk-free

rate as

ri,t = αi,t + β′ift + εi,t = ai − biqi,t−1 + β′ift + εi,t, (4)

where ft is a Kf -vector of benchmark excess returns, and εi,t is the error term.

We interpret Equation (4) as a random coefficient model (e.g., Hsiao (2003))

in which the skill and scale coefficients ai and bi are random realizations

from a continuum of funds. Under this sampling scheme, we can invoke

cross-sectional limits to infer the density of each measure mi.
8

Two remarks are in order here. First, we assume for the inferential theory

that the (real) fund size is asymptotically stationary as the time index t

8Gagliardini, Ossola, and Scaillet (2016) use a similar sampling scheme for testing the

arbitrage pricing theory (see also Gagliardini, Ossola, and Scaillet (2020) for a review of

the literature).
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grows large (see Potscher and Prucha (1989)). Under this assumption, qi,t−1

can therefore perfectly trend up during the early years when the impact

of investors’ learning is strong.9 Theoretically, long-run size stationarity is

consistent with any model that features diseconomies of scale at the fund or

industry level. For instance, Pastor and Stambaugh (2012) show that fund

size converges to an equilibrium regardless of the investors’ risk attitude and

bargaining power over funds. Empirically, we also find little evidence that

the (real) size keeps trending up. Over the second half of the fund’s lifecycle,

the relative size variation, qi(s+1)−qi(s)
qi(s)

, has a median value of -3.4% (versus

43.1% for the first half).

Second, it is well known that the estimated coefficients in Equation (4)

are subject to a small sample bias (Stambaugh (1999)). Whereas this bias

vanishes asymptotically (for large T ), it may impact funds with short return

histories. The small-sample bias arises because fund size is endogenous in

the time-series—its innovation εqi,t tends to be positively correlated with the

return innovation εi,t (i.e., a positive return comes with a higher fund size).

To remove this bias, we follow Amihud and Hurvich (2004) and Avramov,

Barras, and Kosowski (2013) and include a proxy for the size innovation εcqi,t

9We can illustrate the concept of asymptotic stationarity with an AR(1) model

xt = ρxt−1 + εt initialized at a given value x0 6= 0 (with |ρ| < 1). This process is

not stationary for the early dates t. However, it is asymptotically stationary because xt

becomes independent of the initialization value x0 as t grows large. The burn-in period

for this process is the analog of the learning period in our setting.
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(see the appendix (Section I.A)). We then rewrite Equation (4) as

ri,t = ai − biqi,t−1 + β′ift + ψiε
c
qi,t

+ υi,t, (5)

and estimate the coefficients for each fund separately. Importantly, our fund-

by-fund analysis is not based on a panel specification, where ri,t = ai −

bqi,t−1 + β′ift + εi,t (with a common b). Therefore, Equation (5) is immune

to the incidental parameter bias that affects the estimated pooled coefficient

b̂ (Scott and Neyman (1948), Nickel (1981)). Whereas this bias also arises

from the time-series endogeneity in fund size, it departs from the small sample

bias along two key dimensions: (i) it requires a different adjustment based

on recursive demeaning (e.g., Hjalmarsson (2010), Zhu (2018)), and (ii) it

must always be controlled for, even asymptotically (for large T and n).10

From Equation (5), we compute the coefficients γ̂i =
(
âi, b̂i,β̂

′
i, ψ̂i

)′
as

γ̂i = Q̂−1x,i
1

Ti

T∑
t=1

Ii,txi,tri,t, (6)

where Ii,t is an indicator variable equal to one if ri,t is observable (zero other-

wise), Ti =
∑T

t=1 Ii,t is the number of observations, xi,t = (1,−qi,t−1, f ′t , εcqi,t)
′

is the vector of explanatory variables, and Q̂x,i = 1
Ti

∑T
t=1 Ii,txi,tx

′
i,t is the

estimated matrix of the second moments of xi,t. We can then infer each of

10The intuition for this result is that the time series information about the incidental

(fund-specific) parameters ai and βi in a sample of size T stops accumulating when the

cross-sectional dimension n becomes large (see Lancaster (2000) for a review).
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the four measures as

Skill coefficient : m̂i = âi,

Scale coefficient : m̂i = b̂i,

Value added : m̂i = v̂ai = âiqi − b̂iqi,2,

Subperiod value added : m̂i = v̂ai(s) = âiqi(s)− b̂iqi,2(s). (7)

Our econometric framework accounts for the unbalanced nature of the

mutual fund sample. We follow Gagliardini, Ossola, and Scaillet (2016) and

introduce a formal fund selection rule 1χi equal to one if the following two

conditions are met (zero otherwise):

1χi = 1 {CNi ≤ χ1,T , T/Ti ≤ χ2,T} , (8)

where CNi =

√
eigmax

(
Q̂x,i

)
/eigmin

(
Q̂x,i

)
is the condition number of the

matrix Q̂x,i defined as the ratio of the largest to smallest eigenvalues eigmax

and eigmin, and χ1,T , χ2,T denote the two threshold values. The total number

of selected funds is therefore equal to nχ =
∑n

i=1 1χi . The first condition

{CNi ≤ χ1,T} excludes funds for which the time-series regression is subject to

multicollinearity problems (Belsley, Kuh, and Welsch (2004), Greene (2008)).

The second condition {T/Ti ≤ χ2,T} excludes funds for which the sample size

is too small. Both thresholds χ1,T and χ2,T increase with the sample size T—

with more return observations, we estimate the fund coefficients with greater

accuracy which allows for a less stringent selection rule.
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B.2. Kernel Density Estimation

In the next step, we estimate the density function φ using a standard

nonparametric approach based on kernel smoothing.11 We compute the es-

timated density φ̂ at a given point m as

φ̂(m) =
1

nχh

n∑
i=1

1χiK

(
m̂i −m

h

)
, (9)

where K is a symmetric kernel function and h is the vanishing bandwidth—

similar to the length of the histogram bars, the smoothing parameter h deter-

mines how many observations around point m we use for estimation. Because

the choice ofK is not a crucial aspect of nonparametric density estimation, we

favor simplicity and use the standard Gaussian kernel K(u) = 1√
2π

exp(−u2

2
)

(see Silverman (1986)). For the bandwidth, we choose the optimal value h∗

that minimizes the Asymptotic Mean Integrated Squared Error (AMISE) of

φ̂(m).12 By minimising the AMISE, we explicitly control for the trade-off be-

tween the bias and the variance of φ̂(m) over its entire support. Therefore,

we avoid overfitting the data by choosing a bandwidth that is too small.

The following proposition examines the asymptotic properties of φ̂(m) as

the number of funds n and the number of observations T grow large. To

derive these properties, we impose that n is larger than T to capture the

large cross-sectional dimension of the mutual fund population.

11See, for instance, Ait-Sahalia (1996) and Ait-Sahalia and Lo (1998) for applications

in finance.

12The AMISE is defined as the integrated sum of the leading terms of the asymptotic

variance and squared bias of the estimated density φ̂(m).
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PROPOSITION 1: As n, T → ∞ such that T
n

= o(1) and h → 0 such that

nh→∞ and
√
nh(h2T + (1/T )

3
2 )→ 0, we have

√
nh
(
φ̂(m)− φ(m)− bs(m)

)
⇒ N (0, K1φ(m)) , (10)

where ⇒ denotes convergence in distribution. The bias term bs(m) is the

sum of two components,

bs1(m) =
1

2
h2K2φ

(2)(m), (11)

bs2(m) =
1

2T
ψ(2)(m), (12)

where K1 =
∫
K(u)2du, K2 =

∫
u2K(u)du (under a Gaussian kernel, we

have K1 = 1
2
√
π

and K2 = 1). The functions φ(2)(m) and ψ(2)(m) are the

second derivative of the density φ(m) and the second derivative of the func-

tion ψ(m) = ω(m)φ(m) with ω(m) = E[Si|mi = m]. The term Si is the

asymptotic variance of the estimated centered measure
√
T (m̂i−mi) equal to

plim
T→∞

( T
T 2
i

T∑
t,s=1

Ii,tIi,sui,tui,s). For each measure, the term ui,t is given by

Skill coefficient : ui,t = e′1Q
−1
x,ixi,tυi,t,

Scale coefficient : ui,t = e′2Q
−1
x,ixi,tυi,t,

Value added : ui,t = E[qi,t−1]e
′
1Q
−1
x,ixi,tυi,t + ai(qi,t−1 − E[qi,t−1])

− E[q2i,t−1]e
′
2Q
−1
x,ixi,tυi,t − bi(q2i,t−1 − E[q2i,t−1]),

Subperiod value added : ui,t = qi(s)e
′
1Q
−1
x,ixi,tυi,t − qi,2(s)e′2Q−1x,ixi,tυi,t, (13)

where e1 (e2) is a vector with one in the first (second) position and zeros
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elsewhere and Qx,i = E[xi,tx
′
i,t]. Finally, as n

2
5

T
→∞, the optimal bandwidth

is given by

h∗ =

(
K2

K1

∫
φ(2)(m)ψ(2)(m)dm

)− 1
3 (n

T

)− 1
3
. (14)

Proof. See the appendix (Sections I.B and I.C).

Proposition 1 reveals three important insights. First, φ̂(m) is a biased

estimator of φ(m), which implies that we can improve the estimation by

adjusting for the two bias terms in Equations (11)-(12). The first component

bs1(m) is the smoothing bias which is standard in nonparametric density

estimation (e.g., Silverman (1986), Wand and Jones (1995)). The second

component bs2(m), which is referred to as the Error-In-Variable (EIV) bias,

is non-standard in nonparametric statistics. It arises because of estimation

noise—that is, we can only estimate φ(m) using as inputs the estimated fund

measures instead of the true ones (m̂i instead of mi).

Second, the EIV bias is the key driver of the total bias. The smoothing

bias bs1(m) becomes negligible in a population of several thousand funds (as

n grows large, we have h and bs1(m) go to zero). On the contrary, the EIV

bias bs2(m) remains large because it depends on the number of observations

T. In other words, bs2(m) arises from the estimation noise contained in m̂i

which does not vanish even in a large fund population.

Third, noisier estimated fund measures do not translate into a noisier

estimation of the density φ(m). The estimation error in m̂i only changes

the magnitude of the EIV bias, but not the variance of φ̂(m) (as shown

in Equation (10)). As long as we correctly adjust for the EIV bias, we

can therefore estimate φ(m) with the same asymptotic accuracy even if the
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sampling variation in m̂i gets larger.

B.3. Adjustment for the Error-in-Variable Bias

Our final step is to adjust the standard density estimator φ̂(m) for the

EIV bias. To do so, we apply a Gaussian reference model to compute the EIV

bias (Equation (12)), as well as the smoothing bias and optimal bandwidth

(Equations (11) and (14)).13 Under this model, the fund measure mi and

the log of the asymptotic variance si = log(Si) follow a bivariate normal

distribution where mi ∼ N(µm, σ
2
m), si ∼ N(µs, σ

2
s), and corr(mi, si) = ρ.

Using a Gaussian reference model is appealing for several reasons dis-

cussed in more detail in the appendix (Section III). First, the computations

are straightforward because they are all available in closed form. Second, the

bias terms are precisely estimated because of parsimony—they only depend

on the five parameters θ = (µm, σm, µs, σs, ρ)′. Third, the closed-form expres-

sions shed light on the determinants of the bias. Finally, several compelling

arguments suggest that the bias inferred from the reference model provides

a good approximation of the true bias (i.e., bsr(m) ≈ bs(m)).

These benefits are not shared by a fully nonparametric estimation of

the bias via the second-order derivatives φ(2) and ψ(2). Estimating these

derivative terms is notoriously difficult and generally leads to large estimation

errors (e.g., Bhattacharya (1967), Wand and Jones (1995, ch. 2)). Similarly,

13A Gaussian reference model underlies the celebrated Silverman rule for the optimal

choice of the bandwidth in standard non-parametric density estimation without the EIV

problem. This rule gives h∗ = 1.06σn−
1
5 , where σ is the standard deviation of the obser-

vations (Silverman (1986)).
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the standard bootstrap usually underestimates the bias in curve estimation

problems (Hall (1990), Hall and Kang (2001)). The design of resampling

techniques suitable for our unbalanced setting with an EIV problem is a

difficult and still open question.

The results obtained with the Gaussian reference model as the number

of funds n and the number of observations T grow large are reported in the

next proposition.

PROPOSITION 2: As n, T → ∞ such that T
n

= o(1) and h → 0 such that

nh→∞ and
√
nh(h2T + (1/T )

3
2 )→ 0, the two bias terms are equal to

bsr1(m) =

[
1

2
K2h

2 1

σ2
m

(m̄2
1 − 1)

]
1

σm
ϕ(m̄1), (15)

bsr2(m) =

[
1

2T
exp(µs +

1

2
σ2
s)

1

σ2
m

(m̄2
2 − 1)

]
1

σm
ϕ(m̄2), (16)

where m̄1 =
m− µm
σm

, m̄2 =
m− µm − ρσmσs

σm
, and ϕ(x) =

1√
2π

exp(−1

2
x2)

is the density of the standard normal distribution. The optimal bandwidth h∗

is given by

h∗ =

[
K2

K12
√
π

3

4σ5
m

(
ρ4σ4

s

12
− ρ2σ2

s + 1

)
exp

(
µs +

1

2
σ2
s(1−

ρ2

2
)

)]− 1
3 (n

T

)− 1
3
.

(17)

Proof. See the appendix (Section I.D)

The EIV bias adjustment in Equation (16) changes the shape of the stan-

dard estimated density φ̂(m) in two ways. First, it removes probability mass

from the tails of φ̂(m). This adjustment is required because estimation
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noise produces large values of m̂i which then inflate the tail probabilities

(i.e., φ̂(m) is too flat). Second, the bias adjustment can be asymmetric

by removing more mass from the left tail of φ̂(m). This asymmetry arises

when the correlation ρ is positive—an empirical regularity for each measure

mi ∈ {ai, bi, vai, vai(s)}.14 In this case, funds with a positive measure mi

also exhibit a higher estimation variance Si. As a result, it is not unusual for

these funds to exhibit a low estimated value m̂i (i.e., the left tail of φ̂(m) is

too thick).

Using the results in Proposition 2, we can now compute the bias-adjusted

density φ̃(m). We first estimate the parameter vector θ using the estimated

quantities m̂i and ŝi (i = 1, ..., nχ). To compute ŝi = log(Ŝi), we use the

standard variance estimator of Newey and West (1987):

Ŝi =
T

T 2
i

T∑
t=1

Ii,tû
2
i,t + 2

L∑
l=1

(
1− l

L+ 1

)[
T

T 2
i

T−l∑
t=1

Ii,tIi,t+lûi,tûi,t+l

]
, (18)

where ûi,t is computed from the expressions in Equation (13) for the chosen

fund measure, and L is the number of lags to capture potential serial corre-

lation. Then, we plug the elements of the estimated vector θ̂ into Equations

(15)-(17) to compute the bias terms b̂s
r

1(m), b̂s
r

2(m), and the optimal band-

width h∗. Finally, we remove the bias terms from the standard kernel density

14As noted by Jones and Shanken (2005), the sign of ρ is related to the concentration

of the fund’s holdings. For instance, if skilled funds tend to only hold a few stocks,

the idiosyncratic variance increases and the correlation ρ between the true skill ai and

estimation variance Si is positive.
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φ̂(m) to obtain

φ̃(m) = φ̂(m)− b̂s
r

1(m)− b̂s
r

2(m). (19)

With the bias-adjusted density φ̃(m) at hand, we can compute the character-

istics of the distribution (moments, proportions, and quantiles) via numerical

integration. For instance, the proportion of funds with a negative mi is given

by the cdf estimate π̃− =
∫ 0

−∞ φ̃(u)du. Among all the characteristics, the

estimated average M̂ is the only one that is immune to the EIV bias—given

that the two bias functions b̂s
r

1(m), b̂s
r

2(m) scaled by m integrate to zero, we

have M̃ =
∫
φ̃(u)udu =

∫
φ̂(u)udu = M̂ (see the appendix (Section I.C)).15

III. Data Description

A. Mutual Fund Data and Benchmark Model

We conduct our analysis on the entire population of open-end actively

managed US equity funds.16 We collect monthly data on net returns and

size, as well as annual data on fees, turnover, and investment objectives from

15As an alternative to the numerical approach, we can directly derive analytically the

asymptotic properties of the characteristics. Similar to the density, we show in the ap-

pendix (Section II) that the different estimators are normally distributed and suffer from

the EIV bias (except the mean).

16We exclude index funds and ETFs because our baseline model αi,t = ai − biqi,t−1 is

likely to be misspecified for them. First, the skill of passive funds, if any, are operational

(e.g., securities lending programs) and thus very different from that of active funds (Crane

and Crotty (2018)). Second, passive funds may actually benefit from economies of scale if

a portion of their operational costs are fixed.
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the CRSP database between January 1975 and December 2019. It allows

us to construct the time-series of the gross return and size for the entire

population and different fund groups (small/large cap, low/high turnover,

broker/direct sold). To compute the real value of size, we follow BvB and

compute its value in terms of January 1, 2000 dollars. The appendix (Section

V) provides additional information on the construction of the mutual fund

dataset.

To estimate Equation (5), we use the model of Cremers, Petajisto, and

Zitzewitz (2012) which includes the vector ft = (rm,t, rsmb,t, rhml,t, rmom,t)
′,

where rm,t, rsmb,t, rhml,t, and rmom,t capture the gross excess returns of the

market, size, value, and momentum factors.17 The distinguishing feature of

this model is to proxy for the market factor using the SP500, and use index-

based versions of the size and value factors obtained from the Russell indices.

Contrary to the model of Carhart (1997), it therefore correctly assigns a zero

alpha to the SP500 and Russell 2000—two indices that are widely used as

benchmarks by mutual funds.

To obtain reliable estimates of each fund measure mi, we apply the fund

selection rule in Equation (8) and require that (i) the condition number of

the matrix Q̂x,i is below 15 (as in Gagliardini, Ossola, and Scaillet (2016)),

and (ii) the minimum number of monthly observations is above 60. Whereas

the original sample of funds includes all dead funds, this selection rule may

introduce a survivorship bias if unskilled funds (ai < 0) disappear early. An

17We use the gross factor returns (instead of the net returns) to exclude diversification

services and only focus on the value created by the funds from their investment ideas (see

BvB for a discussion of diversification services).
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offsetting effect is that it mitigates the reverse survivorship bias that arises

when skilled funds (ai > 0) disappear after unexpectedly low returns (Lin-

nainmaa (2013)). Our analysis in the appendix (Section VI.C) reveals that

any biases introduced by the selection rule are minimal—the results remain

largely unchanged when changing the minimum number of observations from

60 to 12.

B. Summary Statistics

Table I reports summary statistics for our final sample of 2,321 funds.

We construct an equal-weighted portfolio of all existing funds at the start of

each month. In Panel A, we report the first four moments of the portfolio

gross excess returns. In the entire population, the portfolio achieves a mean–

volatility tradeoff similar to that of the aggregate stock market (9.3% and

15.2% per year). It also exhibits a negative skewness (-0.7) and a positive

kurtosis (5.3). The results are similar across fund groups, except for the

small cap portfolio which produces higher mean and volatility.

In Panel B, we report the estimated portfolio betas for the four factors.

We find that small cap funds are heavily exposed to the size factor (0.79),

which is also the case for high turnover funds (0.46). Finally, Panel C re-

ports additional characteristics which include the average number of funds

in the portfolio and the time-series average of the median fund size, fees,

and turnover. Consistent with intuition, small cap funds manage a smaller

asset base—the median size is equal to $135M versus $256M for large cap

funds. We also find that high turnover funds trade very aggressively. The

median turnover reaches 112% per year versus 28% for low turnover funds.
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Finally, funds sold by brokers charge higher expenses than funds directly sold

to investors (similar to Del Guercio and Reuter (2014) and Sun (2020)).

Please insert Table I here

IV. Empirical Results

A. Analysis of Skill and Scalability

A.1. Magnitude of the Skill and Scale Coefficients

We begin our empirical analysis by examining the cross-sectional distri-

butions of the skill and scale coefficients. For each fund, we estimate ai and

bi and use our nonparametric approach to infer the densities φ(a) and φ(b).

To describe their properties, we compute the bias-adjusted estimates of the

moments (mean, variance, skewness, kurtosis), the proportions of funds with

negative and positive coefficients, and the quantiles at 5% and 95%. We also

compute the standard deviation of each estimator (see the appendix (Section

I.E)). The results for φ(a) and φ(b) are shown in Table II.

Panel A reveals that the vast majority of funds in the population are

skilled—on average, the skill coefficient equals 3.0% per year and is positive

for 83.1% of the funds in the population. These results resonate with the

numerical analysis of Berk and Green (2004) who find a similar proportion

(80%) based on a calibration of their model. In short, the empirical evidence

suggests that most funds are able to generate profitable ideas and identify

undervalued stocks.

28



A small number of funds are unskilled and thus unable to generate prof-

itable investment ideas (ai < 0). This result is a priori surprising because

funds always have the option to invest passively such that ai = 0. One pos-

sible explanation proposed by Berk and van Binsbergen (2019) is that such

funds, referred to as charlatans, trade actively in order to mislead investors

about their true skill levels.

Turning to the analysis of Panel B, we find that 82.4% of the funds in

the population experience diseconomies of scale. The magnitude of the scale

coefficient is typically large—on average, a one standard deviation increase

in size reduces the gross alpha by 1.3% per year. Equivalently, a $100M

increase in size lowers the gross alpha by 0.2% per year.18 Overall, the results

are largely consistent with the literature that emphasizes the importance of

diseconomies of scale in the mutual fund industry.

At the same time, a minority of funds seem to benefit from economies of

scale (bi < 0)—a view that is inconsistent with the Berk and Green model.

The low economic magnitude of this effect suggests that it is due to estimation

noise. Even among the funds with negative and highly significant b̂i (at

the 5% level), all of them are classified as false discoveries, i.e., their true

coefficient bi equals zero (see Barras, Scaillet, and Wermers (2010)). With

a cluster of values for b̂i around zero, it could be more difficult to perfectly

control for estimation noise—whereas the EIV bias adjustment produces a

18To obtain this upper bound, we use the Jensen inequality: E[ biσqi
] < E[bi]

E[σqi]
= b̄

σ̄q
,

where b̄ is the average size coefficient, and σ̄q is the average volatility of fund size (i.e.,

time-series volatility averaged across funds). With b̄ = 1.3% and σ̄q = $655M, we obtain

b̄
σ̄q

100 = 0.2%.
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10%-drop in the proportion of negative-scale funds, it does not bring it down

to zero.

Alternatively, the existence of these funds may signal that the linear

model αi,t = ai−biqi,t−1 is misspecified and omits relevant variables pi,t−1. To

address this issue, we develop a new test of the null hypothesis H0,i that the

linear specification is correct. As discussed in the appendix (Section VI.A),

this test does not require that we identify pi,t−1—instead, we can reject H0,i

based on any variable wi,t−1 that is correlated with pi,t−1. For the selection of

wi,t−1, we either use (i) the total industry size and aggregate turnover (Pas-

tor, Stambaugh, and Taylor (2015, 2018)) to capture changes in the fund’s

economic environment, or (ii) q2i,t−1 and q3i,t−1 to capture nonlinearities in

fund size. We find that the rejections of H0,i are limited in numbers—they

represent less than 15% of all tests (at the 5% level), and one third of these

rejections are false discoveries (H0,i is rejected whereas it is true). While not

perfect, the linear specification seems to hold for the vast majority of funds.

Please insert Table II here

A.2. Variation in the Skill and Scale Coefficients

An important insight from Table II is the substantial variation in the

skill and scale coefficients. Some funds have stellar investment skills—5% of

them exhibit levels above 8.9% per year, which is three times larger than the

average. Similarly, funds largely differ in their sensitivity to diseconomies of

scale. This large cross-sectional variation is at odd with the panel regres-

sion approach that imposes a constant scale coefficient b across all funds. To
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formally test the validity of the panel approach, we consider the linear spec-

ification αi,t = ai − bqi,t−1 used in previous work (e.g., Chen, Hong, Huang,

and Kubik (2004), Pastor et al. (2015), Yan (2008), Zhu (2018)). We also

examine the log specification αi,t = ai − blog(qi,t−1) based on the assump-

tion that a relative (instead of absolute) size change has the same effect on

all funds (e.g., Yan (2008), Zhu (2018)). Then, we test the null hypothesis

of homogeneous coefficients H0 : b1 = b2 = ... = b (see the appendix (Sec-

tion VI.B)). Consistent with the large heterogeneity observed in Panel B, we

reject H0 with probability one for each specification (size and log size).19

The observed variation in the skill and scale coefficients is potentially

driven by the specific strategies followed by the funds. To examine this

issue, we repeat the analysis among funds with different levels of liquidity

(small/large cap) and turnover (low/high turnover)—two key determinants of

the fund investment strategy (Pastor, Stambaugh, and Taylor (2020)). Table

II confirms that the skill and scale coefficients vary considerably across all

four investment categories. The average values of ai and bi vary between

1.7% and 4.6% per year, and between 0.9% and 1.8% per year. We also

find that direct sold funds generate more profitable ideas than broker sold

funds—the average skill coefficient equals 3.3% per year and is positive for

19The large variation in scalability also helps to understand the statistically weak and

conflicting evidence on the effect of size using panel information (e.g., Chen, Hong, Huang,

and Kubik (2004), Pastor, Stambaugh, and Taylor (2015), Zhu (2018)). When bi varies

across funds, the standard deviation of the estimated pooled b̂ is inflated and its t-statistic

decreases (Pesaran and Yagamata (2008)). Therefore, b̂ may not be statistically significant

even if most funds have a positive bi (as shown in Panel B).
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88.4% of the funds (versus 2.9% and 82.7% for broker sold funds). This

result resonates with that of Del Guercio and Reuter (2014) who suggest

that managers of direct sold funds face a more elastic investors’ demand

curve and have therefore more incentives to generate superior returns.

However, Table II still reveals a substantial cross-fund variation within

each fund group. In other words, forming groups is not sufficient to ab-

sorb the large heterogeneity in ai and bi. To quantify this effect, we run

a panel regression of âi and b̂i on 18 dummies that capture the fund’s pro-

file (small/medium/large cap, low/medium/high turnover, and broker/direct

sold). Whereas these variables contribute the variation in skill and scalability

across funds, their explanatory power is modest (the R2 is equal to 8.7% and

7.3%).

A.3. Correlated Skill and Scale Coefficients

Another insight from our cross-sectional analysis is that the skill and scale

coefficients are strongly correlated. In the entire population, the pairwise cor-

relation between âi and b̂i is equal to 0.78. Put differently, great investment

ideas are difficult to scale up.20

Part of this correlation is explained by the fund’s investment style—that

20This correlation is cross-sectional and is therefore not driven by the fund-level corre-

lation between âi and b̂i. To verify this point, we run a simple simulation where we impose

that the cross-sectional correlation between ai and bi is equal to zero (see the appendix

(Section IV.C) for details). Consistent with theory, we find that the correlation between

âi and b̂i is positive at the fund level, but the correlation between âi and b̂i across funds

equals zero.
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is, ai and bi are correlated because they both depend on the characteristics

of the fund strategy such as liquidity and turnover. As illustrated in Figure 1

(Panels A and B), small cap funds have both higher skill and scale coefficients

than large cap funds. These results are consistent with the difference in

liquidity between the two groups. Illiquidity tends to increase the mispricing

of small cap stocks (higher ai)—as noted by Hong, Lim, and Stein (2018),

these stocks are largely untouched by mutual funds. At the same time,

illiquidity increases the cost of trading small cap stocks (higher bi).

We document a similar pattern for high versus low turnover funds (Panels

C and D). By rebalancing their portfolio more often, high turnover funds are

able to exploit more investment opportunities (higher ai). However, they

also incur higher trading costs (higher bi), possibly as a result of excessive

trading (e.g., Dow and Gorton (1997)). Overall, these results imply that the

ability of funds to create value depends on the trade-off between skill and

scalability—a point we examine in more detail below.

Please insert Figure 1 here

B. Analysis of the Value Added

B.1. Magnitude of the Value Added

We now turn to the cross-sectional distribution of the value added. In

our analysis below, we only focus on the value created by the funds from

exploiting their investment skills (i.e., we exclude diversification services (see

BvB for a discussion)). For each fund, we estimate vai as a function of ai
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and bi and use our approach to infer the density φ(va). We then report the

bias-adjusted distribution characteristics in Table III.

The majority of funds are able to extract value from capital markets

through their investment decisions. We find that 60% of them produce a

positive value added which, on average, equals $1.9M per year. In contrast,

BvB and Zhu (2018) find that the majority of funds destroy value. This

difference is important for the debate on the size of the finance industry

(e.g., Cochrane (2013)). Funds that destroy value are unambiguously too

large. If their proportion is large, it raises the bar for any theory that tries

to rationalize the actual size of the fund industry.

Our empirical analysis highlights the importance of the EIV bias ad-

justment. Figure 2 shows that the bias-adjusted distribution φ̃(va) departs

markedly from the unadjusted distribution φ̂(va). In other words, the noise

contained in the estimated values v̂ai materially distorts the shape of φ̂(va).

For instance, it implies that only 48.4% of the funds create value (similar to

the values reported in BvB and Zhu (2018)). It also produces a gap between

the quantiles at 5% and 95% that is 1.4 times larger than the one reported

in Table III ($27.1M versus $38.1M).21

Among the minority of funds that destroy value (vai < 0), we can distin-

guish between (i) unskilled funds (ai < 0) and (ii) skilled funds (ai > 0) that

grow too large to maintain revenues below costs. Combining the results in

Tables II and III, we find that the relative importance of unskilled funds only

21The estimated average can be compared with previous studies because it is immune

to the EIV bias. BvB find an annual average of $2.0M net of diversification services, which

is very close to ours ($1.9M).
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equals 42.3% (16.9/40.0%). It implies that the majority of value-destroying

funds could ultimately create value if they scale down their size.

Please insert Table III and Figure 2 here

B.2. Skill, Scalability, and Value Added

Our framework explicitly links the value added to the skill and scale

coefficients. We can therefore examine the importance of each coefficient in

the value creation process. Because ai and bi are strongly correlated, the

most valuable funds are not necessarily those with the best ideas. As these

funds typically face tighter scale constraints, they could be dominated by

funds that are able to scale up less profitable ideas.

To examine this issue, we sort âi and b̂i for each fund into deciles to create

a scoring system from 1 to 10 (1=lowest value, 10=highest value). We then

identify the most valuable funds as those with highly positive and significant

v̂ai using a 5%-significance level (247 funds). We find that the median skill

and scalability scores are equal to 7 and 4. In addition, only 14.6% (18.2%)

of the funds achieve the best skill (scalability) score of 10 (1). Therefore,

the most valuable funds are those able to strike a balance between skill and

scalability.

Our previous analysis reveals that different types of funds exhibit specific

combinations of skill and scalability. To determine which combination pro-

duces the highest value, we re-estimate φ(va) within each fund group. Table

III shows that the small cap group creates more value than the large cap

group—we observe a positive difference for both the average ($4.0M versus -
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$0.6M) and the proportion of value-creating funds (66.6% versus 47.0%). We

obtain qualitatively similar results when comparing low and high turnover

funds. Interestingly, both small cap and low turnover funds create more

value, but rely on a very different skill-scalability combination: (i) high in-

vestment skills for small cap funds, (ii) high scalability for low turnover funds.

Finally, direct sold funds exhibit a higher value added than broker sold funds

as they take advantage of a more attractive skill-scalability combination (i.e.,

higher ai and similar bi).

Overall, the empirical evidence shows that active funds are skilled and

able to create value through their investment activities. However, the effect

of active management on welfare is a priori ambiguous. On the one hand,

the expertise of the active funds enables them to increase their returns at

the expense of their trading counterparts and, possibly, their clients. This

point reflects the view that finance is engaged in rent-seeking, socially waste-

ful activities (see, for instance, Greenhood and Scharfstein (2013) and Tobin

(1984) for a discussion). On the other hand, active funds perform the so-

cially valuable function of making prices more informative, thus allowing for

an improvement of the allocation decisions made by capital providers, man-

agers, employees, or regulators (see Bond, Edman, and Goldstein (2012) for

a literature review). Measuring the social value of active management there-

fore requires to determine the relative importance of these two effects (e.g.,

Kurlat (2019)).
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B.3. Last Subperiod Value Added

The standard measure vai considered so far captures the value created

by the fund over its entire life. To the extent that size varies over time, it

may therefore not provide a precise measure of the value created by the fund

when it gets older.

To address this issue, we begin by examining the dynamics of size across

funds. We split the total observations of each fund in 10 subperiods (S = 10).

For each subperiod s (s = 1, ..., 10), we then compute the difference ∆qi,s =

qi(s) − qi, where qi(s) and qi denote the averages over subperiod s and the

full sample. Figure 3 plots the median value of ∆qi,s for each subperiod. We

find that the size is generally substantially below its average when the fund is

young. In subperiod 1, the median size gap equals -$134M which represents

-78% of the average fund size. Then, the size reaches its maximum value in

subperiod 7 before falling back close to qi—in the last subperiod, the median

size gap is a mere -$13M (-13% in relative terms).

Please insert Figure 3 here

Motivated by these results, we turn to the analysis of the last subperiod

value added denoted by vai(10). For each fund, we estimate vai(10) as a

function of ai and bi and use our approach to infer the density φ(va(10)). We

then report the bias-adjusted distribution characteristics in Table IV.

The difference between the two measures is economically large. On aver-

age, the last subperiod value added equals $5.4M per year—a gap of $3.5M

vis-a-vis the standard measure vai. In addition, the proportion of funds with
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a positive value added is higher (70.5% versus 60.0%). This increase arises

because some of the large funds see a reduction of their size as they get older.

As a result, their value added is negative on average (vai < 0), but positive

during the last subperiod (vai(10) > 0). Finally, we document the same pat-

terns across all fund groups—for one, the last subperiod value added among

large cap funds is $4.3M higher than the standard measure.

An intuitive explanation for the difference between the two measures is

the presence of learning effects. Investors need time to learn about skill

and scalability and allocate the right amount of capital to each fund (e.g.,

Berk and Green (2004), Pastor and Stambaugh (2012)). To formalize this

intuition, suppose that the size over the last subperiod is constant and equal

to its average E[qi,t−1]. In this case, we have vai(10) − vai = aiE[qi,t−1] −

biE[qi,t−1]
2 − aiE[qi,t−1] − biE[q2i,t−1] = biV [qi,t−1], where the variance term

V [qi,t−1] captures changes in fund size as investors update their priors about

ai and bi. Combined with the strong diseconomies of scale in Table II, these

size fluctuations create a large wedge between vai(10) and vai. Overall, the

empirical evidence points to uncertainty about skill and scalability as an

important source of short-term capital misallocation.

Please insert Table IV here
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C. Equilibrium Considerations

C.1. Actual versus Optimal Value Added

Our analysis so far shows that most funds create value—especially once

we focus on the last part of their return history. However, it does not imply

that the size of the fund industry is consistent with a rational model of

fund capital allocation. To address this issue, we examine the equilibrium

predictions of the Berk and Green model.

In this model, we have (i) a set of skilled funds in scarce supply, and (ii)

a large number of rational investors that compete for performance. Because

funds are in a strong bargaining position, they can maximize profits πi un-

der the constraint that investors break even and pay fees fe,i equal to the

gross alpha αi. As a result, profit maximization corresponds to value added

maximization, i.e., πi = fe,iqi = αiqi = vai.

Using the linear specification αi = ai− biqi (Equation (4)) and taking the

first order condition ∂vai
∂qi

= 0, we obtain a simple expression for the optimal

value added:

va∗i = aiq
∗
i − bi (q∗i )

2 =
a2i
4bi

, (20)

where q∗i = ai
2bi

is the optimal active size. Using Equation (20), we can com-

pute v̂a∗i as
â2i
4b̂i

and compare it with the actual value added observed in the

data.

Our comparison analysis requires that va∗i is positive. To meet this con-

dition, we only select funds with sufficiently high estimated values v̂a∗i or,
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more formally, funds for which we reject the null hypothesis

Hi,0 : va∗i = 0. (21)

We begin by computing the fund t-statistic t̂i as v̂a∗i
σ̂va∗

i

, where the standard

deviation σ̂va∗i equals
√

1
T
Ŝi, and the asymptotic variance Ŝi is obtained from

Equation (18) with ui,t = 2ai
4bi
e′1Q

−1
x,ixi,tυi,t −

a2i
4b2i
e′2Q

−1
x,ixi,tυi,t. Then, we select

all funds for which t̂i is above the threshold tγ. This threshold is defined such

that the proportion of false discoveries (funds with significant v̂a∗i whereas

va∗i = 0) among the selected funds is equal to γ.22 For the results presented

in Table V, we set γ equal to 10%, 20%, and 30% which guarantees that the

vast majority of selected funds satisfy the condition va∗i > 0.

Panel A shows that the optimal value added v̂a∗i among the selected

funds is economically large. On average, it is equal to $18.6M per year

when the false discovery target γ equals 30%. Consistent with intuition, this

number increases to $26.9M when imposing a more stringent fund selection

(γ = 10%). In contrast, the actual value added obtained with the standard

measure vai is substantially lower, i.e., its average only represents between

9.7% and 25.1% of the optimal value added. Taken at face value, these results

imply that funds largely fail to optimally exploit their investment abilities.

However, this failure could be particularly severe during the investors’ learn-

ing process—our previous analysis suggests that uncertainty about skill and

scalability can generate substantial capital misallocation.

22See Barras, Scaillet, and Wermers (2010, Section III.C) for a description of the False

Discovery Rate (FDR) approach applied to the problem of fund selection.

40



The analysis of the last subperiod value added vai(10) confirms this view.

We find that funds extract on average between 47.0% and 54.8% of the

optimal value added. This result is not merely driven by a few funds with

extreme skill and scale coefficients. Panels B and C show that the ratio of

actual to optimal value added becomes even stronger after trimming the top

(bottom) 10% and 20% of funds with the highest (lowest) values of âi (b̂i). In

addition, the strong correlation of 0.81 between the estimated values v̂ai(10)

and v̂a∗i confirms that funds with higher potential for value creation do create

more value. In short, we find that the value added approaches its optimal

level as funds get older. This result is therefore consistent with the Berk and

Green model in which funds are skilled and able to extract economic rents

from capital markets.

Please insert Table V here

To shed further light into the temporal adjustment towards optimality,

we examine the gap between the actual fund size and the optimal active size

measured as q̂∗i = âi
2b̂i

. Across the three sets of selected funds (γ = 10%,

20%, and 30%), we measure the following difference in each subperiod s

(s = 1, ..., 10) : ∆q∗i,s = qi(s) − q̂∗i . Figure 4 shows that the median value

of ∆q∗i,s is highly negative in subperiod 1, then increases substantially before

narrowing down at a level 23% higher than the optimal active size. In theory,

a positive size gap ∆q∗i,s does not necessarily reveal a failure to optimize the

value added—as shown by Berk and Green (2004), funds can still do so as
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long as they passively invest the excess capital qi(s)− q̂∗i .23 To interpret the

remaining negative difference between v̂ai(10) and v̂a∗i in Table V, we must

therefore understand why funds do not fully follow this passive strategy. One

possible reason is that funds are unsure of their own skill and scale coefficients

and must learn about them alongside with investors.

Overall, we find that two elements are crucial to uncover the ability of

the Berk and Green model to fit the data. First, we need to focus on the last

subperiod value added vai(10) (instead of vai) to control for the short-term

capital misallocation across funds (Table V). Second, it is important to allow

for heterogeneity in skill and scalability—a feature that cannot be captured

with a panel approach where scalability is constant across funds (bi = b).

To illustrate, Roussanov, Ruan, and Wei (2020) use a panel specification to

examine the relation between skill and optimal size, and find that its slope

is too steep compared to the data. However, we find that funds with high

skill generally face tighter scale constraints, which lowers the value of their

optimal size. Therefore, accounting for the positive correlation between ai

and bi flattens the slope of the skill-optimal size relation and improves the

fit of the Berk and Green model.

23Habib and Johnsen (2016) argue that funds have a preference for a positive gap

∆q∗i,s because it allows them to mitigate several institutional constraints. Specifically,

the Investment Company Act imposes diversification rules that may prevent funds from

exhausting their investment opportunities if they are too small. Holding a portion of the

portfolio passively managed may also help funds to hide their informed trades and obtain

better prices.

42



Please insert Figure 4 here

C.2. From Value Added to Performance

An important question for investors is whether they benefit, at least par-

tially, from the value created by mutual funds. To address this issue, we

measure the net alpha received by investors as αni = E[αi,t] − E[fe,i,t] =

ai − biE[qi,t−1] − E[fe,i,t], where fe,i,t is the monthly fund fees. To infer its

cross-sectional density φ(αn), we apply our nonparametric approach using

the following expressions for m̂i and ui,t:

m̂i = α̂ni = âi − b̂iqi − f̄e,i,

ui,t = e′1Q
−1
x,ixi,tεi,t − E[qi,t−1]e

′
2Q
−1
x,ixi,tεi,t

−bi(qi,t−1 − E[qi,t−1])− (fe,i,t − E[fe,i,t]), (22)

where f̄e,i = 1
Ti

∑T
t=1 Ii,tfe,i,t is the sample average of the fund fees.

Of course, we are not the first to estimate the entire net alpha distribution—

recent studies use standard parametric approaches to infer φ(αn) (e.g., Chen,

Cliff, and Zhao (2017), Harvey and Liu (2018)). However, our nonparametric

approach potentially brings several advantages discussed in Section II.A. In

particular, it is robust to misspecification, simple to apply, and based on a

full-fledged asymptotic theory.

Consistent with the literature on performance, Table VI provides limited

evidence that investors benefit from the value created by mutual funds.24 Yet,

24Another way to illustrate this point is to compute the total dollar amount of excessive

43



the performance evaluation is more positive than in most previous studies.

In particular, our approach produces an average alpha close to zero (-0.4%

per year) and a proportion of positive alpha funds equal to 37.1%. Part of

this performance improvement is due to the index-based model of Cremers,

Petajisto, and Zitzewitz (2012). For one, the proportion of positive-alpha

funds drops to 26.5% with the standard model of Carhart (1997)).

A common explanation for poor performance is that unskilled funds man-

age to sell their shares to disadvantaged investors. These investors are either

ignorant of underperformance (e.g., Gruber (1996), or willing to pay extra

fees for financial advice (Del Guercio and Reuter (2014))—a view that is

reflected in the strong underperformance of broker versus direct sold funds

in Table VI. Consistent with this explanation, we find that the majority of

the worst performing funds (those with net alphas below the 25% quantile

of φ(αn)) are unskilled and charge high fees. However, this explanation can-

not fully account for the observed underperformance because unskilled funds

only represent 16.9% of the population. Put differently, it cannot fully recon-

cile our two findings that the proportions of funds with positive value added

(vai > 0) and negative alphas (αni < 0) are both large.

Please insert Table VI here

We can reconcile both findings in the context of the Berk and Green model

if we allow investors to have more optimistic views about skill than the funds

fees (measured by αni ) paid by investors. Similar to Cooper, Halling, and Yang (2020), we

find that the total amount of excessive fees across years and funds is equal to $152 billion.
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themselves. We illustrate this point in Figure 5 using a simple example

where (i) the fund knows its skill level ai and sets fees such that it operates

at the optimal active size q∗i (fe,i = αi(ai, q
∗
i )), and (ii) investors believe that

skill is higher at a1i and are willing to invest q1i (q1i > q∗i ) based on their

perceived break-even point fe,i = αi(a
1
i , q

1
i ). Whereas the fund invests the

difference q1i − q∗i passively to keep the value added at its optimal value (i.e.,

va(q1i ) =
aiq

∗
i−bi(q∗i )

2

q1i
q1i = va∗i ), the alpha is negative (i.e., fe,i > αi(ai, q

1
i )).

Please insert Figure 5 here

An alternative explanation is that investors face information frictions

(search costs) that prevent them from evaluating the entire fund population

(Roussanov, Ruan, and Wei (2020)). In this setting, individual funds—

including the skilled ones with positive value added—may find it optimal to

incur marketing expenses to attract investors with high search costs. These

investors are then charged high fees and receive negative alphas as they do

not switch to cheaper funds.

If these mechanisms are at play, we should see a progressive reduction in

the high proportion of underperforming funds. The net alphas of existing

funds should increase as investors sharpen their views on skill and reallocate

their capital. In addition, the recent advances in technology should reduce

the information frictions faced by investors and give them access to a larger

sample of funds to choose from.
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D. Additional Results

D.1. Alternative Asset Pricing Models

Our empirical analysis depends on the choice of asset pricing model. To

address this issue, we benchmark the fund returns using the four-factor model

of Carhart (1997) and the five-factor model of Fama and French (2015) (see

the appendix (Section VI.D)). Whereas the skill and scalability distributions

remain largely unchanged, we observe two noticeable differences. First, the

average skill coefficient among small cap funds drops from 4.6% to 3.3% per

year under the Carhart model, consistent with the analysis of Cremers, Peta-

jisto, and Zitzewitz (2012). Second, the proportion of skilled funds decreases

from 83.1% to 74.0% with the Fama-French model. This reduction arises be-

cause some funds tilt their portfolios towards profitability- and investment-

based strategies.

D.2. Analysis based on Daily Fund Returns

Our baseline specification assumes that the regression coefficients remain

constant over time. To examine this issue, we repeat our analysis using daily

fund returns. This procedure allows us to capture potential changes in the

coefficients without explicitly modeling their dynamics (Lewellen and Nagel

(2006)). We proceed in two steps. Each year, we first run a regression of the

fund return on the factors to extract the daily gross alpha after controlling

for short-term variations in factor loadings. Second, we run a regression of

the daily gross alpha on lagged size to infer the time-varying skill and scale

coefficients. Given the potential persistence over a small window of only
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one year, we run this regression over each non-overlapping five-year window

τ , i.e., we have: αi,t = ai,τ − bi,τqi,t−1 (see the appendix (Section VI.E) for

details).

In short, we do not observe a large time-variation in the skill coefficient.

Testing the null hypothesis of constant skill H0,i,τ : ∆ai,τ = ai,1 − ai,τ = 0

for each fund and each window, we only find 11.4% of rejections (at the 5%

level) among which 38.7% are false discoveries (funds with significant ∆âi,τ

whereas ∆ai,τ = 0). Repeating this analysis for the scale coefficient, we find

similar results—there are only 9.0% of rejections among which 48.5% are

false discoveries.

D.3. Impact of Changes in Economic Conditions

Finally, we extend our baseline specification to capture the impact of

changes in economic conditions. First, we control for changes in industry

competition using as proxy the ratio of industry size to total market capital-

ization (as in Pastor, Stambaugh, and Taylor (2015)). Second, we account

for potential changes in aggregate mispricing using aggregate fund turnover

(as in Pastor, Stambaugh, and Taylor (2018)).

The results reported in the appendix (Section VI.F) show that the skill

and scalability distributions remain largely unchanged after including these

additional variables. When the industry competition proxy is used alone in

the regression, the majority of funds are negatively impacted by an increase

in competition. However, its explanatory power substantially weakens when

we add fund size and allow for fund-specific scale coefficients (instead of using

a panel approach). Consistent with Pastor, Stambaugh, and Taylor (2018),
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we also find that the majority of funds produce higher returns in times of

higher mispricing in capital markets.

V. Conclusion

In this paper, we apply a new approach to study skill, scalability, and

value added in the mutual fund industry. For each of these measures, we

provide an estimation of the entire distribution across funds. Our approach

is nonparametric and thus avoids the challenge of correctly specifying each

distribution. In addition to its flexibility, our approach is bias-adjusted,

simple to implement, and supported by econometric theory.

Our empirical analysis brings several insights. Most funds are skilled and

thus able to extract value from capital markets. Second, the value added

distribution is shaped by the strong heterogeneity in the skill and scale co-

efficients, as well as their strong positive correlation. Third, the value added

approaches optimality once we allow for an adjustment period possibly due

to investors’ learning. This result contributes to the debate on the size of the

finance industry (e.g., Cochrane (2013), Greenhood and Scharfstein (2013)).

It suggests that a rational model in which skilled funds extract value from

capital markets does a good job at explaining the size of active management.

Whereas our paper focuses on mutual funds, our nonparametric approach

has potentially wide applications in finance and economics. It provides a

new tool for measuring heterogeneity in structural models (Bonhomme and

Shaikh (2017)). We can use it to estimate the cross-sectional distribution of

any coefficient of interest in a random coefficient model. It is, for instance,
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the case in asset pricing for capturing the heterogeneity across stocks (risk

exposure, commonality in liquidity), in corporate finance for capturing the

heterogeneity across firms (investment and financing decisions), and, more

recently, in household finance for capturing the heterogeneity in time prefer-

ence and risk aversion across households (see Calvet et al. (2019)).
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Table I

Summary Statistics of the Mutual Fund Dataset

This table provides summary statistics for all funds in the population, as well as
small/large cap funds, low/high turnover funds (i.e., bottom or top tercile of funds
sorted on turnover), and broker/direct sold funds (i.e., funds that are sold through
brokers or directly sold to investors). Panel A reports the mean (annualized),
standard deviation (annualized), skewness, and kurtosis of the gross excess return
of an equal-weighted portfolio of all existing funds at the start of each month. Panel
B reports the estimated portfolio betas on the market, size, value, and momentum
factors using the model of Cremers, Petajisto, and Zitzewitz (2012). Panel C
reports the average number of funds in the portfolio, as well as the time-series
average of the median fund size ($M), fees (annual), and turnover (annual). The
statistics are computed using monthly data between January 1975 and December
2019 and the median size is expressed in terms of January 1, 2000 dollars.

Panel A: Portfolio Gross Excess Return
Mean Std. Dev. Skewness Kurtosis

All Funds 9.3 15.2 -0.7 5.3

Small Cap 11.4 18.4 -0.6 5.0
Large Cap 9.0 14.6 -0.7 5.1

Low Turnover 9.1 14.2 -0.7 5.6
High Turnover 9.8 16.5 -0.7 5.1

Broker Sold 9.2 15.2 -0.7 5.3
Direct Sold 10.1 15.3 -0.8 5.3

Panel B: Portfolio Betas
Market Size Value Momentum

All Funds 0.94 0.36 -0.08 0.01

Small Cap 0.98 0.79 -0.14 0.03
Large Cap 0.95 0.17 -0.04 0.01

Low Turnover 0.91 0.27 0.06 -0.02
High Turnover 0.96 0.46 -0.24 0.06

Broker Sold 0.94 0.34 -0.10 0.02
Direct Sold 0.93 0.39 -0.06 0.01

59



Table I

Summary Statistics of the Mutual Fund Dataset
(Continued)

Panel C: Portfolio Characteristics
Nb. Funds Size Fees Turnover

All Funds 1007 208 1.11 58

Small Cap 209 135 1.28 63
Large Cap 418 256 1.00 54

Low Turnover 338 217 1.05 28
High Turnover 317 185 1.21 112

Broker Sold 467 266.0 1.17 60
Direct Sold 354 157.4 1.07 54
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Table V

Optimal Versus Actual Value Added

Panel A shows the means (annualized) of the actual and optimal value added and

its ratio (%). This analysis is based on the funds with significant estimated optimal

value added. We define the significance threshold such that the False Discovery

Rate (FDR) among the selected funds (i.e., the proportion of funds with a true

optimal value equal to zero) equals 10%, 20%, and 30%. In Panels B and C, we

repeat the analysis after removing the funds with estimated skill coefficients in

the top 10% (20%), or with estimated scale coefficients in the bottom 10% (20%).

Figures in parentheses denote the estimated standard deviation of the mean. The

value added of each fund is expressed in $M in terms of January 1, 2000 dollars.

Panel A: No Trimming on the Estimated Skill and Scale Coefficients
Fund Selection

FDR=10% FDR=20% FDR=30%
Mean Ratio Mean Ratio Mean Ratio

Optimal Value Added 26.9 (2.1) 21.7 (1.4) 18.6 (1)

Actual Value Added
Entire Period 6.7 (0.8) 25.1 4.3 (0.5) 19.7 1.8 (0.3) 9.7
Last Subperiod 14.7 (1.9) 54.8 10.2 (1.3) 46.8 8.7 (0.9) 47.0

Panel B: 10% Trimming on the Estimated Skill and Scale Coefficients
Fund Selection

FDR=10% FDR=20% FDR=30%
Mean Ratio Mean Ratio Mean Ratio

Optimal Value Added 27.5 (2.5) 21.8 (1.6) 18.7 (1)

Actual Value Added
Entire Period 7.7 (1.1) 28.1 4.8 (0.6) 21.9 1.9 (0.3) 10.3
Last Subperiod 17.3 (2.1) 63.0 10.9 (1.5) 49.8 9.2 (0.9) 49.1

Panel C: 20% Trimming on the Estimated Skill and Scale Coefficients
Fund Selection

FDR=10% FDR=20% FDR=30%
Mean Ratio Mean Ratio Mean Ratio

Optimal Value Added 29 (3.3) 21.6 (1.8) 18.2 (1.1)

Actual Value Added
Entire Period 8.7 (0.7) 30.1 4.5 (0.4) 20.9 0.6 (1) 3.2
Last Subperiod 18.2 (2.4) 62.9 10.8 (1.6) 50.2 8.7 (0.9) 47.9
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-0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75
0

50

100

150

200

250

300

350

400

450

High turnover

Low turnover
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Figure 1. Distributions of Skill and Scalability across Fund Groups.
Panels A and B plot the distributions of the monthly skill and scale coef-
ficients across small/large cap funds. Panels C and D provide the same
information for low/high turnover funds (i.e., bottom or top tercile of funds
sorted on turnover). We adjust all the estimated distributions for the error-
in-variable (EIV) bias using our nonparametric approach.
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Figure 2. Impact of the Error-in-Variable Bias on the Distribution
of the Value Added. This figure plots the distribution of the monthly value
added ($M) for all funds in the population with and without the adjustment
for the error-in-variable (EIV) bias using our nonparametric approach. The
value added of each fund is expressed in terms of January 1, 2000 dollars.
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Figure 3. Variation in Fund Size over Time. This figure plots the cross-
sectional median difference between the average fund size in each subperiod
and its full-sample average. The subperiods are obtained by splitting the
total number of fund’s observations in ten groups. The size of each fund is
expressed in $M in terms of January 1, 2000 dollars.
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Figure 4. Difference Between the Actual and Optimal Active Fund
Size over Time. This figure plots the cross-sectional median difference
between the average fund size in each subperiod and its optimal active size
predicted by the Berk and Green model. The subperiods are obtained by
splitting the total number of fund’s observations in ten groups. This analysis
is based on the sample of funds with significant estimated optimal value
added (i.e., funds for which we reject the null hypothesis that the true optimal
value added equals zero). The size of each fund is expressed in $M in terms
of January 1, 2000 dollars.
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Gross

alphaAverage cost (true)

q* q1

Figure 5. Example of a Fund with Positive Value Added and Neg-
ative Alpha. This figure plots the average revenue and cost functions of a
fund under the Berk and Green model. The fund knows its average revenue
and cost functions (denoted by true) and sets fees such that the fund size is
equal to the optimal active size q∗. Investors have optimistic beliefs about
skill and, given the level of fees, are willing to invest q1. To keep the value
added unchanged at its optimal level va∗, the fund invests the difference
between q1 and q∗ passively (which explains the drop in the true average
revenue and cost functions past q∗). Whereas this strategy maximizes the
value added, it still produces a negative alpha, i.e., the difference between
the gross alpha and fees is negative at q1.
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This appendix is divided in six sections. Section I provides a description of the

methodology for estimating the kernel density and the distribution characteristics (mo-

ments, proportion, and quantile). It also contains the proofs of the propositions dis-

cussed in the paper. Section II examines the asymptotic properties of the estimated

distribution characteristics under an alternative analytical approach (as opposed to the

numerical approach used in the paper). Section III provides a detailed discussion of the

Error-in-Variable (EIV) bias. Section IV describes our extensive Monte-Carlo analysis.

It also presents simulation results under the assumption that skill and scalability are

uncorrelated. Section V describes the construction of the data set and different fund

groups. Finally, Section VI explains the construction of our new formal specification

test. It also reports additional empirical results on (i) the validity of the panel spec-

ification, (ii) the impact of survivorship and reverse survivorship bias, (iii) the use of

alternative asset pricing models, (iv) the analysis based on daily fund returns, and (v)

the introduction of variables that capture changes in the economic conditions.

I Methodology

A Estimation Procedure

To begin the presentation of the methodology, we explain how to estimate the measure

 for each fund, where  ∈ {   ()} The estimation procedure explicitly
controls for the small-sample bias in the time-series regression  = −−1+0+
. This bias, which disappears asymptotically, arises because the mutual fund error

term  is positively correlated with the innovation in size , i.e.,  = + ,

where  is positive. Specifically,  denotes the size innovation projected onto the

space spanned by the factors :  =  − 0 where  = (1 
0
)
0 and  is the

innovation of the size regression  =  + −1 + . Failing to adjust for the

small-sample bias produces values for the skill and scale coefficients that are too high.1

As noted by Amihud and Hurvich (2004), adding the regressor  eliminates the

small-sample bias. To see this point, we can replace  with  +  to obtain

 =  − −1 + 0 +  +  (A1)

and verify that strict exogeneity holds, i.e., [ | ] = 0 where  = (1   )
0 

1Using the analysis of Stambaugh (1999), we have [̂ −] = −[̂− ]  0 and [̂ −] =
[̂ − ][−1]  0 where ̂ and ̂ denote the estimators of  and  without the small-sample

bias correction.
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is the ×(+3) matrix of the available observations of  = (1−−1  0 )0 and
 is the number of factors Of course, we do not observe the true projected innovation

. Therefore, we use the procedure proposed by Amihud and Hurvich (2004) and

Avramov, Barras, and Kosowski (2013) to compute a proxy for  denoted by 


.

This four-step procedure is applied to each fund  individually ( = 1  ). First,

we run the size regression to obtain the estimated coefficients ̂ and ̂  Second, we

compute the adjusted size innovation as

 =  − (̂ + ̂−1) (A2)

where the second-order coefficients corrected for the small-sample bias are given by

̂ = min(̂ + (1 + 3̂) + 3(1 + 3̂
2

) 2  0999) and ̂




= (1 − ̂) Third,

we regress  on the factors to obtain  =  − ̂
0

 Finally, we insert 




in

Equation (A1) to obtain

 =  − −1 + 0 + 


+  (A3)

From this regression, we can obtain estimated values for  that are adjusted for the

small-sample bias

B Asymptotic Properties of the Kernel Density

Proof of Proposition III.1 (Asymptotic properties). In this section, we provide

a proof of the asymptotic properties of the kernel density ̂() for each measure . To

this end, we initially focus on the skill coefficient, i.e.,  = . We allow for weak serial

dependence in the error terms (i.e., temporal mixing). To simplify the presentation and

avoid unnecessary technicalities related to spatial mixing conditions, we assume that the

error terms are cross-sectionally independent. To further ease the presentation, we do

not explicitly include the small-sample bias correction of the previous section because it

has no impact on the asymptotic analysis when  becomes large.2

2The inclusion of the estimated variable  in the set of regressors does not change the asymptotic

properties of the nonparametric density kernel estimator because the estimation error in  only affects

the higher order terms beyond −1.
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From the OLS estimation of the regression  =  − −1 + 0 + , we have:

̂ = 01̂
−1


1



X


 =  + 01̂
−1


1



X




=  +
1√

  

0
1̂

−1


Ã
1√


X




!
≡  +

1√

̂  (A4)

where  = (1−−1  0)0 Moreover, let us write

̂ =  +
1√

̂  (A5)

where  =  
1√


P
 ,  = 01

−1
, ̂ = (  − )

P
 

0
1̂

−1
+

 
P

 
0
1(̂

−1
 −−1 )   = plim→∞   and   = . The term ̂

√


corresponds to the estimation error of ̂ It is equal to the sum of  
√
 and ̂

where the second component captures the errors due to estimating the matrix  and

the random sample size . We can write ̂()− () = 1 + 2 + 3 + 4, where:

1 =
1




∙


µ
 −



¶¸
− ()

2 =
1




"


Ã
 + 

√
 −



!#
− 1




∙


µ
 −



¶¸


3 =
1



X


(


Ã
 + 

√
 −



!
−

"


Ã
 + 

√
 −



!#)


4 =
1



X


"
1

 

Ã
 + 

√
 + ̂ −



!#

− 1



X


"


Ã
 + 

√
 −



!#
 (A6)

The first term 1 is the smoothing bias, the second term 2 is the Error-In-Variable

(EIV) bias, and 3 is the main stochastic term. The remainder term 4 is associated

with ̂ and is negligible with respect to the others. We now characterize the first

three dominating terms.

(i) From standard results in kernel density estimation, the smoothing bias is such that

1 =
1
2
(2)()2

2 +(3), with 2 =
R
2().
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(ii) By a Taylor expansion of the kernel function  we have

2 =

∞X
=1

1

! 2+1


∙
()

µ
 −



¶
( )



¸
 (A7)

We can then apply  times partial integration and a change of variable to obtain

1

+1


∙
()

µ
 −



¶
( )



¸
=

1

+1

Z
()

µ
−



¶
()

= (−1) 1


Z


µ
−



¶

()

()

= (−1)
Z

 ()
()
(+ ) (A8)

where () = [( )
 | = ]() for  = 1 2 . We have 1() =

0 and lim→∞2() = [| = ]() ≡ () where  is equal to

2 plim→∞
1


P
 . By weak serial dependence of the error terms,

functions () for   2 are bounded with respect to  . Thus, we get:

2 =
1
2
(2)() +(1 32 + 2 )

(iii) Let us now consider term 3. For expository purpose, we treat the factor values

 as given constants. Then:

 [3] =
1

2


"


Ã
 +  

√
 −



!#
 (A9)

From the above arguments, we have 1



∙


µ
+ 

√
−



¶¸
= ()+ (1) and

1




⎡⎣Ã
 +  

√
 −



!2⎤⎦ =

Z
()2

1




"
̄

Ã
 + 

√
 −



!#

= ()

Z
()2+ (1) (A10)

where ̄() = ()2
R
()2. Therefore:

 [3] =
1


()

Z
()2+ 

µ
1



¶
 (A11)

Under regularity conditions, we can apply an appropriate central limit theorem
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(CLT) to obtain
√
3 ⇒  (0 ()1), where 1 =

R
()2. Grouping the

different elements completes the proof.3 QED

We can apply the same arguments for all the other measures used in the paper: (i)

the scale coefficient ( = ) (ii) the value added ( = ) and (iii) the subperiod

value added ( = ()) The only required change is to use the appropriate definition

for ̂ and  given in the paper.

C Optimal Bandwidth

Proof of Proposition III.1 (Optimal bandwidth) We now prove the remaining

part of Proposition III.1 by solving for the optimal bandwidth ∗ that minimizes the
Asymptotic Mean Integrated Squared Error (AMISE) of the density ̂(). From the

arguments in Section B above, we get the asymptotic expansion of the bias () of the

estimator ̂() with leading terms,

1() =
1

2
22

(2)() (A12)

2() =
1

2
(2)() (A13)

where 1() denotes the smoothing bias and 2() denotes the EIV bias.
4 We also

get the asymptotic expansion of the variance of the estimator ̂() with leading terms

2() = 1

()1 Combining these elements, we can write the AMISE as

() =

Z
[2() + ()2] =

Z
[2() + (1() + 2())

2]

=
1


1 +

42
2

4

Z
[(2)()]2

+
22

2

Z
(2)()(2)()+

1

4 2

Z h
(2)()

i2
 (A14)

3Okui and Yanagi (2020) also consider a kernel estimator for the density of the mean and autocorre-

lation of random variables. However, their distributional results differ from our regression-based results

aimed at measuring fund skill.
4From Equations (A12) and (A13), the integral of 1() and 2() is equal to zero if (1) and

(1) vanish at the boundary of the support (which is the case in our Gaussian reference model). Hence

it implies that the bias adjusted density (Equation (19) in the paper) integrates to one by construction.
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where we assume that
R
(2)()(2)() > 0 so that the AMISE is convex. The optimal

bandwidth ∗ minimizes the AMISE and solves the equation:

− 1

2
+ 1

3 + 2



= 0

⇐⇒ 1 = 1
5 + 2

3


 (A15)

where 1 = 2
2

R
[(2)()]21 and 2 =

2

1

R
(2)()(2)() (with 1, 2  0).

The analytical approximation of the optimal bandwidth ∗ depends on the relative
increase of  and  . If (i) 3 tends to a nonzero constant and (ii) 5 tends to zero,

Equation (A15) implies that asymptotically

∗ = 
−1
3

2

³


´− 1
3
=

µ
2

1

Z
(2)()(2)()

¶−1
3 ³



´− 1
3
 (A16)

This solution is admissible (i.e., it satisfies 5 → 0) if the sample sizes  and  are

such that 25 →∞ or, put differently, if  is small relative to . QED

We now consider the asymptotic distribution of the kernel density obtained with

the optimal bandwidth ∗. We can check that
√
∗(∗3 + ∗2 + 1 32) = (1) if

 4 → 0. Replacing () with its asymptotic approximation we have:

√
∗

µ
̂()− ()− 1

2
(2)()2

∗2 − 1

2
(2)()

¶
⇒  (0 ()1)  (A17)

where the smoothing bias is negligible and the dominant component is the EIV bias of

order (1 ) (because we have 25 →∞ and ∗2 → 0)

Note that if (i) 3 tends to zero and (ii) 5 tends to a nonzero constant,

Equation (A15) produces a different optimal bandwidth of the form ∗ ∼ 
− 1
5

1 −
1
5 (i.e.,

the usual Silverman rule). This solution is admissible (i.e., it satisfies 3 → 0) if the

sample sizes  and  are such that 25 → 0 or, put differently, if  is large relative

to 5

Our Monte-Carlo analysis in Section IV reveals that given our actual sample size,

the optimal bandwidth in Equation (A16) produces the best results. Motivated by these

results, we therefore use it in our baseline specification. We also verify that the empirical

results are remarkably similar under the two bandwidth choices

5 In the special case where 25 → , with   0, the two rates of convergence −15 and ( )−13

coincide. Then, Equation (A15) has a solution such that ∗ ∼ ̄15−15, where ̄ solves the equation
1 = 1̄ + 2̄

35. Therefore, the optimal bandwidth remains proportional to −15 (similar to the
Silverman rule).
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D Adjustment of the Density Bias

Proof of Proposition III.2. We now prove the second proposition of the paper

which provides closed form expressions for the two bias components 1() and 2()

and the optimal bandwidth ∗. We use a Gaussian reference model in which  and

 = log() follow a bivariate Gaussian distribution with mean parameters  ,

variance parameters 2 
2
, and correlation parameter .

6 We also use a standard

Gaussian kernel () = 1√
2
exp

¡−22¢ with 1 =
R
()2 = 1

2
√

and 2 =R

2() = 1. The constants 1 and 2 are given by:

1 = 2
√


Z
[(2)()]2 (A18)

2 = 2
√


Z
(2)()(2)() = 2

√


Z
(4)()() (A19)

where we use twice partial integration for 2.

Let us now compute the two integrals appearing in these formulas. We have () =
1



³
−


´
where () = 1√

2
exp

¡−22¢ is the standard Gaussian density. We have
(1)() = − 1



µ
− 


¶
 ()  (A20)

(2)() =
1

2

Ãµ
− 


¶2
− 1
!
 ()  (A21)

Therefore, the first integral is equal toZ
[(2)()]2 =

1

5

Z
(2 − 1)2 1

2
exp(−2) = 1

2
√
5

Z
(22− 1)2()

=
3

8
√
5

 (A22)

with the changes of variables from  to  = (− ), and from  to  =
√
2.

We can write the second integral asZ
(4)()() =

exp
¡
 +

1
2
2(1− 2)

¢
5

Z
(4)() exp()()

=
exp

¡
 +

1
2
2(1− 2)

¢
2
√
5

Z
(44− 32 + 3) exp()() (A23)

6The Gaussian marginal density of  implies that our reference model nests the standard model

underlying the derivation of the Silverman rule for kernel smoothing.
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where () = [exp()| = ]() = exp
³
 + 

³
−


´
+ 1

2
2(1− 2)

´
()

 = 
√
2 by using the same changes of variables as above, and (4)() = (4 −

62 + 3)(). To compute the integral in Equation (A23), we can exploit the following

equality that applies to a standard Gaussian random variable :
R
 exp()() =

[ exp()] = 


[exp()] with [exp()] = exp(22). This yields

R
(44 −

32 + 3) exp()() =
³
1
4
4

4
− 3 2

2
+ 3
´
exp(22) = 1

4
(4 − 62 + 3) exp(22)

Therefore, we obtain

Z
(4)()() =

3exp
³
 +

1
2
2

³
1− 2

2

´´
8
√
5

(4412− 22 + 1) (A24)

Using these results, we obtain the optimal bandwidth

∗ =
∙
3(4412− 22 + 1)

45
exp

µ
 +

1

2
2

µ
1− 2

2

¶¶¸− 1
3

( )−13 (A25)

where 2 ≥ 0 when either 22 ≤ 6− 2
√
6, or 22 ≥ 6 + 2

√
6

Finally, we can use the Gaussian reference model to obtain closed form expressions

of the smoothing bias and the EIV bias. Differentiating () twice, we obtain7

(2)() = exp

µ
 + 

µ
− 


¶
+
1

2
2(1− 2)

¶
()

×
(µ





¶2
− 2

2

µ
− 


¶
+

1

2

"µ
− 


¶2
− 1
#)

= exp

µ
 +

1

2
2

¶
1

2

Ãµ
−  − 



¶2
− 1
!

× 1




µ
−  − 



¶
 (A26)

Using Equations (A21) and (A26), we can replace (2)() and (2)() in Equations

(A12) and (A13) to obtain the two bias terms under the reference model:

1() =
1

2
22

(2)() =

∙
1

2
2

1

2
(̄2

1 − 1)
¸
1


(̄1) (A27)

2() =
1

2
(2)() =

∙
1

2
exp( +

1

2
2)

1

2
(̄2

2 − 1)
¸
1


(̄2) (A28)

7Alternatively, we can directly derive Equation (A26) by (i) rewriting () as a recentered Gaussian

density up to a multiplicative constant, i.e., () = exp

 +

1
2
2


1




−−




, and (ii)

differentiating this expression twice.
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where ̄1 =
−


 and ̄2 =
−−


 In our implementation, the parameters

of the bivariate Gaussian distribution are estimated by the sample moments of ̂ and

̂ = log ̂. QED

E Estimators of the Distribution Characteristics

To compute the characteristics of the distribution, we use a numerical approach based

on the bias-adjusted density ̃(). For the moments, we simply use the respective

definitions of the standard deviation, skewness, and kurtosis:

 = 
1
2 =

µZ
()(−)2

¶1
2

 (A29)

 =

Z
()(−)3


3
2

 (A30)

 =

Z
()(−)4

 2
 (A31)

where  denotes the variance of the distribution. To obtain the bias-adjusted estimatorsg f, andg, we replace () with the bias-adjusted density estimator ̃() in the

above expressions We also compute the mean ̃ as the empirical average of the estimated

measures which does not suffer from the EIV bias: ̃ = ̂ = 1


P
 ̂1


 .
8 Once we

have the bias-corrected estimates, we can approximate the asymptotic variance of the

mean, standard deviation, skewness, and kurtosis using the delta method to conduct

statistical inference:

(i) For the estimated mean, we have the asymptotic variance:


h
̃
i
=




 (A32)

which only requires a consistent estimator of the variance of the distribution 

(ii) For the estimated volatility, we have:


hgi = 

h¡
(2)−1Ψ2

¢2i


 (A33)

8The integrals of the bias terms 1() and 2() are equal to zero (footnote 4), which implies

that the empirical average is the same as the average obtained via a numerical integration of ̃()

9



where Ψ2 = ( −[])
2 −

h
( −[])

2
i


(iii) For the estimated skewness we have:


hfi = 

h¡
−3Ψ3 − 3

2
−2Ψ2 − 3−1Ψ1

¢2i


 (A34)

whereΨ3 = ( −[])
3−

h
( −[])

3
i
 andΨ1 = ( −[])− [( −[])]

(see Bai and Ng (2005))

(iv) For the estimated kurtosisg we have:


hg

i
= 

h¡
−4Ψ4 − 2−2Ψ2 − −1Ψ1

¢2i
 (A35)

where Ψ4 = ( −[])
4 −

h
( −[])

4
i
(see Bai and Ng (2005))

We also use a numerical approach to compute the proportion and quantile estimators.

We denote the proportion of funds with a measure  below the threshold  by Φ() =

 [ ≤ ] and the quantile at any given percentile level  ∈ (0 1) by () = Φ−1()
where Φ is the cdf. We obtain bias-adjusted estimators of Φ() and () via a numerical

integration of the density, i.e., we have

Φ() =

Z 

−∞
() (A36)Z ()

−∞
() =  (A37)

where we replace () with the bias-adjusted density estimator ̃() (for the quantile,

we use an iterative procedure until Equation (A37) holds). We can then use the bias-

corrected estimated proportion and quantile to estimate their asymptotic variances

 [Φ̃()] =
Φ()(1−Φ())


 (A38)

 [̃()] =

(1−)
(())2


 (A39)

where  is the normal density obtained from the Gaussian reference model.
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II Overview of the Analytical Approach

A Moments

An alternative to the numerical approach described above is to estimate the distrib-

ution characteristics using an analytical approach. Asymptotically, both approaches

(numerical and analytical) are equivalent.

To begin, we consider the estimation of the cross-sectional expectation [()],

where  is a given smooth function of . We investigate the convergence properties

of the cross-sectional estimator 1


P
=1 (̂)1


 based on the OLS estimates ̂ of the

non-trimmed assets. The following proposition proves the asymptotic normality of the

estimator under the baseline specification  =  − −1 + 0 + .

Proposition A.1. As   →∞, such that  = ( 3),

√


Ã
1



X


(̂)1

 − [()]− B

!
⇒  (0  [()])  (A40)

where B = 1
2
[(2)()] and  [()] is the cross-sectional variance of ()

Proof of Proposition A.1. Equation (A4) yields the mean value expansion

(̂) = () + (1)(̄)
1√

̂ + (2)(̄)

1

2
̂2  (A41)

where ̄ lies between ̂ and . Then, we get

√


Ã
1



X


(̂)1

 − [()]− B

!

=
1√


X


(()− [()])− 1√


X


()(1− 1 ) +
1√


X


1

 
(1)(̄)̂

+
1

2

1√


X


³
1

 
(2)(̄)̂

2
 −

h
(2)()

i´
≡ 21 + 22 + 23 + 24 (A42)

We have 22 = (1) and 23 = (1
√
 ) = (1) using similar arguments as in Lemma

2 of Gagliardini, Ossola, and Scaillet (2016). The remainder term 24 = (
p
 3 +√

 2 + 1 ), which gives 24 = (1) if  = ( 3).9 Therefore, the asymptotic

distribution in Equation (A38) depends on the first term 21 ⇒ (0  [()]) from the

9The condition  = ( 3) is used to control the remainder term in the Taylor expansion of the

function  and the bias term.
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standard CLT. QED

The distribution results in Equation (A38) reveal that we have an asymptotic bias

B of order 1 which comes from the estimation error of ̂ (EIV contribution). To

compute the bias-adjusted estimated mean, standard deviation, skewness, and kurtosis,

we can use an analytical approach (based on the delta method) and replace the unknown

moments with consistent estimators based on empirical averages:

(i) The mean is given by  = [] Therefore, the asymptotic bias B is zero

because (2)() = 0. For this particular case, we do not need the condition

 = ( 3) for the above proposition to hold.

(ii) The variance is given by  = 
h
( − [])

2
i
 To obtain the bias of the stan-

dard deviation  = 
1
2  we apply the delta method:

B () = (2)−1B ([2
 ]) (A43)

where the asymptotic bias of the second moment is given by

B ([2
 ]) =

1

2
[2] (A44)

(iii) The skewness is given by  = 
h
( − [])

3
i

h
( − [])

2
i32

 Apply-

ing the delta method, we obtain

B () = (∇3)B ([3
 ]) + (∇2)B ([2

 ]) (A45)

where ∇ denotes the derivative of  w.r.t. [

 ] and the different terms are

given by

B ([3
 ]) =

1

2
[6]

∇3 =  []
−32

∇2 = −3[] []
−32 +[3

 ](
−3
2
) []

−52

+
©−3[2

 ][] + 2[]
3
ª
(
−3
2
) []

−52 (A46)

(iv) The kurtosis is given by  = 
h
( − [])

4
i

h
( − [])

2
i2
. Applying

12



the delta method, we obtain

B () = (∇4)B ([4
 ])+ (∇3)B ([3

 ])+ (∇2)B ([2
 ]) (A47)

where the different terms are given by

B ([4
 ]) =

1

2
[122

]

∇4 =  []
−2

∇3 = −4[] []
−2

∇2 = 6[]
2 []

−2 +
©
[4

 ]− 4[3
 ][]

ª
(−2) []

−3

+
©
6[2

 ][]
2 − 3[]

4
ª
(−2) []

−3 (A48)

B Proportion and Quantile

We now turn to the analysis of the proportion estimator inferred from the cumulative

distribution function (cdf) and the associated quantile. The proportion estimator is

the cross-sectional average of the indicator function (̂) = 1{̂ ≤ } based on the
OLS estimates ̂ for the non-trimmed assets, Φ̂() =

1


P
 1{̂ ≤ }1 , while the

quantile estimator is the inverse function ̂() = Φ̂−1().

The next proposition extends Proposition A.1 to the proportion and quantile.

Proposition A.2. As   →∞, such that  = ( 3),

√

³
Φ̂()−Φ()− B ()

´
⇒ 

³
0  [Φ̂()]

´
 (A49)

√


µ
̂()−() +

B (())
(())

¶
⇒ 

³
0  [̂()]

´
 (A50)

where B () = 1
2
(1)(),  [Φ̂()] = Φ()(1−Φ() and  [̂()] =

(1−)
(())2



Proof of Proposition A.2. The proof builds on our previous analysis. From

Equation (A4), we have  [1{̂ ≤ }] = 
h
 +

1√

̂ ≤ 

i
. By using the results

in Gourieroux, Laurent, and Scaillet (2000), Martin and Wilde (2001), and Gagliardini

and Gourieroux (2011), we obtain:



∙
 +

1√

̂ ≤ 

¸
= Φ()− 1√


()[̂ | = ]

+
1

2




(()[̂2 | = ]) + (1 ) (A51)

From Equation (A47), the bias expansion is such that: [Φ̂()] − Φ() = B () +

13



 [1{̂ ≤ }(1− 1 )] + (1 ). We deduce the asymptotic normality of the propor-

tion estimator by controlling the different terms and applying the CLT. To deduce the

asymptotic normality of the quantile estimator, we use the Bahadur expansion for the

quantile estimator at level  ∈ (0 1): ̂()−() = − 1
(())

³
Φ̂(())− 

´
. QED

As in the previous section, we can approximate the asymptotic bias using the

Gaussian reference model.10 With our bivariate Gaussian reference model, the term

(1)() in the bias is equal to

(1)() = exp

µ
 + 

µ
− 


¶
+
1

2
2(1− 2)

¶
()

µ



− − 

2

¶
= exp

µ
 +

1

2
2

¶ −1


µ
−  − 



¶
× 1




µ
−  − 



¶
 (A52)

III Analysis of the EIV Bias Adjustment

In this section, we provide additional information on the EIV bias adjustment obtained

with the Gaussian reference model. As explained in the paper, this approach is ap-

pealing because the bias adjustment is available in closed form. It is also precisely

estimated because of parsimony–it only depends on the five parameters of the normal

distribution  = (    )
0. These benefits are not shared by a fully nonpara-

metric approach in which the bias is estimated via a nonparametric estimation of the

second-order derivatives (2) and (2)11

An important question is whether the EIV bias obtained with the normal reference

model provides a good approximation of the true bias (i.e., whether 2() ≈ 2()).

Two compelling arguments show that it is the case. First, Proposition III.1 shows that

the true bias 2() is a function of the second-order derivative of the true density 

As long as  peaks around its mean, this derivative takes negative values in the center

and positive values in the tails–exactly like the function 2(). The two terms 2()

and 2() only differ if  is a mixture of distributions whose components have means

10The asymptotic bias takes the same form as the one in Jochmans and Weidner (2018) where they

consider  parameters of interest directly drawn from a Gaussian distribution whose measurement errors

decrease at a parametric rate
√
 . In their setting, they use other arguments based on the behaviour of

the probability integral transform for their proofs. In a different context, Okui and Yanagi (2019) also

derive an estimator of the cdf to examine the mean and autocorrelation of random variables.
11We can estimate the th-derivative of a density  by kernel smoothing (Bhattacharya (1967)). The

rate of consistency of the derivative estimator equals
√
2+1 and is much slower than the rate

√
 for

the density estimator. In other words, the higher-order derivatives are imprecisely estimated because

the rate of consistency decreases with the derivative’s order 
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extremely far away from one another. In this case, we have a trough instead of a peak

around the mean.

Second, our extensive Monte-Carlo analysis calibrated on the data reveals that the

bias-adjusted density captures the true density well (see Section IV). Our Monte-Carlo

analysis resonates with the one performed by Silverman (1986) for the standard non-

parametric density estimation without the EIV problem. He shows that the rule of

thumb for the bandwidth choice, which relies on a normal reference model, is quite

robust to departures from normality.

The reference model allows us to conduct a comparative static analysis of the EIV

bias. As shown in Equation (A28), there are three key parameters that determine

2(): (i) the variance of the true measure 
2
 (ii) the average across funds of the

variance of the estimated measure, measured as 2̂ = 1

[] =

1

exp( +

1
2
2) and

(iii) the correlation  between the true measure and estimation variance

A higher value of 2 reduces the magnitude of the EIV bias because it makes the

cross-sectional variation of the estimated measure more aligned with that of the true

measure (i.e., the relative importance of  over noise increases) On the contrary, a

higher value of 2̂ makes the EIV bias more severe because the estimated measure

becomes more volatile (i.e., the relative importance of noise over  increases) Finally,

a higher value of || keeps the shape of the bias unchanged, but creates asymmetry.
In Figure A1, we quantify these changes for the skill coefficient . To begin, we

compute 2() in the benchmark case where the parameters of the reference model

are obtained from our sample. The mean  is set equal to 0.24% per month, the

variance terms 2 and 2̂ are equal to 00017
100

and 00011
100

, and the correlation  reaches

0.21. Plugging these parameter values in Equation (A28), we find that the EIV bias

adjustment requires a transfer of probability mass from the tails to the center equal to

15%. This proportion is obtained by integrating 2() over the area for which 2()

takes negative values.

Next, we sequentially increase the values of (i) 2 from
00017
100

to 00037
100

 (ii) 2̂ from
00011
100

to 00031
100

 and (iii)  from 0.21 to 0.44. We find that changes in the variance terms

have a significant impact on the shape of the EIV bias. Panel A shows that increasing

2 reduces the transfer of probability from 15% to just 7%, while Panel B shows that

increasing 2̂ implies an increase in probability transfer from 15% to 26%. Finally,

Panel C shows that increasing  implies that 87% of the probability transfer (0.13/0.15)

is at the right of the mean (versus 75% in the baseline case (0.10/0.15)).

Please insert Figure A1 here
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IV Monte-Carlo Simulations

A The Setup

We now conduct a Monte-Carlo analysis to evaluate the finite-sample properties of the

estimated skill and scale distributions obtained with our nonparametric approach. We

consider a hypothetical population of  funds with  return observations ( = 1 000

2,500, 5,000, and 10,000;  = 100 250, 500, and 1 000). To model the fund return 

and its lagged size −1, we use the baseline specification

 =  − −1 + 0 +  (A53)

along with an AR(1) model for the log size −1 = (−1) to ensure the positivity
of fund size,

 =  + −1 +  (A54)

where  is the vector of four factors (market, size, value, and momentum),  =

(1 − ) and  = [−1] The residual terms  and  are drawn from a

bivariate normal:  ∼ (0 2)  ∼ (0 2
) where 2

= (1−2)2 and 2
is the variance of −1 We also account for the positive correlation between the fund
residual and the innovation in fund size by setting ( ) equal to 

To determine the values for the fund-specific parameters {  
0
   

2

} we

randomly draw from the estimated vectors observed in our sample {̂ ̂ ̂
0
 ̂  ̂

2

}.

This approach allows us to maintain the correlation structure between the different

parameters, in particular between the skill coefficient, the scale coefficient, and the

size parameters:  = ( ) 
2

= 2( ).

12 The remaining parameters are

calibrated using the median values in the data, which yields  = 097  = 020 and

2 = 00167
2

To reproduce the salient features of the skill and scale distributions, we rescale the

estimated values of ̂ and ̂ to match the cross-sectional volatility reported in Table II

of the paper (4.1% and 1.7% per year for  and ). The true distributions of the skill

and scale coefficients are both non normal (the skewness is equal to 0.7 and 0.9, and

the kurtosis is equal to 11.7 and 12.1). Therefore, our Monte-Carlo setting allows us to

12 In particular, we capture the strong correlation between the skill and scale coefficients Interestingly,

this correlation has implications for modeling the prior distributions of  and  in an empirical Bayes

setting. For instance, Pastor and Stambaugh (2012) elicit the joint prior distribution of  and  by

setting their correlation equal to zero. Therefore, investors in their model believe that the variance of

 is higher than the one inferred from an empirical Bayes prior This initial belief implies a lower

allocation to active funds which could persist for a long time.

16



examine the properties of the estimators when the Gaussian reference model (used for

the EIV bias adjustment) differs from the true distributions.

Conditional on the values {̂ ̂ ̂
0
 ̂  ̂

2

} taken by each fund, we examine the

properties of the estimators. For each iteration  ( = 1  500) we build the return

and size time-series of each fund as follows. First, we draw the initial value of 0()

from its unconditional distribution: 0() ∼ (  
2

)  Second, we draw the vector

1() from the realized values in the sample, and the innovations 1() and 1()

from the bivariate normal. Third, we construct the fund gross return and log size at

time 1 as

1() =  − 0() + 01() + 1()

1() =  + 0() + 1() (A55)

where 0() = exp(0()) Fourth, we repeat the two previous steps for each time

 ( = 2   ) we obtain the entire time-series for the fund gross return and size:

1()   (), 0()  −1() Fifth, we apply our nonparametric approach to
compute the bias-adjusted density ̃() and a set of several distribution characteristics

that include the mean, volatility, skewness, and the proportion of funds with a positive

measure + = 1−Φ(0). Finally, we repeat the entire procedure across all  iterations.

To assess the performance of the bias-adjusted density ̃, we compute the Mean

Integrated Squared Error (MISE) defined as

 =

Z
[2() + ()2] (A56)

where the bias and variance functions are given by

() =
1



X
=1

̃(; )− () (A57)

2() =
1



X
=1

Ã
̃(; )− 1



X
=1

̃(; )

!2
 (A58)

For the moment/proportion estimator ̃ (̃ = ̃ g f, ̃+) we compute the Mean
Squared Error (MSE) as

(̃) = 2(̃) + 2(̃) (A59)
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where the bias and the variance terms are given by

(̃) =
1



X
=1

̃()−  (A60)

2(̃) =
1



X
=1

Ã
̃()− 1



X
=1

̃()

!2
 (A61)

B Main Results

In Table AI, we report the MISE and its two components (integrated squared bias

and variance) for the skill distribution. In Panel A, we compute the MISE of the

bias-adjusted density ̃() for the baseline choice of the optimal bandwidth ∗ ∼

−13
2 ( )−13 (shown in Equation (A16)). In Panel B, we repeat the analysis for
the alternative choice of the optimal bandwidth under which ∗ ∼ 

−15
1 −15 Finally,

Panel C reports the MISE of the estimated density ̂() obtained with the standard

approach which does not adjust for the bias.

Our analysis reveals two main insights. First, accounting for the EIV bias improves

the estimation of the true distribution () To illustrate, we consider the scenario where

 = 2 500 and  = 250 which is representative of our actual sample after trimming (i.e.,P
=1 1


 ≈ 2 500 and 1



P
=1 1


  ≈ 250) . We find that the MISE of ̂() is nearly

two times larger than the level observed for ̃() with the baseline bandwidth (4.96

vs 906). Second, our nonparametric approach yields a stronger performance under

the baseline choice for the optimal bandwidth–in all scenarios using the alternative

bandwidth choice produces a higher MISE.

In Table AII, we examine the performance of the moment and proportion estimators

for the skill distribution. Panel A shows the MSE and its two components (bias and

standard deviation) of each bias-adjusted estimator obtained via a numerical integration

of ̃() (using the baseline bandwidth). Panel B reports the same statistics for the bias-

adjusted estimators obtained with the analytical approach described in Section II. For

comparison, Panel C reports the bias-unadjusted estimators (obtained via a numerical

integration of ̂())

The results show that the bias-adjusted estimators perform better when the numer-

ical integration is used. In most cases, it produces a lower MSE than the one obtained

with the analytical formulas. We also find that the unadjusted estimators are markedly

biased. When  = 2 500 and  = 250 the bias for the volatility and the unadjusted

proportion is equal to 1.08% per year and -5.52%, respectively. In contrast, our non-

parametric approach reduces the bias for all quantities. Overall, these findings highlight
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the importance of controlling for the bias.

Next, we turn to the analysis of the scalability distribution. Tables AIII and AIV

report the MISE of the estimated density and the MSE of the moment and proportion

estimators. Similar to the skill coefficient, we find that ̃() outperforms ̂(). If

 = 2 500 and  = 250 the difference in MISE between the two estimated densities

is equal to 11.47 (28.58 vs 17.01) The bias adjustment is also important for the other

estimators. For instance, the standard approach underestimates the proportion of funds

with a positive scale coefficient by 6.8% (in absolute terms).

To sum up, the Monte Carlo analysis yields three main insights. First, the EIV bias

has a notable impact on the different estimators and thus cannot be ignored. Second,

the baseline choice for the optimal bandwidth produces a lower MISE for the bias-

adjusted density Third, the numerical approach generally outperforms the analytical

approach. These results justify the use of the optimal bandwidth in Equation (A16) and

the numerical approach for the empirical analysis of the paper.

Please insert Tables AI to AIV here

C Simulations with Uncorrelated Skill and Scalability

The asymptotic distribution of the OLS estimators ̂ and ̂ implies that they are

correlated at the fund level. If, for simplicity, we omit the factors , we have

√


"
̂ − 

̂ − 

#
⇒ 

⎛⎝" 0

0

#


⎡⎣ [2−1]
 [−1]

2
[−1]
 [−1]

2
[−1]
 [−1]

2
1

 [−1]
2

⎤⎦⎞⎠  (A62)

where (
√
 ̂
√
 ̂) =

[−1]
 [−1]

2  0 Therefore, one concern is that the strong

cross-sectional correlation between ̂ and ̂ observed in the data is mechanically driven

by the fund-level correlation between ̂ and ̂ To address this concern, we consider a

world where  and  are uncorrelated across funds. Consistent with this assumption,

we show that the cross-sectional correlation between ̂ and ̂ is equal to zero (even

though the fund-level correlation between ̂ and ̂ is positive).

We consider a simple modification of the Monte-Carlo setup in which  and 

are uncorrelated across funds. We draw the true coefficients  and  of each fund

 ( = 1  2 500) independently from the estimated vectors observed in our sample

(rescaled to match the cross-sectional volatility in Table II of the paper). If  and 

are positive, we assume that the average size [−1] is equal to 
2
(as in the model

of Berk and Green (2004) and that 2 is proportional to  (by a factor  calibrated
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on the data). These two assumptions provide a simple way to model the link that

exists between skill, scale, and size Specifically, we have  +
1
2
2 = log

³

2

´
⇒¡

1 + 1
2

¢
 = log

³

2

´
⇒  = log

³

2

´

¡
1 + 1

2

¢
 With a log-normally distrib-

uted size, we can then compute the parameters of the asymptotic distribution in Equa-

tion (A60) as [2−1] = 2+2 and  [−1] = [2−1]− ([−1])2 Otherwise,
if  and  are negative, we measure [−1] [2−1] and  [−1] as the median
values among funds for which ̂ or ̂ are negative

For each iteration  ( = 1  500) we draw [̂() ̂()]
0 from the asymptotic

distribution of each fund in Equation (A60). We then compute the average fund-level

correlation () between ̂ and ̂ as

(̂ ̂) =
1



X


Ã
1



X


(̂()− )
³
̂()− 

´!
 (A63)

and the average cross-sectional correlation () as

(̂ ̂) =
1



X


Ã
1



X


(̂()− ̄())
³
̂()− ̄()

´!
 (A64)

where ̄() = 1


P
 ̂() and ̄() = 1



P
 ̂() Consistent with the theoretical predic-

tions, we find that (̂ ̂) is equal to 0.18, whereas (̂ ̂) is essentially equal

to zero (i.e., (̂ ̂) =0.00004).

V Mutual Fund Dataset

A Construction of the Dataset

We now provide additional information on the construction of the mutual fund dataset.

To begin, we collect monthly data on net returns and size, as well as annual data on

fees, turnover, and investment objectives from the CRSP database between January

1975 and December 2019 (540 observations). We measure the monthly gross return of

each fund as the sum of its monthly net return and fees The net return is computed as

a value-weighted average of the net returns across all shareclasses using their beginning-

of-month total net asset values. The monthly fees are defined as the value-weighted

average of the most recently reported annual fees across shareclasses divided by 12. We

eliminate the monthly gross return observation when (i) the monthly net return is below

-100% or above 100%, or when (ii) the monthly fees are below 2.5 bps (0.3% per year) or
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above 83 bps (10% per year). We measure fund size by taking the sum of the beginning-

of-month net asset values across all shareclasses. We apply a linear interpolation to fill

in missing observations when funds report size on a quarterly basis. We also adjust size

for inflation by expressing all numbers in January 1, 2000 dollars (see Berk and van

Binsbergen (2015)). Finally, we correct for reporting errors for the TNA.13

We apply a set of filters before conducting the empirical analysis. First, we remove

all funds that are classifed as passive or closed for more than a third of the observations

using (i) the index fund indicator (letter B, D, or E), (ii) the ETF indicator (letter F

or N), (iii) and the closed fund indicator (letter N). Therefore, our sample focuses on

open-end, actively managed funds with a well-defined equity style (as described below),

and a weight invested in equities above 80%. Second, we eliminate funds if they are

tiny, i.e., if their size is below minimum size of $15 million for more than a third of the

observations (similar to Chen et al. (2004), Pastor, Stambaugh, and Taylor (2015)).

Third, we delete the following-month return after a missing return observation because

CRSP fills this with the cumulated return since the last nonmissing return. Fourth,

we run a correlation analysis to eliminate duplicates, i.e., funds for which the return

correlation is above 0.99 (using a minimum of 12 monthly observations).

To benchmark each fund, we use the four-factor model of Cremers, Petajisto, and

Zitzewitz (2012) which includes the vector  = (   )
0, where 

  and  capture the excess returns of the market, size, value, and

momentum factors. This model departs from the traditional model of Carhart (1997) in

two respects: (i) the market factor is proxied by the excess return of the SP500 (instead

of the CRSP index), and (ii) the size and value factors are index-based and measured

as the return difference between the Russell 2000 and SP500, and between the Russell

3000 Value and Russell 3000 Growth. Because the index-based returns for size and value

are not available between January 1975 and December 1978, we replace them with the

values of the size and value factors obtained from Ken French’s website (focusing on

the period January 1979-December 2018 does not change our main results). For the

momentum factor, we use data obtained from Ken French’s website.

The motivation for using this model is that it correctly assigns a zero alpha to the

SP500 and Russell 2000. Both indices cover about 85% of the total market capitalization

and are widely used as benchmarks by mutual funds. On the contrary, the Carhart model

fails to price these indices–for one, the Russell 2000 has a negative alpha of -2.4% per

13For instance, we find more than 1,500 observations in CRSP for which the TNA of a given shareclass

jumps (or is reduced) by a factor higher than 3 in a given month before going right back to the same

value the following month.
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year over the period 1980-2005 (Cremers, Petajisto, and Zitzewitz (2012)). Therefore,

small cap funds that use this index as a benchmark are likely to be classified as unskilled

under the Carhart model.

We obtain our final universe of funds after applying the selection rule in Equation

(8) of the paper. We follow Gagliardini, Ossola, and Scaillet (2016) and select funds for

which the condition number of the matrix ̂ is below 15 and the number of monthly

observations is above 60 These selection criteria produce a final universe of 2,427 funds.

To apply our nonparametric approach, we compute the asymptotic variance of each fund

measure using a lag of three months ( = 3) To mitigate the impact of outliers on the

vector ̂ of estimated parameters in the reference model, we also exclude the values for

̂ and ̂ whose cross-sectionally standardized values are above 10.

B Construction of the Fund Groups

To classify funds into the small cap and large cap groups, we proceed as follows. At

the start of each month, we classify each fund in different style groups using the style

information provided by Lipper. If this information is missing, we use the investment

objectives reported by Strategic Insight, Wiesenberger, and CRSP in a sequential man-

ner. Table AV provides the list of the 32 styles across the different data providers which

are used for forming our final universe of equity funds. In addition, it shows the mapping

between the 32 styles and the small/large cap dimensions. A value of: (i) 1 refers to a

small cap fund, (ii) 2 refers to a mid cap fund, and (iii) 3 refers to a large cap fund. A

fund is included in a given group (small cap, large cap) if its style corresponds to that

of the group for the majority of its monthly observations

Please insert Table AV here

For the turnover groups, we sort funds in three categories (low, medium, and high

turnover) based on their average monthly turnover. To measure the monthly turnover

of each fund, we follow Pastor, Stambaugh, and Taylor (2018) and use the most recently

observed ratio of min(buys,sells) on fund size.

Finally, we construct the set of broker and direct sold funds using the procedure

proposed by Del Guercio and Reuter (2014) and Sun (2020). At the start of each

month, we only select shareclasses that are sold to retail investors. We consider each

shareclass as direct sold if it charges no front or back load and has an annual distribution

fee (12b-1 fees) of no more than 0.25% per year. Otherwise, we consider it as broker

sold. Aggregating across shareclasses, the fund is then considered as broker sold (direct
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sold) for that particular month if at least 75% of its assets are broker sold (direct sold).

A fund is included in a given group (broker sold, direct sold) if it belongs to it for the

majority of its monthly observations

VI Additional Results

A Derivation of the Specification Test

In this section, we derive a new specification test to confirm the validity of our empirical

results. Our objective is to test the null hypothesis 0 that our baseline linear spec-

ification  =  − −1 is correct for each fund. Our specification test follows the
strategy of a Hausman test which evaluates the difference beween two consistent estima-

tors under the null hypothesis of well specification (Hausman (1978)). In our context, we

compare the linear estimator of the gross alpha ̂ with its model-free version proposed

by Berk and van Binsbergen (2015) and denoted by ̂ . Whereas the two estimators

converge to the same quantity under the null hypothesis 0 they converge to different

quantities under the alternative hypothesis of misspecification.

We consider our baseline model

 =  − −1 + 0 +  (A65)

and want to test this specification against the extended time-series regression model

 =  − −1 + 0−1 + 0 +  (A66)

where −1 is a vector of variables that are omitted in our baseline specification and
orthogonal to the factors  and error . To ease the presentation, we do not explictly

include the small-sample bias correction which has no impact on the asymptotic analysis

(see Section I.B).

The linear estimator of the gross alpha under Equation (A65) is

̂ = ̂ − ̂−1 (A67)

where ̂ = 01̂, ̂ = 02̂, ̂ = ̂−1
1


P
 , ̂ =

1


P
 

0
  =

(1−−1  0)0, and 1 (2) is a vector with one in the first (second) position and zeros

elsewhere. The model-free estimator of the gross alpha is given by

̂ =  − ̂
0
 (A68)
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where ̂ = 02̃
−1


1


P
  2 is a selection matrix that selects the lower  -

subvector of coefficients, ̃ =
1


P
 

0
 and  = (1 

0
)
0.

We build the difference ∆̂ = ̂ − ̂ when  = 1 and let ∆̂ be the  × 1
vector of such differences for fund  at dates with  = 1. We then select a × 1 vector
of variables −1 and regress it onto  to obtain the residuals ̃−1. Let us consider
the auxiliary time-series regression:

∆̂ = ̃0−1 +  (A69)

where  is the parameter vector and  is the error term. The 
2 of this regression is

2 = 1−
∆̂0̃

∆̂

∆̂0∆̂
=
∆̂0̃

∆̂

∆̂0∆̂
(A70)

where ̃
= ̃(̃

0
̃ )−1 ̃ 0

 =  −̃ 0

and ̃ is the  ×  matrix of the available

values for ̃−1.14

We use the quantity 
2
 as the test statistic for the null hypothesis 0. We

now derive the asymptotic distribution under Equation (A65) or (A66). Suppose first

that Equation (A65) holds in the data, i.e., the linear specification with lagged size is

correctly specified. Then ̂ =  − −1 +  −  0(̂ − ) and

∆̂ = ̂ −̂ = −(̂−)+(̂−)−1− 0(̂−) = −0(̃−) (A71)

where ̃ = (̂ ̂ ̂
0
)
0 is a consistent estimator of . Hence, we have in vector notation:

∆̂ =  −(̃ − ), where  is the  × ( +2) matrix of the available values for

. Using ̃
0
 = 0 and assuming conditional homoscedasticity for the error term ,

we obtain:


2
 =

( 1√

0̃)(

1

̃ 0

̃)
−1( 1√


̃ 0

)

1

∆̂0∆̂

⇒ 2() (A72)

which holds because we have  1

∆̂0∆̂ =  1


0 = 2 ,

1√

̃ 0

 ⇒ (0 2̃
)

and ̃
=  1


̃ 0

̃ =  1


P
 ̃−1̃0−1.

Suppose now that the linear model is misspecified and data are generated according

to the model in Equation (A66). Consider the linear projection of −1 onto the constant
and −1, with residual ̃−1, and let 0−1 = +−1+0̃−1 (by our assumption,
̃−1 is also the residual in the regression of −1 onto ). By plugging into Equation

14Note that Equation (A67) does not include the constant, and the 2 is defined accordingly. Including

a constant and modifying the definition of 2 does not change the behaviour of the test statistic under

the null hypothesis and its consistency under the alternative.
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(A66), we get  = ∗ − ∗ −1 + 0̃−1 + 0 + , with pseudo-true parameter

values ∗ =  +  and ∗ =  − . Then, we have

̂ = ∗ − ∗ −1 + 0̃−1 +  −  0(̂ − ) (A73)

̂ = ̂ − ̂−1 (A74)

where ̂ = 01(
0
)

−1 0
(

∗
 +  + ̃) = ∗ + 01(

0
)

−1 0
( + ̃), ̂


 =

∗ + 02(
0
)

−1 0
(+ ̃), 

∗
 = (

∗
  

∗
  

0
)
0 and ̃ is the matrix of the observations

of the variables ̃−1 when  = 1. Combining Equations (A73)-(A74), we have

∆̂ =  − (̂ − ∗ ) + (̂

 − ∗ )−1 −  0(̂ − ) + 0̃−1 (A75)

or, in vector notation, ∆̂ =  −(̃ − ∗ ) + ̃, where ̃ is a consistent estimator

of ∗ . Then, we have:


1


̃ 0

∆̂ = 
1


̃ 0

 + (
1


̃ 0

 ̃) = ̃
Λ (A76)

where Λ =  ( 1

̃ 0

̃)
−1 1


̃ 0

 ̃ is the regression coefficient matrix of ̃−1 onto
̃−1, i.e., Λ is the coefficient vector associated with −1 in a regression of −1 onto
 and −1: −1 = 0 + Λ0−1 +  where  is the regression error with

variance  . By using  ̃ − ∗ = 0, we have


1


∆̂0∆̂ = 

1


[ + ̃]

0[ + ̃] = 2 + 0(
1


̃ 0 ̃)

= 2 + 0(Λ
0
̃

Λ + ) (A77)

which implies that

 2 =
0(Λ

0
̃

Λ)

2 + 0(Λ
0
̃

Λ + )
 (A78)

Based on Equation (A78), we know that the test based on 
2
 is consistent, namely


2
 diverges in large samples and the power of the test approaches one asymptotically

under misspecification. As long as Λ 6= 0, the vector −1 captures the effect of the
omitted component 0−1 and is therefore informative about the source of misspecifica-
tion of the linear specification  = − −1. If the omitted variables −1 coincide
with the chosen −1 (i.e., −1 = −1), we automatically obtain that Λ 6= 0 if

|(0−1 −1)|  1, and the consistency of the test follows.
Applying this theoretical framework, we consider two sets of variables for  First,
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we include the ratio of industry size to total market capitalization to capture changes

in industry competition, and aggregate turnover to capture changes in the level of mis-

pricing in capital markets (see Pastor, Stambaugh, and Taylor (2015, 2018)). Second,

we include higher order terms of fund size (2−1 and 
3
−1) to capture nonlinearities in

the relationship between the gross alpha and fund size. For each fund we then test the

null hypothesis 0 that the linear specification  =  − −1 is correct.

For the first set of variables, we reject the null hypothesis only 13.0% of the times

at the 5%-significance level. In other words, 
2
 is larger than the 95%-quantile of the

2() distribution for only 12.7% of the funds. Furthermore, we find that 29.3% of these

funds can be classified as false discoveries (0 is rejected whereas it is true) using the

approach proposed by Barras, Scaillet, and Wermers (2010). Turning to the analysis of

the second set of variables we obtain similar results–we reject 0 for 14.1% of the

funds (at the 5% level), among which more than 26.8% are false discoveries.

B Validity of the Panel Approach

In this section, we formally test whether the panel approach that imposes a constant

scale coefficient across funds ( = ) is consistent with the data. To this end, we use the

test of slope homogeneity developed by Pesaran and Yamagata (2008) for large panels.

The null hypothesis is 0:  =  for  = 1   against the alternative hypothesis 1:

 6=  for a non-zero fraction of pairwise slopes for  6= .

We denote by  and  the -vectors of the fund gross excess returns and lagged

fund sizes and by  the ×(+1)matrix of available values for  = (1 
0
)
0. The idea

of the test is to investigate the dispersion of individual slope estimates from a suitable

pooled estimate. We define the weighted sum of squared deviations:

̂ =
X


(̂ − ̂)
2 
0


̂2
 (A79)

where  =  − (
0
)

−1 0 is the projection matrix,  is the  ×  identity

matrix, ̂ = (0)
−10 is the estimated scale coefficient of each fund, ̂ =³P


0

̂2

´−1 ³P

0

̂2

´
is the weighted fixed effect pooled estimate, ̂2 is the variance

estimate defined as
(−̂)0(−̂)

−−1  and ̂ = (
P

 
0
)

−1P
 
0
 is the

standard fixed effect pooled estimate. Pesaran and Yamagata (2008) show that under
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the null hypothesis 0 the test statistic

∆̂ =
√


Ã
1

̂ − 1√
2

!
(A80)

is asymptotically distributed as a standard Gaussian random variable when   → ∞
such that

√
 2min → 0 with min = min166  Therefore, we can build the chi-square

test statistic ∆̂2 which is asymptotically distributed as a chi-square random variable 21

with one degree of freedom.15

We examine two specifications for the panel regression: (i) the linear specification

 =  − −1 and (ii) the log specification  =  − log(−1)16 We also con-
duct the test in the entire population and within each group (small/large cap, low/high

turnover, broker/direct sold). Examining each fund group separately allows us to de-

termine whether grouping funds into well-defined categories absorbs the heterogeneity.

Our results reveal that the test of homogeneity is always strongly rejected, i.e., for each

specification (size, log size), we reject 0 with probability one. Furthermore, the null

hypothesis of homogeneous coefficients is also rejected with probability one in each fund

group. Therefore, forming groups is not sufficient to absorb the large heterogeneity in

 and .

C Survivorship and Reverse Survivorship Bias

In this section, we examine the impact of the survivorship and reverse survivorship bias.

Our empirical analysis does not require that the funds remain alive until the end of the

sample in 2019. In other words, our original sample includes all both living and dead

funds. However, our fund selection rule requires that each fund has a minimum of 60

monthly observations (min = 60) to be included in our final sample. Our results could

therefore be subject to a survivorship bias if unskilled funds (0) disappear early. To

examine this issue, we repeat our analysis across different thresholds for min ranging

from 12 to 60. Panel A of Table AVI shows that our main results are not driven by

the survivorship bias–the skill distribution remains largely unchanged as min changes

from 60 to 12.

15The requirement on the relative rate between  and , namely  = ( 4min) for the asymptotic

validity of the testing procedure is weak and matches the time-series and cross-sectional sample sizes in

our application since  = 2 321 is much smaller that 
4
min =60

4 = 12,960,000.
16 In the logarithmic specification, the intercept loses its interpretation as a first-dollar alpha (i.e, it

corresponds to the alpha when −1 = 1 instead of 0). In addition, the intercept depends on the

measurement unit (e.g, $1 or $1M). The invariance to size denomination is an advantage of the linear

specification.
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It is a priori tempting to choose min = 12 (instead of 60) to mitigate the survivorship

bias and offer an improved estimation of the skill distribution. However, reducing min

may not be optimal because it potentially increases the severity of the reverse survivor-

ship bias (i.e., the reported skill could be biased downwards). The reverse survivorship

bias arises because some skilled funds (0) may perform unexpectedly poorly and

disappear early. For these funds, the estimated skill is lower than the true level because

it is computed based on unusually low return observations (Linnainmaa (2013)). By

reducing min, we increase the likelihood of including these funds in the sample.

To examine this issue, we compare the skill distributions among the disappearing

funds for min = 60 and 108. The assumption is that unskilled funds tend to disappear

early (during the first five years). In this case, the difference between the two distribu-

tions captures the impact of the reverse survivorship bias, i.e., it should decrease with

min as we exclude a larger number of skilled funds that disappear after unexpected poor

performance. Panel B shows that the difference in the proportion of skilled funds equals

4.1% as min decreases from 108 to 60. This number represents 85% of the proportion

difference when reducing min from 60 to 12 in Panel A. This back-of-the-envelope cal-

culation suggests that the reduction in skill observed for min = 12 is mainly due to the

reverse survivorship bias. Motivated by these results, we therefore choose min = 60 in

our baseline analysis.

Please insert Table AVI here

D Alternative Asset Pricing Models

Our empirical results potentially depend on the choice of the asset pricing model. To

address this issue, we repeat our analysis using the four-factor model of Carhart (1997)

which contains the same factors as the model of Cremers, Petajisto, and Zitzewitz (2012)

except that the market, size, and value factors are not computed from tradable indices.

We also consider the five-factor model of Fama and French (2015) which includes the

market, size, value, profitability, and investment factors.17

Table AVII shows that the skill and scalability distributions remain qualitatively

unchanged with the Carhart model. The skill coefficient is equal to 2.4% per year on

average, and is positive for 78.5% of the funds (vs 3.0% and 83.1% for the baseline re-

sults). The scale coefficient is, on average, equal to 1.3% per year and 80.8% of the funds

face diseconomies of scale (vs 1.3% and 82.4% for the baseline results). We observe the

17The size and value factors in the five-factor model are similar to ones used in the Carhart model.
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main difference for the small cap group in which the skill coefficient drops from 4.6% to

3.3% on average. This sharp reduction arises because the Carhart model assigns a nega-

tive alpha to the Russell 2000 index and therefore penalizes the performance of small cap

funds (consistent with the analysis by Cremers, Petajisto, and Zitzewitz (2012)). Next,

Table AVIII reports the results obtained with the five-factor Fama-French model. Under

this model, the scalability distribution remains largely unchanged but the proportion of

funds with positive skill decreases from 83.1% to 74.0%. This reduction suggests that

some funds achieve positive returns partly because they implement profitability- and

investment-based strategies.

Please insert Tables AVII and AVIII here

E Analysis based on Daily Fund Returns

Our baseline specification  = − −1 assumes that the skill and scale coefficients
remain constant over time. To examine the stability of these coefficients, we conduct

an extensive analysis using daily fund returns. This procedure allows us to capture

potential changes in the coefficients without explicitly modeling their dynamics (see

Lewellen and Nagel (2006)).

To conduct this analysis, we use the daily fund return CRSP database available

between January 1999 and December 2019. The CRSP database only reports the daily

net return and Net Asset Value (NAV) of each shareclass, but not its daily size. To

address this issue, we compute the number of shares for each shareclass at the start of

the month. We can then compute the daily size of each shareclass within the month

as the product between its daily NAV and the number of shares. We match the fund

identifier across the daily and monthly databases to maintain our selection of open-end,

actively managed funds with a well-defined equity style. We measure the daily gross

return of each fund as the sum of the daily net return and fees The daily net return is

computed as the value-weighted average of the daily net returns across all shareclasses.

The daily fees are defined as the value-weighted average of the most recently reported

annual fees across shareclasses divided by 21·12.
We can summarize our estimation procedure in two steps. First, we run the following

time-serie regression for each year  ( = 1999  2019):

 =  + 0 +  (A81)

where  is the fund daily gross excess return and  is the vector of daily factor excess
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returns in the model of Cremers, Petajisto, and Zitzewitz (2012). Using Equation (A81),

we can extract the daily gross alpha of the fund after controling for short-term variations

in factor loadings (i.e.,  is allowed to change on an annual basis):

 =  +  (A82)

Second, we run a regression of the daily gross alpha on lagged size to infer the time-

varying skill and scale coefficients Given the potential persistence over a small window

of only one year, we estimate the regression over a non-overlapping window  of five

years:

 =  − −1 +  (A83)

where each of the windows covers the years 1999-2004, 2005-2009, 2010-2014, and 2015-

2019 (i.e.,  = 1  4)

To examine the stability of the skill coefficient, we take the first window  = 1 as the

benchmark and test the null hypothesis of constant skill 0 : ∆ = 1 −  = 0

(for  = 2 34) Overall, there is little evidence of time-variation in the skill coefficient.

Using a 5%-significance threshold, we find that 0 is only rejected for (i) 10.7% of

the funds for  = 2 (ii) 9.6% of the funds for  = 3 and (iii) 14.1% of the funds for

 = 4 We also uncover a substantial fraction of false discoveries among these funds

(0 is rejected whereas it is true)–this fraction ranges between 30.1% and 45.5%

across the three windows ( = 2 34) using the approach proposed by Barras, Scaillet,

and Wermers (2010).

Repeating this analysis for the scale coefficient, we test the null hypothesis of constant

scale 0 : ∆ = 1 −  = 0 (for  = 2 34) The results are similar to those

obtained for the skill coefficient. Using a 5%-significance threshold, we find that 0

is only rejected for (i) 9.0% of the funds for  = 2 (ii) 7.8% of the funds for  = 3 and

(iii) 10.3% of the funds for  = 4 Among the rejected funds, the proportion of false

discoveries (0 is rejected whereas it is true) ranges between 41.2% and 56.1%.

We also find a remarkable similarity between the skill and scalability distributions

measured at the daily and monthly frequencies. Specifically, we measure the annual fund

skill and scale levels from daily data as  = (
1


P
  )21·12 and  = ( 1

P
  )21·12,

and examine the characteristics of the two cross-sectional distributions. We then conduct

our baseline monthly analysis over the same period as the one covered by the CRSP

daily database (1999-2019). The daily analysis reveals that 82.4% of the funds have a

positive skill coefficient which, on average, equals 4.7% per year (vs 77.8% and 3.6% for

the monthly analysis). For the scale coefficient, these numbers obtained at the daily
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frequency are equal to 79.5% and 1.3% per year (vs 76.8% and 1.4% for the monthly

analysis).

F Impact of Changes in Economic Conditions

We now extend our baseline specification to capture the impact of changes in economic

conditions. We consider two alternative specifications motivated by the recent mutual

fund literature. First, we examine whether the gross alpha changes with the level of

industry competition using

 =  − −1 − −1 (A84)

where −1 is defined as the demeaned ratio of industry size to total market capital-
ization (as in Pastor, Stambaugh, and Taylor (2015)). Second, we account for potential

changes in aggregate mispricing using an extended version of Equation (A84)

 =  − −1 + −1 − −1 (A85)

where −1 is defined as the demeaned aggregate turnover across all funds (as in Pastor,
Stambaugh, and Taylor (2018)). Under both specifications, we can still interpret  as

the alpha on the first dollar when industry competition and aggregate mispricing are

equal to their average levels (i.e., −1 = −1 = 0)
The results in Table AIX show that adding the industry variable −1 leaves the

skill and scalability distributions largely unchanged. For instance, we find that 82.3%

and 82.6% of the funds exhibit positive skill and scale coefficients (vs 83.1% and 82.4%

for the baseline results). When the variable −1 is used alone in the regression (i.e.,
 =  − −1) the majority of the funds respond negatively to an increase
in industry size (51.0% of the funds have a positive coefficient ) However, this

result is overturned when we include lagged size, i.e., only 46.6% of the funds have a

positive coefficient 
18 One possible explanation for this result is that −1 may not

capture changes in industry competition with sufficient granularity (see Hoberg, Kumar,

and Prabhala (2020) for a discussion).

Table AX also shows that the empirical evidence on skill and scalability remains

largely unchanged under the extended model in Equation (A85). In this case, the

average levels of the skill and scale coefficients are equal to 3.4% and 1.6% per year

(vs 3.0% and 1.3% for the baseline results). In addition, the proportions of funds with

18Therefore, this result departs from the evidence in Pastor, Stambaugh, and Taylor (2015) obtained

with a panel approach in which fund scale is assumed to be constant ( = )
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positive skill and scale coefficients equal 80.8% and 80.6% (vs 83.2% and 82.4% for the

baseline results). Consistent with Pastor, Stambaugh, and Taylor (2018), we find that

the majority of funds produce higher returns in times of higher mispricing in capital

markets. The proportion of funds with a positive coefficient  is equal to 60.8%.

Please insert Tables AIX to AX here
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Table AI
Properties of the Estimated Density:

Skill Coefficient

Panel A shows the Mean Integrated Squared Error (MISE) and its two components (integrated squared bias
and variance) for the bias-adjusted skill density under the baseline choice for the optimal bandwidth across
different values for the number of funds and the number of monthly observations. Panel B repeats the
analysis under the alternative choice of the optimal bandwidth. For comparison, Panel C reports the same
information for the bias-unadjusted density.
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 20.50 5.24 1.91 1.16 0.83 1000 19.92 4.50 1.26 0.56 0.29 1000 0.58 0.74 0.65 0.60 0.53

2500 20.62 4.96 1.59 0.84 0.60 2500 20.32 4.59 1.24 0.54 0.32 2500 0.30 0.37 0.36 0.30 0.29

5000 20.76 4.82 1.39 0.69 0.45 5000 20.58 4.59 1.18 0.50 0.27 5000 0.18 0.23 0.21 0.19 0.18

7500 20.14 4.73 1.35 0.64 0.40 7500 20.00 4.55 1.18 0.50 0.26 7500 0.14 0.18 0.17 0.14 0.14

10000 20.40 4.65 1.29 0.57 0.37 10000 20.29 4.51 1.16 0.46 0.26 10000 0.11 0.14 0.13 0.11 0.11

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 21.76 5.66 2.06 1.24 0.83 1000 21.53 5.33 1.74 0.90 0.52 1000 0.23 0.33 0.32 0.34 0.32

2500 21.58 5.33 1.75 0.91 0.62 2500 21.46 5.18 1.59 0.77 0.47 2500 0.12 0.14 0.15 0.14 0.15

5000 21.52 5.13 1.55 0.76 0.47 5000 21.46 5.05 1.46 0.67 0.38 5000 0.06 0.08 0.09 0.09 0.09

7500 20.85 5.01 1.48 0.70 0.41 7500 20.80 4.95 1.42 0.64 0.34 7500 0.05 0.06 0.07 0.06 0.07

10000 21.02 4.92 1.42 0.63 0.39 10000 20.99 4.87 1.37 0.58 0.33 10000 0.03 0.05 0.05 0.05 0.05

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 29.59 9.80 3.64 2.17 1.38 1000 29.46 9.59 3.41 1.91 1.13 1000 0.13 0.21 0.23 0.26 0.25

2500 28.87 9.06 3.08 1.56 1.01 2500 28.80 8.96 2.96 1.44 0.89 2500 0.07 0.10 0.12 0.11 0.12

5000 28.38 8.61 2.73 1.28 0.75 5000 28.34 8.54 2.66 1.21 0.68 5000 0.04 0.06 0.07 0.07 0.08

7500 27.68 8.31 2.55 1.15 0.63 7500 27.65 8.26 2.50 1.10 0.57 7500 0.03 0.05 0.06 0.05 0.06

10000 27.76 8.18 2.43 1.04 0.58 10000 27.73 8.14 2.38 1.00 0.53 10000 0.03 0.04 0.04 0.04 0.04

MISE Bias^2 Variance

Bias^2 VarianceMISE

Panel C: No Bias Adjustment

Panel A: Bias Adjustment (Baseline Choice for Optimal Bandwidth)

MISE Bias^2 Variance

Panel B: Bias Adjustment (Alternative Choice for Optimal Bandwidth)



Table AII
Properties of the Estimated Moments and Proportion:

Skill Coefficient

Panel A shows the Mean Squared Error (MSE) and its two components (bias and standard deviation) of the
bias-adjusted estimators (mean and volatility (annualized), skewness, and proportion of funds with a positive
skill measure) based on a numerical integration of the bias-adjusted density (under the baseline bandwidth
choice) across different values for the number of funds and the number of monthly observations. Panel B
reports the same information for the bias-adjusted estimators obtained with the analytical approach. For
comparison, Panel C reports the same information for the bias-unadjusted estimators (obtained by
integrating the bias-unadjusted density).
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.37 0.21 0.07 0.04 0.03 1000 1.15 0.43 0.23 0.14 0.12 1000 0.22 0.15 0.12 0.12 0.12

2500 1.31 0.21 0.06 0.03 0.02 2000 1.14 0.45 0.23 0.16 0.12 2000 0.14 0.08 0.08 0.07 0.07

5000 1.35 0.20 0.05 0.02 0.02 3000 1.16 0.44 0.22 0.15 0.11 3000 0.09 0.06 0.05 0.05 0.05

7500 1.28 0.21 0.05 0.02 0.02 4000 1.13 0.45 0.22 0.15 0.11 4000 0.08 0.05 0.05 0.04 0.05

10000 1.30 0.20 0.05 0.02 0.01 5000 1.14 0.44 0.22 0.15 0.11 5000 0.06 0.04 0.04 0.04 0.04

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.93 0.07 0.03 0.03 0.03 1000 1.36 0.18 0.03 0.01 ‐0.00  1000 0.28 0.19 0.16 0.16 0.16

2500 1.88 0.03 0.01 0.01 0.01 2500 1.36 0.15 0.02 0.01 0.01 2500 0.18 0.10 0.09 0.08 0.08

5000 1.77 0.02 0.01 0.00 0.00 5000 1.32 0.13 0.03 0.01 0.01 5000 0.13 0.08 0.06 0.06 0.06

7500 1.66 0.02 0.00 0.00 0.00 7500 1.28 0.13 0.02 0.02 0.01 7500 0.11 0.06 0.06 0.06 0.06

10000 1.65 0.02 0.00 0.00 0.00 10000 1.28 0.13 0.02 0.01 0.01 10000 0.08 0.07 0.05 0.05 0.05

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 0.29 0.13 0.11 0.10 0.09 1000 ‐0.01  ‐0.01  0.03 0.01 0.01 1000 0.54 0.37 0.32 0.31 0.30

2500 0.18 0.06 0.05 0.04 0.04 2000 0.14 0.01 0.03 0.04 0.04 2000 0.41 0.24 0.22 0.20 0.20

5000 0.09 0.03 0.03 0.03 0.02 3000 0.16 0.03 0.03 0.02 0.01 3000 0.26 0.18 0.17 0.16 0.16

7500 0.06 0.03 0.02 0.02 0.02 4000 0.11 0.02 0.04 0.02 0.02 4000 0.23 0.17 0.15 0.14 0.14

10000 0.06 0.02 0.02 0.02 0.02 5000 0.13 0.04 0.04 0.03 0.01 5000 0.21 0.14 0.12 0.13 0.13

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 21.85 4.06 1.46 1.47 0.95 1000 ‐4.40  ‐1.39  ‐0.48  ‐0.49  ‐0.13  1000 1.57 1.46 1.11 1.11 0.97

2500 21.47 2.38 0.72 0.50 0.47 2500 ‐4.53  ‐1.26  ‐0.44  ‐0.22  ‐0.18  2500 0.99 0.89 0.72 0.67 0.66

5000 19.89 1.94 0.49 0.32 0.29 5000 ‐4.41  ‐1.25  ‐0.48  ‐0.23  ‐0.17  5000 0.68 0.63 0.50 0.52 0.51

7500 19.17 1.53 0.39 0.22 0.19 7500 ‐4.34  ‐1.12  ‐0.45  ‐0.23  ‐0.12  7500 0.60 0.53 0.43 0.41 0.42

10000 19.23 1.59 0.28 0.16 0.13 10000 ‐4.36  ‐1.19  ‐0.35  ‐0.20  ‐0.11  10000 0.49 0.42 0.40 0.34 0.35

Panel A: Bias Adjustment (Numerical Integration)

Skewness

MSE Bias Standard Deviation

Mean

MSE Bias Standard Deviation

Volatility

MSE Bias

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

Standard Deviation



Table AII
Properties of the Estimated Moments and Proportion:

Skill Coefficient (Continued)
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.37 0.21 0.07 0.04 0.03 1000 1.15 0.43 0.23 0.14 0.12 1000 0.22 0.15 0.12 0.12 0.12

2500 1.31 0.21 0.06 0.03 0.02 2500 1.14 0.45 0.23 0.16 0.12 2500 0.14 0.08 0.08 0.07 0.07

5000 1.35 0.20 0.05 0.02 0.02 5000 1.16 0.44 0.22 0.15 0.11 5000 0.09 0.06 0.05 0.05 0.05

7500 1.28 0.21 0.05 0.02 0.02 7500 1.13 0.45 0.22 0.15 0.11 7500 0.08 0.05 0.05 0.04 0.05

10000 1.30 0.20 0.05 0.02 0.01 10000 1.14 0.44 0.22 0.15 0.11 10000 0.06 0.04 0.04 0.04 0.04

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.14 0.06 0.03 0.03 0.03 1000 1.02 0.17 0.04 0.02 0.01 1000 0.31 0.19 0.16 0.16 0.16

2500 1.22 0.04 0.01 0.01 0.01 2500 1.09 0.17 0.04 0.02 0.02 2500 0.18 0.10 0.09 0.08 0.08

5000 1.15 0.03 0.01 0.00 0.00 5000 1.06 0.16 0.05 0.02 0.01 5000 0.13 0.08 0.06 0.06 0.06

7500 1.07 0.03 0.01 0.00 0.00 7500 1.03 0.16 0.04 0.03 0.02 7500 0.11 0.06 0.06 0.06 0.06

10000 1.09 0.03 0.00 0.00 0.00 10000 1.04 0.17 0.04 0.02 0.02 10000 0.08 0.07 0.05 0.05 0.05

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.60 0.90 0.42 0.23 0.18 1000 1.19 0.88 0.55 0.37 0.29 1000 0.42 0.36 0.34 0.31 0.30

2500 1.63 0.81 0.34 0.20 0.14 2500 1.24 0.88 0.54 0.39 0.31 2500 0.31 0.21 0.22 0.21 0.21

5000 1.63 0.78 0.30 0.16 0.11 5000 1.26 0.87 0.53 0.37 0.28 5000 0.18 0.16 0.16 0.16 0.16

7500 1.53 0.76 0.30 0.16 0.11 7500 1.23 0.86 0.53 0.37 0.29 7500 0.16 0.14 0.14 0.14 0.14

10000 1.51 0.77 0.30 0.16 0.09 10000 1.22 0.87 0.53 0.38 0.28 10000 0.15 0.12 0.12 0.13 0.12

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 14.48 3.49 1.47 1.43 0.93 1000 ‐3.46  ‐1.11  ‐0.37  ‐0.39  0.05 1000 1.58 1.50 1.15 1.13 0.96

2500 15.50 1.89 0.82 0.55 0.50 2500 ‐3.80  ‐1.01  ‐0.45  ‐0.24  ‐0.14  2500 1.04 0.93 0.79 0.70 0.69

5000 14.14 1.65 0.53 0.33 0.30 5000 ‐3.70  ‐1.11  ‐0.50  ‐0.24  ‐0.15  5000 0.68 0.65 0.53 0.52 0.53

7500 13.54 1.26 0.44 0.26 0.19 7500 ‐3.63  ‐0.99  ‐0.50  ‐0.28  ‐0.14  7500 0.60 0.52 0.44 0.42 0.42

10000 13.88 1.37 0.34 0.20 0.16 10000 ‐3.69  ‐1.09  ‐0.42  ‐0.27  ‐0.15  10000 0.49 0.43 0.40 0.35 0.37

Skewness

Panel B: Bias Adjustment (Analytical Approach)

Mean

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

MSE Bias Standard Deviation



Table AII
Properties of the Estimated Moments and Proportion:

Skill Coefficient (Continued)
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.37 0.21 0.07 0.04 0.03 1000 1.15 0.43 0.23 0.14 0.12 1000 0.22 0.15 0.12 0.12 0.12

2500 1.31 0.21 0.06 0.03 0.02 2500 1.14 0.45 0.23 0.16 0.12 2500 0.14 0.08 0.08 0.07 0.07

5000 1.35 0.20 0.05 0.02 0.02 5000 1.16 0.44 0.22 0.15 0.11 5000 0.09 0.06 0.05 0.05 0.05

7500 1.28 0.21 0.05 0.02 0.02 7500 1.13 0.45 0.22 0.15 0.11 7500 0.08 0.05 0.05 0.04 0.05

10000 1.30 0.20 0.05 0.02 0.01 10000 1.14 0.44 0.22 0.15 0.11 10000 0.06 0.04 0.04 0.04 0.04

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 11.00 1.18 0.25 0.12 0.07 1000 3.31 1.07 0.48 0.31 0.22 1000 0.27 0.16 0.15 0.15 0.15

2500 11.28 1.17 0.23 0.10 0.06 2500 3.35 1.08 0.47 0.30 0.22 2500 0.16 0.09 0.08 0.08 0.08

5000 11.17 1.15 0.24 0.10 0.05 5000 3.34 1.07 0.48 0.30 0.22 5000 0.12 0.07 0.06 0.06 0.06

7500 10.99 1.15 0.23 0.10 0.05 7500 3.31 1.07 0.48 0.31 0.22 7500 0.09 0.06 0.06 0.05 0.05

10000 11.06 1.16 0.23 0.09 0.05 10000 3.32 1.08 0.48 0.30 0.22 10000 0.07 0.06 0.05 0.05 0.05

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 0.10 0.09 0.08 0.08 0.08 1000 ‐0.19  ‐0.21  ‐0.14  ‐0.12  ‐0.09  1000 0.25 0.22 0.25 0.26 0.26

2500 0.06 0.06 0.05 0.04 0.04 2500 ‐0.15  ‐0.21  ‐0.15  ‐0.10  ‐0.07  2500 0.18 0.13 0.16 0.17 0.18

5000 0.03 0.06 0.04 0.03 0.03 5000 ‐0.14  ‐0.22  ‐0.15  ‐0.12  ‐0.09  5000 0.11 0.10 0.12 0.13 0.13

7500 0.04 0.06 0.04 0.03 0.02 7500 ‐0.17  ‐0.22  ‐0.15  ‐0.11  ‐0.08  7500 0.09 0.09 0.11 0.11 0.12

10000 0.04 0.05 0.03 0.02 0.02 10000 ‐0.17  ‐0.21  ‐0.15  ‐0.11  ‐0.10  10000 0.08 0.08 0.09 0.10 0.11

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 115.98 33.21 9.56 5.57 2.44 1000 ‐10.69  ‐5.61  ‐2.90  ‐2.10  ‐1.25  1000 1.31 1.31 1.07 1.08 0.93

2500 118.94 31.23 9.49 4.31 2.52 2500 ‐10.87  ‐5.52  ‐2.99  ‐1.96  ‐1.44  2500 0.86 0.85 0.75 0.68 0.68

5000 118.33 32.04 9.36 4.10 2.37 5000 ‐10.86  ‐5.63  ‐3.02  ‐1.96  ‐1.45  5000 0.54 0.58 0.50 0.50 0.52

7500 117.45 30.67 9.30 4.16 2.23 7500 ‐10.83  ‐5.52  ‐3.02  ‐2.00  ‐1.44  7500 0.50 0.48 0.41 0.40 0.40

10000 118.59 31.50 8.85 4.10 2.22 10000 ‐10.88  ‐5.60  ‐2.95  ‐2.00  ‐1.45  10000 0.42 0.38 0.38 0.33 0.36

Skewness

Panel C: No Bias Adjustment

Mean

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

MSE Bias Standard Deviation



Table AIII
Properties of the Estimated Density:

Scale Coefficient

Panel A shows the Mean Integrated Squared Error (MISE) and its two components (integrated squared bias
and variance) for the bias-adjusted scale density under the baseline choice for the optimal bandwidth across
different values for the number of funds and the number of monthly observations. Panel B repeats the
analysis under the alternative choice of the optimal bandwidth. For comparison, Panel C reports the same
information for the bias-unadjusted density.
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 77.11 18.04 5.35 2.95 2.08 1000 75.98 16.46 3.95 1.69 0.95 1000 1.13 1.58 1.40 1.26 1.14

2500 75.05 17.01 4.63 2.15 1.55 2500 74.51 16.29 4.03 1.64 1.05 2500 0.53 0.72 0.61 0.52 0.50

5000 75.13 17.03 4.09 1.89 1.18 5000 74.54 16.66 3.80 1.63 0.89 5000 0.59 0.37 0.29 0.26 0.29

7500 74.82 16.78 4.07 1.79 1.04 7500 74.12 16.57 3.87 1.60 0.85 7500 0.70 0.21 0.20 0.19 0.19

10000 74.13 16.61 4.03 1.71 1.02 10000 73.90 16.41 3.89 1.56 0.88 10000 0.23 0.19 0.14 0.15 0.14

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 91.92 20.42 5.85 3.16 2.12 1000 90.72 19.42 5.14 2.45 1.45 1000 1.21 1.00 0.71 0.71 0.67

2500 87.96 19.27 5.24 2.43 1.68 2500 87.38 18.76 4.93 2.17 1.41 2500 0.58 0.51 0.31 0.26 0.27

5000 86.18 18.79 4.63 2.18 1.32 5000 85.45 18.55 4.47 2.03 1.16 5000 0.73 0.24 0.17 0.15 0.17

7500 84.71 18.29 4.57 2.05 1.17 7500 83.90 18.16 4.44 1.94 1.05 7500 0.80 0.13 0.13 0.12 0.12

10000 83.13 17.98 4.48 1.95 1.15 10000 82.88 17.85 4.38 1.85 1.06 10000 0.24 0.13 0.09 0.10 0.09

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 97.17 31.16 10.69 5.84 3.60 1000 96.81 30.78 10.20 5.32 3.08 1000 0.36 0.38 0.48 0.52 0.51

2500 92.06 28.58 9.41 4.25 2.66 2500 91.89 28.39 9.20 4.06 2.44 2500 0.18 0.19 0.22 0.20 0.22

5000 89.26 27.34 8.39 3.80 2.14 5000 88.94 27.25 8.27 3.68 2.01 5000 0.32 0.09 0.12 0.12 0.14

7500 87.56 26.59 8.14 3.52 1.86 7500 87.13 26.52 8.05 3.43 1.76 7500 0.43 0.07 0.09 0.09 0.10

10000 85.48 26.25 7.87 3.36 1.77 10000 85.42 26.20 7.80 3.29 1.70 10000 0.06 0.05 0.07 0.08 0.07

Panel C: No Bias Adjustment

MISE Bias^2 Variance

Panel A: Bias Adjustment (Baseline Choice for Optimal Bandwidth)

MISE Bias^2 Variance

Panel B: Bias Adjustment (Alternative Choice for Optimal Bandwidth)

MISE Bias^2 Variance



Table AIV
Properties of the Estimated Moments and Proportion:

Scale Coefficient

Panel A shows the Mean Squared Error (MSE) and its two components (bias and standard deviation) of the
bias-adjusted estimators (mean and volatility (annualized), skewness, and proportion of funds with a positive
scale measure) based on a numerical integration of the bias-adjusted density (under the baseline bandwidth
choice) across different values for the number of funds and the number of monthly observations. Panel B
reports the same information for the bias-adjusted estimators obtained with the analytical approach. For
comparison, Panel C reports the same information for the bias-unadjusted estimators (obtained by
integrating the bias-unadjusted density).
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.63 0.12 0.02 0.01 0.01 1000 1.22 0.32 0.14 0.09 0.07 1000 0.38 0.11 0.06 0.06 0.06

2500 1.48 0.12 0.02 0.01 0.01 2000 1.20 0.34 0.14 0.10 0.08 2000 0.21 0.06 0.04 0.03 0.03

5000 1.49 0.12 0.02 0.01 0.01 3000 1.21 0.34 0.14 0.09 0.07 3000 0.16 0.05 0.03 0.02 0.02

7500 1.40 0.11 0.02 0.01 0.01 4000 1.18 0.33 0.14 0.10 0.07 4000 0.14 0.04 0.02 0.02 0.02

10000 1.43 0.11 0.02 0.01 0.01 5000 1.19 0.33 0.14 0.10 0.07 5000 0.10 0.04 0.02 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 14.87 0.12 0.01 0.01 0.00 1000 3.54 0.28 ‐0.02  ‐0.02  ‐0.03  1000 1.52 0.22 0.08 0.07 0.06

2500 16.29 0.19 0.00 0.00 0.00 2500 3.80 0.29 ‐0.03  ‐0.03  ‐0.02  2500 1.37 0.32 0.05 0.04 0.04

5000 22.82 0.09 0.00 0.00 0.00 5000 4.10 0.27 ‐0.03  ‐0.03  ‐0.02  5000 2.45 0.13 0.03 0.03 0.03

7500 32.68 0.07 0.00 0.00 0.00 7500 4.32 0.25 ‐0.03  ‐0.03  ‐0.02  7500 3.74 0.08 0.03 0.03 0.03

10000 16.64 0.07 0.00 0.00 0.00 10000 3.94 0.25 ‐0.03  ‐0.03  ‐0.02  10000 1.05 0.09 0.03 0.03 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 47.90 4.04 0.17 0.10 0.10 1000 1.85 0.02 0.01 ‐0.00  0.02 1000 6.67 2.01 0.41 0.32 0.31

2500 109.91 19.89 0.10 0.05 0.05 2000 4.50 1.02 0.10 0.06 0.05 2000 9.47 4.34 0.30 0.22 0.21

5000 206.97 10.49 0.04 0.02 0.02 3000 5.55 1.30 0.08 0.05 0.05 3000 13.27 2.96 0.18 0.14 0.14

7500 406.00 3.89 0.04 0.02 0.02 4000 6.36 0.94 0.10 0.07 0.06 4000 19.12 1.73 0.18 0.11 0.11

10000 254.93 7.25 0.03 0.02 0.01 5000 7.69 0.82 0.11 0.08 0.05 5000 13.99 2.57 0.13 0.10 0.10

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 65.64 4.91 1.55 1.51 1.16 1000 ‐7.45  ‐0.99  ‐0.05  ‐0.27  ‐0.10  1000 3.20 1.98 1.24 1.20 1.07

2500 62.50 2.05 0.68 0.41 0.49 2500 ‐7.65  ‐0.80  0.07 0.19 0.11 2500 1.98 1.19 0.82 0.61 0.69

5000 59.38 1.01 0.20 0.28 0.28 5000 ‐7.42  ‐0.70  0.11 0.13 0.08 5000 2.07 0.72 0.44 0.51 0.53

7500 56.14 0.77 0.23 0.18 0.17 7500 ‐7.32  ‐0.67  0.13 0.17 0.13 7500 1.60 0.57 0.46 0.38 0.40

10000 55.74 0.78 0.26 0.19 0.14 10000 ‐7.33  ‐0.66  0.22 0.14 0.12 10000 1.40 0.59 0.46 0.41 0.36

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Skewness

MSE Bias Standard Deviation

Panel A: Bias Adjustment (Numerical Integration)

Mean

MSE Bias Standard Deviation



Table AIV 
Properties of the Estimated Moments and Proportion:

Scale Coefficient (Continued)
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.63 0.12 0.02 0.01 0.01 1000 1.22 0.32 0.14 0.09 0.07 1000 0.38 0.11 0.06 0.06 0.06

2500 1.48 0.12 0.02 0.01 0.01 2000 1.20 0.34 0.14 0.10 0.08 2000 0.21 0.06 0.04 0.03 0.03

5000 1.49 0.12 0.02 0.01 0.01 3000 1.21 0.34 0.14 0.09 0.07 3000 0.16 0.05 0.03 0.02 0.02

7500 1.40 0.11 0.02 0.01 0.01 4000 1.18 0.33 0.14 0.10 0.07 4000 0.14 0.04 0.02 0.02 0.02

10000 1.43 0.11 0.02 0.01 0.01 5000 1.19 0.33 0.14 0.10 0.07 5000 0.10 0.04 0.02 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 6.75 0.08 0.01 0.00 0.00 1000 2.10 0.21 0.03 0.02 0.01 1000 1.54 0.18 0.07 0.07 0.06

2500 7.26 0.15 0.00 0.00 0.00 2500 2.24 0.26 0.03 0.01 0.01 2500 1.49 0.28 0.05 0.04 0.04

5000 11.97 0.06 0.00 0.00 0.00 5000 2.45 0.22 0.03 0.01 0.01 5000 2.44 0.12 0.03 0.03 0.03

7500 8.80 0.05 0.00 0.00 0.00 7500 2.00 0.22 0.03 0.01 0.01 7500 2.20 0.06 0.03 0.03 0.03

10000 6.48 0.05 0.00 0.00 0.00 10000 2.24 0.22 0.03 0.01 0.01 10000 1.21 0.09 0.03 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 78.69 3.59 0.48 0.24 0.17 1000 3.19 0.21 ‐0.05  ‐0.03  ‐0.02  1000 8.28 1.88 0.69 0.48 0.42

2500 117.73 9.57 0.45 0.21 0.14 2500 3.37 0.24 ‐0.05  ‐0.04  ‐0.03  2500 10.31 3.08 0.67 0.46 0.37

5000 452.01 16.92 0.38 0.17 0.10 5000 3.44 0.23 ‐0.07  ‐0.05  ‐0.03  5000 20.98 4.11 0.62 0.41 0.32

7500 549.80 4.15 0.40 0.18 0.10 7500 3.41 0.22 ‐0.06  ‐0.05  ‐0.03  7500 23.20 2.03 0.63 0.42 0.32

10000 367.33 4.94 0.40 0.18 0.10 10000 3.43 0.22 ‐0.06  ‐0.04  ‐0.02  10000 18.86 2.21 0.63 0.42 0.31

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 41.51 4.31 1.79 1.44 1.41 1000 ‐5.61  0.15 0.35 ‐0.06  0.10 1000 3.17 2.07 1.29 1.20 1.18

2500 45.02 1.68 0.84 0.51 0.51 2500 ‐6.34  0.20 0.34 0.29 0.14 2500 2.20 1.28 0.85 0.66 0.70

5000 45.71 0.66 0.30 0.30 0.33 5000 ‐6.42  0.18 0.31 0.14 0.09 5000 2.12 0.79 0.45 0.53 0.56

7500 47.16 0.38 0.29 0.18 0.18 7500 ‐6.60  0.20 0.28 0.15 0.09 7500 1.91 0.58 0.46 0.39 0.42

10000 47.51 0.41 0.36 0.18 0.14 10000 ‐6.72  0.21 0.36 0.13 0.08 10000 1.56 0.61 0.48 0.41 0.37

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Skewness

MSE Bias Standard Deviation

Panel B: Bias Adjustment (Analytical Approach)

Mean

MSE Bias Standard Deviation



Table AIV 
Properties of the Estimated Moments and Proportion:

Scale Coefficient (Continued)
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n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 1.63 0.12 0.02 0.01 0.01 1000 1.22 0.32 0.14 0.09 0.07 1000 0.38 0.11 0.06 0.06 0.06

2500 1.48 0.12 0.02 0.01 0.01 2000 1.20 0.34 0.14 0.10 0.08 2000 0.21 0.06 0.04 0.03 0.03

5000 1.49 0.12 0.02 0.01 0.01 3000 1.21 0.34 0.14 0.09 0.07 3000 0.16 0.05 0.03 0.02 0.02

7500 1.40 0.11 0.02 0.01 0.01 4000 1.18 0.33 0.14 0.10 0.07 4000 0.14 0.04 0.02 0.02 0.02

10000 1.43 0.11 0.02 0.01 0.01 5000 1.19 0.33 0.14 0.10 0.07 5000 0.10 0.04 0.02 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 24.88 0.89 0.09 0.03 0.02 1000 4.77 0.93 0.30 0.17 0.11 1000 1.45 0.18 0.07 0.06 0.06

2500 26.67 1.00 0.09 0.03 0.01 2500 4.99 0.96 0.30 0.16 0.11 2500 1.31 0.30 0.04 0.04 0.04

5000 34.43 0.90 0.09 0.03 0.01 5000 5.30 0.94 0.29 0.16 0.11 5000 2.51 0.11 0.03 0.03 0.03

7500 46.26 0.87 0.09 0.03 0.01 7500 5.52 0.93 0.30 0.16 0.11 7500 3.97 0.06 0.03 0.02 0.02

10000 26.96 0.87 0.09 0.03 0.01 10000 5.09 0.93 0.29 0.17 0.11 10000 1.01 0.07 0.02 0.02 0.02

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 29.55 1.90 0.13 0.10 0.09 1000 1.18 ‐0.26  ‐0.23  ‐0.20  ‐0.14  1000 5.31 1.35 0.28 0.25 0.26

2500 67.08 13.11 0.08 0.06 0.04 2500 3.06 0.46 ‐0.20  ‐0.17  ‐0.12  2500 7.60 3.59 0.21 0.17 0.17

5000 147.57 3.22 0.06 0.05 0.03 5000 3.98 0.45 ‐0.22  ‐0.18  ‐0.13  5000 11.48 1.74 0.11 0.11 0.11

7500 293.19 0.88 0.06 0.04 0.02 7500 4.57 0.20 ‐0.21  ‐0.17  ‐0.13  7500 16.50 0.92 0.12 0.08 0.09

10000 159.53 2.10 0.05 0.03 0.02 10000 5.46 0.15 ‐0.21  ‐0.17  ‐0.14  10000 11.39 1.44 0.09 0.08 0.08

n\T 100 250 500 750 1000 n\T 100 250 500 750 1000 n\T 100 250 500 750 1000

1000 164.79 49.68 13.90 7.38 3.97 1000 ‐12.75  ‐6.91  ‐3.55  ‐2.48  ‐1.65  1000 1.52 1.41 1.13 1.10 1.12

2500 163.81 46.76 13.13 5.01 2.98 2500 ‐12.76  ‐6.79  ‐3.54  ‐2.15  ‐1.59  2500 0.95 0.83 0.76 0.61 0.66

5000 160.98 46.56 12.92 5.51 2.98 5000 ‐12.67  ‐6.80  ‐3.57  ‐2.30  ‐1.64  5000 0.58 0.57 0.40 0.48 0.54

7500 163.14 47.12 13.06 5.37 2.85 7500 ‐12.76  ‐6.85  ‐3.59  ‐2.29  ‐1.64  7500 0.48 0.42 0.40 0.36 0.40

10000 163.64 47.03 12.63 5.48 2.87 10000 ‐12.78  ‐6.85  ‐3.53  ‐2.31  ‐1.66  10000 0.43 0.41 0.43 0.37 0.35

Proportion with Positive Skill Measure

MSE Bias Standard Deviation

Volatility

MSE Bias Standard Deviation

Skewness

MSE Bias Standard Deviation

Panel C: No Bias Adjustment

Mean

MSE Bias Standard Deviation



Table AV
Fund Style Classification

This table provides the list of 32 styles across the different data providers of style information
(Wiesbenberger, Strategic Insight, Lipper, Policy CRSP). For each style, it also shows the mapping between
each style and the growth/value (GV) and small/large cap (SL) dimensions. A value of 1 refers to growth or
small cap. A value of two refers to neutral fund in terms of GV or SL dimension. Finally, a value of 3 refers to
value or large cap.

Wiesenberger Symbol Name Style GV Style SL
1 G Growth 1
2 GCI Growth and current income 3
3 G-I Income 3
4 IEQ Equity income 3
5 LTG Long-term growth 1
6 MCG Maximum capital gains 1
7 SCG Small-cap growth 1 1

Strategic Insight Symbol Name Style GV Style SL
8 AGG Aggressive growth 1
9 GMC Equity mid-cap 2
10 GRI Growth and income 3
11 GRO Growth 1
12 ING Income and growth 3
13 SCG Small-cap 1
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Table AV
Fund Style Classification (Continued)

Lipper Symbol Name Style GV Style SL
14 CA Capital appreciation 1
15 G Growth 1
16 GI Growth and income 3
17 LCCE Large-cap core 2 3
18 LCGE Large-cap growth 1 3
19 LCVE Large-cap value 3 3
20 MC Mid-cap 2
21 MCCE Mid-cap core 2 2
22 MCGE Mid-cap growth 1 2
23 MCVE Mid-cap value 3 2
24 MLCE Multi-cap core 2
25 MLGE Multi-cap growth 1
26 MLVE Multi-cap value 3
27 MR Micro-cap 1
28 SCCE Small-cap core 2 1
29 SCGE Small-cap growth 1 1
30 SCVE Small-cap value 3 1
31 SG Small-cap 1

Policy CRSP Symbol Name Style GV Style SL
32 CS Common stock
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Table AVI
Impact of Survivorship and Reverse Survivorship Bias

Panel A contains the summary statistics of the distributions of the skill and scale coefficients for all funds in
the population across different thresholds for the minimum number of return observations (ranging from 12
to 60 monthly observations). It reports the first four moments, the proportions of funds with a negative and
positive skill coefficient, and the quantiles at 5% and 95%. We compute all cross-sectional estimates by
integrating numerically the bias-adjusted density obtained with our nonparametric approach. Figures in
parentheses denote the estimated standard deviation of each estimator. Panel B repeats the analysis for the
subpopulation of funds that disappear during the sample period across two thresholds for the minimum
number of return observations (60 and 108 monthly observations). This analysis provides a rough estimate
of the magnitude of the reverse survivorship bias.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

Min. Observations=12

Skill Coefficent 2.7 (0.2) 5.4 (0.4) 0.1 (1.2) 37.6 (8.1) 21.8 (0.8) 78.2 (0.8) -3.2 (0.2) 9.5 (0.2)

Scale Coefficient 1.3 (0.1) 1.9 (0.1) 1.2 (0.9) 26 (7.3) 20 (0.8) 80 (0.8) -1.1 (0.1) 4.2 (0.1)

Min. Observations=36

Skill Coefficent 2.8 (0.1) 4.8 (0.3) 1.3 (0.9) 28.8 (5.3) 19.9 (0.8) 80.1 (0.8) -2.8 (0.1) 9.2 (0.2)

Scale Coefficient 1.3 (0.1) 1.9 (0.1) 1.8 (0.9) 25.6 (8.8) 19.2 (0.8) 80.8 (0.8) -1 (0.1) 4.1 (0.1)

Min. Observations=60

Skill Coefficent 3 (0.1) 4.1 (0.2) 1.6 (0.7) 23.4 (6) 16.9 (0.8) 83.1 (0.8) -2.2 (0.1) 8.9 (0.2)

Scale Coefficient 1.3 (0.1) 1.7 (0.1) 1.6 (0.7) 16.7 (11) 17.6 (0.8) 82.4 (0.8) -0.9 (0.1) 3.9 (0.1)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

Min. Observations=60

Skill Coefficent 2.5 (0.1) 4.9 (0.3) 2.2 (0.7) 27 (6) 25.8 (0.9) 74.2 (0.9) -3.6 (0.2) 9.9 (0.2)

Scale Coefficient 1.4 (0.1) 2.1 (0.1) 2.1 (0.7) 21.5 (7.3) 23.2 (0.9) 76.8 (0.9) -1.4 (0.1) 4.6 (0.1)

Min. Observations=108

Skill Coefficent 2.4 (0.1) 3.3 (0.1) 0.8 (0.3) 8 (1.1) 21 (0.8) 79 (0.8) -2.4 (0.1) 7.8 (0.1)

Scale Coefficient 1.3 (0.1) 1.6 (0.1) 1.3 (0.3) 9.9 (1.5) 19.2 (0.8) 80.8 (0.8) -0.9 (0.1) 3.7 (0.1)

Moments Proportions (%) Quantiles (Ann.)

Panel A: All Selected Funds

Moments Proportions (%) Quantiles (Ann.)

Panel B: Selected Funds that Disappear During the Sample Period



Table AVII
Distributions of Skill and Scalability

Four-Factor Model

Panel A contains the summary statistics of the distribution of the skill coefficient for all funds in the
population, small/large cap funds, low/high turnover funds (i.e., bottom or top tercile of funds sorted on
turnover), and broker/direct sold funds (i.e., funds that are sold through brokers or funds directly sold to
investors) based on the four-factor model of Carhart (1997). It reports the first four moments, the proportions
of funds with a negative and positive skill coefficient, and the quantiles at 5% and 95%. We compute all
cross-sectional estimates by integrating numerically the bias-adjusted density obtained with our
nonparametric approach. Figures in parentheses denote the estimated standard deviation of each estimator.
Panel B repeats the analysis for the scale coefficient. To ease interpretation, we standardize the scale
coefficient for each fund so that it corresponds to the change in gross alpha for a one standard deviation
change in size.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 2.4 (0.1) 3.9 (0.3) 1.8 (1.1) 30.4 (15.4) 21.5 (0.8) 78.5 (0.8) -2.6 (0.1) 8.1 (0.1)

Fund Groups

Small Cap 3.3 (0.2) 4.2 (0.5) 1.9 (2.5) 27.9 (41) 19.4 (1.6) 80.6 (1.6) -3 (0.3) 9.8 (0.3)

Large Cap 1.6 (0.1) 2.7 (0.2) 1.2 (0.6) 13.5 (3.7) 24.5 (1.4) 75.5 (1.4) -2.1 (0.2) 5.9 (0.2)

Low Turnover 2.1 (0.2) 3.1 (0.2) -0.2 (0.7) 13.4 (2) 18.7 (1.4) 81.3 (1.4) -2 (0.2) 6.7 (0.2)

High Turnover 2.6 (0.2) 5 (0.5) 2.1 (1.3) 26.3 (15.4) 24.9 (1.5) 75.1 (1.5) -3.7 (0.2) 9.8 (0.3)

Broker Sold 2.4 (0.2) 4.1 (0.4) 2.6 (1.8) 37.7 (25.9) 22.2 (1.3) 77.8 (1.3) -2.7 (0.2) 8.3 (0.2)

Direct Sold 2.6 (0.1) 2.9 (0.2) 0.4 (0.5) 8.5 (1.8) 14.1 (1.2) 85.9 (1.2) -1.4 (0.2) 7.4 (0.2)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.3 (0.1) 1.7 (0.1) 1.5 (0.7) 16 (9.8) 19.2 (0.8) 80.8 (0.8) -1 (0.1) 3.8 (0.1)

Fund Groups

Small Cap 1.5 (0.1) 1.7 (0.1) -0.1 (1) 8.4 (9.9) 18.4 (1.5) 81.6 (1.5) -1.2 (0.1) 4.3 (0.1)

Large Cap 0.9 (0.1) 1.4 (0.1) 1.7 (0.6) 13.5 (4) 24.6 (1.4) 75.4 (1.4) -1 (0.1) 3 (0.1)

Low Turnover 0.8 (0.1) 1.1 (0.1) 0.4 (0.3) 4.7 (1.3) 21.6 (1.5) 78.4 (1.5) -0.9 (0.1) 2.7 (0.1)

High Turnover 1.7 (0.1) 2.1 (0.2) 1 (0.5) 8.9 (3.7) 18.7 (1.4) 81.3 (1.4) -1.2 (0.1) 5.1 (0.2)

Broker Sold 1.3 (0.1) 1.8 (0.1) 1.2 (0.5) 11.1 (1.4) 19.5 (1.2) 80.5 (1.2) -1 (0.1) 4.2 (0.1)

Direct Sold 1.3 (0.1) 1.3 (0.1) 0.6 (0.5) 7.5 (2.3) 15.3 (1.3) 84.7 (1.3) -0.7 (0.1) 3.4 (0.1)

Panel B: Scale Coefficient

Moments Proportions (%) Quantiles (Ann.)

Panel A: Skill Coefficient

Moments Proportions (%) Quantiles (Ann.)



Table AVIII
Distributions of Skill and Scalability

Five-Factor Model

Panel A contains the summary statistics of the distribution of the skill coefficient for all funds in the
population, small/large cap funds, low/high turnover funds (i.e., bottom or top tercile of funds sorted on
turnover), and broker/direct sold funds (i.e., funds that are sold through brokers or funds directly sold to
investors) based on the five-factor model of Fama and French (2015). It reports the first four moments, the
proportions of funds with a negative and positive skill coefficient, and the quantiles at 5% and 95%. We
compute all cross-sectional estimates by integrating numerically the bias-adjusted density obtained with our
nonparametric approach. Figures in parentheses denote the estimated standard deviation of each estimator.
Panel B repeats the analysis for the scale coefficient. To ease interpretation, we standardize the scale
coefficient for each fund so that it corresponds to the change in gross alpha for a one standard deviation
change in size.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 2.4 (0.1) 4.4 (0.2) 1.4 (0.5) 16.8 (2.3) 26 (0.9) 74 (0.9) -3.1 (0.1) 8.9 (0.2)

Fund Groups

Small Cap 3.4 (0.2) 4.3 (0.3) 0.8 (0.5) 7.8 (2.8) 20.2 (1.6) 79.8 (1.6) -3 (0.3) 10.3 (0.3)

Large Cap 1.5 (0.2) 3.5 (0.2) 1.8 (0.4) 13.3 (2.3) 31.3 (1.5) 68.7 (1.5) -3 (0.2) 6.8 (0.2)

Low Turnover 1.5 (0.2) 3.9 (0.3) 1.4 (0.8) 18.4 (3.1) 32.8 (1.7) 67.2 (1.7) -3.2 (0.2) 7.1 (0.2)

High Turnover 3.5 (0.2) 5.1 (0.4) 1 (0.6) 12.8 (2.7) 19.7 (1.4) 80.3 (1.4) -3.5 (0.3) 11.5 (0.3)

Broker Sold 2.4 (0.2) 4.3 (0.3) 1 (0.6) 13 (2.8) 26.2 (1.4) 73.8 (1.4) -3.2 (0.2) 8.9 (0.2)

Direct Sold 2.5 (0.2) 3.6 (0.2) 1.1 (0.5) 11.3 (1.7) 21.8 (1.5) 78.2 (1.5) -2.1 (0.2) 8.1 (0.2)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.2 (0.1) 1.7 (0.1) 1.1 (0.5) 13.9 (4) 19.9 (0.8) 80.1 (0.8) -1 (0.1) 3.9 (0.1)

Fund Groups

Small Cap 1.5 (0.1) 1.7 (0.1) -0.1 (0.9) 7.3 (8.4) 18.4 (1.5) 81.6 (1.5) -1.2 (0.1) 4.4 (0.2)

Large Cap 0.9 (0.1) 1.5 (0.1) 1.9 (0.7) 16.9 (4.2) 24.7 (1.4) 75.3 (1.4) -1.1 (0.1) 3.2 (0.1)

Low Turnover 0.9 (0.1) 1.2 (0.1) -0.1 (0.5) 6.3 (2.4) 24.4 (1.5) 75.6 (1.5) -1 (0.1) 2.9 (0.1)

High Turnover 1.6 (0.1) 2.1 (0.2) 1 (0.6) 9.8 (4.3) 18.7 (1.4) 81.3 (1.4) -1.2 (0.1) 5.1 (0.2)

Broker Sold 1.3 (0.1) 1.8 (0.1) 0.8 (0.5) 10.5 (1.5) 19.7 (1.2) 80.3 (1.2) -1.1 (0.1) 4.2 (0.1)

Direct Sold 1.2 (0.1) 1.4 (0.1) -0.4 (0.4) 7.5 (1.4) 16.6 (1.3) 83.4 (1.3) -0.7 (0.1) 3.4 (0.1)

Panel B: Scale Coefficient

Moments Proportions (%) Quantiles (Ann.)

Panel A: Skill Coefficient

Moments Proportions (%) Quantiles (Ann.)



Table AIX
Distributions of Skill and Scalability

Changes in Industry Competition

Panel A contains the summary statistics of the distribution of the skill coefficient for all funds in the
population, small/large cap funds, low/high turnover funds (i.e., bottom or top tercile of funds sorted on
turnover), and broker/direct sold funds (i.e., funds that are sold through brokers or funds directly sold to
investors) after including a proxy for industry competition in the set of variables (the ratio of the industry size
on the total market capitalization). It reports the first four moments, the proportions of funds with a negative
and positive skill coefficient, and the quantiles at 5% and 95%. We compute all cross-sectional estimates by
integrating numerically the bias-adjusted density obtained with our nonparametric approach. Figures in
parentheses denote the estimated standard deviation of each estimator. Panel B repeats the analysis for the
scale coefficient. To ease interpretation, we standardize the scale coefficient for each fund so that it
corresponds to the change in gross alpha for a one standard deviation change in size.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 3.5 (0.1) 5.1 (0.3) 1.4 (0.9) 28 (6.2) 17.7 (0.8) 82.3 (0.8) -2.7 (0.2) 10.5 (0.2)

Fund Groups

Small Cap 5.4 (0.3) 5.9 (0.6) 2.4 (1.2) 25.3 (8.9) 12.1 (1.3) 87.9 (1.3) -2.3 (0.3) 14.4 (0.4)

Large Cap 2 (0.2) 3.4 (0.2) 1.1 (0.6) 13.2 (1.7) 22.7 (1.3) 77.3 (1.3) -2.4 (0.2) 7 (0.2)

Low Turnover 3.1 (0.2) 4.3 (0.3) -0.7 (1) 17.1 (5.5) 18.4 (1.4) 81.6 (1.4) -2.7 (0.2) 9 (0.2)

High Turnover 3.9 (0.3) 6.2 (0.6) 2.1 (1.1) 26.3 (6.5) 19.3 (1.4) 80.7 (1.4) -3.4 (0.3) 12.5 (0.3)

Broker Sold 3.4 (0.2) 4.8 (0.4) 2 (1.3) 28.7 (13.8) 17.9 (1.2) 82.1 (1.2) -2.5 (0.2) 10.6 (0.2)

Direct Sold 3.8 (0.2) 4.2 (0.3) 0.5 (0.5) 9.4 (1) 12.9 (1.2) 87.1 (1.2) -1.5 (0.2) 10.1 (0.2)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.6 (0.1) 2.3 (0.1) 1.1 (0.6) 17.3 (4.3) 17.4 (0.8) 82.6 (0.8) -1.2 (0.1) 5.1 (0.1)

Fund Groups

Small Cap 2.2 (0.1) 2.6 (0.2) 1.5 (0.5) 11.8 (1.9) 14.8 (1.4) 85.2 (1.4) -1.3 (0.2) 6.1 (0.2)

Large Cap 1.2 (0.1) 1.6 (0.1) 1.1 (0.6) 10.3 (3.6) 20.4 (1.3) 79.6 (1.3) -1.1 (0.1) 3.7 (0.1)

Low Turnover 1.3 (0.1) 1.7 (0.1) 0.4 (0.9) 11.6 (6.5) 18.9 (1.4) 81.1 (1.4) -1 (0.1) 4.1 (0.1)

High Turnover 2.1 (0.1) 2.7 (0.2) 0.8 (0.8) 12.6 (5.4) 18.1 (1.4) 81.9 (1.4) -1.6 (0.2) 6.2 (0.2)

Broker Sold 1.7 (0.1) 2.3 (0.2) 1 (0.5) 11.2 (1.8) 17.9 (1.2) 82.1 (1.2) -1.2 (0.1) 5.2 (0.1)

Direct Sold 1.8 (0.1) 2 (0.2) 1.9 (1.4) 20.2 (21) 14.2 (1.2) 85.8 (1.2) -0.8 (0.1) 4.9 (0.1)

Moments Proportions (%) Quantiles (Ann.)

Panel A: Skill Coefficient

Moments Proportions (%) Quantiles (Ann.)

Panel B: Scale Coefficient



Table AX
Distributions of Skill and Scalability

Changes in Industry Competition and Aggregate Mispricing 

Panel A contains the summary statistics of the distribution of the skill coefficient for all funds in the
population, small/large cap funds, low/high turnover funds (i.e., bottom or top tercile of funds sorted on
turnover), and broker/direct sold funds (i.e., funds that are sold through brokers or funds directly sold to
investors) after including a proxy for industry competition and aggregate mispricing in the set of variables
(the ratio of the industry size on the total market capitalization and aggregate fund turnover). It reports the
first four moments, the proportions of funds with a negative and positive skill coefficient, and the quantiles at
5% and 95%. We compute all cross-sectional estimates by integrating numerically the bias-adjusted density
obtained with our nonparametric approach. Figures in parentheses denote the estimated standard deviation
of each estimator. Panel B repeats the analysis for the scale coefficient. To ease interpretation, we
standardize the scale coefficient for each fund so that it corresponds to the change in gross alpha for a one
standard deviation change in size.
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Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 3.4 (0.2) 5.4 (0.3) 1.4 (0.8) 26.2 (5.6) 19.2 (0.8) 80.8 (0.8) -3.1 (0.2) 10.8 (0.2)

Fund Groups

Small Cap 5.4 (0.3) 6.1 (0.6) 2.4 (1) 23.6 (8.2) 13.6 (1.4) 86.4 (1.4) -2.6 (0.3) 14.5 (0.4)

Large Cap 2.1 (0.2) 3.7 (0.3) 0.6 (0.6) 14 (1.5) 24.3 (1.4) 75.7 (1.4) -2.8 (0.2) 7.3 (0.2)

Low Turnover 3.1 (0.2) 4.7 (0.4) 0.2 (1.1) 20.1 (5.9) 18.8 (1.4) 81.2 (1.4) -2.7 (0.2) 9.6 (0.2)

High Turnover 3.8 (0.3) 6.3 (0.6) 2.1 (1) 25.1 (6.8) 21.7 (1.5) 78.3 (1.5) -3.9 (0.3) 12.6 (0.3)

Broker Sold 3.3 (0.2) 5.1 (0.5) 2.3 (1.4) 32.6 (14.7) 18.9 (1.2) 81.1 (1.2) -3 (0.2) 10.8 (0.3)

Direct Sold 3.8 (0.2) 4.5 (0.3) 0.7 (0.5) 10.9 (1) 14.3 (1.2) 85.7 (1.2) -1.9 (0.2) 10.3 (0.3)

Mean      
(Ann.)

Std. Dev. 
(Ann.)

Skewness Kurtosis Negative Positive 5% 95%

All Funds 1.6 (0.1) 2.4 (0.1) 1.4 (0.5) 17.4 (3.2) 19.4 (0.8) 80.6 (0.8) -1.3 (0.1) 5.3 (0.1)

Fund Groups

Small Cap 2.2 (0.2) 2.9 (0.2) 1.4 (0.5) 10.9 (1.9) 17.1 (1.5) 82.9 (1.5) -1.5 (0.2) 6.4 (0.2)

Large Cap 1.2 (0.1) 1.6 (0.1) 0.7 (0.4) 7.3 (2.1) 21.6 (1.3) 78.4 (1.3) -1.2 (0.1) 3.7 (0.1)

Low Turnover 1.3 (0.1) 1.8 (0.2) 0.6 (1.3) 14 (14.4) 20.7 (1.4) 79.3 (1.4) -1.1 (0.1) 4.1 (0.1)

High Turnover 2 (0.1) 2.9 (0.2) 0.9 (0.6) 10.9 (2.9) 20 (1.4) 80 (1.4) -1.8 (0.2) 6.3 (0.2)

Broker Sold 1.7 (0.1) 2.3 (0.2) 1.2 (0.5) 11.4 (1.5) 19.4 (1.2) 80.6 (1.2) -1.3 (0.1) 5.2 (0.1)

Direct Sold 1.8 (0.1) 2.1 (0.2) 1.8 (1) 18 (9.9) 15.8 (1.3) 84.2 (1.3) -1 (0.1) 5.3 (0.2)

Moments Proportions (%) Quantiles (Ann.)

Panel A: Skill Coefficient

Moments Proportions (%) Quantiles (Ann.)

Panel B: Scale Coefficient
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Figure A1
Comparative Static Analysis of the EIV Bias 

Skill Coefficient

This figure performs a comparative static analysis of the EIV bias function for the skill coefficient. We plot the
benchmark curve using the parameters of the Gaussian reference model calibrated on our sample. In Panel
A, we plot the new EIV bias function after increasing the variance of the true skill coefficient by 0.002/100. In
Panel B, we plot the new EIV bias function after increasing the variance of the estimated skill coefficient by
0.002/100. In Panel C, we plot the new EIV bias function after increasing the correlation between the true
skill coefficient and the estimation variance by 50% in relative terms.

Panel A: Variance of the True Skill Coefficient

Panel C: Correlation between the Skill Coefficient and Estimated Variance

New Benchmark

Benchmark

Benchmark

50

Panel B: Variance of the Estimated Skill Coefficient
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