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Abstract

Initiated around the year 2007, the Malliavin-Stein approach to probabilistic approximations

combines Stein’s method with infinite-dimensional integration by parts formulae based on the use of

Malliavin-type operators. In the last decade, Malliavin-Stein techniques have allowed researchers

to establish new quantitative limit theorems in a variety of domains of theoretical and applied

stochastic analysis. The aim of this survey is to illustrate some of the latest developments of the

Malliavin-Stein method, with specific emphasis on extensions and generalisations in the framework

of Markov semigroups and of random point measures.

Keywords: Limit Theorems; Stein’s method; Malliavin Calculus; Wiener Space; Poisson Space;
Multiple Integral; Markov Triple; Markov Generator; Eigenspace; Eigenfunction; Spectrum; Functional
Γ- Calculus; Weak Convergence; Fourth Moment Theorems; Berry–Essen Bounds; Probability Metrics.
MSC 2010: 60F05; 60B10; 28C20; 60H07; 47D07; 34L10; 47A10.

Contents

1 Introduction and overview 2

2 Elements of Stein’s method for normal approximations 3

3 Normal approximation with Stein’s method and Malliavin Calculus 5
3.1 Isonormal processes, multiple integrals, and the Malliavin operators . . . . . . . . . . . 5
3.2 Connection with Stein’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 The Markov triple approach 9
4.1 Diffusive fourth moment structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Connection with Γ Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Transport distances, Stein discrepancy and Γ Calculus . . . . . . . . . . . . . . . . . . . 13
4.4 Functional approximations and Dirichlet structures . . . . . . . . . . . . . . . . . . . . . 15

∗Department of Mathematical Sciences, University of Liverpool, E-mail: ehsan.azmoodeh@liverpool.ac.uk
†DMATH, Université du Luxembourg. E-mail: giovanni.peccati@gmail.com
‡Department of Mathematical Sciences, University of Bath, E-mail: xiaochuan.j.yang@gmail.com

1

http://arxiv.org/abs/1809.01912v2


5 Bounds on the Poisson space: fourth moments, second-order Poincaré estimates
and two-scale stabilization 16
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 L1 integration by parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Malliavin operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Fourth moment theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.6 Second-order Poincaré estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7 Stabilization theory and two-scale bounds . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Malliavin-Stein for targets in the second Wiener chaos 24

1 Introduction and overview

The Malliavin-Stein method for probabilistic approximations was initiated in the paper [NP09b],
with the aim of providing a quantitative counterpart to the (one- and multi-dimensional) central limit
theorems for random variables living in the Wiener chaos of a general separable Gaussian field. As
formally discussed in the sections to follow, the basic idea of the approach initiated in [NP09b] is that,
in order to assess the discrepancy between some target law (Normal or Gamma, for instance), and the
distribution of a non-linear functional of a Gaussian field, one can fruitfully apply infinite-dimensional
integration by parts formulae from the Malliavin calculus of variations [M97, NP12, Nua06, Nua09]
to the general bounds associated with the so-called Stein’s method for probabilistic approximations
[NP12, CGS10]. In particular, the Malliavin-Stein approach captures and amplifies the essence of
[C09], where Stein’s method was combined with finite-dimensional integration by parts formulae for
Gaussian vectors, in order to deduce second order Poincaré inequalities – as applied to random
matrix models with Gaussian-subordinated entries (see also [NPR09, Vid17]).

We recall that, as initiated by P. Malliavin in the path-breaking reference [M78], the Malliavin
calculus is an infinite-dimensional differential calculus, whose operators act on smooth non-linear
functionals of Gaussian fields (or of more general probabilistic objects). As vividly described in the
classical references [M97, Nua06], as well as in the more recent books [NP12, Nua09], since its inception
such a theory has generated a staggering number of applications, ranging e.g. from mathematical
physics to stochastic differential equations, and from mathematical finance to stochastic geometry,
analysis on manifolds and mathematical statistics. On the other hand, the similarly successful and
popular Stein’s method (as created by Ch. Stein in the classical reference [S72] – see also the 1986
monograph [S86]) is a collection of analytical techniques, allowing one to estimate the distance between
the distributions of two random objects, by using characterising differential operators. The discovery
in [NP09b] that the two theories can be fruitfully combined has been a major breakthrough in the
domain of probabilistic limit theorems and approximations.

Since the publication of [NP09b], the Malliavin-Stein method has generated several hundreds of
papers, with ramifications in many (often unexpected) directions, including functional inequalities, ran-
dom matrix theory, stochastic geometry, non-commutative probability and computer sciences. These
developments largely exceed the scope of the present survey, and we invite the interested reader to
consult the following references (i)–(vi) for a more detailed presentation: (i) the webpage [WWW] is a
constantly updated resource, listing all existing papers written around the Malliavin-Stein method; (ii)
the monograph [NP12], written in 2012, contains a self-contained presentation of Malliavin calculus and
Stein’s method, as applied to functionals of general Gaussian fields, with specific emphasis on random
variables belonging to a fixed Wiener chaos; (iii) the text [PR16] is a collection of surveys, containing
an in-depth presentation of variational techniques on the Poisson spaces (including the Malliavin-Stein
method), together with their application to asymptotic problems arising in stochastic geometry; (iv)
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references [MRV21, No20, NPR19, PR18, PV20, R19, T19] provide a representative overview of ap-
plications of Malliavin-Stein techniques to the study of nodal sets associated with Gaussian random
fields on two-dimensional manifolds; (v) the papers [NNP21, NPY19] – and many of the reference
therein – display a pervasive use of Malliavin-Stein techniques to determine rates of convergence in
total variation in the Breuer-Major Theorem; (vi) references [CNN20, NN20] deal with the problem of
tightness and functional convergence in the Breuer-Major theorem evoked at Point (v).

The aim of the present survey is twofolds. On the one hand, we aim at presenting the essence of
the Malliavin-Stein’s method for functionals of Gaussian fields, by discussing the crucial elements of
Malliavin calculus and Stein’s method together with their interaction (see Section 2 and Section 3).
On the other hand, we aim at introducing the reader to some of the most recent developments on the
theory, with specific focus on the general theory of Markov semigroups in a diffusive setting (following
the seminal references [Led12, ACP14], as well as [NPS15, LNP15, LNP16]), and on integration by
parts formulae (and associated operators) in the context of functionals of a random point measure
[DP18b, DVZ18, LPS16, LrSY19, LrPY20+, SY19]. This corresponds to the content of Section 4
and Section 5, respectively. Finally, Section 6 deals with some recent results (and open problems)
concerning χ2 approximations.

From now on, every random object will be defined on a suitable common probability space (Ω,F , P ),
with E indicating mathematical expectation with respect to P . Throughout the paper, the symbol
N (µ, σ2) will be shorthand for the one-dimensional Gaussian distribution with mean µ ∈ R and
variance σ2 > 0. In particular, X ∼ N (µ, σ2) if and only if

P[X ∈ A] =

∫

A

e−
(x−µ)2

2σ2
dx√
2πσ2

,

for every Borel set A ⊂ R.

Acknowledgments. Giovanni Peccati is supported by the FNR grant FoRGES (R-AGR-3376-10)
at Luxembourg University. Xiaochuan Yang is supported by the EPSRC grant EP/T028653/1.

2 Elements of Stein’s method for normal approximations

In this section, we briefly introduce the main ingredients of Stein’s method for normal approxi-
mations in dimension one. The approximation will be performed with respect to the total variation
and 1-Wasserstein distances between the distributions of two random variables; more detailed infor-
mations about these distances can be found in [NP12, Appendix C] and the references therein.

The crucial intuition behind Stein’s method lies in the following heuristic reasoning: it is a well-
known fact (see e.g. Lemma 2.1-(e) below) that a random variable X has the standard N (0, 1) distri-
bution if and only if

E[Xf(X) − f ′(X)] = 0, (2.1)

for every smooth mapping f : R → R; heuristically, it follows that, if X is a random variable such that
the quantity E[Xf(X)−f ′(X)] is close to zero for a large class of test functions f , then the distribution
of X should be close to Gaussian.

The fact that such a heuristic argument can be made rigorous and applied in a wide array of
probabilistic models was the main discovery of Stein’s original contribution [S72], where the foundations
of Stein’s method were first laid. The reader is referred to Stein’s monograph [S86], as well as the
books [CGS10, NP12], for an exhaustive presentation of the theory and its applications (in particular,
for extensions to multidimensional approximations).
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We recall that the total variation distance, between the laws of two real-valued random variables
F and G, is defined by

dT V (F,G) := sup
B∈B(R)

∣∣∣P(F ∈ B) − P(G ∈ B)
∣∣∣. (2.2)

One has to note that the topology induced by the distance dT V – on the set of all probability measures
on R – is stronger than the topology of convergence in distribution; one sometimes uses the following
equivalent representation of dT V (see e.g. [NP12, p. 213]):

dT V (F,G) =
1

2
sup

{∣∣E[h(F )] − E[h(G)]
∣∣ : h is Borel measurable and ‖h‖∞ ≤ 1

}
. (2.3)

The 1-Wasserstein distance dW , between the distributions of two real-valued integrable random
variables F and G, is given by

dW (F,G) := sup
h∈Lip(1)

∣∣∣E[h(F )] − E[h(G)]
∣∣∣, (2.4)

where Lip(K), K > 0 stands for the class of all Lipschitz mappings h : R → R such that h has
a Lipschitz constant ≤ K. As for total variation, the topology induced by dW – on the set of all
probability measures on R having a finite absolute first moment – is stronger than the topology of
convergence in distribution; it is also interesting to recall the dual representation

dW (F,G) = inf E
∣∣X − Y

∣∣, (2.5)

where the infimum is taken over all couplings (X,Y ) of F and G; see e.g. [Vil09, p. 95] for a discussion
of this fact.

The following classical result, whose complete proof can be found e.g. in [NP12, p. 64 and p. 67],
contains all the elements of Stein’s method that are needed for our discussion; as for many fundamental
findings in the area, such a result can be traced back to [S72].

Lemma 2.1. Let N ∼ N (0, 1) be a standard Gaussian random variable.

(a) Fix h : R → [0, 1] a Borel-measurable function. Define fh : R → R as

fh(x) := e
x2

2

∫ x

−∞

{h(y) − E[h(N)]}e− y2

2 dy, x ∈ R. (2.6)

Then, fh is continuous on R with ‖fh‖∞ ≤
√

π
2 and fh ∈ Lip(2). Moreover, there exists a

version of f ′
h verifying

f ′
h(x) − xfh(x) = h(x) − E[h(N)], for all x ∈ R. (2.7)

(b) Consider h : R → R ∈ Lip(1), and define fh : R → R as in (2.6). Then, fh is of class C1 on R,
with ‖f ′

h‖∞ ≤ 1 and f ′
h ∈ Lip(2), and fh solves (2.7).

(c) Let X be an integrable random variable. Then

dT V (X,N) ≤ sup
f

∣∣∣E
[
f(X)X − f ′(X)

]∣∣∣

where the supremum is taken over all pairs (f, f ′) such that f is a Lipschitz function whose
absolute value is bounded by

√
π
2 , and f ′ is a version of the derivative of f satisfying ‖f ′‖ ≤ 2.
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(d) Let X be an integrable random variable. Then,

dW (X,N) ≤ sup
f

∣∣∣E
[
f(X)X − f ′(X)

]∣∣∣

where the supremum is taken over all C1 functions f : R → R such that ‖f ′‖ ≤ 2 and f ′ ∈ Lip(2).

(e) Let X be a general random variable. Then X ∼ N (0, 1) if and only if E[f ′(X) − Xf(X)] = 0
for every absolutely continuous function f such that E|f ′(N)| < +∞.

Sketch of the proof. Points (a) and (b) can be verified by a direct computation. Point (c) and Point
(d) follow by plugging the left-hand side of (2.7) into (2.3) and (2.4), respectively. Finally, the fact
that the relation E[f ′(X) − Xf(X)] = 0 implies that X ∼ N (0, 1) is a direct consequence of Point
(c), whereas the reverse implication follows by an integration by parts argument.

3 Normal approximation with Stein’s method and Malliavin

Calculus

The first part of the present section contains some elements of Gaussian analysis and Malliavin calculus.
The reader can consult for instance the references [NP12, Nua06, M97, Nua09] for further details. In
Section 3.2 we will shortly explore the connection between Malliavin calculus and the version Stein’s
method presented in Section 2.

3.1 Isonormal processes, multiple integrals, and the Malliavin operators

Let H be a real separable Hilbert space. For any q ≥ 1, we write H⊗q and H⊙q to indicate, respectively,
the qth tensor power and the qth symmetric tensor power of H; we also set by convention
H⊗0 = H⊙0 = R. When H = L2(A,A, µ) =: L2(µ), where µ is a σ-finite and non-atomic measure
on the measurable space (A,A), then H⊗q ≃ L2(Aq ,Aq, µq) =: L2(µq), and H⊙q ≃ L2

s(Aq,Aq, µq) :=
L2

s(µq), where L2
s(µq) stands for the subspace of L2(µq) composed of those functions that are µq-almost

everywhere symmetric. We denote by W = {W (h) : h ∈ H} an isonormal Gaussian process over
H. This means that W is a centered Gaussian family with a covariance structure given by the relation
E [W (h)W (g)] = 〈h, g〉H. Without loss of generality, we can also assume that F = σ(W ), that is, F

is generated by W , and use the shorthand notation L2(Ω) := L2(Ω,F ,P).

For every q ≥ 1, the symbol Cq stands for the qth Wiener chaos of W , defined as the closed
linear subspace of L2(Ω) generated by the family {Hq(W (h)) : h ∈ H, ‖h‖

H
= 1}, where Hq is the qth

Hermite polynomial, defined as follows:

Hq(x) = (−1)qe
x2

2
dq

dxq

(
e− x2

2

)
. (3.1)

We write by convention C0 = R. For any q ≥ 1, the mapping Iq(h⊗q) = Hq(W (h)) can be extended
to a linear isometry between the symmetric tensor product H⊙q (equipped with the modified norm√
q! ‖·‖

H⊗q ) and the qth Wiener chaos Cq. For q = 0, we write by convention I0(c) = c, c ∈ R.

It is well-known that L2(Ω) can be decomposed into the infinite orthogonal sum of the spaces Cq:
this means that any square-integrable random variable F ∈ L2(Ω) admits the following Wiener-Itô
chaotic expansion

F =

∞∑

q=0

Iq(fq), (3.2)
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where the series converges in L2(Ω), f0 = E[F ], and the kernels fq ∈ H⊙q, q ≥ 1, are uniquely
determined by F . For every q ≥ 0, we denote by Jq the orthogonal projection operator on the qth
Wiener chaos. In particular, if F ∈ L2(Ω) has the form (3.2), then JqF = Iq(fq) for every q ≥ 0.

Let {ek, k ≥ 1} be a complete orthonormal system in H. Given f ∈ H⊙p and g ∈ H⊙q, for every
r = 0, . . . , p ∧ q, the contraction of f and g of order r is the element of H⊗(p+q−2r) defined by

f ⊗r g =

∞∑

i1,...,ir=1

〈f, ei1 ⊗ . . .⊗ eir
〉H⊗r ⊗ 〈g, ei1 ⊗ . . .⊗ eir

〉H⊗r . (3.3)

Notice that the definition of f ⊗r g does not depend on the particular choice of {ek, k ≥ 1}, and that
f ⊗r g is not necessarily symmetric; we denote its symmetrization by f⊗̃rg ∈ H⊙(p+q−2r). Moreover,
f ⊗0 g = f ⊗ g equals the tensor product of f and g while, for p = q, f ⊗q g = 〈f, g〉H⊗q . When
H = L2(A,A, µ) and r = 1, ..., p ∧ q, the contraction f ⊗r g is the element of L2(µp+q−2r) given by

f ⊗r g(x1, ..., xp+q−2r) (3.4)

=

∫

Ar

f(x1, ..., xp−r, a1, ..., ar) ×

×g(xp−r+1, ..., xp+q−2r , a1, ..., ar)dµ(a1)...dµ(ar).

It is a standard fact of Gaussian analysis that the following multiplication formula holds: if
f ∈ H⊙p and g ∈ H⊙q, then

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (3.5)

We now introduce some basic elements of the Malliavin calculus with respect to the isonormal
Gaussian process W .

Let S be the set of all cylindrical random variables of the form

F = g (W (ϕ1), . . . ,W (ϕn)) , (3.6)

where n ≥ 1, g : Rn → R is an infinitely differentiable function such that its partial derivatives have
polynomial growth, and ϕi ∈ H, i = 1, . . . , n. The Malliavin derivative of F with respect to W is
the element of L2(Ω,H) defined as

DF =

n∑

i=1

∂g

∂xi
(W (ϕ1), . . . ,W (ϕn))ϕi.

In particular, DW (h) = h for every h ∈ H. By iteration, one can define the mth derivative DmF ,
which is an element of L2(Ω,H⊙m), for every m ≥ 2. For m ≥ 1 and p ≥ 1, Dm,p denotes the closure
of S with respect to the norm ‖ · ‖m,p, defined by the relation

‖F‖p
m,p = E [|F |p] +

m∑

i=1

E
[
‖DiF‖p

H⊗i

]
.

We often use the (canonical) notation D
∞ :=

⋂
m≥1

⋂
p≥1 D

m,p. For example, it is a well-known fact
that any random variable F that is a finite linear combination of multiple Wiener-Itô integrals is
an element of D

∞. The Malliavin derivative D obeys the following chain rule. If φ : R
n → R is

6



continuously differentiable with bounded partial derivatives and if F = (F1, . . . , Fn) is a vector of
elements of D1,2, then φ(F ) ∈ D

1,2 and

Dφ(F ) =

n∑

i=1

∂φ

∂xi
(F )DFi. (3.7)

Note also that a random variable F as in (3.2) is in D
1,2 if and only if

∑∞
q=1 q‖JqF‖2

L2(Ω) < ∞ and
in this case one has the following explicit relation:

E
[
‖DF‖2

H

]
=

∞∑

q=1

q‖JqF‖2
L2(Ω).

If H = L2(A,A, µ) (with µ non-atomic), then the derivative of a random variable F as in (3.2) can be
identified with the element of L2(A× Ω) given by

DtF =

∞∑

q=1

qIq−1 (fq(·, t)) , t ∈ A. (3.8)

The operator L, defined as L =
∑∞

q=0 −qJq, is the infinitesimal generator of the Ornstein-
Uhlenbeck semigroup. The domain of L is

DomL = {F ∈ L2(Ω) :

∞∑

q=1

q2 ‖JqF‖2
L2(Ω) < ∞} = D

2,2.

For any F ∈ L2(Ω), we define L−1F =
∑∞

q=1 − 1
qJq(F ). The operator L−1 is called the pseudo-

inverse of L. Indeed, for any F ∈ L2(Ω), we have that L−1F ∈ DomL = D
2,2, and

LL−1F = F − E(F ). (3.9)

The following infinite dimensional Malliavin integration by parts formula plays a crucial role in the
analysis (see for instance [NP12, Section 2.9] for a proof).

Lemma 3.1. Suppose that F ∈ D
1,2 and G ∈ L2(Ω). Then, L−1G ∈ D

2,2 and

E[FG] = E[F ]E[G] + E[〈DF,−DL−1G〉H]. (3.10)

Inspired by the Malliavin integration by parts formula appearing in Lemma 3.1, we now introduce
a class of iterated Gamma operators. We will need such operators in Section 6.

Definition 3.2 (See Chapter 8 in [NP12]). Let F ∈ D
∞; the sequence of random variables {Γi(F )}i≥0 ⊂

D
∞ is recursively defined as follows. Set Γ0(F ) = F and, for every i ≥ 1,

Γi(F ) = 〈DF,−DL−1Γi−1(F )〉H.

Definition 3.3 (Cumulants). Let F be a real-valued random variable such that E|F |m < ∞ for some
integer m ≥ 1, and write ϕF (t) = E[eitF ], t ∈ R, for the characteristic function of F . Then, for
r = 1, ...,m, the rth cumulant of F , denoted by κr(F ), is given by

κr(F ) = (−i)r d
r

dtr
logϕF (t)|t=0. (3.11)

Remark 3.4. When E(F ) = 0, then the first four cumulants of F are the following: κ1(F ) = E[F ] = 0,
κ2(F ) = E[F 2] = Var(F ), κ3(F ) = E[F 3], and

κ4(F ) = E[F 4] − 3E[F 2]2.
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The following statement explicitly connects the expectation of the random variables Γr(F ) to the
cumulants of F .

Proposition 3.5 (See Chapter 8 in [NP12]). Let F ∈ D
∞. Then κr(F ) = (r − 1)!E[Γr−1(F )] for

every r ≥ 1.

As announced, in the next subsection we show how to use the above Malliavin machinery in order
to study the Stein’s bounds presented in Section 2.

3.2 Connection with Stein’s method

Let F ∈ D
1,2 with E[F ] = 0 and E[F 2] = 1. Take a C1 function such that ‖f‖ ≤

√
π
2 and ‖f ′‖ ≤ 2.

Using the Malliavin integration by parts formula stated in Lemma 3.1 together with the chain rule
(3.7), we can write

∣∣∣E[f ′(F ) − Ff(F )]
∣∣∣ =

∣∣∣E[f ′(F )
(
1 − 〈DF,−DL−1F 〉H

)
]
∣∣∣

≤ 2E
∣∣∣1 − 〈DF,−DL−1F 〉H

∣∣∣.

If we furthermore assume that F ∈ D
1,4, then the random variable 1 − 〈DF,−DL−1F 〉H is square-

integrable, using the Cauchy-Schwarz inequality we infer that

∣∣∣E[f ′(F ) − Ff(F )]
∣∣∣ ≤ 2

√
Var (〈DF,−DL−1F 〉H).

Note that in above we used the fact that E[〈DF,−DL−1F 〉H] = E[F 2] = 1. The above arguments
combined with Lemma 2.1 yield immediately 1 the next crucial statement, originally proved in [NP09b].

Theorem 3.6. Let F ∈ D
1,2 be a generic random element with E[F ] = 0 and E[F 2] = 1. Let

N ∼ N (0, 1). Assume further that F has a density with respect to the Lebesgue measure. Then,

dT V (F,N) ≤ 2E
∣∣∣1 − 〈DF,−DL−1F 〉H

∣∣∣.

Moreover, assume that F ∈ D
1,4, then

dT V (F,N) ≤ 2
√

Var (〈DF,−DL−1F 〉H).

In particular case, if F = Iq(f) belongs to the Wiener chaos of order q ≥ 2, then

dT V (F,N) ≤ 2

√
q − 1

3q

(
E[F 4] − 3

)
. (3.12)

Note that, by virtue of Lemma 2.1, similar bounds can be immediately obtained for the Wasserstein
distance dW (and many more – see [NP12, Chapter 5]). In particular, the previous statement allows
one to recover the following central limit theorem for chaotic random variables, first proved in [NP05].

Corollary 3.7 (Fourth Moment Theorem). Let {Fn}n≥1 = {Iq(fn)}n≥1 be a sequence of random
elements in a fixed Wiener chaos of order q ≥ 2 such that E[F 2

n ] = q!‖fn‖2 = 1. Assume that
N ∼ N (0, 1). Then, as n tends to infinity, the following assertions are equivalent.

(I) Fn −→ N in distribution.

1This is not completely accurate: attention has indeed to be paid to the fact that the function fh in (2.7) is only
almost everywhere differentiable, and F does not necessarily have a density – see [N12, Theorem 5.2] for a detailed proof
based on Lusin Theorem.
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(II) E[F 4
n ] −→ 3 (= E[N4]).

As demonstrated by the webpage [WWW], the ‘fourth moment theorem’ stated in Corollary 3.7
has been the starting point of a very active line of research, composed of several hundreds papers
connected with disparate applications. In the next section, we will implicitly provide a general version
of Theorem 3.6 (with the 1-Wasserstein distance replacing the total variation distance), whose proof
relies only on the spectral properties of the Ornstein-Uhlenbeck generator L and on the so-called Γ
calculus (see e.g. [BGL14]).

4 The Markov triple approach

In this section, we introduce a general framework for studying and generalizing the fourth moment phe-
nomenon appearing in the statement of Corollary 3.7. The forthcoming approach was first introduced
in [Led12] by M. Ledoux, and then further developed and generalizes in [ACP14, AMMP16].

4.1 Diffusive fourth moment structures

We start with definition of our general setup.

Definition 4.1. A diffusive fourth moment structure is a triple (E, µ,L) such that:

(a) (E, µ) is a probability space;

(b) L is a symmetric unbounded operator defined on some dense subset of L2(E, µ), that we denote
by D(L) (the set D(L) is called the domain of L);

(c) the associated carré-du-champ operator Γ is a symmetric bilinear operator, and is defined by

2Γ [X,Y ] := L [XY ] −XL [Y ] − Y L [X ] ; (4.1)

(d) the operator L is diffusive, meaning that, for any C2
b function ϕ : R → R, any X ∈ D(L), it

holds that ϕ(X) ∈ D(L) and

L [ϕ(X)] = ϕ′(X)L[X ] + ϕ′′(X)Γ[X,X ]; (4.2)

Note that L[1] = 0 (by taking ϕ = 1 ∈ C2
b ). The latter property is equivalent to say that operator

Γ satisfies in the chain rule:
Γ [ϕ(X), X ] = ϕ′(X)Γ[X,X ];

(e) the operator −L diagonalizes the space L2(E, µ) with sp(−L) = N, meaning that

L2(E, µ) =
∞⊕

i=0

Ker(L + iId);

(f) for any pair of eigenfunctions (X,Y ) of the operator −L associated with the eigenvalues (p1, p2),

XY ∈
⊕

i≤p1+p2

Ker (L + iId) . (4.3)

In this context, we usually write Γ[X ] instead of Γ[X,X ] and E denotes the integration against
probability measure µ.
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Remark 4.2. (1) Property (d) together with symmetric property of the operator L determine a
functional calculus through the following fundamental integration by parts formula: for any
X,Y in D(L) and ϕ ∈ C2

b ,

E [ϕ′(X)Γ [X,Y ]] = −E [ϕ(X)L [Y ]] = −E [Y L [ϕ(X)]] . (4.4)

(2) The results in this section can be stated under the weaker assumption that sp(−L) = {0 = λ0 <
λ1, · · · , λk < · · · } ⊂ R+ is discrete. However, to keep a transparent presentation, we restrict
ourself to the assumption sp(−L) = N. The reader is referred to [ACP14] for further details.

(3) We point out that, by a recursive argument, assumption (4.3) yields that for any X ∈ Ker(L +
pId) and any polynomial P of degree m, we have

P (X) ∈
⊕

i≤mp

Ker (L + iId) . (4.5)

(4) The eigenspaces of a diffusive fourth moment structure are hypercontractive (see [B94] for
details and sufficient conditions), that is, there exists a constant C(M,k) such that for any
X ∈ ⊕i≤M Ker (L + iId):

E(X2k) ≤ C(M,k) E(X2)k. (4.6)

(5) Property (f) in the previous definition roughly implies that eigenfunctions of L in a diffusive
fourth moment structure behave like orthogonal polynomial with respect to multiplication.

For further details on our setup, we refer the reader to [BGL14] as well as [ACP14, AMMP16]. The
next example describes some diffiusive fourth moment structures. The reader can consult [AMMP16,
Section 2.2] for two classical methods for building further diffusive fourth moment structures starting
from known ones.

Example 4.3. (a) Finite-Dimensional Gaussian Structures: Let d ≥ 1 and denote by γd the
d-dimensional standard Gaussian measure on R

d. It is well known (see for example [BGL14]),
that γd is the invariant measure of the Ornstein-Uhlenbeck generator, defined for any test function
ϕ by

Lϕ(x) = ∆ϕ−
d∑

i=1

xi∂iϕ(x). (4.7)

Its spectrum is given by −N0 and the eigenspaces are of the form

Ker(L + kId) =





∑

i1+i2+···+id=k

α(i1, · · · , id)

d∏

j=1

Hij
(xj)



 ,

where Hn denotes the Hermite polynomial of order n. Since, eigenfunctions of L are multivariate
polynomials so it is straightforward to see that assumption (f) is also verified.

(b) Wiener space and isonormal processes: Letting d → ∞ in the setup of the previous item
(a) one recovers the infinite dimensional generator of the Ornstein-Uhlenbeck semigroup for
isonormal processes, as defined in Section 3.1. It is easily verified in particular, by using (3.5)
that (Ω,F ,L) is also a diffusive fourth moment structure.
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(c) Laguerre Structure: Let ν ≥ −1, and π1,ν(dx) = xν−1 e−x

Γ(ν) 1(0,∞)dx be the Gamma distribu-

tion with parameter ν on R+. The associated Laguerre generator is defined for any test function
ϕ (in dimension one) by:

L1,ν(ϕ) = xϕ′′(x) + (ν + 1 − x)ϕ′(x). (4.8)

By a classical tensorization procedure, we obtain the Laguerre generator in dimension d associated
with the measure πd,ν(dx) = π1,ν(dx1)π1,ν(dx2) · · ·π1,ν(dxd), where x = (x1, x2, · · · , xd).

Ld,ν(ϕ) =

d∑

i=1

(
xi∂i,iϕ+ (ν + 1 − xi)∂iϕ

)
(4.9)

It is also classical that (see for example [BGL14]) the spectrum of Ld,ν is given by −N0 and
moreover that

Ker(Ld,p + kId) =





∑

i1+i2+···+id=k

α(i1, · · · , id)

d∏

j=1

L
(ν)
ij

(xj)




 , (4.10)

where L
(ν)
n stands for the Laguerre polynomial of order n with parameter ν which is defined by

L(ν)
n (x) =

x−νex

n!

dn

dxn

(
e−xxn+ν

)
.

In the next subsection, we demonstrate how a diffusive fourth moment structure can be combined
with the tools of Γ calculus, in order to deduce substantial generalizations of Theorem 3.6.

4.2 Connection with Γ Calculus

Throughout this section, we assume that (E, µ,L) is a diffiusive fourth moment structure. Our principal
aim is to prove an analogous fourth moment criterion to that of (3.12) for eigenfunctions of the operator
L. To do this, we assume that X ∈ Ker(L + qId) for some q ≥ 1 with E[X2] = 1. The arguments
implemented in the proof will clearly demonstrate that requirements (d) and (f) in Definition 4.1 are
the most crucial elements in order to establish our estimates.

Proposition 4.4. Let q ≥ 1. Assume that X ∈ Ker(L + qId) with E[X2] = 1. Then,

Var (Γ[X ]) ≤ q2

3

{
E[X4] − 3

}
.

Proof. First note that by using integration by parts formula (4.4), we have E[Γ[X ]] = −E[XLX ] =
qE[X2] = q. Secondly, by using the definition of the carré-du-champ operator Γ and the fact that
LX = −qX , one easily verifies that

Γ[X ] − q =
1

2
(L + 2qId) (X2 − 1).

Next, taking into account properties (f) and (g) we can conclude that

X2 − 1 ∈
⊕

1≤i≤2q

Ker (L + iId) .

11



For the rest of the proof, we use the notation Ji to denote the projection of a square-integrable element
X over the eigenspace Ker (L + iId). Now,

Var (Γ[X ]) = E

[
(Γ[X ] − q)

2
]

=
1

4
E
[
(L + 2qId) (X2 − 1) × (L + 2qId) (X2 − 1)

]

=
1

4
E
[
L(X2 − 1) (L + 2qId) (X2 − 1)

]
+
q

2
E
[
(X2 − 1) (L + 2qId) (X2 − 1)

]

=
1

4

∑

1≤i≤2q

(−i)(2q − i)E
[(
Ji(X

2 − 1)
)2
]

+
q

2
E
[
(X2 − 1) (L + 2qId) (X2 − 1)

]

≤ q

2
E
[
(X2 − 1) (L + 2qId) (X2 − 1)

]

= qE
[
(X2 − 1)(Γ[X ] − q)

]
= qE

[
(X2 − 1)Γ[X ]

]

= qE

[
Γ[
X3

3
−X,X ]

]
= −qE

[(
X3

3
−X

)
LX

]

= q2
E

[
X

(
X3

3
−X

)]
= q2

E

[
X4

3
−X2

]

=
q2

3

{
E[X4] − 3

}
,

.

thus yielding the desired conclusion.

In order to avoid some technicalities, we now present a quantitative bound in the 1-Wasserstein
distance dW (and not in the more challenging total variation distance dT V ) for eigenfunctions of the
operator L. This requires to adapt the Stein’s method machinery presented in Section 2 to our setting,
as a direct application of the integration by part formula (4.4). The arguments below are borrowed in
particular from [Led12, Proposition 1].

Proposition 4.5. Let (E, µ,L) be a diffiusive fourth moment structure. Assume that X ∈ Ker(L +
qId) for some q ≥ 1 with E[X2] = 1. Let N ∼ N (0, 1). Then,

dW (X,N) ≤ 2

q
Var (Γ[X ])

1
2 .

Proof. For every function f of class C1 on R, with ‖f ′‖∞ ≤ 1 and f ′ ∈ Lip(2) according to Part (b)
in Lemma 2.1, it is enough to show that

∣∣∣E [f ′(X) −Xf(X)]
∣∣∣ ≤ 2

q
Var (Γ[X ])

1
2 .

Since LX = −qX , and diffusivity of the operator Γ together with integration by parts formula 4.4,
one can write that

E [f ′(X) −Xf(X)] = E

[
f ′(X) +

1

q
L(X)f(X)

]
= E

[
f ′(X) − 1

q
Γ[f(X), X ]

]

= E

[
f ′(X) − 1

q
f ′(X)Γ[X ]

]

=
1

q
E [f ′(X) (q − Γ[X ])] .

Now, the claim follows at once by using the Cauchy-Schwarz inequality and noting that E[Γ[X ]] =
q E[X2] = q.

We end this section with the following general version of the fourth moment theorem for eigenfunc-
tions of the operator L, obtained by combining Propositions 4.4 and 4.5.
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Theorem 4.6. Let (E, µ,L) be a diffiusive fourth moment structure. Assume that X ∈ Ker(L + qId)
for some q ≥ 1 with E[X2] = 1. Let N ∼ N (0, 1). Then,

dW (X,N) ≤ 2√
3

√
E[X4] − 3.

It follows that, if {Xn}n≥1 is a sequence of eigenfunctions in a fixed eigenspace Ker(L + qId) where
q ≥ 1 and E[X2

n] = 1 for all n ≥ 1, then the following implication holds: E[X4
n] → 3 if and only if Xn

converges in distribution towards the standard Gaussian random variable N .

Remark 4.7. The fact that the condition E[X4
n] → 3 is necessary for convergence to Gaussian is a

direct consequence of the hypercontractive estimate (4.6).

4.3 Transport distances, Stein discrepancy and Γ Calculus

The general setting of the Markov triple together with Γ calculus provide a suitable framework to study
functional inequalities such as the classical logarithmic Sobolev inequality or the celebrated
Talagrand quadratic transportation cost inequality. For simplicity, here we restrict ourself to
the setting of Wiener structure and the Gaussian measure to be our reference measure. The reader
may consult references [LNP15, LNP16] for a presentation of the general setting, and [NPS14, NPS15]
for some previous references connecting fourth moment theorems and entropic estimates.

Let d ≥ 1, and dγ(x) = (2π)− d
2 e− |x|

2 dx be the standard Gaussian measure on R
d. Assume that

dν = hdγ is a probability measure on R
d with a (smooth) density function h : Rd → R+ with respect

to the Gaussian measure γ. Inspired from Gaussian integration by parts formula we introduce first the
crucial notion of a Stein kernel τν associated with the probability measure ν and, then, the concept
of Stein discrepancy.

Definition 4.8. (a) A measurable matrix-valued map τν on R
d is called a Stein kernel for the

centered probability measure ν if for every smooth test function φ : Rd → R,

∫

Rd

x · ∇φdν =

∫

Rd

〈τν ,Hess(φ)〉HSdν,

where Hess(φ) stands for the Hessian of φ, and 〈 , 〉HS, and ‖ , ‖HS denote the usual Hilbert-Schmidt
scalar product and norm, respectively.
(b) The Stein discrepancy of ν with respect to γ is defined as

S(ν, γ) = inf
(∫

Rd

‖τν − Id‖2
HSdν

) 1
2

where the infimum is taken over all Stein kernels of ν, and takes the value +∞ if a Stein kernel for ν
does not exist.

We recall that the Stein kernel τν is uniquely defined in dimension d = 1, and that unicity may
fail in higher dimensions d ≥ 2, see [NPS15, Appendix A]. Also, τγ = Idd×d the identity matrix. We
further refer to [Fat18, CFP19] for existence of the Stein kernel in general settings. The interest of the
Stein’s discrepancy comes e.g. from the fact that – as a simple application of Stein’s method –

dT V (ν, γ) ≤ 2

∫

R

|τν − 1|dν ≤ 2
(∫

R

|τν − 1|2dν
) 1

2

,

yielding that dT V (ν, γ) ≤ 2 S(ν, γ); see [LNP15] for further details.
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Next, we need the notion of Wasserstein distance. Let p ≥ 1. Given two probability measure ν and
µ on the Borel sets of Rd, whose marginals have finite moments of order p, we define the p-Wasserstein
distance between ν and µ as

Wp(ν, µ) = inf
π

( ∫

Rd×Rd

|x− y|pdπ(x, y)
) 1

p

where the infimum is taken over all probability measures π of Rd × R
d with marginals ν and µ; note

that W1 = dW , as defined in Section 2.

For a measure ν = hγ with a smooth density function h on R
d, we recall that

H(ν, γ) :=

∫

Rd

h log hdγ = Entγ(h)

is the relative entropy of the measure ν with respect to γ, and

I(ν, γ) :=

∫

Rd

|∇h|2
h

dγ

is the Fisher information of ν with respect to γ. After having established these notions, we can
state two popular probabilistic/Entropic functional inequalities :

(i) [Logarithmic Sobolev inequality]: H(ν, γ) ≤ 1
2 I(ν, γ).

(ii) [Talagrand quadratic transportation cost inequality]: W2
2(ν, γ) ≤ 2 H(ν, γ).

The next theorem is borrowed from [LNP15], and represents a significant improvement of the
previous logarithmic Sobolev and Talagrand inequalities based on the use of Stein discrepancies: the
techniques used in the proof are based on an interpolation argument along the Ornstein-Uhlenbeck
semigroup. The reader is also referred to the recent works [Fat18, CFP19, Sam18] for related estimates
of the Stein discrepancy based on the use of Poincaré inequalities, as well as on optimal transport
techniques. See [B20] for a further amplification of the approach of [LNP15], with applications to
the quantitative multidimensional CLT in the 2-Wasserstein distance. See also [D20].

Theorem 4.9. Let dν = hdγ be a centered probability measure on R
d with smooth density function h

with respect to the standard Gaussian measure γ.

(1) Then the following Gaussian HSI inequality holds:

H(ν, γ) ≤ 1

2
S2(ν, γ) log

(
1 +

I(ν, γ)

S2(ν, γ)

)
.

(2) Assume further that S(ν, γ) and H(ν, γ) are both positive and finite. Then, the following Gaus-
sian WSH inequality holds:

W2(ν, γ) ≤ S(ν, γ) arccos

(
e

−
H(ν,γ)

S2(ν,γ)

)
.

The next subsection deals with the challenging problem of quantitative probabilistic approximations
in infinite dimension.
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4.4 Functional approximations and Dirichlet structures

Although Stein’s method is already successfully used for quantifying functional limit theorems of the
Donsker-type (see [Bar90, BJ09], as well as [DK21, DKP19, K20, Shi11] for a discussion of recent
developments), the general problem of assessing the discrepancy between probability distributions on
infinite-dimensional spaces (like e.g. on classes of smooth functions or on the Skorohod space) is
essentially open.

In the last years a new direction of research has emerged, where the ideas behind the Malliavin-Stein
approach are applied in the framework of Dirichlet structures, in order to deal with quantitative
estimates on the probabilistic approximation of Hilbert space-valued random variables. A general (and
impressive!) contribution on the matter is the recent work by Bourguin and Campese [BC20], where the
authors are able to retrieve several Hilbert space counterparts of the finite-dimensional results discussed
in Section 3 above. Bourguin and Campese’s approach (whose discussion requires preliminaries that
go beyond the scope of our survey) represents a substantial addition to a line of investigation intiated
by L. Coutin and L. Decreusefond in the seminal works [CD13, CD20b, CD14, CD20a, Dec15].

As a quick illustration, we conclude the section with two representative statements, taken from
[CD13, Dec15] and [CD20b], respectively.

Theorem 4.10 (See [CD13] and Section 3.2 in [Dec15]). Let (Nλ(t) : t ≥ 0) be a Poisson process with
intensity λ. Then, as λ → ∞,

(
Nλ(t) − λt√

λ
: t ≥ 0

)
=⇒ (B(t) : t ≥ 0)

where the convergence takes place weakly in the Skorohkod space. Moreover, for every β < 1
2 consider

the so-called Besov-Liouville space Iβ,2,

Iβ,2 =
{
f : ∃ ḟ , f(x) =

1

Γ(β)

∫ x

0

(x− t)β−1ḟ(t)dt
}
.

Let µβ denote the Wiener measure on the space Iβ,2, and Qλ is the probability measure induced by
(Nλ(t) : t ≥ 0) seen as canonical process is Poisson process with intensity λ. Then, there exists a
constant cβ such that

sup
‖F ‖

C2
b

(Iβ,2,R)
≤1

∣∣∣
∫
FdQλ −

∫
Fdµβ

∣∣∣ ≤ cβ√
λ

where C2
b (Iβ,2,R) is the set of twice Fréchet differentiable functionals on Iβ,2.

The next result aims to provide a rate of convergence in Donsker theorem in Wasserstein distance.
Let η ∈ (0, 1), p ≥ 1. Define the fractional Sobolev space Wη,p as the closure of the space C1 w.r.t
norm

‖f‖p
η,p :=

∫ 1

0

|f(t)|pdt+

∫ 1

0

∫ 1

0

|f(t) − f(s)|p
|t− s|1+pη

dsdt.

Also, for n ≥ 1, define An = {(k, j) : 1 ≤ k ≤ d, 0 ≤ j ≤ n− 1}, and let

Sn =
∑

(k,j)∈An

X(k,j)h
n
(k,j), hn

(k,j)(t) =
√
n

∫ t

0

1[j/n,(j+1)/n](s)ds ek

where (ek) : 1 ≤ k ≤ d is the canonical basis of Rd, and (X(k,j), (k, j) ∈ An) is a family of independent

identically distributed, Rd-valued, random variables with E[X ] = 0, and E‖X‖2
Rd = 1, where X is a

random variable which has their common distribution.
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Theorem 4.11 (See Section 3 in [CD20b]). Let W = Wη,p

(
[0, 1],Rd

)
, and µη,p be the law of the

d-dimensional Brownian motion B on the space W . Then, there exists a constant c such that for
X ∈ Lp(W ;Rd, µη,p) with p ≥ 3,

sup
F ∈Lip1(Wη,p)

∣∣∣E[F (Sn)] − E[F (B)]
∣∣∣ ≤ c ‖X‖p

Lp n
− 1

6 + η

3 lnn

where
Lip1(Wη,p) :=

{
F : Wη,p → R

d : ‖F (x) − F (y)‖Rd ≤ ‖x− y‖η,p, ∀x, y ∈ Wη,p

}
.

Further applications of Malliavin-Stein techniques in the framework of Dirichlet structures are
contained in [DST16, DH20]. The next section focuses on a discrete Markov structure for which exact
fourth moment estimates are available.

5 Bounds on the Poisson space: fourth moments, second-order

Poincaré estimates and two-scale stabilization

We will now describe a non-diffusive Markov triple for which a fourth moment result analogous to
Proposition 4.5 holds. Such a Markov triple is associated with the space of square-integrable functionals
of a Poisson measure on a general pair (Z,Z ), where Z is a Polish space and Z is the associated Borel
σ-field. The requirement that Z is Polish – together with several other assumptions adopted in the
present section – is made in order to simplify the discussion; the reader is referred to [DP18b, DVZ18] for
statements and proofs in the most general setting. See also [L16, LP17] for an exhaustive presentation
of tools of stochastic analysis for functionals of Poisson processes, as well as [PR16] for a discussion of
the relevance of variational techniques in the framework of modern stochastic geometry.

5.1 Setup

Let µ be a non-atomic σ-finite measure on (Z,Z ), and set Zµ := {B ∈ Z : µ(B) < ∞}. In what
follows, we will denote by

η = {η(B) : B ∈ Z }
a Poisson measure on (Z,Z ) with control (or intensity) µ. This means that η is a random field
indexed by the elements of Z , satisfying the following two properties: (i) for every finite collection
B1, . . . , Bm ∈ Z of pairwise disjoint sets, the random variables η(B1), . . . , η(Bm) are stochastically
independent, and (ii) for every B ∈ Z , the random variable η(B) has the Poisson distribution with
mean µ(B) 2. Whenever B ∈ Zµ, we also write η̂(B) := η(B) − µ(B) and denote by

η̂ = {η̂(B) : B ∈ Zµ}

the compensated Poisson measure associated with η. Throughout this section, we assume that
F = σ(η).

It is a well-known fact that one can regard the Poisson measure η as a random element taking values
in the space Nσ = Nσ(Z) of all σ-finite point measures χ on (Z,Z ) that satisfy χ(B) ∈ N0 ∪ {+∞}
for all B ∈ Z . Such a space is equipped with the smallest σ-field Nσ := Nσ(Z) such that, for each
B ∈ Z , the mapping Nσ ∋ χ 7→ χ(B) ∈ [0,+∞] is measurable. In view of our assumptions on Z and

2Here, we adopt the usual convention of identifying a Poisson random variable with mean zero (resp. with infinite
mean) with an a.s. zero (resp. infinite) random variable
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following e.g. [LP17, Section 6.1], throughout the paper we can assume without loss of generality that
η is proper, in the sense that η can be P -a.s. represented in the form

η =

η(Z)∑

n=1

δXn
, (5.1)

where {Xn : n ≥ 1} is a countable collection of random elements with values in Z and where we write
δz for the Dirac measure at z. Since we assume µ to be non-atomic, one has that Xk 6= Xn for every
k 6= n, P -a.s..

Now denote by F(Nσ) the class of all measurable functions f : Nσ → R and by L0(Ω) := L0(Ω,F )
the class of real-valued, measurable functions F on Ω. Note that, as F = σ(η), each F ∈ L0(Ω) has
the form F = f(η) for some measurable function f. This f, called a representative of F , is Pη-a.s.
uniquely defined, where Pη = P ◦ η−1 is the image measure of P under η. Using a representative f of
F , one can introduce the add-one cost operator D+ = (D+

z )z∈Z on L0(Ω) as follows:

D+
z F := f(η + δz) − f(η) , z ∈ Z; (5.2)

similarly, we define D− on L0(Ω) as

D−
z F := f(η) − f(η − δz) , if z ∈ supp(η) , and D−

z F := 0, otherwise, (5.3)

where supp(χ) :=
{
z ∈ Z : for all A ∈ Z s.t. z ∈ A: χ(A) ≥ 1

}
is the support of the measure χ ∈ Nσ.

We call −D− the remove-one cost operator associated with η. We stress that the definitions ofD+F
and D−F are, respectively, P ⊗ µ-a.e. and P -a.s. independent of the choice of the representative f —
see e.g. the discussion contained [DP18b, Section 2] and the references therein. Note that he operator
D+ can be straightforwardly iterated by setting D(1) := D+ and, for n ≥ 2 and z1, . . . , zn ∈ Z and
F ∈ L0(Ω), by recursively defining

D(n)
z1,...,zn

F := D+
z1

(
D(n−1)

z2,...,zn
F
)
.

5.2 L
1 integration by parts

One of the most fundamental formulae in the theory of Poisson processes is the so-called Mecke
formula stating that, for each measurable function h : Nσ × Z → [0,+∞], the identity

E

[∫

Z

h(η + δz , z)µ(dz)

]
= E

[∫

Z

h(η, z)η(dz)

]
(5.4)

holds true; see [LP17, Chapter 4] for a detailed discussion. Such a formula can be used in order to
define an (approximate) integration by parts formula on the Poisson space,

For random variables F,G ∈ L0(Ω) such that D+F D+G ∈ L1(P ⊗ µ), we define

Γ0(F,G) :=
1

2

{∫

Z

(D+
z FD

+
z G)µ(dz) +

∫

Z

(D−
z FD

−
z G) η(dz)

}
(5.5)

which verifies E[|Γ0(F,G)|] < ∞, and E[Γ0(F,G)] = E[
∫

Z(D+
z FD

+
z G)µ(dz)], in view of Mecke formula.

The following statement, taken from [DP18b], can be regarded as an integration by parts formula in
the framework of Poisson random measures, playing a role similar to that of Lemma 3.1 in the setting
of Gaussian fields. It is an almost direct consequence of (5.4).

Lemma 5.1 (L1 integration by parts). Let G,H ∈ L0(Ω) be such that

GD+H, D+GD+H ∈ L1(P ⊗ µ).

Then,

E

[
G

(∫

Z

D+
z H µ(dz) −

∫

Z

D−
z H η(dz)

)]
= −E[Γ0(G,H)]. (5.6)
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We will now focus on multiple Wiener-Itô integrals.

5.3 Multiple integrals

For an integer p ≥ 1 we denote by L2(µp) the Hilbert space of all square-integrable and real-valued
functions on Zp and we write L2

s(µp) for the subspace of those functions in L2(µp) which are µp-a.e.
symmetric. Moreover, for ease of notation, we denote by ‖·‖2 and 〈·, ·〉2 the usual norm and scalar
product on L2(µp) for whatever value of p. We further define L2(µ0) := R. For f ∈ L2(µp), we denote
by Ip(f) the multiple Wiener-Itô integral of f with respect to η̂. If p = 0, then, by convention,
I0(c) := c for each c ∈ R. Now let p, q ≥ 0 be integers. The following basic properties are proved
e.g. in [L16], and are analogous to the properties of multiple integrals in a Gaussian framework, as
discussed in Section 3.1:

1. Ip(f) = Ip(f̃), where f̃ denotes the canonical symmetrization of f ∈ L2(µp);

2. Ip(f) ∈ L2(P ), and E
[
Ip(f)Iq(g)

]
= δp,q p! 〈f̃ , g̃〉2, where δp,q denotes the Kronecker’s delta

symbol.

As in the Gaussian framework of Section 3.1, for p ≥ 0 the Hilbert space consisting of all random
variables Ip(f), f ∈ L2(µp), is called the p-th Wiener chaos associated with η, and is customarily
denoted by Cp. It is a crucial fact that every F ∈ L2(P ) admits a unique representation

F = E[F ] +
∞∑

p=1

Ip(fp) , (5.7)

where fp ∈ L2
s(µp), p ≥ 1, are suitable symmetric kernel functions, and the series converges in L2(P ).

Identity (5.7) is the analogous of relation (3.2), and is once again referred to as the chaotic decom-
position of the functional F ∈ L2(P ).

The multiple integrals discussed in this section also enjoy multiplicative properties similar to for-
mula (3.5) above – see e.g. [L16, Proposition 5] for a precise statement. One consequence of such
product formulae is that, if F ∈ Cp and G ∈ Cq are such that FG is square-integrable, then

FG ∈
p+q⊕

r=0

Cr, (5.8)

which cab be seen as a property analogous to (4.3).

5.4 Malliavin operators

We now briefly discuss Malliavin operators on the Poisson space.

1. The domain domD of the Malliavin derivative operator D is the set of all F ∈ L2(P ) such
that the chaotic decomposition (5.7) of F satisfies

∑∞
p=1 p p!‖fp‖2

2 < ∞. For such an F , the

random function Z ∋ z 7→ DzF ∈ L2(P ) is defined via

DzF =

∞∑

p=1

pIp−1

(
fp(z, ·)

)
, (5.9)

whenever z is such that the series is converging in L2(P ) (this happens a.e.-µ), and set to zero
otherwise; note that fp(z, ·) is an a.e. symmetric function on Zp−1. Hence, DF = (DzF )z∈Z is
indeed an element of L2

(
P⊗µ

)
. It is well-known that F ∈ domD if and only if D+F ∈ L2

(
P⊗µ

)
,

and in this case
DzF = D+

z F, P ⊗ µ−a.e.. (5.10)

18



2. The domain dom L of the Ornstein-Uhlenbeck generator L is the set of those F ∈ L2(P )
whose chaotic decomposition (5.7) verifies

∑∞
p=1 p

2 p!‖fp‖2
2 < ∞ (so that dom L ⊂ domD) and,

for F ∈ dom L, one defines

LF = −
∞∑

p=1

pIp(fp) . (5.11)

By definition, E[LF ] = 0; also, from (5.11) it is easy to see that L is symmetric, in the sense
that

E
[
(LF )G

]
= E

[
F (LG)

]

for all F,G ∈ dom L. Note that, from (5.11), it is immediate that the spectrum of −L is given
by the nonnegative integers and that F ∈ dom L is an eigenfunction of −L with corresponding
eigenvalue p if and only if F = Ip(fp) for some fp ∈ L2

s(µp), that is:

Cp = Ker(L + pI).

The following identity corresponds to formula (65) in [L16]: if F ∈ dom L is such that D+F ∈
L1(P ⊗ µ), then

LF =

∫

Z

(
D+

z F
)
µ(dz) −

∫

Z

(
D−

z F
)
η(dz) . (5.12)

Define for any F ∈ L2(P ) the pseudo-inverse L−1 by

L−1F = −
∞∑

p=1

1

p
Ip(fp).

Recall the covariance identity

Cov(F,G) = −
∫

E[DzGDzL−1F ]µ(dz) (5.13)

3. For suitable random variables F,G ∈ dom L such that FG ∈ dom L, we introduce the carré du
champ operator Γ associated with L by

Γ(F,G) :=
1

2

(
L(FG) − FLG−GLF

)
. (5.14)

The symmetry of L implies immediately the crucial integration by parts formula

E
[
(LF )G

]
= E

[
F (LG)

]
= −E

[
Γ(F,G)

]
; (5.15)

we will see below that, for many random variables F,G, relation (5.15) is indeed the same as
identity appearing in Lemma 5.1.

The following result – proved in [DP18b] – provides an explicit representation of the carré-du-champ
operator Γ in terms of Γ0, as introduced in (5.5).

Proposition 5.2. For all F,G ∈ dom L such that FG ∈ dom L and

DF, DG, FDG, GDF ∈ L1(P ⊗ µ),

we have that DF = D+F, DG = D+G, in such a way that DF DG = D+F D+G ∈ L1(P ⊗ µ), and

Γ(F,G) = Γ0(F,G), (5.16)

where Γ0 is defined in (5.5).

One crucial consequence of such a result is that the operator Γ is not diffusive, in such a way that
the triple (Ω, P,L) is not a diffusive fourth moment structure, such as the ones introduced in Definition
4.1; it follows in particular that the machinery of Section 4 cannot be directly applied.
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5.5 Fourth moment theorems

Starting at least from the reference [PSTU10] (where Malliavin calculus and Stein’s method were first
combined on the Poisson space), it has been an open problem for several years that of establishing
a fourth moment bound similar to Theorem 4.6 on the Poisson space. As recalled above, the main
difficulty in achieving such a result is the discrete nature of add-one and remove-one cost operators,
preventing in particular the triple (Ω, P,L) from enjoying a diffusive property.

The next statement contains one of the main bounds proved in [DVZ18], and shows that a quan-
titative fourth moment bound is available on the Poisson space. Such a bound (which also has a
multidimensional extension) is proved by a clever combination of Malliavin-type techniques with an
infinitesimal version of the exchangeable pairs approach toward Stein’s method – see e.g. [CGS10].

Theorem 5.3. For q ≥ 2, let F = Iq(fq) be a multiple integral of order q with respect to η̂, and
assume that E[F 2] = 1. Then,

dW (F,N) ≤
(√

2

π
+

4

3

)
√
E[F 4] − 3.

One should notice that the first bound of this type was proved in [DP18b] under slightly more
restrictive assumptions; also, reference [DP18b] contains analogous bounds in the Kolmogorov distance,
that are not achievable by using exchangeable pairs. In particular, one of the key estimates used in
[DP18b] is the following remarkable equality and bound

1

2q

∫

Z

E
[
|D+

z F |4
]
µ(dz) =

3

q
E
[
F 2Γ(F, F )

]
− E

[
F 4
]

≤ 4q − 3

2q

(
E
[
F 4
]

− 3E[F 2]2
)
,

that are valid for every F ∈ Cq, q ≥ 2, such that the mapping z 7→ D+
z F verifies some minimal

integrability conditions.

5.6 Second-order Poincaré estimates

What one calls second-order Poincaré inequalities is a collection of analytic estimates (first es-
tablished on the Poisson space in [LPS16]) where the Wasserstein and Kolmogorov distances, between
a given function of η and a Gaussian random variable, are bounded by integrated moments of iterated
add-one-cost operators on the Poisson space. The ratio behind such a name is the following. Just as
the Poincaré inequality

Var(F ) ≤
∫

Z

E[(D+
z F )2]µ(dz), (5.17)

controls the variance of a random variable F by means of integrated moments of the add-one cost
(see [LP17, Section 18.3]), the discrepancy between the distribution of F and that of a Gaussian
random variable is controlled by integrated moments of second-order add-one-cost D+

x D
+
y F := D2

z,yF ,
a phenomenon already observed in the Gaussian setting [C09, NPR09, Vid17], where gradients typically
replace add-one-cost operators.

For the rest of the section, we exclusively consider square-integrable random variables F such
that F ∈ domD, in such a way that D+F = DF (up to negligible sets). The starting point for
proving second-order Poincaré estimates is the covariance identity (5.13), which can be proved as in
the Gaussian setting by means of chaos expansions. When one combines Stein’s method with such a
formula, it is however not possible to deduce the existence of a Stein kernel as in the Gaussian setting
(see (3.12)), since Malliavin operators on a Poisson space do not enjoy an exact chain rule such as
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(3.7). Indeed, we have that, for sufficiently smooth mapping f : R → R,

Cov(F, f(F )) = −
∫

E[Dz(f(F ))DzL−1F ]µ(dz)

= −
∫

E[f ′(F )DzFDzL−1F ]µ(dz) +R

where we approximate Dz(f(F )) = f(F +DzF ) − f(F ) by f ′(F )DzF with the error term

DzF

∫ 1

0

[f ′(F + tDzF ) − f ′(F )]dt

appearing in the implicit definition of R; notice that, in general, one has that R 6= 0, in such a way
that the previous computations do not yield the existence of a Stein kernel. Selecting f as in Lemma
2.1-(d), one can bound the error term in the aforementioned calculation by |DzF |2. Therefore, for F
such that E[F ] = 0 and Var[F ] = 1, one has the bound

dW (F,N) ≤
√

Var
[ ∫

DzFDzL−1F ]µ(dz)
]

+

∫
E[|DzF |2|DzL−1F |]µ(dz).

Applying the Poincaré inequality (5.17) to the variance term, as well as the contraction bound [LPS16,
Lemma 3.4] for the add-one-cost

E[|DzL−1F |p] ≤ E[|DzF |p], p ≥ 1,

and analogous estimates for the iterated add-one-cost, leads to the following theorem.

Theorem 5.4 (Second-order Poincaré estimates [LPS16]). Let F ∈ domD be such that E[F ] = 0 and
Var[F ] = 1, and let N be a standard Gaussian random variable. Then,

dW (F,N) ≤ γ1 + γ2 + γ3,

where

γ1 := 2
[ ∫∫∫

E[(DxFDyF )2]1/2
E[(D2

x,zFD
2
y,zF )2]1/2µ3(dxdydz)

]1/2

,

γ2 :=
[ ∫∫∫

E[(D2
x,zFD

2
y,zF )2]µ3(dxdydz)

]1/2

,

γ3 :=

∫
E[|DxF |3]µ(dx).

As mentioned above, second-order Poincaré techniques are equally useful for obtaining bounds in
the Kolmogorov distance – see [LPS16], as well as [SY19] for a powerful extension to the framework
of multivariate normal approximations.

An example of a successful application of second-order Poincaré estimates from [LPS16] (to which
we refer the reader for a discussion of the associated literature) is the derivation of presumably optimal
Berry-Esseen bounds for the total edge length of the Poisson-based nearest neighbor graph. More
precisely, let ηt be a Poisson point process with intensity t > 0 on a convex compact set H ⊂ R

d. We
consider the graph with vertex set supp ηt and edge set formed by {x, y} ⊂ supp ηt when either x is
the nearest neighbor of y or the other way around. Consider the total edge length of the graph so
obtained, denoted by Lt. Then we have

dW

(Lt − E[Lt]√
Var[Lt]

, N
)
, dK

(Lt − E[Lt]√
Var[Lt]

, N
)

≤ C√
t
,
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where dK is the one-dimensional Kolmogorov distance, and C depends only on H . We refer the
reader to [LPS16, Theorem 7.1] for a far more general statement, and to [LrSY19] for a collection
of presumably optimal bounds on the normal approximation of exponentially stabilizing random
variables (see the next subsection).

5.7 Stabilization theory and two-scale bounds

While the second-order Poincaré estimates can provide sharp Berry-Esseen bounds, they are not al-
ways applicable. This is the case, for instance, for certain combinatorial optimisation statistics or
connectivity functionals of the underlying Poisson process. The problem is typically that the iterated
add-one-cost of the functionals, although well-defined almost surely, are not computationally tractable,
e.g. for obtaining moment estimates.

In this section, we present an alternative collection of analytic inequalities, called the two-scale
stabilization bounds, which avoid the use of iterated add-one-cost – they are one of the main findings
from [LrPY20+]; see also [CS17] for several related estimates obtained by a discretization procedure.
As their name suggests, these bounds are closely related to the stabilization theory of Penrose and
Yukich [PY01, Pen05]. Such a theory originated from the ground-breaking central limit theorem of
Kesten and Lee [KL97] for the total edge weight Mn of Euclidean minimal spanning trees (MST) with
stationary Poisson points ηn in a ball of radius n ∈ N. Recall that the MST is the connected graph
over the vertex set ηn that minimises its total length. Without referring to the stochastic analysis on
the Poisson space, Kesten and Lee already performed a fine study of the add-one-cost of Mn (and not
of the iterated add-one-cost) implying some moment estimates of DxMn. Penrose and Yukich [PY01]
extrapolated the high level ideas from [KL97] and transformed them into a general theory applicable
to (non-quantitative) central limit theorems for a plethora of problems in stochastic geometry. The
theory was further extended to multivariate normal approximation by Penrose [Pen05]. A variant of
the theory using score functionals was put forward by Baryshnikov and Yukich [BY05].

We now define properly the notions of strong and weak stabilization. We assume for concreteness
that the ambient space is R

d and η is a Poisson process of unit intensity. A Poisson functional
F = F (η) is strongly stabilizing if there exists an almost surely finite random variable R, called the
stabilization radius, such that

D0F (η|BR
) = D0F (η),

where BR stands for a ball with radius R centered at the origin. Here is a simple example. Fix r > 0
and make an edge between two points in ηn := η|Bn

within distance r. The graph G(ηn, r) so obtained
is known as the Gilbert graph or the random geometric graph. Then, the number F (ηn) of edges
within a finite window containing the origin has stabilization radius R = r almost surely, since D0F (η)
is the number of edges incident to the origin in G(η + δ0, r). Proving strong stabilization often relies
on combinatorial and geometric arguments in many problems of stochastic geometry, see [PY01] for a
list of examples. In general situations, R is genuinely random in contrast to the simple example given
above.

To obtain central limit theorems, it actually suffices to show a weaker version of stabilization. We
say that F is weakly stabilizing if for any sequence of measurable sets En satisfying lim inf En = R

d,
we have the almost sure convergence

D0F (η|En
) → ∆

where ∆ is a random variable. It is clear that a strongly stabilizing functional is also weakly stabilizing
with ∆ = D0F (η).

Theorem 5.5 ( See[PY01, Theorem 3.1]). Suppose that F is weakly stabilizing and satisfies the
moment condition

sup
A

E[|D0F (η|A)|4] < ∞,
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where the supremum is taken for all ball A that contains 0. Then there exists σ2 ≥ 0, such that

1√
Vol(Bn)

(F (ηn) − E[F (ηn)])
d→ N(0, σ2).

It is remarkable how few assumptions one needs in order to obtain a CLT, which somehow indicates
that stabilization is the right condition for Gaussian approximations on the Poisson space. Notice that
the limiting variance σ2 could be 0. In [PY01], it was shown that σ2 > 0 whenever ∆ is not a constant.
Theorem 5.5 was proved by a martingale method and does not offer insights on how fast the normalized
sequence converges to normal. The latter question was addressed by a recent preprint by Lachièze-Rey,
Peccati and Yang [LrPY20+]. Under slightly strengthened conditions on the functionals, they assessed
the rate of normal approximation in Theorem 5.5. To state one of the bound that can be deduced
from [LrPY20+], we consider again the ball Bn of radius n centered at the origin, and introduce the
key quantity

ψn := sup
x∈Bn

E[|DxF (η|Bn
) −DxF (η|An,x

)|]., n ≥ 1.

In practice, we take An,x = Bbn
(x) = {y : |x − y| ≤ bn} with 1 ≪ bn ≪ n which is a local window

of x compared to the scale of Bn. In what follows, we make this choice and call ψn a two-scale
discrepancy in view of this interpretation. The following result, taken from [LrPY20+], can be
applied in many concrete applications.

Theorem 5.6 ([LrPY20+, Corollary 1.3]). Set F̂n = (F (ηn)−E[F (ηn)])/
√

Var[F (ηn)], where we have
set ηn = η|Bn

as before. Suppose that

sup
n∈N,x∈Bn

E[|DxF (ηn)|p] < ∞

for some p > 4 and also that there exists an absolute constant b > 0 such that Var[F (ηn)] ≥ b|Bn|.
Then there exists a finite positive constant c such that

1

c
dW (F̂n, N(0, 1)) ≤ ψ

1
2 (1− 4

p
)

n +
(bn

n

) d
2

.

This theorem simplifies and extends some arguments in the proof of a quantitative CLT for the
minimal spanning trees by Chatterjee and Sen [CS17]. Analogous Kolmogorov bounds for univari-
ate normal approximation, and bounds for multivariate normal approximation are also considered in
[LrPY20+]. More remarks are in order.

Remark 5.7. i) The sequence (bn) serves as a free parameter in the bound. One should keep track
of the dependence of ψn on bn and make an optimization in the end.

ii) For any fixed x ∈ R
d, applying the weak stabilization condition for F with two sequences (Bn)

and (Bbn
(x)) (together with the translation invariance of η and the moment assumption for the

add-one-cost) yields the following convergence

E[|DxF (η|Bn
) −DxF (η|Bbn (x))|] → 0.

As such, Theorem 5.6 quantifies Theorem 5.5 after uniformly strengthening the assumptions of
Theorem 5.5.

iii) When the functional is strongly stabilizing, this bound takes an even simpler form. More pre-
cisely, we say Rx is a stabilization radius at x if

DxF (η|BR(x)) = DxF (η).
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Then, applying Hölder’s inequality and the uniform moment condition for the add-one-cost leads
to the existence a positive finite c such that

ψn ≤ c sup
x∈Bn

P[Rx ≥ bn]1− 1
p .

Hence, the upper tail of Rx is relevant in the rate of normal approximation. One may further
classify the stabilization condition with regards to the decay of the upper tail. For instance, we
say that the funcitonal F is exponentially stabilizing if Rx has a sub-exponential upper tail.

iv) There are some general methods for obtaining variance lower bounds. For example, one can
partition the space into non-overlapping cubes of appropriate size then use projection method
for functions of independent random variables such as Heoffding decomposition. Another method
via chaos expansion was given in [LPS16, Section 5]

We mention one application where the second order Poincaré estimates do not apply but the
two-scale stabilization bounds do. Fix r > 0 and consider the number Kn of components in the
Gilbert graph G(ηn, 2r) (or equivalently the Boolean model Or,n = ∪x∈ηn

B(x, r)) as n → ∞. This
corresponds to the so-called thermodynamic regime, where the collection of models in the whole space
Or = ∪x∈ηB(x, r) indexed by r exhibit a phase transition at certain threshold r∗ ∈ (0,∞) e.g. in
terms of whether P[0 is connected to infinity in Or ] = 0. We stress that the analysis of Kn is relatively
involved in the critical phase due to the co-existence of the unbounded occupied component and the
unbounded vacant component (in Oc

r). However, the following estimate was obtained in [LrPY20+]
for all r > 0 in dimension 2 using the strong stabilization bound

dW ((Kn − E[Kn])/
√

Var[Kn], N(0, 1)) ≤ C

nβ
,

where C and β are finite positive constants. In d ≥ 3, a poly-logarithmic rate was obtained. The
bottleneck of these estimates are the two-arm exponents of the critical Boolean models which are hard
to improve.

More generally, when one considers higher dimensional topological statistics of the Boolean model
such as the Betti numbers, it may occur that strong stabilization does not hold [YSA17, Tri19, CT20].
In such case, the two-scale weak stabilization bound might be well suited for obtaining quantitative
CLT.

6 Malliavin-Stein for targets in the second Wiener chaos

In this section, we present a short overview on the recent development on Mallaivin-Stein approach
for target distributions in the second Gaussian Wiener chaos. We also formulate some important
conjectures that will complement the approach. We adopt the same notation as in Section 3.1 above.
Let W stands for an isonormal Gaussian process on a separable Hilbert space H. Recall that the
elements in the second Wiener chaos are random variables having the general form F = I2(f), with
f ∈ H⊙2. Notice that, if f = h⊗ h, where h ∈ H is such that ‖h‖H = 1, then using the multiplication
formula one has I2(f) ∼ N2 − 1, where N ∼ N (0, 1). To any kernel f ∈ H⊙2, we associate the
following Hilbert-Schmidt operator

Af : H 7→ H; g 7→ f ⊗1 g.

We also write {αf,j}j≥1 and {ef,j}j≥1, respectively, to indicate the (not necessarily distinct) eigenval-
ues of Af and the corresponding eigenvectors. The next proposition gathers together some relevant
properties of the elements of the second Wiener chaos associated with W .
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Proposition 6.1 (See Section 2.7.4 in [NP12]). Let F = I2(f), f ∈ H⊙2, be a generic element of
the second Wiener chaos of W , and write {αf,k}k≥1 for the set of the eigenvalues of the associated
Hilbert-Schmidt operator Af .

1. The following equality holds: F =
∑

k≥1 αf,k

(
N2

k − 1
)
, where {Nk}k≥1 is a sequence of i.i.d.

N (0, 1) random variables that are elements of the isonormal process W , and the series converges
in L2 and almost surely.

2. For any r ≥ 2,

κr(F ) = 2r−1(r − 1)!
∑

k≥1

αr
f,k.

From now on, for simplicity, we consider the target distributions in the second Wiener chaos of the
form

F∞ =

d∑

i=1

α∞,i(N
2
i − 1) (6.1)

where Ni ∼ N (0, 1) are i.i.d, and the coefficients α∞,i are distinct. We also assume that E[F 2
∞] = 1.

In the special case when α∞,i = 1 for 1 ≤ i ≤ d, the target random variable F∞ reduces to that of
a centered chi-squared distribution with d degree of freedom. The Malliavin-Stein approach
has been successfully implemented in a series of papers [NP09a, DP18a, NP09b, NPR10, AEK20].
The target random variables of the form (6.1) with d = 2, and α∞,1 × α∞,2 < 0 belong to the so-
called Variance–Gamma class of probability distributions. We refer to [Gau14, Gau20a, Gau20b,
ET14, AG17] for development of Stein and Malliavin-Stein for the Variance–Gamma distributions. In
this setting, the first obstacle for fully developing the Malliavin-Stein approach was the absence of a
“suitable” Stein operator (meaning by that a differential operator with polynomial coefficients) for the
candidate target distribution. This is the message of the next result. Also, the stability phenomenon
of the weak convergence of the sequences in the second Wiener chaos is studied in [NP12] using tools
in complex analysis.

Theorem 6.2 (Stein characterization [AAPS17b]). Let F∞ belongs to the second Wiener chaos of the

form (6.1). Consider polynomials Q(x) =
(
P (x)

)2
=
(
x
∏d

i=1(x− α∞,i)
)2

and, coefficients

al =
P (l)(0)

l!2l−1
, 1 ≤ l ≤ d+ 1, and

bl =

d+1∑

r=l

ar

(r − l + 1)!
κr−l+2(F∞). 2 ≤ l ≤ d+ 1.

Assume that F is a general centered random variable living in a finite sum of Wiener chaoses (and
hence smooth in the sense of Malliavin calculus). Then F = F∞ (equality in distribution) if and only
if E [A∞f(F )] = 0 for all polynomials f : R → R where differential operator A∞ of order d is

A∞f(x) :=

d+1∑

l=2

(bl − al−1x)f (d+2−l)(x) − ad+1xf(x). (6.2)

The next essential conjecture formulates the non-Gaussian counterpart of the Stein’s Lemma 2.1.
An affirmative answer will complete the Stein part of the approach in this delicate setting.

Conjecture 6.3 (Stein Universality Lemma). Let H denote an appropriate class of test functions.
For every given test function h ∈ H consider the associated Stein equation

A∞f(x) = h(x) − E[h(F∞)]. (6.3)
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Then equation (6.3) admits a bounded solution fh which is d times differentiable and that ‖f (r)
h ‖∞ <

+∞ for all r = 1, · · · , d and the bounds are independent of the test function h.

The rest of the section is devoted to the first-ever quantitative estimates with target distributions
in the second Wiener chaos. The first estimate is stated in terms of 2-Wasserstein transport distance
W2 (see Section 4.3 for definition). We highlight that the upper bound involves only finitely many
cumulants, and therefore consistent with one of the ultimate goal of Malliavin-Stein approach. The
second result is more general and rather intricate containing the iterated Gamma operators of the
Malliavin calculus. See also [K17] for several related results of a quantitative nature.

Theorem 6.4 ([AAPS17a]). Let Fn =
∑

k≥1 αn,k

(
N2

k −1
)

be a sequence belongs to the second Wiener

chaos associated to the isonormal process W so that E[F 2
n ] = 1 for all n ≥ 1. Assume that the target

random variable F∞ as in (6.1). Define

∆(Fn) =

deg(Q)∑

r=2

Q(r)(0)

r!

κr(Fn)

(r − 1)!2r−1
.

Then there exists a constant C > 0 depending only on target random variable F∞ (and independent of
n) such that

W2(Fn, F∞) ≤ C

(√
∆(Fn) +

d+1∑

r=2

|κr(Fn) − κr(F∞)|
)
. (6.4)

Example 6.5. Let d = 2 and α∞,1 = −α∞,2 = 1/2, then the target random variable F∞ (= N1 ×N2,
where N1, N2 ∼ N (0, 1) are independent and equality holds in law) belongs to the class of Variance–
Gamma distributions V Gc(r, θ, σ) with parameters r = σ = 1 and θ = 0. Then, [ET14, Corollary 5.10,
part (a)] reads

dW (Fn, F∞) ≤ C
√

∆(Fn) + 1/4 κ2
3(Fn) (6.5)

which is consistence with estimate (6.4). One has to note that for the target random variable F∞

it holds that κ3(F∞) = 0. For a generalization of the estimate (6.5) to the higher moments and 2-
Wasserstein distance see [AG17].

The next result provides a quantitative bound in the Kolmogorov distance. The proof relies on
the classical Berry–Essen estimate in terms of bounding the difference of the characteristic functions.
We recall that for two real-valued random variables X and Y the Kolmogorov distance is defined as

dKol(X,Y ) := sup
x∈R

∣∣∣P(X ∈ (−∞, x]) − P(Y ∈ (−∞, x])
∣∣∣.

Theorem 6.6 ([AMPS16]). Let F∞ be the target random variable in the second Wiener chaos of the
form (6.1). Assume that {Fn}n≥1 be a sequence of centered random elements living in a finite sum of
the Wiener chaoses. Then there exists a constant C (may depend on the sequence Fn but independent
of n) such that

dKol(Fn, F∞) ≤ C

√√√√
E

[∣∣∣
d+1∑

r=1

ar (Γr−1(Fn) − E[Γr−1(Fn)])
∣∣∣
]

+
d+1∑

r=2

|κr(Fn) − κr(F∞)|

≤ C

√√√√√

√√√√Var

(
d+1∑

r=1

arΓr−1(Fn)

)
+

d+1∑

r=2

|κr(Fn) − κr(F∞)|

(6.6)
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Remark 6.7. We remark that when the sequence {Fn}n≥1 appearing in Theorem 6.6 belongs to the
second Wiener chaos, then [APP15] yields that

Var

(
d+1∑

r=1

arΓr−1(Fn)

)
= ∆(Fn)

where the quantity ∆(Fn) is as Theorem 6.4. As a result, the estimate (6.6) takes the form (compare
with (6.4))

dKol(Fn, F∞) ≤ C

√√√√√∆(Fn) +
d+1∑

r=2

|κr(Fn) − κr(F∞)|.

We end the section with the following conjecture is aiming to control the iterated Gamma opera-
tors of Malliavin calculus appearing in the RHS of the estimate (6.6) with finitely many cumulants.
A successful path might go through first proving the estimate (6.8) where we name it as the Γ2−
Conjecture. Finally we point out that the estimate (6.8) has to be compared with the famous estimate
Var(Γ1(F )) ≤ Cκ4(F ) in the normal approximation setting where F is a chaotic random variable.

Conjecture 6.8. Let F∞ be the target random variable in the second Wiener chaos of the form (6.1).
Assume that F = Iq(f) be a chaotic random variable in the qth Wiener chaos with q ≥ 2. Then there
exists a general constant C (may depend on q and d) such that

Var

(
d+1∑

r=1

arΓr−1(F )

)
≤ C∆(F ). (6.7)

In the particular case, when d = 2, and α∞,1 = −α∞,2 = 1/2, then the target random variable F∞

(= N1 ×N2, where N1, N2 ∼ N (0, 1) are independent, the estimate (6.7) boils down to that

Var (Γ2(F ) − F ) ≤ C

{
κ6(F )

5!
− 2

κ4(F )

3!
+ κ2(F )

}
. (6.8)
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