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ABSTRACT. Let K be a number field and G a finitely generated torsion-free subgroup of
K. Given a prime p of K we denote by ind, (G) the index of the subgroup (G mod p) of
the multiplicative group of the residue field at p. Under the Generalized Riemann Hypothesis
we determine the natural density of primes of K for which this index is in a prescribed set
S and has prescribed Frobenius in a finite Galois extension F' of K. We study in detail the
natural density in case S is an arithmetic progression, in particular its positivity.

1. INTRODUCTION

The distribution of the multiplicative index of an integer seems to have been first studied
by Pappalardi [13] in 1995. Under the Generalized Riemann Hypothesis (GRH) he provided
asymptotic formulae for ) _ f(ind,(g)), for f satisfying fairly mild restrictions (here and
in the sequel we denote the rational primes by p). This line of investigation was continued in
2012 by Felix and Murty [5] and later by Felix for higher rank in [3]. Given a set of integers
S and a natural number g, in [5] it was proven that

mgs(x) == |{p <z :indy(p) € S} = ¢4 s Li(z) + O(W), (1)
where ¢, s is a constant defined by a series whose terms depend on the set S, Li(z) :=
f; dt/logt denotes the logarithmic integral and ¢ > 0 is arbitrary. It is a difficult problem
to determine whether ¢, g is positive or not, cf. Felix [4]. The special case where S is an
arithmetic progression was already considered by Moree [9, Thm. 5] in 2005. For example,
he proved Theorem 8 below in case G = (g), ' = K = Q.

In this paper we consider the behavior of 7, ¢(x), with Q replaced by a number field /X
and ¢ by a finitely generated torsion-free subgroup G of K *. Instead of over rational primes,
we sum now over primes p of norm < x. Under GRH we establish in Theorem 1, see Section
2, an asymptotic similar to (1), but with a weaker error term depending on the rank of G. In
Section 3 we then restrict to the case where S consists of integers in an arithmetic progression
a mod d. In Theorem 8 we show that in this case the natural density can be expressed as
a linear combination of at most ¢(d’) — 1 Artin-type constants, with ' = d/(a,d). The
positivity of the density is studied in Section 4, the numerical evaluation of the Artin-type
constants in Section 5. In the final section we demonstrate our results by determining the
density for two examples and compare the outcome with an experimental approximation.

We take G to be fixed, but one can also ask what happens for a “typical” G. Ambrose [1]
considered the average index of the group generated by a finite number of elements in the
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residue field at a prime of a number field and provided asymptotic formulae for the average
order of this quantity.

Likewise we can wonder about the above questions, but for the multiplicative order, rather
than the index. As far as the authors know, these were first studied by Chinen and Murata
[2] for d = 4, and a little later by Moree by a simpler method. Both Chinen and Murata, and
independently Moree, went on to independently write various further papers (he surveyed his
results in [12]). Under an appropriate generalization of the Riemann Hypothesis it turns out
that the natural density of primes p < x such that the multiplicative order of g modulo p is
congruent to a mod d exists. Denote it by d,(a, d) and the associated counting function by
N,(a,d)(x). The proof of the existence of d,(a, d) by Moree is based on the identity

Ny(a,d)(z) =Y |{p <z : indy(g) =t, p=1+ ta mod dt}|.
t=1

The average density of elements of order congruent to a mod d in a field of prime character-
istic also exists, but is a much simpler quantity, see Moree [8]. It has very similar features to
dg(a, d).

In the special case where d divides a, we are just asking for the density of primes p such
that d divides the multiplicative order of ¢ modulo p. This density is much easier to deal with
and turns out to be a rational number. This can be proven unconditionally, see for example
[11, 18, 19].

Ziegler [20], using the approach of Moree, was the first to study the order in arithmetic
progression problem in the setting of number fields. His work was generalized by Perucca
and Sgobba in [15, 16], who obtained in particular uniformity results for the distribution of
the order. It is expected that, likewise, some uniformity also holds for the distribution of the
index into suitably related congruence classes, however at the moment it is not clear how to
obtain such a result. For example, it does not follow from [15, Cor. 5.2], in spite of the fact
that congruence conditions on both the order and the size of the multiplicative group lead to
congruence conditions on the index. We leave this as a research direction and as an open
problem to the reader.

2. THE EXISTENCE OF THE DENSITY OF PRIMES WITH PRESCRIBED INDEX AND
FROBENIUS

Let K be a number field, and F'/K a finite Galois extension. Let GG be a finitely gen-
erated and torsion-free subgroup of K™ having positive rank r. Our goal is to determine
the density of the set P of primes p of K (defined in the next theorem) with prescribed in-
dex and Frobenius. The notation F K, G and r will be maintained throughout. We also set
K = K(Gn, G'/™) for m | n, and similarly for F,.n. Further we make use of the follow-
ing usual notation: (,, denotes an n-th primitive root of unity, 1 the Mobius function, and ¢
Euler’s totient function. We write log® = as shorthand for (log z)%, and (a, b) for ged(a, b).

We recall that Landau’s prime ideal theorem states that

H{p: Np <z} = Li(z) + O (ve K Vios™), (2)
where cx > 0 1s a constant depending on K.

Theorem 1. (under GRH). Let K be a number field, and let G be a finitely generated and
torsion-free subgroup of K* of positive rank r. Let F/K be a finite Galois extension, and
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let C' be a union of conjugacy classes in Gal(F/K). Let S be a non-empty set of positive
integers. Define

P = {]J : mdp(G) € S, FI'ObF/K(]J) S C},

where p ranges over the primes of K unramified in F' and for which ind,(G) is well-defined.
We let P(x) be the number of prime ideals in P of norm < x. We have the asymptotic estimate

S S o ()

teS v=1 vt vt -

where
= |{o € Gal(F,,,/K) : 0|k, =id, o|p € C}| .
The constant implied by the O-term depends only on K, F and G.

This result in combination with the prime ideal theorem leads to the following corollary.

Corollary 2. (under GRH). Let S be a non-empty set of positive integers. The natural density
of the primes p of K such that ind,(G) € S and FrobF/K(p) € C exists and is given by

ZZ

teS v=1 vtvt

We will now formulate some preliminaries required for the proof of Theorem 1. Our
starting point is [15, Proposition 5.1], which was established for rank 1 in [20, Proposition
1].

Theorem 3. (under GRH). For x > 3, the number R;(x) of primes p with norm up to ,
unramified in F, and such that ind,(G) = t and Frobp, i (p) € C satisfies

Ri(z) = Li(z) i % +0 (10;1;) +0 (%) .

=1

The constant implied by the O-term depends only on K, F and G.

The following lemma is a straightforward generalisation of [9, Lemma 6], taking into
account that for every natural number n, the ratio

_ p(n)n
C(n) := —[Kn,n K]

is bounded above by some constant D, depending only on K and G (see [15, Theorem 1.1]).

r

3)

Lemma 4. For every real number y > 1 we have

Sy i —1+0(2),

t<y n=1 ntnt'

where the implied constant is absolute.

Proof. We claim that
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For r = 1 this is due to Landau [7] who first proved that

1 1
ZW:Alogx+B—l—O< Oix>, 4)

n<x

with A and B explicit constants, and then applied partial integration. The proof for arbitrary
r is completely analogous. Since p(nt) > ¢(n)p(t), we obtain

1 1 D D
2 Z =P L g <y

tont - y"
t>y n=1 n n t>y

where we used that the fourth sum is bounded above by a constant not depending on . The
estimate (5) shows that the double sum in the statement of Lemma 4 is absolutely convergent
for all y. Thus, we may rearrange the double sum as follows:

zz@%ﬁ:zz[ms Sy M
t=1 n=1 ’ m=1 slm m=1 d|m
:m:1[ C”Zmﬂ Kll K]_l’
completing the proof. 0

The following is a generalisation of Ziegler [20, Lemma 13].

Lemma 5. (under GRH). We have

Hp :Nyp <z, ind,(G) > (logx)ﬁ}‘ =0 (4) :

log? #1 z

where the primes p of K are restricted to those for which ind,(G) is well-defined. The
constant implied by the O-term depends only on K and G.

Proof. The number of primes with ramification index or residue class degree at least 2 is of
order O(>_ . 1) = O (y/z/logx). We make use of the functions ;(z) from Theorem 3
with F' = K. For any real number y > 1, let £,(z) be the number of primes p with Np < z
and such that ind,(G) > y. Notice that

o) =ty Np <a)| - L) +0 ([0

= log x

Landau’s prime ideal theorem (2) implies the (much) weaker estimate

|{psz§x}|:Li<x>+o( u ): : +o( : ) ©)

log® x log log” x
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which is all we need. By Theorem 3 and Lemma 4 we obtain

S =1 S o (1)

t<y t<y n=1 LT

xloglog x 1
+0 .
( Fap 90(15)>

<y

On taking y = (log 2)'/("+1) we now obtain on invoking (6) and (4), the estimate

2
@(@:0( ° )+o(—x§ )+o(—x(10g1§gx>):o S
y"log x log” x log” x log® 71

completing the proof. U

Proof of Theorem 1. Set p = 2 — TJ%l Lemma 5 with y = (log x)?ll yields

=3 Ri(z) +0 (10;3%) .

t<y
tes

Estimating the sum as in the proof of Lemma 5 we obtain

0% 3t~ ()

t<y v=1 ’Ut ,ut
tesS

Now we focus on the main term. We have

0
1
ZZ vtvt ZZ ’Utl}t: ’ ZZ[thvt:F]
teS v=1 iég v=1 t>y v=1 )

By (5) the right-hand side is bounded by < y~". Using this estimate the proof is easily
completed. 0

3. THE DISTRIBUTION OF THE INDEX OVER RESIDUE CLASSES

Let a, d be integers with d > 2. We study the density of primes p of K such thatind,(G) =
a mod d. Under GRH, by Theorem 1 this density exists and equals

densg(a,d) := Z Z A (7

t=a mod d v>1 [Kvt,vt : K]

The goal of this section is to prove Theorem 8, which expresses densg(a, d) as a finite sum
of terms depending on Dirichlet characters x of modulus d. These terms involve Artin-type
constants B, (r) that can be evaluated with multi-precision using Theorem 15, thus allowing
one to evaluate densg(a, d) with multi-precision.
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We start by explaining our notation. Given an integer n > 1 we let G,, be the group
of characters defined on (Z/nZ)*, so that G,, = (Z/nZ)*. For a Dirichlet character x
we denote by h, the (Dirichlet) convolution . * x of the Mdbius function v with Y, that is
px x(n) = >4, m(d)x(n/d). Recall that the Dirichlet convolution of two multiplicative
functions is again a multiplicative function.

Put w = ged(a,d),a’ = a/w and d' = d/w. The integers t = a mod d are of the form wt’
with ¢’ = @/ mod d’. Thus we can rewrite densg(a, d) as

densg(a, d) = Z Z#Ut)f(]

t=a’ mod d’ v>1 [
This expression on its turn can be rewritten as

densg(a, d) = Z Z Ul/t‘ K

t=a’ mod d’ v1>1 Ulw viw -
tlvy

_ vy /t)
B Z Z [me,mw : K]

v12>1 t=a’ mod d’
t|vy

1

= Z 77 2 ) | ey
v1>1 XEGd/ ’
1 _— hx(vl)
— / S S Y A— 8
@) 203 2 R H ®

In the second step we used that the double series is absolutely convergent (see the proof of
Lemma 4). In the third step we used [9, Lemma 9], where x runs over the Dirichlet characters
modulo d'.

We now focus on the final sum in (8). Recall the definition (3) of C'(n). By Perucca et
al. [17, Theorem 1.1] there exists an integer n, (depending only on G and K’) such that

C(n) = C(ged(n,ng)) . )

One can easily show that for m | n, one has C'(m) | C(n), and hence ny can be taken to be
the minimal integer satisfying

r

C(np) = max _pln)n”

n>1 (K, 0 K]
By (9) we have
1 B C(ged(n, ng))
(K : K] e(n)n™
and therefore
e D DI D
e(n)n”
77»21 glng n=>1
(n,n0)=g
In our case,
. 10
Z [ vw,ow : Z Z fuw fUTwT ( )
v>1 glno v>1

(vw, no) =g
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If > -, f(v) is some absolute convergent series, we have

Yo f= Y Jw=) fw) Y )

v>1 v>1 v>1 n| 20 p|rw
(vw,no)=g (Lo, 20)=1 g 9
= pm) Y fw)y=> pn) > flv),
n|"—0 v>1 n|20 v>1
g n|w 9 gn |1}
g (gn,w)

where we used that n divides the integer vw/g if and only if gn/(gn,w) divides v. Thus, in

particular,
Clg)h(v) _ Clg) hy (V)
; e(vw)vrw” w" 7;; (n) ; e(vw)v”
(vw,n0)=g g gn__y

(gn,w)

Inserting the right hand side into (10) and inserting the resulting expression into (8) yields

BRI BECLD DTN D

VW)V
XEG g glno n\@ v>1 SO( )
g gn
(gn,w)

1
densg(a,d) =
ot 9) p(d)

|v
Denoting

hy(v)
CX(N7w7T) = Z m7
=

S A WS wme () an

n,w
XEG glno n| "0 (g, )

we can write this as

1
densg(a,d) =
ot d) p(d)

Let k(n) = [],, p denote the squarefree kernel of n. Recall that h, = juxx. The following
result is a special case of [9, Lemma 10] and expresses C, (N, w, r) as an Euler product.

Lemma 6. We have
Cy(N,w,r) = ¢, (N,w,r)B,(r),

where
e (N, w.r) hy(N)k(Nw) I P I Pt -1
A Nrttw Lo p 2 = p = p b x(p) Ly P = = p X))
plw
and

. p=1E " = x()

where p runs over all rational prime numbers.

Corollary 7. We have C\(1,1,7) =3, =W — B (),

v21 vp(v)

Proof of Lemma 6. We distinguish two cases:
a) The case where h, (N) = 0.

We have to verify that C\ (N, w, ) = 0. Since h,, is multiplicative and we have h, (p*) =
x()" 1 (x(p) — 1), it follows that if h,(N) = 0, then there is a prime divisor p of N with
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x(p) = 1. Hence, h,(v) = 0 for all v that are divisible by N and so C} (N, w,r) = 0.
b) The case where h, (N) # 0.
We rewrite C, (N, w, ) as

hy (N hy (Nv)p(Nw)

Cx(N,w,r) = (Nw)zvr h(N) (Now)o”

(13)

and note that the argument is a multiplicative function in v. We apply the Euler product
identity to evaluate the sum and obtain

(x(p) — 1) p(x(p) — 1)
1;[ (1 T X(P)> pgu (1 TN X(P>))7

plw

r+1

P

N x(p)

which can be rewritten as

P p—1) (p—1)(p* —1)
BX(T) H pr+2 _ pr—H —p+ X(p) H pr+2 _ pT—H —p+ X(p> '
pIN PtV

plw

On inserting this in (13) and noting that

p(k(Nw)) _ K(Nw)
p(r(Nw) =[[e-D ][ -1 S(Nw) - Nuw

p|N ptN
plw

the proof is completed. O

The densities we are interested in can be expressed as a finite linear combination involving
the constants BX(T). Our result generalizes [9, Thm. 5] by Moree, who dealt with the case
F =K =Qand G of rank 1.

Theorem 8. (under GRH). Let a and d be two natural numbers. Put d' = d/(a,d). Assuming
that the function C'(n), defined in (3), is explicitly given, we can write

densg(a,d) = ZdB

XGGd/
with the d,, explicit complex numbers (they can be determined using (11) and Lemma 6).

Proof. In the identity (11) for densg(a, d) we make the substitution

(which is allowed by Lemma 6). The constants d, are obtained by factoring out the terms
B, (1), so that for each x € G4 we have

dX:i;E ’)Z w” Z,u (gnw)’w’r>' =

glno
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3.1. Generic aspects of the behaviour of densg(a, d). Generically the degree [K ¢ @ K]
equals vtp(vt) if G has rank 1. If every degree occurring in (7) would satisfy this, then we

would obtain
= > > W

t=amodd v>1
The inner sum is easily seen to equal A - r(t), with

Thus we can alternatively write

plad) =AY ()

t=a mod d

A, = 1;[ (1- ﬁ) (14)

the rank r Artin constant. The “incomplete” rank r Artin constant, defined by restricting to p
odd, appears also in other works, such as in Pappalardi [14]. For every B > 0 we have, see
[8, Theorem 4],

with

pr,ad ad)L1()+O< ? >

log?

p<zx
with p(p; a, d) the density of elements of in I, having index congruent to @ mod d. Thus on
average a finite field of prime order has p(a, d) elements having index congruent to @ mod d.
Two cases are particularly easy.

Proposition 9 ([8, Proposition 4]). One has

2d if d is odd;
and p(d,2d):{'0(0’ ) {disodd;

0,d) =
p(0,d) 3p(0,2d) ifdis even.

dio(d)

In the remaining cases it is not difficult to express p(a, d) in terms of the B, (1)’s, see [8,
Prop. 6]. When (a, d) = 1 this expression takes a particularly simple form, namely

ﬁd) S X@B(). (1)

In the examples in Section 6 we will meet p(a, d) again.

pla,d) =

4. THE POSITIVITY OF densg(a, d)

As in the previous sections we consider a number field K, a finitely generated and torsion-
free subgroup G of K *, and the natural density densg(a, d) of the primes p of K such that
ind,(G) = a mod d. We are interested in characterizing when this density is positive.

Recall that for a prime p of K of degree 1 such that ind,(G) is well-defined, we have
d | indy(G) if and only if p splits completely in K, 4 (cf. [20, Lem. 2]). So by Chebotarev’s
density theorem we have .
[Kd,d K ]
and thus we may suppose in the following that 0 < a < d.

densg(0,d) = > 0, (16)
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We denote by densg(h) the density of primes p such that ind,(G) = h with h a prescribed
integer, and by ng an integer satisfying C'(n) = C(gcd(n, ng)), where C'(n) was defined in
(3). With this notation we are ready to recall the following result by Jarviniemi and Perucca:

Theorem 10 ([6, Main Thm. and Rem. 4.2], under GRH). The density densg(h) is well-
defined for all h > 1, and we have densg(h) > 0 if and only if densg(ged(h, ng)) > 0. For
any set S of positive integers the following holds: if the density of primes p of K such that
ind,(G) € S is positive, then there is some h € S such that densg(h) > 0.

Proposition 11. (under GRH). If d > 2 is coprime to ny, then densg(a, d) > 0.

Proof. By Theorem 10 (taking S to be the set of positive integers) we know that there is
some i > 1 such that densg(h) > 0. Moreover, we deduce that there is an integer hg | ng
such that for every integer ¢ coprime to no we have densg(thg) > 0. We conclude by taking
t =1 mod ng and t = ahy* mod d. O]

The following result tells us in particular that for every prime number ¢ and for every e > 0
there is a positive density of primes p of K such that v,(ind,(G)) = e.

Proposition 12. For every prime number ( there is some non-negative integer e; (and we can
take ey = 0 for all but finitely many () such that for every e > ey, we have

densg (0, £¢) > densg(0, £1) .
Under GRH, for every n > 0 and for every integer z we have densg (20, (™) > 0.

Proof. By Chebotarev’s density theorem the density of primes p of K such that v(ind, (G)) =
e is given by 1/[Kye e : K| — 1/[Kpet1 4e+1 : K], so the first assertion follows from the
eventual maximal growth of the Kummer degrees, see [15, Lem. 3.2]. By the first assertion
(and by applying Theorem 10 to the set S of positive integers having ¢-adic valuation equal
to e) for every e > e, there is some b coprime to ¢ such that densg(b¢¢) > 0. Then for
every prime ¢ coprime to ng we have densg(gbl¢) > 0 so we may conclude by selecting
q = b~ '2¢="®) mod ¢, which is possible by Dirichlet’s theorem on primes in arithmetic
progressions. 0

If =,y are positive integers, then we use the notation ged(z,y>) to denote the positive
integer obtained from = by removing the prime factors that do not divide y.

Theorem 13. (under GRH). We have densi(a, d) > 0 if and only if
densg(a, ged(d, ng”)) > 0.

Proof. Set dy = ged(d, ny®). The former inequality in the statement clearly implies the latter
because the integers congruent to @ mod d are also congruent to a mod dy. Now suppose that
there is a positive density of primes p of K such that ind,(G) = a mod dy. From Theorem
10 we deduce that there exists 2 > 1 such that h = a mod d, and densg(h) > 0. For every
positive integers ¢, s coprime to n, such that s | th we then have densg(th/s) > 0. If we
choose ¢t = s mod dy, then th/s = a mod dy. We claim that we may also choose ¢, s so
that th/s = a mod d/dy. Because of the Chinese remainder theorem it will be possible to
simultaneously ensure the two conditions and hence densg(th/s) > 0 implies densg(a, d) >
0. To prove the claim, we first choose ¢, s so that ged(a, d/dy) = ged(th/s,d/dy) and then
multiply ¢ by an integer invertible modulo d/d, to obtain the requested congruence. U

Theorem 14. (under GRH). The following conditions are equivalent:
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(1) the density densg(a, d) is positive;
(2) there is an integer A such that A = a mod d and densg(ged(A, ng)) is positive.

Notice that it suffices to consider A modulo lcm(d, ny).

Proof. Write D := lem(d, ng). By Theorem 10 the density densg(a, d) is positive if and only
if there is an integer A = a mod d for which densg (A, D) > 0. The latter holds if and only
if there is an index h such that h = A mod D and densg(h) > 0. Since ng | D, we have
ged(h,ng) = ged(A, ng), and hence by Theorem 10 we have that densg(h) is positive if and
only if densg(ged(A, ng)) is positive.

The final assertion follows from the fact that the properties in (2) only depend on A modulo
lem(d, ng). O

5. THE ARTIN-TYPE CONSTANTS B, (r)

Let » > 1 be an integer. Recall the Euler product definition (12) of B,(r). For r = 1
this was introduced in [8, Sec. 6] and denoted by B,, along with a variant A,, where p is
restricted to those primes for which x(p) # 0. We have

A0 )
pld -1

where d is the modulus of the character. Note that A, = 1 in case Y is the principal character.

If xo is the principal character, then B, (r) is a rational number. This leaves at most
¢(d') — 1 linearly independent Artin-type constants, with d' = d/(a,d). For example, in
case d = 3 and d' = 4 only one Artin-type constant is involved. They are real numbers. As
an illustration we point out the result that the average density of elements of multiplicative
order +£1 mod 3 equals j: 5 By (1), where Y3 is the non-principal character modulo 3 and
B,,(1) = A = 0. 1449809353580. .., see [8].

Approximating the numerical value of B, (r) by computing partial Euler products, gives
a quite poor accuracy. The following result allows us to do rather better and generalizes
[8, Thm. 6] to arbitrary r. It involves special values of Dirichlet L-series. Recall that for
R(s) > 1 and y a Dirichlet character, we have

L(s.x) = — x(n) 1] (1 B X(p)>‘1_

— nS ps

Theorem 15. Let p1(= 2), pa, . .. denote the sequence of consecutive primes and x be any
Dirichlet character. Put

A=A L(r +1,x)L(r + 2, x)L(r + 3, x).
Then

= B T (145 AL ) (- 20)) (1 X

pk Py Dy
with

1
= = <[En| <1+ —,
n+1 n+1
provided that v = 1 and p,+1 > 5, orr =2 and p,11 > 3.
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Proof. Recall the definition (14) of A,. Noting that

1+ % 42
1 — oyt Uyt H-8 | _ 4 Yy
( Yy ) 1_tlrj; +1_t_tr+1’
we obtain
= X(Pr)
B = 4t + L] (14 ) (1)
* ,E PP = pp = 1)
on setting y = x(px) and t = pik. We rewrite the infinite product as
- X(Px) X (Pr) X (Pr)
Llr+2,)L(r +3,v) <1+ . )(1— . )(1— : )
,H P = = 1) P P

in order to improve its convergence. Denoting the k-th term in the infinite product by P, ,
we see that (17) holds with E,,, = [],~, . Prx.

It remains to estimate the relative error F, , (which in general is a complex number).
Multiplying out

(1 . t o t’r‘+1 _|_ ytT+2)(1 . yt’/‘-‘r2)(1 - ytr+3)/<1 . t _ t’f‘+1)

gives
ytr+4
1—t—¢rtl

and leads to the estimate

1+ (1 P (1= ) — gt gt y2t2r+3>’
1Pk <1+2G(,r),
with
t(l + tr—l + ot + tr+2 + t27‘+2 + t2r+3)
1—t—¢rtt
andt = pik. Note that G,.(t) is increasing in ¢ and decreasing in r in the region 0 < ¢ < 1 and
r > 1. Thus

|Pogl < 14p. %Gr(py ") <14 py"°G,(pyty) forevery k > n + 1.

G,(t) =

As t tends to zero, G,(t) tends to zero, and so we can choose n so large that G,.(p, ;) < 1.

Now
1 1
‘Er,n = H |PTJ'€| < H (1+pr+3> <1+ Z mrt3’
k>n+1 pP>Dn m>pn
Comparing the sum with an integral leads to the final estimate
1 < dz 1
|Em|§1+m+/ o St o
Pra Put1 Pria

where the sum is over the integers m > p,,. Similarly,
1 1 1
Ernl > 11 (1—pr+3) >1- ) v I
P>pn m>pn Prt1

Some calculus shows that GT(%) < lifandonlyifr =1landp > 5orr > 2and p > 3. The
proof is now completed on invoking the if-part of this statement. 0J
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Remark 16. In the proof of [8, Thm. 6] there are a few typos:
For “2+ 2t +t* +t°" read “2 + 2t + t* + t* + t°”.

For “t > 127" read “t < 1/127".

For “pn41” read “ppyq”.

6. TWO EXAMPLES

In this section we demonstrate our results by two relatively easy, but illustrative, examples
for K = Q(v/5), r = 1 and d = 5. Some examples for the same 7 and d values, but with
K = Q are given in Moree [10, Table 2].

densg(0,5) densg(1,5) densg(2,5) densg(3,5) densg(4,5)

Po,5(10%) Py 5(10%) Py 5(10%) Ps 5(10%) Py 5(10%)
K (106) K (106) i (106) mx (106) K (106)

145 0.100000 0.418205 0.296724  0.0950872  0.0899840
(557) 0.100093 0.419351 0.296954  0.0947177  0.0888838

5 0.100000 0.451872 0.266393  0.0995570  0.0821785
2 0.099787 0.450979 0.267518  0.0996599  0.0820564

TABLE 1. Examples of densities densg (a, 5) with K = Q(1/5)

In Table 1 we denote by P, 4(x) the number of primes p of K of norm up to x such that
ind,(G) = a mod d, and by 7 (=) the number of primes p of K with norm up to z. The top
row gives the theoretical density, the second row an experimental approximation (both with
rounding of the final decimal).

We will now treat these two examples without using the machinery of Section 3 (however,
with complicated enough examples this becomes unavoidable). Our approach requires some
further notation. Given a divisor J of an integer d;, we put

ps.dy (a,d) Z Z vw

t=a mod d v>1

(v,d1)=6
6.1. First example.
Proposition 17. Set K = Q(V/5) and G = (*53). We have
1

densg(0,5) = 0= 2p(0,5)

and, for 1 < a < 4,
densg(a,5) = 10p(0,5) = = (50 + DA Bu(1) + (@) Bya(1) + 92 (@)Bua(1)).
G\&, - 19P ) 38 3 Us

Proof. The first claim follows from (16) and Proposition 9. Next assume that 1 < a < 4. We
have p(a,5) = p15(a,5) + ps5(a,b). If 5 1 ¢, then

p) o~ uBw) L~ pw)
vtp(vt) = bwtp(5wt) 20 - wtp(wt)

5lv
We conclude that ps5(a,5) = —55015(a,5). It thus follows that p; 5(a,5) = 2 p(a,5) and
ps5(a,5) = —15p(a,5). Since the degree (K, , : K] equals p(n)n if 5 { n and $np(n)
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otherwise, we infer that densg(a,5) = p15(a,5) + 2ps5(a,5) = 15p(a,5). The proof is

completed on invoking (15) and noting that ¢/?(a) is real and ¢*(a) = ¢ (a). O

Approximations to B, (1) can be found in Table 2, where 1) denotes the character modulo
5 determined uniquely by ¥(2) = 7.

X H Bx(l)

¥ || 0.34645514515465 ... + i - 0.21283903970350. ..
P> 0.12284254160167 . . .

3 || 0.34645514515465 . .. — i - 0.21283903970350. . .
P 0.95

TABLE 2. The constants B, (1) ford =5

The character group has ¢, 9%, 1% and v* as elements, with ¢)* being the principal char-
acter. The table is taken from [8, Table 3], where for d < 12 further approximations can be
found. It was kindly verified by Alessandro Languasco using Theorem 15 with n = 105,

6.2. Second example.

Proposition 18. Set K = Q(\/5) and G = (—5+2‘/5>. Let1 < a<4. Oneofaanda+5is
even. Denoting this number by a,, we have

20 4
densg(a, ) = l—gp(a, 5) — Ep(al, 10).

Furthermore, densc(0,5) = 5.

Proof. Using (16) we see that densg(0,5) = 15. We will determine densc(a, 10) in case
51 a. The result then follows on adding densg(a, 10) and densg(a + 5, 10).

Since Q(\/-%) = Q((s), the degree [K,,, : K] equals ¢(n)n if 5 { n, it equals

snp(n) if (n, 10) = 5, and it equals 3n¢(n) if 10 | n. These degree considerations lead to

p15(a, 10) 4+ 4ps 5(a, 10) if 2 | a;

densg(a, 10) = .
( ) {p175(CL, 10) —+ 2,05710(a, 10) -+ 4/)10710(@, 10) if 2 * a.

Reasoning as in the proof of Proposition 17 we deduce that ps 5(a, 10) = —55p15(a, 10)
and py5(a,10) = 23p(a,10). It follows that densg(a, 10) = £p15(a, 10) = 12p(a,10) in
case a is even.

If @ is odd, then so are the integers ¢ = a mod 10 and so pig10(a, 10) = —3p5 10(a, 10),
leading to densg(a, 10) = p;15(a, 10). Reasoning as in the proof of Proposition 17 we then
deduce that densc(a, 10) = 23 p(a, 10). O

For reasons of space we refrain here from explicitly writing out densg(a, 5) as a linear sum
in the B, ’s, but we will indicate how this is done. For p(a,5) we use (15). For a with 5 1 a
we have by [8, Proposition 6] with w = 5 and § = 2,

p(20,10) =2 3" ()

x mod 5

B\ (1)
2+x(2)°
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