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Abstract

Cryptography in its more general sense, is treating cryptosystem as a single-piece of soft-
ware, mostly with the aim of encrypting/decrypting messages. The so-called black-box model
captures the abstract security of a cryptosystem, but it does not consider the physical imple-
mentation, where the mathematical description of a function is actually performed by a device.
In fact, physical implementations contradict the assumption over the intermediate computa-
tion not being accessible to the attacker. In the physical cryptanalysis model, new attacks
became possible; and the Side-Channel Analysis (SCA) targets one of them: i.e. the leakage
produced by the computation. In this thesis, we focused on the countermeasures required to
prevent side-channel attacks.

In [ISW03], Ishai, Sahai and Wagner proposed a new formal model to protect algorithms
from implementation leakage. And, since its appearance at CRYPTO 2003, the ISW model
seemed to be a perfect fit to counter SCA; especially, because the authors provided the first
probably secure construction in the side-channel area. At CHES 2010, Rivain and Prouff (RP)
introduced an elegant masking technique to protect the AES against power analysis attacks.
RP masking is provably secure in the probing model, but this solid theoretical underpinning
comes at the cost of a massive increase in execution time. The ISW model, along with the RP

masking implementation, provided the context where we funnel our researches.
Our first contribution describes the first improvement of the wire shuffling countermeasure

described in [ISW03]. More precisely, we show how to get worst case statistical security against
t probes with running time O(t) instead of O(t log t) (and O(t2) for the classical masking
countermeasure); our construction is also much simpler to implement. We also provided a
practical implementation for AES that outperforms the masking countermeasure for t ≥ 6 000.

Our second contribution describes a software optimization methods to accelerate the low-
level arithmetic in the field F28 , which has a significant impact on the overall performance of a
masked implementation of the AES. Among these optimizations is an improved technique for
table-based multiplication in F28 that allows one to avoid the special treatment of 0-values,
thereby speeding up the multiplication of masked operands. Furthermore, we introduce a novel
exponentiation-based algorithm for inversion in F28 , which reduces the overall number of table
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look-ups and the amount of randomness needed for the refreshing of masks compared to the
original RP inversion.
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Introduction

Before introducing the Side-Channel Analysis (SCA), it might be useful to briefly go through
the evolution of Cryptography in order to give an insight into the whole field and its terminology.
We will retrace some of the milestones which drove this discipline to become as we know it
today: from the historical to the modern approach, from the private-key to the public-key
settings, and from the classical to the physical cryptanalysis.

1.1 Historical vs Modern Cryptography

Leafing through modern dictionaries among many, there is a common definition that captures
the essence of historical cryptography: "the art of writing or solving codes". In fact, at its very
beginning, every attempt to describe cryptography was referred to as an art. This was due to
the fact that the process of constructing or breaking codes relied exclusively on the ability of
the cryptographer, who, indeed, had to develop a good knowledge of the codes mechanisms,
however, the creativity of the individual was more crucial. Without any upon-agreed definition
of what is meant to be "secure", encryption protocols were designed according to this mixture
of creativity and ingenuity, and their security would be evaluated through an iterative process
of searching for vulnerabilities and patching them ad hoc. This "artistic" approach seemed to
be sufficient, considering that cryptography’s initial application was limited to enabling two
parties to communicate secretly, even in the presence of an eavesdropper who could monitor the
exchange of messages between them. Moreover, such communicating parties were constituted
predominantly by military organisations and governments, which, given the nature of the
scope, were intended to keep the cryptography community as secret and restricted as possible.
It is interesting to see how cryptographers were closer to illusionists than mathematicians in
those early stages, focused more on misleading the eyes rather than dealing with theorems and
proofs. Nevertheless, looking at it in retrospect, it is already possible to notice involuntary
similarities with the scientific method ; anticipating the modern evolution of the field as a
proper science and a mathematical discipline.
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The process that spotlighted this hidden nature lasted hundreds of decades and was char-
acterised by several attempts, all considered secure a priori until the mechanisms behind them
were exposed. This process of studying cryptographic systems to look for weaknesses or leaks
of information is called Cryptanalysis, and it plays a crucial role even nowadays. Going in
order, one of the oldest piece of evidence of encryption methods dates back to Julius Caesar in
the last century CE. As established in De Vita Caesarum, Caesar used to cipher (i.e. encrypt)
messages intended for his generals with the purpose of hiding the contents from his enemies.
Julius Caesar’s intuition was to use a "cyclically shifted" alphabet, where each letter is replaced
by another letter located three places further in the alphabet; in this way, a message (also re-
ferred to as plaintext) like beginattacknow would have been sent as EHJLQDWWDFNQRZ (also
refereed as ciphertext), making it look like gibberish to anyone not aware of the encryption
process. However, what was considered a "simple trick" leaded, centuries later, to a whole cate-
gory of encryption schemes called monoalphabetic substitution ciphers, where each letter of the
plaintext is replaced univocally with some other character according to a different logic. They
were popular until a study about frequency analysis came out, breaking such cryptosystems.
In fact, the study proposed by Al-Kindi showed a pattern between specific letters and their
occurrence frequency in the language, making it easy to map each letter of the ciphertext with
the corresponding one in the plaintext. In the 16th century, monoalphabetic ciphers were suc-
ceeded by polyalphabetic substitution ciphers: within the same cipher, the encryption algorithm
alternated different monoalphabetic substitutions. The Vegenère’s cipher is a famous example
of this category, but it was also considered unbreakable for many years until an extension of the
frequency analysis proved otherwise. In turn, in the 19th and 20th centuries, more advanced
polyalphabetic ciphers appeared, which differed from the previous ones by their exploitation
of mechanical devices. The Enigma machine belongs to this kind, and the Germans used it
to encrypt radio communication during WWII. Enigma allowed the encoding of a message in
billions of ways, making it incredibly difficult for other nations to crack German codes during
the war and for a time the code seemed unbreakable. As we know from history, the Allies
eventually broke Enigma, gaining the upper hand in the resolution of the conflict.

Moreover, cryptography propelled its transformation with the emergence of electronic de-
vices and computers in the late 20th century. On one side, these new technologies speeded
up complex computation in a reasonable time, allowing the design of more complex ciphers.
In the 70s, a block cipher proposed by cryptographers at IBM was selected by the US Na-
tional Bureau of Standards (NSA) as the first official Data Encryption Standard (DES); DES
has been (and still is) widely used, analysed and improved since then. On the other side, the
development of general-purpose computers extended the need for security beyond the govern-
mental circles, capturing more and more attention, especially among mathematicians. These
new large-scale consumers of cryptography pushed for a more rigorous approach, with the
idealistic goal to provide the encryption scheme with a "certificate" (i.e. a proof ) attesting
its security. Consequently, the community began to see "mathematics" as a powerful mean to
fill this scientific-approach gap. In fact, as we will see, Kerckoffs’ law, Shannon’s information
theory, the complexity theory and other studies have influenced how researchers think about



1.2 Symmetric vs Asymmetric Cryptography 5

the broader field of computer security. In sum, cryptography has gone from a heuristic set of
tools concerned with ensuring secret communication for the military to a science that helps
secure systems for ordinary people all across the globe, forcing the field to evolve into a branch
of applied mathematics and computer science.

An emphasis on definitions, assumptions and proofs distinguishes modern cryptography
from classical. Those three principles are the foundations for whoever wants to approach the
discipline, so it is worth briefly mentioning them. Formal definitions consist of a not ambiguous
description of what threats must be prevented and what security guarantees must be achieved.
A priori understanding of the security goal has been recognized as more effective than going
the other way around. Additionally, it is interesting to notice that there are multiple (and all
correct) ways to define security and the "better" definition exclusively depends on the context
in which the scheme is deployed. In turn, a clear and exhaustive definition allows us to achieve
the ultimate goal of producing security proofs. Such proofs act as a guarantee ensuring that
no adversary can break the construction taken into consideration. Unfortunately, in practice,
most cryptographic schemes cannot be proven unconditionally; otherwise, such proofs would be
used to answer harder open questions from the computational complexity that seems far from
being solved. Consequently, proofs of security typically rely on assumptions: some statement
that is not proven but collectively conjectured to be true. As we said for the definitions, also
for assumptions is challenging to define a scale, but clearly, older and long-studied assumptions
should be preferred compared to new and ad hoc ones. Alternatively, as a general guideline,
assumptions with a simple statement are often chosen too, since they are easier to study (or
refute).

1.2 Symmetric vs Asymmetric Cryptography

It is possible to divide modern cryptography into two main categories: Symmetric and Asym-
metric. As implicitly described in the previous section, symmetric encryption involves using
the same key for both encryption and decryption; the plaintext is encrypted depending on the
key, and the same key is required to decrypt the ciphertext back to the original form. Hence,
the key must be known in advance since it is used by both the sender and receiver. How such
a key is securely exchanged remains out of the scope and is assumed to be already staged. For
example, the secrecy of the "red line" used by the White House and the Kremlin during the
Cold War was based on a symmetric-key encryption scheme called One-Time Pad, where a
long key, written on paper and handily exchanged between the US and URSS emissaries, was
applied. Clearly, whoever knows the key is able to encrypt or decrypt any message exchanged,
so it is essential to keep it secret. Since the same key is used, symmetric cryptography is also
referred to as private-key cryptography.

Most of the above-mentioned protocols, like the Caesar’s and the Vegenère’s ciphers, or
the DES and all its variants, fall into the category. Despite being one of the oldest encryption
techniques, symmetric schemes are still widely used today since they are faster and easier to
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implement compared to their asymmetric counterpart. This is due to several aspects that are
still not achieved in asymmetric encryption: the ciphertext has the same length as the plaintext,
the key shared by the parties hardly exceeds 128/256-bits and in most cases, the encryption
phase requires a low-usage of resources. For such reasons and more, symmetric encryption is
preferable in a context where a large amount of data needs to be encrypted and transmitted.
Although, a few drawbacks balance the advantages from a theoretical point of view. The first
has already been mentioned and it is an a priori assumption that the key has already been
shared among the involved parties. Despite the problem, this brings to a slow-rate scaling,
since sharing the same key with a new party must be carefully managed. Another relies on
the fact that symmetric encryption suffers from key exhaustion issues; multiple usages of the
same key over time may leak information about the key itself, which may lead an adversary
to a complete reconstruction. Additionally, as we will see in full detail since it is the subject
of the thesis, side-channel attacks can recover keys by exploiting the hardware characteristic
of the devices where the protocol is running. Consequently, without appropriate key hierarchy
and rotation, the probability of a breach represents a serious issue, especially for large-scale
systems.

In opposition to symmetric, asymmetric cryptography enables parties to communicate pri-
vately without assuming that some secret information has already been shared. In asymmetric
settings, the receiving party computes a pair of keys, one for the encryption phase (called the
public key) and one for decrypting (called the secret key). Specifically, the public key is used by
the sender to encrypt the plaintext. In contrast, the receiver requires the secret key to decrypt
the ciphertext. Note that both keys are computed by the receiver and are independent of any
specific senders. In this way, the receiver may publish its public key (say on its website or busi-
ness card), and whoever wants to send a message can obtain the public key and proceeds with
the ciphering; clearly, differently from the private-key settings, here, the roles in the exchange
are not interchangeable: the receiver cannot reply using its keys, but it needs the sender’s pub-
lic key. This new way of exchanging messages marked a revolution in cryptography, allowing
communication between parties to take place entirely through insecure channels. At the same
time, in symmetric encryption protocols, the initial stage (i.e. the agreement on the secret key)
can only occur via secure channels. On the flipping side, such a public key has to be assumed
to be known by any attackers as well. For evident reasons, asymmetric cryptography is also
referred to as public-key cryptography.

Hence, this new paradigm can overcome the significant disadvantage of private-key en-
cryption: the issues related to the key distribution (at least to some extent). As explained,
no data needs to be computed and agreed on during the process. For the same reason, asym-
metric encryption is considered more secure and perfect for large-scale and "open" systems.
Furthermore, public-key cryptography allows digital signatures, the digital equivalence of a
handwriting signing on a paper document. This feature incorporates properties like message
authentication and non-repudiation and has become an essential requirement nowadays; the
private key is used to generate a signature which is hard to forge, and it identifies non- am-
biguously a user while anyone may use the public key to confirm the signature of such user,
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as well as, once the user signed some data it is impossible to deny it afterwards. On the
other side, these stronger security guarantees come at a price: efficiency. In fact, compared to
private-key settings, public-key encryption requires very high resource utilization, mathemat-
ical time-consuming operations and large-sized keys, and it produces longer ciphertexts with
respect to the initial plaintexts. In turn, if symmetric is preferable for the transmission of big
chunks of data, the asymmetric counterpart is used to transfer a small amount of information.

As one last point, it may be interesting to underline the difference in how the two branches
are evaluated and then considered secure. Usually, symmetric ciphers come with proofs of cor-
rectness, i.e. the decryption algorithm always returns the correct plaintext. While concerning
the actual security, block-ciphers need to pass through years of unsuccessful cryptanalysis; in
years, no attack can break the system has been found. Note that the attacks must be faster
than an exhaustive search, which is always possible but at the rate of hundreds of years. In-
stead, asymmetric cryptosystems mostly rely on a hard problem from number theory, where
the hardness is defined as the computational impossibility of finding a solution to the prob-
lem. Factorization of large prime numbers and discrete logarithm computation in multiplicative
groups are the most used (but not the only ones) in modern cryptography. Here, the security
proof is based on reduction; that is, claiming and proving that the existence of an adversary
able to break the system would result in breaking the underlying hard problems.

1.3 Black-Box Model vs Physical Cryptanalysis

So far, we have dealt with cryptography in its more general sense, treating a cryptosystem
as a single piece of software, mainly intending to encrypt/decrypt messages. It evolved in
more than that; a cryptosystem is essentially an algorithm implementing security services
like confidentiality, integrity, authenticity and more. In turn, cryptosystems use cryptographic
primitives as building blocks to achieve these specific security services. Cryptographic prim-
itives are designed to compute some very specific task in a very precisely defined and highly
reliable fashion.

Thus, cryptographic primitives are single components of larger and more complex systems.
Hence, if a primitive is breakable, the whole system has to be considered breakable. On the
other side, improving the security or the efficiency of primitives benefits the entire system.
Nevertheless, both cryptosystems and primitives can be investigated in the same ways. The
classical way is usually called black-box: in this model, protocols are assumed to be attacked
by adversaries, which cannot exploit the inner structure of the primitives nor the intermediate
computations of building blocks. That is, schemes are treated as oracles (i.e. black-boxes),
where the adversary may query with inputs of its choice but obtain only the final output.
Moreover, the security is evaluated according to the abilities of the adversary to query the
oracle (un)bounded number of times, obtaining (un)bounded number of input/output pairs
and still not recovering sensitive information from them. The black-box model captures the
abstract security of a cryptosystem or a primitive but it does not consider the physical imple-
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mentation, where the mathematical description of a function is actually performed by a device.
In fact, physical implementations contradict the assumption of the intermediate computation
not being accessible to the attacker. In practice, observations like the execution time, the
power consumption or the electromagnetic radiation produced during the computation may
be translated into actual intermediate values, giving the adversary information not considered
in the black-box model. In the physical cryptanalysis model, new attacks became possible.
They can be divided into two main categories: fault analysis, where the computation is dis-
rupted, causing improper results, and side-channel analysis, considered the leakage produced
by the computation. We will focus on the second category, where we funnelled our research.

1.3.1 Side-Channel Analysis

As we mentioned, physical attacks take advantage of implementation-specifics characteristics to
recover sensitive data. Therefore, this dependency on the specific implementation makes such
attacks less general and, in turn, harder to contrast. Despite their peculiarity, the literature
classified them as follows:

1. Invasive attacks: where a physical intervention on the device is required from the adversary.
Namely, physically probe a wire of the device with a needle to observe the data passing
through it.

2. Non-Invasive attacks: where the adversary exploits information unintentionally, but au-
tomatically, leaked by the device. Such external data are often running-time, power con-
sumption etc.

3. Active attacks: where the attacker tries to intentionally jeopardise the correct functioning
of the machine. As an example, fault-injections actively induce errors in the computation
and observe the devise response.

4. Passive attacks: where the information leaked comes only from the act of observing the
device’s behaviour. Power analysis is the most common passive attack in which the power
consumption of a device executing the algorithm is analysed to find the secret data.

However, the attacks most often considered in the literature are non-intensive and passive; i.e.
timing information, power consumption and electric radiations. Moreover, the numerous range
of attacks produced, joined with the exponential increase of software applications in our daily
life, has turned side-channel attacks into a real and practical concern. For those reasons, we
are going to summarize the state of the art of the discipline. Or at least, the state of art the
that provided the humus for our research.

Hence, since their introduction in the late 90s, side-channel attacks have been under several
investigations. Despite the numerous customised patches adopted against well-known physi-
cal attacks, a heavy effort has been made to develop protection strategies. Among them, one
of the widely used relies on applying secret sharing at the implementation level; where any
sensitive data x is manipulated as a set of n shares. The so-called high-order masking was
first introduced in [CJRR99], but it gained popularity with the milestone publication [ISW03]
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at CRYPTO in 2003. Ishai, Sahai and Wegner’s strategies achieved provable security in the
so-called probing security model. Ishai et al. proposed a high-order masking scheme for multi-
plication over F2 in quadratic complexity; in other words, they worked in the boolean context.
The ISW scheme was later used by Rivain and Prouff to pass from boolean to arithmetic mask-
ing, [RP10]. This extension to F2n allowed to introduce an efficient masked implementation of
AES. This represented a turning point since before their work all previous masking schemes
were proved to be secure only for 1-order or 2-order. In fact, the randomized-table counter-
measure [CJRR99] achieved security only against 1-order attacks; while the Schramm-Paar
countermeasure [SP06], designed to resist any n-order attacks, has been successfully broken
by a 3-order attack in [CPR07].

Thus, over the years, Rivain-Proof masking has been investigated and a lot of publications
came out to improve the efficiency via different approaches; let’s recall some of them. In
[Cor14], Coron described a technique to mask look-up tables of block-cipher of any order.
Moreover, in those years, a flaw in [RP10] has been discovered concerning the refreshing of
the used randomness in the multiplication algorithm. Such flaw was spotted by the authors
themself, joined with others, in [CGPZ16]; and definitively fixed in [BBD+16]. Actually, Barthe
et al. have contributed with their work in [BBD+16], not only in proposing a secure way to
refresh randomness but also in introducing a new stronger security definition called strong
non-interference, now considered among the most appreciated security in literature, in the
physical attacks context.

Hence, since the beginning, it has been noticed that the most challenging part of the
masking process is the non-linear operations; while any linear function can be masked easily
and in O(n), there is no way (so far) to mask non-linear functions in less the O(n2). Thus,
the total complexity is dependent on the number of non-linear multiplications involved in
the polynomial evaluation. The work done by Coron, Roy and Vivek [CRV14] represents the
current best-known generic method for this aim. Furthermore, an alternative to the ISW-based
polynomial methods was proposed by Carlet, Prouff, Rivain and Roche in [CPRR15], where
they introduced a so-called algebraic decomposition method that can express an S-box in terms
of a polynomial of low-degree.

In conclusion, despite its popularity and the many improvements proposed by the commu-
nity, high-order masking still implies a strong overhead and practical implementation limita-
tions. We will show our new contributions in this area, both theoretical and practical, hoping
to get to reduce the gap existing between academia and practical usage in the real world.
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Preliminaries

In this chapter, we are going to recall the basic background mentioned in the rest of this
thesis. We start by characterizing the notion of circuits (see Section 2.1) and introducing the
masking countermeasure (see Section 2.2). Then, we describe the operations performed by the
encryption scheme AES (see Section 2.3).

2.1 Circuits

As in [ISW03], we consider probing attacks mainly in the setting of circuits. A deterministic
circuit C can be pictured as a directed acyclic graph, where gates are represented as vertices
and the wires are expressed as edges. As a well-established practice, we also assume that every
gate has fan-in and fan-out at most 2. Note that this will not imply a loss in the generality
since it is always possible to transform any circuit with general fan-in/fan-out in one belonging
to the above type, with a logarithmic cost in the depth. Moreover, a random-bit gate is a gate
having no inputs (i.e. fan-in 0) and outputting a random bit, that is sent along its output wire;
the bit is selected uniformly and independently. The size of a circuit, denoted by |C|, is the
number of gates, while its depth is defined as the length of the longest path from an input to
an output. We refer to a circuit just described as a stateless circuit.

In contradistinction, a stateful circuit is a stateless circuit but augmented with memory
cells. A memory cell is a gate with fan-in and fan-out 1, that, on any invocation, outputs the
previous input to the gate, and stores the current input for the next invocation. In other words,
a memory cell acts as a delay element. When C denotes a stateful circuit, it is required that
such circuit is initialized with some initial state s0; usually, C[s0] is used to indicate a circuit
C with memory cells initially filled with s0. Stateful circuits can also have external input and
output wires.
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2.2 Masking Countermeasure

As mentioned in the previous chapter, SCA attacks are based on the observation of a set of
intermediate variables (say, for example, t) computed during a cryptosystem processing. One
of the most used and studied techniques is the randomization of the cryptosystem in such a
way that the probability distribution of any subset of at most t intermediate computations is
independent of the secret key. In order to achieve this randomization, it is applied to the data
of the circuit what has been called the masking countermeasure, [CJRR99]. In a nutshell, this
technique maps any sensitive variable x (i.e a variable that depends on some required-secret
information) into n shares x1, x2, . . . , xn satisfying the following equation:

x1 ⊕ x2 ⊕ . . .⊕ xn = x (2.1)

Often the first n − 1 shares (also called masks) are initially assigned uniformly at random,
while xn is computed as xn = x⊕ x1 ⊕ . . .⊕ xn−1 to maintain the validity of Equation (2.1).
Furthermore, the term order of the masking is identified as the number of shares generated at
random; for instance, if we take the above masking in the examination, we would say that it
is an (n− 1)-order masking. In literature, sometimes the order has been also referred to as d;
but, in this thesis, to avoid confusion, we will mostly stick to the notation "n" for the number
of shares and "n− 1" for the order. The main guarantee provided by an (n− 1)-order masking
is that every (n − 1)-tuple of intermediate variables is statistically independent of the secret
key.

When the masking is applied to some cryptosystem, the challenge is to deal with the shares
of x and not with x itself; each operation must be redesigned to manipulate shares while the
input-output functionality is maintained. On one side, linear operations are straightforward
to mask since they can be computed independently and at the shares-level (i.e between shares
with the same index). That is, for every linear function f the following equation is held:

f(x1)⊕ f(x2)⊕ . . .⊕ f(xn) = f(x1 ⊕ x2 ⊕ . . .⊕ xn) (2.2)

On the flipping coin, properly masking non-linear functions (like boolean or arithmetic multi-
plication or implementation of the S-box used in AES, see Section 2.3) is a harder task. How
to compute those non-linear functions has a crucial role, in fact, it will imply how fast, how
efficient and how secure the masked cryptosystem is; making it more or less practical in the
real world.

Concerning, again, the notation adopted in this thesis, we would like to remark to the reader
that the set of shares or masks will mainly be referred to as a vector x = (x1, x2, . . . , xn) or as
a set (xi)1≤i≤n; moreover, sometimes we will refer to a specific subset of shares with the notion
x|I := (xi)i∈I , meaning only the shares whose index belongs to the set I must be considered.
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2.3 Advanced Encryption Standard

The block cipher Rijndael was selected by NIST in 2001 to become the encryption standard
called Advanced Encryption Standard (or AES) [DR02]. We are going to briefly recall its
structure. It might be useful to start from the difference between Rijndael, proposed by Deamen
and Rijmen, and the final accepted standard AES. Such disparities only involve the range of
parameters in the length of both blocks and key applicable to the cryptosystem. Concretely,
while Rijndael allows every multiple of 32 bits in the range [128, 256] bits; AES supports only
blocks of fixed length 128 bits with a key that may be 128, 192 or 256 bits long.

2.3.1 Specifications of Rijndael

The Rijndael block cipher is structured as a multiple rounds transformation. Such transfor-
mations are applied to what they have called the state: one-dimensional arrays of 8-bit bytes.
Where the input state is the plaintext and the output state is the ciphertext. The state is
usually represented as a 4×Nb matrix, where Nb is the number of columns (computed as the
block length divided by 32); symmetrically, the key is represented as a 4 × Nk matrix, where
Nk is the number of columns (computed as the key length divided by 32). See Figure 21 for an
illustration. Note that, even if we have displayed the state and the key in their array notation
(i.e. s0, s1, s2, . . . , s4·Nb

and k0, k1, k2, . . . , s4·Nk
), sometimes, for convenience, we will use the

matrix notation of the elements (i.e. si,j 0 ≤ i ≤ 4 · Nb and ki,j 0 ≤ i ≤ 4 · Nk).


s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15



k0 k4 k8 k12 k16 k20
k1 k5 k9 k13 k17 k21
k2 k6 k10 k14 k18 k22
k3 k7 k11 k15 k19 k23


Fig. 21: State and Key layout for Nb = 4 and Nk = 6.

For each element (i.e byte), the authors used the polynomial representation of F28 . Namely,
in the scheme, each si,j and ki,j is treated as a polynomial of a degree smaller the 8, with a
coefficient in F2. Moreover, the multiplication has been chosen to work modulo the irreducible
polynomial m(x) = x8+x4+x3+x+1. As mentioned at the beginning of the Section, Rijndael
consists of an iterated application of a round transformation. The number of rounds is fixed
and determined according to the block and key length, we refer to it as Nr. In practice, such
values are specified in Figure 22.
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Fig. 22: Number of Rounds of Rijndael. Note that for AES Nb is fixed to 4 and Nk ∈ {4, 6, 8}.

In a nutshell, each round is a composition of the following operations:

1. SubBytes: is the only non-linear transformation of the cipher. This transformation consists
of a specific S-box applied to the state. Such S-box is designed to achieve non-linearity
(minimizing the maximum input-output correlation amplitude and the maximum difference
propagation probability) and algebraic complexity. The chosen S-box is defined by the
following function in F28 :

SB8 : a→ Aff8(Inv8(a)) (2.3)

Where Inv8 is defined in Equation (2.4) and it is the inversion function in the field;

Inv8 : a→ a−1 (2.4)

while Aff8 is an invertible affine transformation produced from a polynomial multiplication
XORed with a constant and is defined in Equation (2.5):

Aff : a→ (



1 1 1 1 1 0 0 0

0 1 1 1 1 1 0 0

0 0 1 1 1 1 1 0

0 0 0 1 1 1 1 1

1 0 0 0 1 1 1 1

1 1 0 0 0 1 1 1

1 1 1 0 0 0 1 1

1 1 1 1 0 0 0 1


× a)⊕



0

1

1

0

0

0

1

1


(2.5)

2. ShiftRows: is a byte transposition that cyclically shifts the rows of the state over different
offsets (respectively 0, 1, 2 and 3 for the first, second, third and fourth row); see Figure 23.
Such offsets are chosen to achieve optimal diffusion to maximal resistance against truncated
differential attacks.
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s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15

→

s0 s4 s8 s12
s5 s9 s13 s1
s10 s14 s2 s6
s15 s3 s7 s11


Fig. 23: The input state (right) vs ShiftRows’s output state.

3. MixColumns: is a permutation of the state column by column. The columns of the state are
multiplied by the polynomial 3x3+x2+x+2 mod x4+1, see Figure 24. The polynomial has
been chosen considering dimension, linearity, diffusion and performance on 8-bit processors.


2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

×


s4·i
s(4·i)+1

s(4·i)+2

s(4·i)+3


Fig. 24: The multiplication of the polynomial 3x3 + x2 + x+ 2 mod x4 + 1 is performed per
each column of the state, i.e for 1 ≤ i ≤ 4.

4. AddRoundKey: is a XORing operation between the state and RoundKey, namely each round
uses its own round key. The array of round keys (called ExpandedKey[]) comes from a key
schedule procedure taking as input the key of the cipher and, according to the length of
the key see Algorithm 2.1 and Algorithm 2.2, returns an array of Nk RoundKeys. The size
of the ExpandedKey is equal to the block length multiplied by the number of rounds.
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s0 s4 s8 s12
s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15
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Fig. 25: The input state (right) is XORed with the key computed by ExpandedKey for the r-th
round, with 1 ≤ r ≤ Nr.

Algorithm 2.1 KeyExpansion - for Nk ≤ 6

Input: CipherKey: K[4][Nk]; S-box: SB[256]; RC: [1,0,0,0].
Output: ExpandedKey: W[4][Nb(Nr + 1)]

1: for j = 0 to Nr − 1 do
2: for i = 1 to 3 do
3: W[i][j]← K[i][j]

4: for j = Nk to Nb(Nk + 1)− 1 do
5: if j mod Nk = 0 then
6: W[0][j]←W[0][j − Nk] + SB[W[0][j − 1]] + RC[j/Nk]

7: for i = 1 to 3 do
8: W[i][j]←W[i][j − Nk] + SB[W[i+ 1 mod 4][j − 1]]

9: else
10: for i = 0 to 3 do
11: W[i][j]←W[i][j − Nk] +W[i][j − 1]

12: return W
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Algorithm 2.2 KeyExpansion - for Nk > 6

Input: CipherKey: K[4][Nk]; S-box: SB[256]; RC: [1,0,0,0].
Output: ExpandedKey: W[4][Nb(Nr + 1)]

1: for j = 0 to Nr − 1 do
2: for i = 1 to 3 do
3: W[i][j]← K[i][j]

4: for j = Nk to Nb(Nk + 1)− 1 do
5: if j mod Nk = 0 then
6: W[0][j]←W[0][j − Nk] + SB[W[0][j − 1]] + RC[j/Nk]

7: for i = 1 to 3 do
8: W[i][j]←W[i][j − Nk] + SB[W[i+ 1 mod 4][j − 1]]

9: else if j mod Nk = 4 then
10: for i = 0 to 3 do
11: W[i][j]←W[i][j − Nk] + SB[W[i][j − 1]]

12: return W

13: else
14: for i = 0 to 3 do
15: W[i][j]←W[i][j − Nk] +W[i][j − 1]

16: return W

In conclusion, we recall the algorithm: the procedure starts with the expansion of the
key and the first XOR between the initial state and the cipher key follows. Afterwards, the
algorithm iterates the round procedure for Nr − 1 times, since the last round is composed
slightly differently. Namely, for the last round, theMixColumn is removed, as it adds no security
to the cipher since it can be trivially inverted. See Algorithm 2.3 for the details.

Algorithm 2.3 AES - Encryption protocol
Rijndael(State,CipherKey)

KeyExpansion(CipherKey,ExpandedKey)

AddRoundKey(State,ExpandedKey[0])

for i = 1 to Nr − 1 do
SubBytes(State)

ShiftRows(State)

MixColumn(State)

AddRoundKey(State,ExpandedKey[i])

SubBytes(State)

ShiftRows(State)

AddRoundKey(State,ExpandedKey[Nr])

Remark 2.1. In this section, only the encryption phase has been considered since the decryption
is straightforward. In fact, note that each of the above operations is easily invertible and for
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this reason they have been omitted. Nevertheless, we refer the reader to [DR02] for the inverted
variant of the above functions, as well as, the decryption algorithm and the security proofs.
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Side-Channel Analysis

In this chapter, we are going to see in detail some of the publications mentioned in the Intro-
duction. More specifically, we face the state of the art that is at the bottom of the contributions
proposed in this thesis and done in those four years. From the ISW model (see Section 3.1) to
the first proven secure masked implementation of AES (see Section 3.2). Introducing the SNI

security (see Section 3.3). Lastly, we describe the models considered in our works: the regional
probing model (see Section 3.4) and the software probing model (see Section 3.5).

3.1 The ISW Model

In [ISW03], Ishai, Sahai and Wagner showed a new formal model to protect primitives from im-
plementation leakage, but from a designing point of view. Their work had the aim of proposing
new security definitions to guarantee an inherent resistance against a large class of side-channel
attacks. The goal was to build protection for generic probing attacks. To achieve the generic
characteristic, the approach was to ignore how the information leaks but to focus on predicting
how much and at what rate the information is going to leak. Moreover, their model is generic in
the sense that privacy is ensured for any cryptosystem or primitive. Consequently, the authors
reasoned in terms of circuits; in particular, they showed how to transform any circuit into a
different and larger one, where security is guaranteed even in presence of an attacker observing
a bounded amount of wires. In other words, the ISW model provided definitions of security
against probing attacks and constructions that are proven to achieve such definitions.

The impossibility of achieving obfuscation, presented in [BGI+01], forced some limitation
in the power of the attacker considered in their definitions. In fact, the result in [BGI+01] can
be extended to any adversary probing any internal computation. The limitation introduced
in their paper was defined as a parameter: in their model, they considered attackers that can
observe or probe up to t wires in the examined circuit within one clock cycle. Nevertheless,
such a t-limited adversary sounded like a reasonable restriction either considering the fact
that in practice almost all known side-channel attacks are able to recover just part of the
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information or taking into account that a single physical probe is performed through a very
expensive needle, making a bound over the number of probes that a real-world attacker can
afford. Finally, it is interesting to stress that no theoretical model formulation, before [ISW03],
had ever achieved provable security. The authors defined security in terms of transformers T :
an efficiently computable randomized algorithm taking as input a circuit C and returning a
different circuit C ′. In addition, such C ′ needs to encounter some properties: that is C ′ needs
to satisfy soundness and privacy to be considered t-private. The several definitions given in
[ISW03] differ from each other according to how soundness and privacy are stated; in turn,
they are characterized by: 1) the type of the examined circuit, i.e stateless or stateful and 2)
the straight of the privacy guarantees, i.e. perfect, statistical or computational.

In the following subsections, we are going to recall definitions, constructions and proofs
for the perfect privacy in stateless (Section 3.1.1) and stateful (Section 3.1.2) settings; then
we will introduce the random probing model (Section 3.1.3) since it is essential to understand
definitions, constructions and proofs for the statistical privacy in stateless (Section 3.1.4) and
stateful (Section 3.1.5) setting.

3.1.1 Perfect Privacy for Stateless Circuits

Definition. Informally, to achieve perfect privacy for stateless circuits there must exist a
transformer able to take any circuit C and compute it in order to output a new circuit C ′,
where the input-output functionality of C and C ′ are identical for any distinguisher and any
adversary being able to probe up to t internal wires of C ′ would learn nothing from those
values. In addition, the original input and output of C should be kept hidden. In order to
satisfy this requirement, the transformer can make use of a randomized input encoder I and
an output decoder O. Both I and O cannot be accessed (or probed) by the adversary and they
need to be designed to be independent of the circuit C. Note that the assumption of not being
probed for the encoder/decoder can be easily obtained in practice too; since typically such
circuit needs very few gates to be computed, they may be implemented by temper-resistant
hardware components, where the expensive cost is balanced by the small size. Formally:

Definition 3.1 (Perfect privacy for stateless circuits [ISW03]). Let T be an efficiently
computable deterministic function mapping a stateless circuit C to a stateless circuit C ′, and
let I, O be as above. We say that (T, I,O) is a t-private stateless transformer if it satisfies the:
1. Soundness. The input-output functionality of O ◦ C ′ ◦ I (i.e., the iterated application of
I, C ′, O in that order) is indistinguishable from that of C.

2. Privacy. It is required that the view of any t-limited adversary, which attacks O ◦ C ′ ◦ I
by probing at most t wires in C ′, can be simulated from scratch, i.e. without access to any
wire in the circuit. The identity of the probed wires has to be chosen in advance by the
adversary.

Construction. In [ISW03], the authors presented their construction to achieve perfect privacy
in the stateless setting. As formalized below, they used a simple secret-sharing scheme, this
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technique is often referred to as masking countermeasure. The idea is to deal with every
intermediate variable x as n shares x = x1⊕x2⊕· · ·⊕xn and process each xi separately along
the circuit. As a consequence, the gates have to be carefully computed in such a way that
intermediate computations do not leak sensitive information. For security against t probes,
the three algorithms (I, T,O) require n = 2t+ 1 shares; and they are defined as follows:

• Encode I. Each binary input x is mapped to n binary values. First, n − 1 random bits
r1, . . . , rn−1 are independently generated. The encoding of x is composed of these n − 1

random values together with rn = x⊕r1⊕ . . .⊕rn−1. The circuit I computes the encoding
of each input bit independently.

• Decode O. The output returned by T (C) has the form y1, . . . , yn. The associated output
bit of C computed by O is y1 ⊕ . . .⊕ yn.

• Transformer T . Assume without loss of generality that the original circuit C consists of
only XOR and AND gates. The transformed circuit C ′ maintains the invariant that cor-
responding to each wire in C will be n wires in C ′ carrying an n-sharing of the value on
that wire of C. More precisely, the circuit C ′ is obtained by transforming the gates of C
as follows.
For an XOR gate with inputs a, b and output c, let in C ′ be the corresponding wires
a1, . . . , an and b1, . . . , bn. From c = a⊕ b =⊕n

i=1 ai ⊕ bi, we let ci = ai ⊕ bi for 1 ≤ i ≤ n.
Consider an AND gate in C with inputs a, b and output c; we have c = a∧b =⊕i,j aibj . In
the transformation of this gate, intermediate values zi,j for i 6= j are computed. For each
1 ≤ i < j ≤ n, zi,j is computed uniformly random, while zj,i is set to (zi,j ⊕ aibj)⊕ ajbi.
Now, the output bits c1, . . . , cn in C ′ are defined to be the sequence ci = aibi ⊕

⊕
j 6=i

zi,j .

Remark 3.2. We would like to remark that in the original paper [ISW03] the description of the
transformer was considering circuits composed of only NOT and AND gates; differently from
them, we preferred to work with only XORs and ANDs. Nevertheless, the two descriptions of
circuits are equivalent. Intuitively, they processed the NOT gate simply by maintaining the
first n− 1 wires as they are and putting an inverter after the n-th wire.

Since it will be helpful later, we also provided an algorithmic description of AND in Al-
gorithm 3.1. In the transformed circuit C ′ = T (C), every XOR gate and AND gate in C are
therefore expanded to gadgets of size O(n) and O(n2) respectively, and the gadgets in C ′ are
connected in the same way as the gates in C. This completes the description of T .
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Algorithm 3.1 AND gadget - d-order secure multiplication over F2

Input: shares ai satisfying
⊕
ai = a, shares bi satisfying

⊕
bi = b

Output: shares ci satisfying
⊕
ci = a · b

1: for i = 1 to n do
2: for j = i+ 1 to n do
3: ri,j

$←− {0, 1}
4: rj,i ← (ri,j ⊕ aibj)⊕ ajbi
5: for i = 1 to n do
6: ci ← aibi
7: for (j = 1 to n) ∧ (i 6= j) do
8: ci ← ci ⊕ ri,j
9: return (c1, . . . , cn)

Security. As said previously, one of the strongest points of the ISW model is the fact that it is
provably secure. Thus, the authors could provide proof that the above construction is indeed
perfectly t-private in the stateless setting as stated in the following. We will give a scratch
of the proof proposed in [ISW03] but we refer the reader to the original paper for a detailed
explanation.

Theorem 3.3. The above construction is a perfectly t-private stateless transformer (T, I,O),
such that T maps any stateless circuit C of depth d to a randomized stateless circuit of size
O(|C| · t2) and depth O(d log t).

Proof (Scratch of the proof). In order to prove the theorem, the authors had to show that
the construction achieves soundness and privacy. If it should be easy to verify that C and
C ′ have the same input-output functionality, proving the privacy requires a bit more effort.
Specifically, it implies generating values for the t probes chosen by the adversary and making
them indistinguishable from the ones the attacker would have obtained in a real execution
of C ′. In addition, such t queries have to be provided without any knowledge of the input of
C. The term simulator indicates the algorithm computing from scratch the t values for the
probes.

The proof starts proving the t-privacy for a single gadget: the goal is to carefully define a
set of input wires indices I such that the joint distribution of values assigned to the probed
wires can be simulated from the ais and bis belonging to I. This would be enough to ensure
privacy since, by definition, the input shares {ai} and {bi}, as well as the output shares {ci},
have the property that any n − 1 subset of such shares are distributed as uniformly random,
thus, assigning random values to ai|I and bi|I (and computing the probes accordingly to them)
would allow an indistinguishable view as long as the cardinality of I is not exceeding n − 1

elements. Hence, first set I is defined: supposing the adversary has probed w1, w2, . . . , wt, each
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wh can carry only a few values, i.e ai, bi, aibi, zi,j1 or any sum among them, aibj , zi,j1 ⊕ aibj
and ci. The procedure is the following:
1. If wh is in the form ai, bi, ci, aibi, zi,j or any sum among them, then index i is added to
I.

2. If wh is in the form aibj or zi,j ⊕ aibj , then both indices i and j are added to I.
Note that in both cases for each probe wh up to two indices are added to I, so it holds that
|I| ≤ 2t < n as required. Now, after composing the set of indices, proofs state how to simulate
every type of probe:
- If wh = ai, bi, aibi then i ∈ I and a uniform random assignment perfectly simulates them.
- The wh = zi,j case needs a bit more attention since we can have more than one case: 1)
i /∈ I, then, independently from j, zi,j is not part of any wh and it can be unassigned; 2)
i ∈ I ∧ j /∈ I, then zi,j is assigned a random value, it perfectly simulates it since j /∈ I
guarantees that no wh is using zi,j where i > j, and otherwise if i < j C ′ would have
assigned a random value anyway; 3) i ∈ I ∧ j ∈ I, then zi,j is computed as it would be in
C ′ since ai, bi, aj and bj have been already perfectly simulated.

- If wh = aibj , zi,j ⊕ aibj , ci then it can be perfectly simulated from the previous two
assignment, proving the t-privacy for a single gadget.

To conclude the proof, the security is extended to the entire circuit and it proceeded very
similarly to the single gadget. In particular, they looked at the circuit as a subsequence of
gadgets going from the inputs to the outputs of C ′: G1, G2, . . . , G|C′|. Then, each gadget is
examined and a unique set I of indices is computed as described above and the probes are
simulated from a|I and b|I in the same way aforementioned. The t-privacy still holds since
the bound on the number of corrupted wires is applied to the entire circuits and they cannot
exceed t; in this way the set I would maintain cardinality less than n. Consequently, the perfect
simulation can be extended to C ′.

ut

3.1.2 Perfect Privacy for Stateful Circuits

Definition. As it was for the stateless setting, privacy is defined in terms of a transformer T
mapping a stateful circuit C, including its initial state s0, into a new stateful circuit C ′ with
a new initial state s′0. Moreover, differently from the stateless counterpart, they considered
the circuit inputs and outputs to be public, i.e. only the internal state is kept private. The
adversary can now access the transformed circuit and invoke it multiple times, choosing freely
the new invocation inputs; the adversary may choose the next input based on what it has
observed in the previous execution. The stateful case is, surely, a stronger and more realistic
model to use in practice; however, as we will see, the construction will exploit the private
transformer from the stateless circuits, since it will make it easy to prove stateful privacy once
the stateless security has already been achieved. Formally:
1 For some i 6= j.
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Definition 3.4 (Perfect privacy for stateful circuits [ISW03]). Let T be an efficiently
computable randomized algorithm mapping a stateful circuit C along with an initial state s0
to a stateful circuit C ′ along with an initial state s′0. We say that T is a t-private stateful
transformer if it satisfies the:
1. Soundness. The input-output functionality of C initialized with s0 is indistinguishable

from that of C ′ initialized with s′0. This should hold for any sequence of invocations on an
arbitrary sequence of inputs. In other words, C[s0] and C ′[s′0] are indistinguishable to an
interactive distinguisher.

2. Privacy. We require that C ′ be private against a t-limited interactive adversary. Specif-
ically, the adversary is given access to C ′ initialized with s′0 as its internal state. Then,
the adversary may invoke C ′ multiple times, adaptively choosing the inputs based on the
observed outputs. Prior to each invocation, the adversary may fix an arbitrary set of t in-
ternal wires to which it will gain access in that invocation. To define privacy against such
a t-limited adversary, we require the existence of a simulator which can simulate the ad-
versary’s view using only black-box access to C ′, i.e., without having access to any internal
wires.

Construction. The ISW construction for perfect privacy in the stateful model proceeds as
follows: they made use of the stateless transformer T (C, t) from Theorem 3.3 to secure every
gate of the original circuit C while ensuring privacy for the memory cell requires a different
approach. This is due to the adaptivity of the adversaries in the stateful context. Namely,
as said previously, the attacker can now move the probes between executions and choose
adaptively the input. To overcome this power of the adversary, each memory cell in C will be
encoded using I (as described in Section 3.1.1): let denote by Et(x) such encoding, where x
is the input being encoded and t its probing tolerance (that is the shares of Et(x) are t-wise
independent). Thus, the stateful transformer is defined as T = (TC , Ts): TC is the stateless
transformer from above and it would be applied to every gate, while Ts is an encoding E2t(si)

and it would be applied to every memory cell si. In addition, C ′ is built to consider the encoding
of the initial state E2t(s0) as an input and every next state of the memory is always returned
as an output. Note that encoding against 2t is crucial to guarantee the t-privacy: in this model,
the adversary could have probed t input shares of the memory cell in one execution and probe
t output shares of the same memory cell in the next execution; in the stateful construction it
is a necessary protection against 2t probes. Consequently, the number of shares used in the
stateful setting rise to n = 4t+ 1 for tolerance to 2t corruptions.

Security. Perfect privacy in the stateful model follows very similarly to perfect privacy in the
stateless setting. In particular, it is possible to look at multiple invocations of the stateful C ′

as an unwound larger stateless circuit Q, where the input-output functionality is maintained.
In this way, the proof would go like before with the only difference that in Q inputs and
outputs are hidden while in C ′ they are given to the adversary; nevertheless, those values can
be passed to the simulator and can be easily incorporated into the simulation. The proof from
Theorem 3.3 would perfectly simulate the internal probes, while the memory corruptions can
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be simulated by assigning random values due to the re-randomization property: each of the
concatenated invocations in Q has outputs that are t-wise independent if conditioned to its
input values. That is enough to prove the following:

Theorem 3.5. The above construction is a perfectly t-private stateful transformer (T, I,O),
such that T maps any stateful circuit C of depth d to a randomized stateful circuit of size
O(|C| · t2) and depth O(d log t).

3.1.3 Random Probing Model

As mentioned in Section 3.1, the authors relaxed the perfect security in order to improve the
running time of the above constructions. In fact, the major disadvantage of the perfect security
is their complexity grows quadratically in the number of shares (and, in turn, in the number
of probes): for both stateless and stateful models the overall running time is O(|C|t2). The
improvement in time complexity came at a price in terms of the level of security, which now
is no more perfect but statistical : i.e. the construction is allowed to leak, but with negligible
probability. To achieve this new definition, as we will explain in detail in the next subsection,
they introduced the average-case security, formally defined as the random probing model. The
average-case is in contraposition with the adversarial characteristic given so far, in which the
adversary is restricted to t probes but of its own choice2. For obvious reasons, privacy that
takes into consideration that kind of adversaries is referred to as worst-case security. On the
other side, in the average-case, the attacker has no power over the leaking wires; instead, each
wire of the circuit C will be considered probed with some independent probability p. Formally:

Definition 3.6 (Random probing model [ISW03]). A circuit transformer T = T (C, k)

is said to be (statistically) p-private in the average case if C ′ = T (C, k) is statistically private
against an adversary which corrupts each wire in C ′ with independent probability p. That is, the
joint distribution of the random set of corrupted wires and the values observed by the adversary
can be simulated up to a k−ω(1) statistical distance.

Consider now the ISW construction for the stateful model (see Theorem 3.5) with k number
of shares. It should be easy to see that such a transformer is perfectly (k/4)-private. Using
Chernoff’s bound and a leakage probability p = Ω(1/k) the authors claimed that every probe
can be perfectly simulated but with negligible probability. This led them to state the following
lemma:

Lemma 3.7. There exists a circuit transformer T (C, k) producing a circuit C ′ of size O(|C| ·
k2), such that T is Ω(1/k)-private in the average case.

Proof. Let us first recall the Chernoff’s bound. it is obtained by applying Markov’s inequality
to etX . For every t > 0:
2 Excluding the input wires in the stateless setting.
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Pr[X ≥ a] = Pr[eX ≥ ea] ≤ E[et·X ]

et·a

Assume X = X1+ · · ·+Xn where X1, . . . , Xn are independent variables. We get for any t > 0:

Pr[X ≥ a] ≤ e−t·a
n∏
i=1

E[etXi ]

If the variables Xi have their value in {0, 1}, letting pi = Pr[Xi = 1], we get:

E[etXi ] = e0 · (1− pi) + et · pi = 1 + pi · (et − 1) ≤ epi·(et−1)

This gives:
Pr[X ≥ a] ≤ e−t·a · e

∑n
i=1 pi·(et−1) = e−t·a+µ·(e

t−1)

where we let µ = E[X] =
∑n
i=1 pi. We take a = (1 + δ) · µ for δ > 0. We take t = log(1 + δ).

This gives the Chernoff bound:

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
Using the inequality 2δ/(2 + δ) ≤ log(1 + δ), we obtain:

Pr[X ≥ (1 + δ)µ] ≤ exp

(−δ2µ
2 + δ

)
For δ ≥ 1, we have:

Pr[X ≥ (1 + δ)µ] ≤ exp

(−δµ
3

)
Moreover, before getting into the proof itself, we would like to remark that such proof has

been made explicit by us since it was just given as a statement in [ISW03]. Thus, let us consider
the ISW construction from Theorem 3.3, i.e. the perfect private scheme in the stateless probing
model, but with a number of shares dependent from the security parameter k, i.e. n = 2k+1,
and, consequently, secure against the probing of at most k probes per gadget, where each
gadget has a number of wires m ≤ c · k2 for some constant c.

Hence, let X1, . . . , Xm be independent Bernoulli random variables, where Xi = 1 if the
i-th wire is probed, and Xi = 0 otherwise; it holds that Pr[Xi = 1] = p for all 1 ≤ i ≤ m.
Let X = X1 + . . . + Xm be the total number of leaking wires in the gadget. Theorem 3.3
guarantees that it is possible to perfectly simulate the probed wires if X does not exceed k.
Thus, using the Chernoff bound with δ ≥ 1 (see ??), it is possible to calculate the probability
that the event X > k occurs:

Pr[X ≥ (1 + δ)E[X]] ≤ exp

(
−δ
3
E[X]

)
(3.1)
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where E[X] is computable and equal to p ·m. Furthermore, we fix p = 1/(2c · k). In addition,
since we must upper-bound Pr[X ≥ k], we can fix δ such that:

k = (1 + δ)E[X]

It is possible to explicate k from the number of wires m ≤ c · k2; this gives that:

1 + δ =
k

E[X]
=

k

p · ` =
2c · k2
`
≥ 2c · k2

c · k2 ≥ 2

and therefore the inequation δ ≥ 1 is respected, as required. Moreover, it holds that:

δ

3
E[X] =

δ

3
· k

1 + δ
≥ k

6

Therefore, from (Equation (3.1)), it is possible to compute the probability:

Pr[X ≥ k] ≤ exp(−k/6)

Hence, from the equation above, the simulation failure probability over all the gadgets is
computed multiplying the failure probability of a single gadget for the total number of gadgets,
i.e. it is at most |C| · exp(−k/6).

ut

For the sake of clarity, we stress the fact that this model is not able to provide worst-case
security. The goal to guarantee privacy when the attacker can probe a Ω(|C ′|/k) of wires is
still considered unachievable. As we are going to see in the next subsection, the relevance that
Ishai et al. gave to the random probing model was to use it as a building block necessary to
achieve statistical privacy in the worst-case setting.

3.1.4 Statistical Privacy for Stateless Circuits

Definition. To obtain a construction with complexity O(t log t), the authors introduced a
relaxation to the security model, in which it is tolerated a leakage of the secrets, albeit with
a negligible probability; this is called the statistical model of security. But the weaker privacy
guarantees will be balanced by the O(t log t) complexity of the construction. However, to avoid
confusion, let’s remind the reader we are back to the worst-case scenario, where the adversary
can choose the probes it wants up to t. Although the construction will make use of the average-
case transformer, statistical privacy is defined to consider only attackers that can freely choose.
The definition below is similar to the perfect privacy model, except that now the simulation
can fail with negligible probability:

Definition 3.8 (Statistical privacy for stateless circuits). Let T be an efficiently com-
putable deterministic function mapping a stateless circuit C to a stateless circuit C̃, and let
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I, O be as above. We say that (T, I,O) is a statistically t-private stateless transformer if it
satisfies the:
1. Soundness. The input-output functionality of O ◦ C̃ ◦ I (i.e., the iterated application of
I, C̃, O in that order) is indistinguishable from that of C.

2. Privacy. We require that the view of any t-limited adversary, which attacks O ◦ C̃ ◦ I
by probing at most t wires in C̃, can be simulated except with negligible probability. The
identity of the probed wires has to be chosen in advance by the adversary.

Construction. Their construction proceeds in two steps. Firstly, the masking countermeasure
seen in Section 3.1.3 is applied; namely, the transformer T (C, k) proved to be p-private in the
average-case, for p = Ω(1/k) with security parameter k. Secondly, C ′ = T (C, k) is transformed
into a larger circuit C̃, where only a fraction of the computation is useful. In other words, the
circuit C̃ would perform the same computation as C ′, but only on a small random subset of its
wires; the remaining wires of C̃ would contain no useful information for the adversary. More
specifically, the transformer T̃ mapping C ′ in C̃ takes each wire i of C ′ and replaces it with a
new set of ` wires in C̃; say each i is replaced by (i, 1), . . . , (i, `). Recall that every such wire
can take a value from the set {0, 1, $}. Thus, for every wire i in C ′ carrying a value vi ∈ {0, 1},
the wires (i, 1), . . . , (i, `) in C̃ carry the value vi in a random position (independently of other
`-tuples), and the value $ in the all remaining `−1 ones; see Figure Figure 31 for an illustration.

vi
`

$

...

$

vi

$

$

Fig. 31: A wire with signal vi in C ′ (left), and the corresponding ` wires in C̃ (right); only one
of the ` wires contains the signal vi, while the others contain the dummy value $.

Consequently to the above rearrangements of wires, modifications to the encoding and decoding
are required. The old algorithms no longer fit the expanded circuit logic; nevertheless, from the
implementation point of view, the new Encode′ and Decode′ use the old Encode and Decode as
a subroutine. But now, for the sake of simplicity, the following descriptions will not take into
account this last remark:

• Encode′. To encode a value v, first generate at random an index j $←− [1, `] and output an
`-tuple in which v will be the j-th element, while the other elements carry a dummy value
$. That is, return ($, . . . , $, v, $, . . . , $), where v is at the j-th position.
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• Decode′. Given a `-tuple ($, . . . , $, v, $, . . . , $), return v.

Once the encoding and decoding algorithms are adjusted, let’s pass to the transformation
of the intermediate circuit. Hence, consider a gate in C ′ such that input wires i1 and i2 are
processed to obtain vi = vi1 ∗ vi2 ; namely, the i-th wire of C ′ is computed by applying a
boolean operation ∗ ∈ {AND,XOR} to the i1-th and the i2-th wire of C ′. Informally, T̃ would
transform such gate in a 2`-input, `-output gadget in C̃. The gadget, first, puts both values
vi1 and vi2 in random but adjacent positions, and then it combines them to obtain the value
vi1 ∗ vi2 in a randomly defined wire out of the ` output ones. In order to achieve the "random
but adjacent position" property, the construction resorted to a sorting network as a building
block, see [AKS83]. Technically, the gate processing is described in [ISW03] as follows:

• Preprocessing. Compute `+1 uniformly and independently random integers r, r1, . . . , r`
from the range [0, 2k], where k is the security parameter. For each 1 ≤ j ≤ `, use the values
vi1,j , vi2,j (of wires (i1, j) and (i2, j)) to form a pair (keyj , valj) such that:
1. keyj is set to rj if vi1,j = vi2,j = $ and to r otherwise;
2. valj is set to $ if both vi1,j , vi2,j are $; to a bit value b if one of vi1,j ,vi2,j is b and the

other is $, and to b1 ∗ b2 if vi1,j = b1 and vi2,j = b2.
• Sorting. A sorting network is applied to the above `-tuple of pairs using key as the sorting

key. Let (u1, . . . , u`) denote the `-tuple of symbols valj sorted according to the keys keyj .
• Postprocessing. The j-th output vj is obtained by looking at uj , uj+1, uj+2: if uj ,
uj+1 6= $ then vj = uj ∗ uj+1, if uj = uj+2 = $ and uj+1 6= $ then vj = uj+1, and
otherwise vj = $.

In other words, if the input signals vi1 and vi2 are initially located at positions j1 and j2
for some j1 6= j2, then by definition keyj1 = keyj2 = r, and therefore after sorting by keyj
the signal values vi1 and vi2 will be contiguous; hence, in the postprocessing phase the output
signal vi1 ∗ vi2 will be computed, and located at some random position j33. Note that such a
gadget can be implemented by a circuit of size O(k ·` log `) and depth poly(log `+log k), where
the ` log ` factor is mainly due to the cost of the sorting network. To complete the description
of T̃ , it is missing the transformation of a random gate, but it is straightforward: the random
bit gate is replaced with a gadget composed of ` input and ` output wires, and each input wire
would consist of a random bit zj (for 1 ≤ j ≤ `); then an index r ∈ [`] is generated uniformly
at random, in this way the output wires of the gadget in C̃ are outputting $ symbol for every
j 6= r and zr otherwise. This completes the description of T̃ .

Security. For the worst-case statistical privacy of the final circuit C̃, the authors proceeded
to reduce it to the p-random probing security of C ′. In particular, they provided the following
lemma:

Lemma 3.9. Suppose that C ′ is p-private in the average case. Then the circuit C̃, constructed
with ` = O(t/p7), is statistically t-private in the worst case.
3 The same holds if j1 = j2.
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Proof (Proof Sketch). In a nutshell, for each compromised wire of C̃, the adversary can either
observe some random integer ri, a $ symbol, or an actual value vi of the i-th wire of C ′. Let
I denote the set of indices i such that vi has been probed. Ishai et al. argued that for any
fixed index set I0 and for ` defined as above, then Pr[I0 ⊆ I] ≤ p|I0|. Thus, an adversary
attacking any fixed set of t wires in C̃ cannot learn more than an adversary corrupting each
wire of C ′ independently with probability p = Ω(1/k). They proved that argument, picking
a set I1 ⊆ I0 such that: 1) |I1| ≥ |I0|/7; 2) each value in I1 is observed with probability (at
most) p7 and the events of observing different values in I1 are independent. Such I1 makes
Pr[I0 ⊆ I] ≤ Pr[I1 ⊆ I0] ≤ (p7)|I1| ≤ (p7)|I0|/7 = p|I0|.

ut

Remark 3.10. We would like to point out a minor difference with respect to [ISW03]. In the
original paper, Lemma 3.9 is stated the same but with ` defined as ` = O(t/p4). We claim that
this is slightly incorrect. The fraction 1/4 is presented as the result of the maximal matching
of a graph of degree 4; actually, the only assumption one can make about the cardinality of
an uncharacterised graph is the matching will contain at most a 1/7 of the edges (and not
1/4 as used in the proof of [ISW03, Lemma 2], see for example [BDD+01]). Note that this
technicality does not change the asymptotic behaviour with respect to the number of probes
t which is still O(t log t), but only the dependence with respect to the security parameter k.

From the above lemma and Lemma 3.7, should be clear to derive the statistical t-privacy
in the worst-case setting for C̃.

Theorem 3.11. There exists a statistically t-private stateless transformer (Ĩ , T̃ , Õ), such that
T̃ (C, k) transforms a circuit C to a circuit C̃ of size O(|C| · k10 · t · (log k + log t)).

Proof. The statistical t-privacy of C̃ follows from Lemma 3.9. The intermediate circuit C ′ =
T (C, k) has complexity O(|C| · k2). Then C ′ is expanded by a factor O(k · ` log `); still from
Lemma 3.9 and with p = Ω(1/k), one can take ` = O(t · k7); the expansion factor is therefore
O(k · (t · k7) log(t · k7)) = O(k8 · t · (log t+log k)). The final complexity is therefore O(|C| · k10 ·
t · (log k + log t)).

ut

Remark 3.12. We would remark on one difference with [ISW03]: in the original paper, as
claimed by the authors themself, the time complexity hid a kO factor since it is considered
small in comparison to t. We made it explicit to be comparable with our improved construction
as we will see in Chapter 4.

3.1.5 Statistical Privacy for Stateful Circuits

Definition. The definition of worst-case statistical privacy in the stateful model is the same
as for perfect privacy (see Section 3.1.2), except that the simulator can now fail with negligible
probability ε:
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Definition 3.13 (Statistical privacy for stateful circuits.). Let T be an efficiently com-
putable randomized algorithm mapping a stateful circuit C along with an initial state s0 to a
stateful circuit C̃ along with an initial state s′0. We say that T is a statistical t-private stateful
transformer if it satisfies the:
1. Soundness. The input-output functionality of C initialized with s0 is indistinguishable

from that of C̃ initialized with s′0. This should hold for any sequence of invocations on an
arbitrary sequence of inputs.

2. Privacy. We require that C̃ be private against a t-limited interactive adversary. Specif-
ically, the adversary is given access to C̃ initialized with s′0 as its internal state. Then,
the adversary may invoke C̃ multiple times, adaptively choosing the inputs based on the
observed outputs. Prior to each invocation, the adversary may fix an arbitrary set of t
internal wires to which it will gain access in that invocation. To define privacy against
such a t-limited adversary, we require the existence of a simulator which can simulate the
adversary’s view, using only black-box access to C̃, except with negligible probability.

Construction. As for the stateless case, the transformer proceeds in two steps, with each wire
in the intermediate circuit C ′ being expanded into ` wires in the final circuit C̃, such that only
one of the ` wires contains the original signal vi from C ′, while the other wires contain only
the dummy value $. However, for the stateful construction some additional countermeasures
needed to be addressed, because the adversary can move its probes between executions, and
therefore it could accumulate knowledge about the locations of the signal in C̃. The authors
prevented such attacks by using a perfectly t-private encoding of a random cyclic shift for each
pack of ` wires, for each signal vi from C ′ that must be transmitted from one execution to
the other. Such t-private encoding has complexity O(t2), and since for every memory cell this
cyclic shift requires a circuit of size O(` log `), the additional complexity is O(st2` log `), which
gives a total complexity of Õ(st3) for s memory cells.

Security. The statistical t-privacy in the stateful model is pretty similar to the one provided
for the stateless case. The transformation of each gate is guaranteed statistically t-private
by Theorem 3.11. In addition, as explained above, the memory cells are made t-private by a
perfect t-privacy transformation of a cyclic shift. This was enough to state the following:

Theorem 3.14 (Worst-case statistical privacy, stateful model). There exists a statis-
tically t-private stateful transformer T̃ , such that T̃ (C, k) maps a circuit C with s memory
cells to a circuit C̃ of size O(|C| · t log t+ s · t3 log t). The depth of C̃ is the same as that of C,
up to polylog factors.

3.2 Rivain-Prouff Masking

Since its first appearance, the masking countermeasures seemed to be a perfect fit to contrast
SCA. As proved by Chari et al. in [CJRR99], the power of applying a secret-sharing scheme
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relies on the fact that the risk of leakage decreases exponentially with respect to the number of
shares. One of the many advantages of this approach is that it has been used to ensure standard
encryption cipher like DES and AES. We are going to focus on AES. Until 2010, the majority
of publications produced on the topic were focused on first-order and second-order masking
schemes. On the other side, since [ISW03] appeared, not much was proposed to achieve higher-
order privacy; the ISW constructions were producing a significant overhead when translated
into actual software. In 2010 Rivain and Prouff proposed a way to mask the implementation
of AES for general order n − 1 and practical overhead. Moreover, they decreased the total
number of shares required to n = t+ 1, instead of n = 2t+ 1 as we saw in [ISW03].

In [RP10], the authors started by noticing that, although the ISW constructions represent
an important achievement in theory, they suffer from intrinsic practical issues. On one side, the
hardware implementation of the masked circuit induces a significant expansion in terms of the
silicon area. As we saw in Section 3.1.1, the transformed AND gadget is expanded quadratically
with respect to the original single AND gate; specifically: every AND gate in C is replaced with
n2 number of ANDs and 2n(n− 1) number of XORs, in addition, the transformation requires
n(n − 1)/2 random bits. Moreover, masking at the hardware level is subjected to glitches;
which can be mitigated by involving synchronizing hardware components in the circuit but at
the price of expanding its size again. On the flipping side, a software implementation of the
ISW constructions is immune to silicon-overhead or to glitches, but this approach, accurately
as described in [ISW03], can not be considered practical due to the prohibitive time-overhead.
Thus, with the aim to reduce the software time-overhead, Rivain and Prouff generalized ISW
constructions to work, not only with booleans inputs (i.e F2) but also with elements belonging
to any finite field (i.e F2k). We are going to explain in detail the Rivain-Prouff masking for
AES proposed in [RP10].

As explained in Section 2.3, the AES block cipher is structured as multiple rounds trans-
formation, consisting of a key addition, a linear and a non-linear layer. The masking of the
non-linear operation, i.e the masking of the S-box, is the trickiest part of the implementation.
In turn, once the S-box is ensured to be securely masked, protecting the remaining operations
comes pretty straightforward.

3.2.1 Masking of the S-box

In order to mask the S-box, the authors had to provide a secure method to mask the power-to-
254 function for any order n− 1. The exponentiation to 254, as described in [DR02], consists
of 4 multiplications over F2k and 7 squarings. Where exponentiation to the power of 4 and 16

are considered, respectively, as 2 and 4 consequent squarings. Hence, to securely compute such
exponentiation, they implemented the following methods for the squarings and the multipli-
cations:
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• Squaring: due to the linearity of the operation4, the squaring is secured by simply dealing
with each share separately and independently. That is, if x1 ⊕ x2 ⊕ · · · ⊕ xn = x then it
holds that:

x21 ⊕ x22 ⊕ · · · ⊕ x2n = x2

Please note that the same holds for every exponentiation to the power of 2p with p ∈ N;
in turn, the same "independently share-by-share" approach ensures privacy for x4i and x16i
too.

• Multiplication: the authors’ proposed multiplication follows the ISW AND-gadget, see Al-
gorithm 3.1. This should not surprise the reader, since a logical AND gate is nothing more
than a multiplication over the field F2. Thus, replacing each binary input with elements in
F2k , each AND with a multiplication over F2k and each XOR with an addition over F2k it
is not affect the completeness of Algorithm 3.1. This gives the following SecMult algorithm
below.

Algorithm 3.2 SecMult - (n− 1)-order secure multiplication over F2k

Input: shares ai satisfying
⊕
ai = a, shares bi satisfying

⊕
bi = b

Output: shares ci satisfying
⊕
ci = a · b

1: for i = 1 to n do
2: for j = i+ 1 to n do
3: ri,j

$←− F2k

4: rj,i ← (ri,j ⊕ aibj)⊕ ajbi
5: for i = 1 to n do
6: ci ← aibi
7: for (j = 1 to n) ∧ (i 6= j) do
8: ci ← ci ⊕ ri,j
9: return (c1, . . . , cn)

Unfortunately as argued in [RP10], the secure computation of squarings and the multiplications
is not enough to guarantee the security for the whole exponentiation. In order to do that, the
masks of the inputs given to the SecMult need to be mutually independent and this means
they need to be refreshed at some point during the exponentiation. This operation is processed
by the following secure refreshing algorithm:
4 The operation operates on a field of characteristic 2.
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Algorithm 3.3 RefreshMasks

Input: shares xi satisfying x =
⊕
xi

Output: shares xi satisfying x =
⊕
xi

1: for i = 2 to n do
2: tmp

$←− F2k

3: x1 ← x1 ⊕ tmp

4: xi ← xi ⊕ tmp

5: return (x1, . . . , xn)

Remark 3.15. For the sake of consistency, we proposed the RefreshMasks algorithm as explained
in [RP10], even if it has been proved to have a flaw in [BBD+16]. We will see in Section 3.3
why it is insecure and how Barthe et al. modified it to make it private.

As said at the beginning, being able to securely compute multiplications, squarings and
refreshing the randomness of the shares allowed them to securely compute the exponentiation-
to-254. But computing the power-to-254 in the most efficient way possible is not the straight-
forward. Clearly, SecMult is way more expensive in terms of time compared to squaring and
refreshing: the exponentiation algorithm has to be designed to use the least number of mul-
tiplications. The exponentiation procedure proposed by Rivain and Prouff contains 4 such
multiplications and 7 squarings, see Algorithm 3.4:

Algorithm 3.4 Exponentiation to the 254

Input: x
Output: y = x254

1: z ← x2 . z = x2

2: y ← zx . y = x2x = x3

3: w ← y4 . w = (x3)4 = x12

4: y ← yw . y = x3x12 = x15

5: y ← y16 . y = (x15)16 = x240

6: y ← yw . y = x240x12 = x252

7: y ← yz . y = x252x2 = x254

8: return y

Given the efficient order of operations and given a secure computation of multiplications,
squarings and refreshings, it should be easy to assemble them in an (n − 1)-order secure
exponentiation to 254 over F2k as the authors presented:
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Algorithm 3.5 SecExp254 - (n− 1)th-order secure exponentiation to the 254 over F2k

Input: shares x1, x2, . . . , xn satisfying x =
⊕
xi

Output: shares y1, y2, . . . , yn satisfying y =
⊕
yi = x254

1: for i = 1 to n do zi ← x2i
2: (x1, x2, . . . , xn)← RefreshMasks(x1, x2, . . . , xn)

3: (y1, y2, . . . , yn)← SecMult((z1, z2, . . . , zn), (x1, x2, . . . , xn))

4: for i = 1 to n do wi ← y4i
5: (w1, w2, . . . , wn)← RefreshMasks(w1, w2, . . . , wn)

6: (y1, y2, . . . , yn)← SecMult((y1, y2, . . . , yn), (w1, w2, . . . , wn))

7: for i = 1 to n do yi ← y16i
8: (y1, y2, . . . , yn)← SecMult((y1, y2, . . . , yn), (w1, w2, . . . , wn))

9: (y1, y2, . . . , yn)← SecMult((y1, y2, . . . , yn), (z1, z2, . . . , zn))

10: return (y1, y2, . . . , yn)

Furthermore, for the sake of completeness, the authors pointed out that Algorithm 3.5 com-
putes the exponentiation using 8n(n−1)+4(n−1) XOR gates, 4n2 multiplications, n squarings,
n power-to-4 and n power-to-16. It needs 3n+n(n−1)/2 bytes of memory and 2n(n−1)+2(n−1)
random bytes. Thus, to complete the secure computation of the S-box, it is only missing to
secure the affine transformation Af . This is straightforward since, like for the squaring, Af is
linear and it can be computed separately and independently share by share; that is:

Af(x1)⊕Af(x2)⊕ · · · ⊕Af(xn) =
{
Af(x) if n is even,

Af(x)⊕ 0x63 if n is odd.

Algorithm 3.6 summarizes the algorithmic description of the Rivain-Prouff masking of the
S-box:

Algorithm 3.6 SecSbox - (n− 1)th-order secure computation of S-box
Input: shares x1, x2, . . . , xn satisfying x =

⊕
xi

Output: shares y1, y2, . . . , yn satisfying y =
⊕
yi = S(x)

1: (y1, y2, . . . , yn)← SecExp254(x1, x2, . . . , xn)

2: for i = 1 to n do yi ← Af(xi)

3: if ((n− 1) mod 2 = 1) then y1 ← y1 ⊕ 0x63

4: return (y1, y2, . . . , yn)

3.2.2 Masking the whole AES

Firstly, as it has been for the ISW model, the inputs of the AES need to be encoded (or
masked). Here also the secret key is considered as an input. Hence, we will assume that: the
state s = (sa,b)1≤a,b≤4 is mapped as n states s1, s2, . . . , sn such that s = s1 ⊕ s2 ⊕ . . . ⊕ sn.
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Intuitively, the generation of such states follows the Encoder I: first, n − 1 arrays of size
4× 4 bytes are computed randomly; and then, sn is processed according to the above formula.
Moreover, the secret key k = (ka,b)1≤a,b≤4 is mask exactly how the state above. Computing
a n-shared key: k1,k2, . . . ,kn such that k = k1 ⊕ k2 ⊕ . . . ⊕ kn. Now, once the inputs are
encoded, the different AES transformations (see Section 2.3) are proposed in the following by
the authors:

1. KeyExpansion: this operation generates a 4× 4 byte key kr for each round r ∈ [Nr + 1].
The process explained in Section 2.3 needs to be masked: the key schedule w, now, is split
in n schedules w1,w2, . . . ,wn. Consequently, each column (wi)∗,j of the i-th schedule wi

is computed as: (wi)∗,j = (wi)∗,j−Nk
⊕ ti, where the tis denote the 4-byte shares of t and

it is easy to masked since SubWord is just applying the S-box; and both RotWord and Rcon

are straightforward. The authors provided in [RP10] an algorithmic description of the key
expansion:

Algorithm 3.7 SecKeyExp - (n− 1)th-order secure AES key expansion
Input: key shares k1,k2, . . . ,kn satisfying k =

⊕
ki

Output: shares w1,w2, . . . ,wn satisfying w =
⊕

wi

1: for j = 1 to Nk do
2: for i = 1 to n do (wi)∗,j ← (ki)∗,j
3: for j = Nk + 1 to 4(Nk + 1) do
4: for i = 1 to n do ti ← (wi)∗,j
5: if ((j mod Nk = 0) ∨ (Nk = 8) ∧ (j mod Nk = 4)) then
6: for l = 1 to n do
7: ((t1)l, (t2)l, . . . , (tn)l)← SecSbox((t1)l, (t2)l, . . . , (tn)l)
8: if (j mod Nk = 0) then
9: for i = 1 to n do
10: ti ← RotWord(ti)
11: t1 ← t1 ⊕ Rconj/Nk

12: for i = 1 to n do (wi)∗,j−1 ← (wi)∗,j−Nk ⊕ ti
13: return (w1,w2, . . . ,wn)

2. AddRoundKey: this transformation is computed by XORing the state sr, obtained at
the round r, with the key for the r-th round kr. Given the linearity of the operation, this
can be computed at the share level:

s⊕ k = (s1 ⊕ kr1)⊕ (s2 ⊕ kr2)⊕ . . .⊕ (sn ⊕ krn)

3. SubBytes: this transformation simply applies the masked S-box described before to each
byte of the state, i.e to the n-tuple of byte shares:

SubBytes(s) = (S-box(sa,b))1≤a,b≤4
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4. ShiftRows: this transformation cyclically shifts the rows of the state. Clearly, this can be
performed share by share:

ShiftRows(s) =
n⊕
i=1

ShiftRows(si)

5. MixColumns: this transformation is considering the columns of the state, and each of
them is multiplied by the polynomial 3x3 + x2 + x + 2 mod x4 + 1. This also can be
performed share by share like for ShiftRows:

MixColumns(s) =
n⊕
i=1

MixColumns(si)

This let the authors to provide an algorithmic description of the whole masked AES, which is
secure against any (n− 1)-order SCA:

Algorithm 3.8 SecAES - (n− 1)th-order secure AES computation
Input: state share si satisfying s =

⊕
si; key shares ki satisfying k =

⊕
ki

Output: ciphertext shares c1, c2, . . . , cn satisfying c =
⊕

ci
1: (k0

i ,k1
i , . . . ,kNr)← SecKeyExp(ki)

2: si ← AddRoundKey(si,k0
i )

***first Nr-1 rounds***
3: for r = 1 to Nr − 1 do
4: si ← ShiftRows(si)
5: for a = 1 to 4, for b = 1 to 4 do . SubBytes

6: ((s1)a,b, (s2)a,b, . . . , (sn)a,b)← SecSbox((s1)a,b, (s2)a,b, . . . , (sn)a,b)
7: si ← MixColumns(si)
8: si ← AddRoundKey(si,kri )

***last round***
9: for a = 1 to 4, for b = 1 to 4 do . SubBytes

10: ((s1)a,b, (s2)a,b, . . . , (sn)a,b)← SecSbox((s1)a,b, (s2)a,b, . . . , (sn)a,b)
11: si ← ShiftRows(si)
12: ci ← AddRoundKey(si,kNr

i )

13: return (c1, c2, . . . , cn)

Remark 3.16. Naturally, Rivain and Prouff also provided the security proof for the above con-
struction, proving the t-privacy as explained in the ISW model. We decided to not sketch their
proof but we refer the original paper. Such a decision has been taken for a simple reason: as
we will see in our contributions, we have mostly dealt with a slightly stronger definition: SNI.
Moreover, the Rivain-Prouff countermeasure has been proven to achieve not only t-privacy
but also SNI. Thus, in the following section, we are going to introduce the work by Barthe
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and others called Strong Non-Interference security and to show that the above construction is
indeed SNI.

3.3 Strong Non-Interference

In [BBD+16], the authors proposed a new methodology to approach probing security in a
more precise and scalable manner. They exploited the intrinsic connection between probabilis-
tic information flow and probing privacy, in order to, not only verify masked algorithms but
also to show how to systematically achieve privacy from an unprotected description of those
algorithms. Among many contributions proposed in the paper, we will focus mainly on their
stronger notion of probing security: Strong Non-Interference (SNI) privacy. Moreover, they
showed how many well-known masked protocols were "unconsciously" achieving such stronger
security guarantees. Many, but not all: as already mentioned in the previous section, Barthe
et al. noticed a flaw in the Rivain-Prouff RefreshMasks (see Algorithm 3.3) and it, indeed, does
not satisfy the strong non-interference property. Consequently, they proposed a substitute re-
freshing algorithm that enjoyed the SNI security and they showed how guaranteeing privacy for
the whole gadget simply from the strong non-interference property of the refreshing algorithm.

In a bit we are going into the details of this new definition and the fixed RefreshMasks,
but, for the sake of completeness, we before briefly mention the other contributions the paper
provided even if they were not directly impacted our work. The authors also proposed: 1) an
automatic tool to check whenever a gadget respects the strong non-interference properties for
some of the protocols presented in the literature for t ≤ 6; 2) a type-based enforcement of
probing security; 3) a certified masking transformation able to take as input an arithmetic
expression and returns a masked gadget satisfying their SNI security proposing along with a
comparison among the various type systems from the state of the art. Anyway, we didn’t have
usage for our contributions, thus they just have mentioned and we can now present the formal
security notion we worked with.

3.3.1 NI and SNI definitions

To better understand the differences between probing security and strong non-interference, it
may be useful to use Barthe et al.’s terminology. Thus, we now recall the classic ISW privacy
redefined as in [BBD+16]:

Definition 3.17 (t-NI security [BBD+16]). Let G be a gadget taking as input n shares
(ai)1≤i≤n and n shares (bi)1≤i≤n, and outputting n shares (ci)1≤i≤n. The gadget G is said to
be t-NI secure if for any set of t1 probed intermediate variables and any subset O of output
indices, such that t1 + |O| ≤ t, there exist two subsets I and J of input indices which satisfy
|I| ≤ t and |J | ≤ t, such that the t1 intermediate variables and the output variables c|O can be
perfectly simulated from a|I and b|J .
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We stress the fact that probing securities (no matter the way are defined) are not com-
posable; that is, the guarantees implied by two different t-NI gadgets may not be maintained
when the two gadgets are combined. As a matter of fact, for example, the NI definition does
not allow per se to reduce the number of shares to t+ 1, i.e. 2t+ 1 are still needed to satisfy
the full construction of AES. This is due to the fact that, informally, NI does not guarantee
enough independence between internal and output probes. In this sense, the SNI states this
isolation-constraint must be respected. Moreover, differently from before, under the strong
non-interference is possible to use only t+ 1 shares to guarantee the probing security of AES.

Definition 3.18 (t-SNI security [BBD+16]). Let G be a gadget taking as input n shares
(ai)1≤i≤n and n shares (bi)1≤i≤n, and outputting n shares (ci)1≤i≤n. The gadget G is said to
be t-SNI secure if for any set of t1 probed intermediate variables and any subset O of output
indices, such that t1 + |O| ≤ t, there exist two subsets I and J of input indices which satisfy
|I| ≤ t1 and |J | ≤ t1, such that the t1 intermediate variables and the output variables c|O can
be perfectly simulated from a|I and b|J .

In fact, the difference between the two above definitions is in the size of the sets I and J . For
the SNI, such cardinality cannot exceed the number of internal probes t1. In other words, it
has to be independent of the number of probes in O that, however, needs to be simulated.
This constraint represents that level of isolation mentioned before and it can be applied in
large systems to ensure composability: it is easy to derive the t-SNI of a system composed of
only t-SNI secure components.

3.3.2 SNI Gadgets

As anticipated at the beginning of the section, along with the definitions, the authors analysed
the literature and showed how many of those protocols achieved strong non-interference. In
particular, the Rivain-Prouff masking, protecting AES against high-order attacks, has been
proven SNI, this is the reason why RP contraction works with a number of shares equal to
t+1. Specifically, their work focused on the SecMult (see Algorithm 3.2) and the RefreshMasks.
Concerning the refreshing, the algorithm proposed in [RP10] has been proved insecure against
attacks of an order d(n−1)/2e+1, see [CPRR14]; consequently, it needed to be fixed. Barthe et
al. introduced a multiplication-based mask refreshing, which achieves strong non-interference.

Multiplication. The multiplication gadget did not need changes, the SNI has just to be
proven. Since in Section 3.2 we did not provided any security proof referring to the SNI section,
we provide here the proof5 and the exact algorithm used.

Lemma 3.19 (t-SNI of SecMult [BBD+16]). Let (ai)1≤i≤n and (bi)1≤i≤n be the input shares
of the SecMult operation from [RP10] (see Algorithm 3.2), and let (ci)1≤i≤n be its output
5 For the sake of simplicity, we actually refer to the proof provided in [CGPZ16]. Nevertheless, the
proof is almost identical to the one proposed in the original paper.
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Algorithm 3.9 SecMult from [BBD+16]

Input: shares ai satisfying
⊕n

i=1 ai = a, shares bi satisfying
⊕n

i=1 bi = b
Output: shares ci satisfying

⊕n
i=1 ci = a · b

1: for i = 1 to n do
2: ci ← ai · bi
3: end for
4: for i = 1 to n do
5: for j = i+ 1 to n do
6: r ← F2 . referred by ri,j
7: ci ← ci ⊕ r . referred by ci,j
8: r ← (ai · bj ⊕ r)⊕ aj · bi . referred by rj,i
9: cj ← cj ⊕ r . referred by cj,i

10: end for
11: end for
12: return (c1, . . . , cn)

shares. For any set of t1 intermediate variables and any subset O of output shares such that
t1 + |O| < t, there exist two subsets I and J of indices with |I|, |J | ≤ t1, such that those t1
intermediate variables as well as the output shares c|O can be perfectly simulated from a|I and
b|J .

Proof. As usual, the goal is to build a pair of sets I,J such that every probe can be simulated by
a|I and b|J , with the additional constraint that |I|,|J | ≤ t1. By construction, each probed wire
is in a limited number of forms: can be an input variable (i.e. ai or bi), can be a multiplication
between inputs with the same index (i.e. aibi) or different indexes (i.e aibj), can be the auxiliary
variables r (i.e ri,j or rj,i) but also the intermediate operation computed for rj,i (i.e aibj⊕ri,j),
lastly, can be an output variable (i.e ci) or an intermediate computation of it (i.e ci,j). For the
moment consider the intermediate probes, excluding the outputs ci, those can be categorised
into four groups:
1. The first group is composed of probes in the form: ai, bi or aibi. In such cases the index i

is added to both I and J .
2. The second group is composed of probes in the form: ri,j or ci,j6. In such cases the index
i is added to both I and J .

3. The third group is composed of probes in the form: (rij ⊕ aibj). In such case, if i or j is
already inserted in I and J (i.e at least one of the indexes belongs to the previous two
groups) then both i and j are added to I and J .

4. The forth group is composed of the last remaining form: aibj . In such a case the index i is
added to I while the index j is added to J .

A couple of remarks are needed to better understand the upcoming simulation of those probes.
The first is about the cardinalities of the two sets: after the computation of Group1 and Group2
6 Note that by definition must hold that i 6= j.
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holds that I = J (for simplicity say U is defined as the common values of I and J after the
second step) so |I| = |J | and only one index is added per set; furthermore, by construction
for Group3 is required that i ∈ U or j ∈ U as a consequence adding {i, j} to both sets still
consists in augmenting by one their cardinalities; finally, Group4 adds one index per set. In
sum, |I|,|J | ≤ t1. The second is about the interconnection of ri,j in the computation of the
partial sums of ci,z with 1 ≤ i < j ≤ z ≤ n. By construction, for i < j the auxiliary value ri,j is
required to compute all ci,z for z ≥ j; in addition ri,j is required to compute aibj⊕ri, j, which
is used also to compute rj,i, which, in turn, is required to compute cj,z for z ≥ i. Consequently,
if i /∈ U (or respectively j /∈ U) has to hold that ri,j (or rj,i resp.) does not belong to Group2,
thereby it is not required in any computation of ci,z (or cj,z resp.). Hence, for the simulation
of the internal probes, it is possible to identify four cases:

Case 1: i ∈ U ∧ j ∈ U . In those cases both indexes are in U , thus it is possible to perfectly simulate
all the probes in the form: aibj , ajbi, ri,j , ri,j ⊕ aibj and rj,i exactly like they would have
been computed in the real circuit.

Case 2: i ∈ U ∧ j /∈ U . In those cases the probes can assume only two forms: either ri,j (if j /∈ J)
and a random assignment perfectly simulates them; or ri,j ⊕ aibj but, in that case, by
construction must hold that j ∈ J so it can be perfectly simulated as well.

Case 3: i /∈ U ∧ j ∈ U . In those cases neither ri,j or any partial sum ci,z must not have been
probed, otherwise i would belong to U . Consequently, the probe has form rj,i (if i /∈ J) or
ri,j ⊕ aibj (if i ∈ J). The first case is straightforward and a random assignment perfectly
simulates it; the latter can be computed like in the real circuit from aibj⊕ri,j = ajbi⊕rj,i.

Case 4: i /∈ U ∧ j /∈ U . In those cases the probe can only be in the form ri,j ⊕ aibj but both i

and j are not in U . Thus, ri,j , ai and bi have not been probed and a random assignment
cannot be distinguished from a real execution of the circuit.

The only remaining forms excluded from above are the partial sum ci,z, but those probes can
be indirectly and indistinguishably simulated from every ri,j with i ∈ U (which, in turn, can
be perfectly simulated as explained in Case 1, 2 and 3). This concludes the simulation of every
internal probe; we now consider the simulation of probes in the set O, i.e. the output variables
c|O. The first subset of output probes can be easily simulated and they are the ci where i ∈ U ;
as said before for such variable is possible to simulate every partial sum ci,z and that includes
the final sum ci. Thus, we consider now only the ci with i /∈ U . For such probes, it is possible
to construct a subset of indexes V in the following way: for every observed variable belonging
to Group3 (i.e ri,j ⊕ aibj) such that i,j /∈ U , j is added to V if iO, otherwise i is added to V .
It is easy to see that since only the probes in Group3 are taken into account must hold that
|U |+ |V | ≤ t1. This implies that |U |+ |V |+ |O| ≤ t. Consequently, what is needed to be proven
is that there must exist at least an index, say j? ∈ [1, n = t + 1], such that j? /∈ U ∪ V ∪ O;
in other words, there is at least an auxiliary ri,j? in the computation of ci which has not been
probed, neither is used in the computation of any other ci′ for i′ ∈ O. Thus, if it can be proven
then the adversary can not distinguish a random value from a real computation of the output
share. Given any index i ∈ O, it is possible to rewrite the computation of ci in the following
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way:
ci = aibi ⊕

⊕
j 6=i

ri,j = ri,j? ⊕
(
aibi ⊕

⊕
j 6=i,j?

ri,j

)
Let analyse such ri,j? : 1) we know that i /∈ U , it implies that ri,j? or any other partial sum
ci,z has been probed; 2) we know that j? /∈ U , this implies that rj?,i or any other partial sum
cj? , z has been probed; 3) we know that cj? has not been probed, otherwise would have held
that j? ∈ O, which is not by definition; 4) assuming that i < j?, we know that ri,j? ⊕ aibj?
has not been probed, otherwise j? ∈ V since i ∈ O; 5) assuming that j? < i, we know that
rj?,i ⊕ aj?bi has not been probed, otherwise j? ∈ V since j? /∈ O. Therefore, is it possible to
claim that neither ri,j? nor rj?,i have been observed or used elsewhere. And this means that a
random assignment for ci is indistinguishable from its real computation.

ut

Refreshing. As said, the refreshing needed more attention. It has to be redefined to achieve
strong non-interference, the authors provided the following candidate, which has been proved
and accepted as best practice:

Algorithm 3.10 RefreshMasks

Input: shares xi satisfying x =
⊕
xi

Output: shares yi satisfying x =
⊕
yi

1: for i = 1 to n do
2: yi ← xi
3: for i = 1 to n do
4: for j = i+ 1 to n do
5: r

$←− F2k . refereed by ri,j
6: yi ← yi ⊕ r . refereed by yi,j
7: yj ← yj ⊕ r . refereed by yj,i
8: return (y1, . . . , yn)

Lemma 3.20 (t-SNI of RefreshMasks [BBD+16]). Let (xi)1≤i≤n be the input shares of the
RefreshMasks operation from [BBD+16], and let (yi)1≤i≤n be its output shares. For any set of
t1 intermediate variables and any subset O of output shares such that t1+ |O| < t, there exists
a subset I of indices with |I| ≤ t1, such that the t1 intermediate variables, as well as the output
shares y|O can be perfectly simulated from x|I .

Proof. The proof starts, as usual, defining the set of indexes I as stated in the lemma. Pretty
straightforwardly, by definition, every internal probe can leak values: yi, ri,j or yi,j or yj,i with
i < j, I is constructed as follow:
1. for yi, ri,j or yi,j then i is added to I.
2. for yj,i then j is added to I.
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Should be easy to see that, since for each case always one index is added to the set, then
the cardinality of I is at most as the number of internal probes, i.e. |I| ≤ t1. Concerning
the simulation itself, the author gave a helpful visualization which we propose for the sake of
clearness: the algorithm can be represented by the following matrix, where each final refreshed
share yi is computed XORing each element of line i.

x1 0 r1,2 r1,3 · · · r1,n
x2 r1,2 0 r2,3 · · · r2,n
x2 r1,3 r2,3 0 · · · r3,n
...

...
...

...
. . .

...
xn r1,n r2,n r3,n · · · 0


Moreover, each partial sum yi,j is computed XORing the first j + 1 element of line i. Thus,
by construction, whenever an element in the i-th row is observed i is in I and xi can be used
to perfectly simulate the entire row, since the rest can be computed simply at random (like it
would have been generated in the real circuit). This can be applied to simulate every internal
probe. To conclude the proof is remained to simulate the output probes which index is in O.
It can only be that i ∈ I ∩ O or i ∈ O but not in I. The latter case is straightforward, since
i /∈ I then the adversary has not probed any partial sum yi,j and, in turn, it is impossible to
distinguish yi from a random value. Regarding i ∈ I ∩ O, since i is also in I then the entire
row has already been perfectly simulated and yi can be computed as it would have been in the
real circuit, XORing every element in the row. Hence, both internal and output probes can be
perfectly simulated from x|I , making the refreshing t-SNI.

ut

3.4 Region Probing Model

3.4.1 Leakage Rate and Regional Probing Model

So far, we mainly focus on practices and enhancements at the time level, which, in turn,
allowed to enlarge the threshold t. Namely, faster is the computation and more shares can
be used in the masking and more secure is the implementation. Thus, the value of t became
an important parameter to evaluate the security of a masked scheme: more knowledge the
adversary can "safely" (i.e without recovering sensitive information) obtain and stronger is
the level of security. Unfortunately, it has been recognized that the aforementioned reasoning
does not always lead to more secure schemes. A part of the community started to (also) look at
what has been called the leakage rate: the ratio between the threshold t and the total amount
of wires in the circuit. It is important to notice that also the leakage rate needs to be treated
as a guideline and not as an absolute parameter for evaluations, in fact, the rate still does not
consider practical aspect like the well-established fact that, for instance, writing in-memory
operations leak more than arithmetic ones.
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In 2016, Andrychowicz et al. introduced the first improvement in the leakage rate in
[ADF16]; compared to the implicit O(1/n) rate represented by the ISW constructions. It should
be easy to see the way in which the AND gate is masked (see Algorithm 3.1) any input share (in-
dependently from ai or bi) is required in the computation at least n times, making the O(1/n)
bound tight. The authors proposed a way to securely mask any circuit achieving a leakage rate
of O(1/ log n). We are not going to discuss their results about the leakage ratio but we will get
into the slightly different model that they worked on: the Regional Probing Model. To prove se-
curity in the classical probing model it is required to (perfectly/statistically/computationally)
simulate the view from any adversary observing the value of (up to) t, freely chosen, wires in
the entire transformed circuit. While in the regional probing model, a significantly stronger
adversary is taken into account, where it can probe t wires per sub-circuit. That is, the trans-
formed circuit is conceptually divided into regions and the adversary is allowed to observe t
variable in each region. Typically, a region is associated with a transformed gadget; concretely,
we consider any masked AND/XOR gate (or an AND/XOR gadget) a region. Moreover, by def-
inition, a wire connecting two gates can therefore belong (and must be considered in) to both
regions. Such model intrinsically improves the leakage rate. The authors provided a rigorous
definition of the t-regional privacy based on the Ideal-RealWorld simulation paradigm (we refer
to [ADF16]), but we reputed sufficient to consider the definitions presented in Section 3.1
with the difference that the adversary can, now, probe t wires per region, instead of the whole
circuit C ′.

3.4.2 About [ISW03], Regional Privacy and Re-Randomization Property

To be truthful, the region probing model was already considered in [ISW03], with one region per
gadget. Ishai at al. claimed that security in this model can be deduced from their constructions
due to the re-randomization property of the outputs of the AND gadget. Namely, for each
original output bit, the encoded outputs are (n − 1)-wise independent even given the entire
n-encoding of the inputs; they claimed this would imply security against a stronger type of
adversary who may observe at most t′ wires in each gadget, where t′ = Ω(t). However, we
argue that this re-randomization property is actually not enough to achieve security in the
region probing model: we exhibit a simple counterexample, i.e. a gadget achieving the re-
randomization property but insecure in the region probing model. Consider a mask refreshing
algorithm taking as input x1, . . . , xn and outputting y1 = x1⊕r1; . . . ; yn−1 = xn−1⊕rn−1 and
yn = xn ⊕ r1 ⊕ · · · ⊕ rn−1, for random r1, . . . , rn−1; here yn is computed from left to right.
Such mask refreshing achieves the re-randomization property as the output shares y1, . . . , yn
are (n − 1)-wise independent, even given all the input shares x1, . . . , xn. However such mask
refreshing does not achieve region probing security. In fact, if we iterate such mask refreshing
multiple times, it is possible to see that the adversary can accumulate knowledge and eventually
recover the original secret, by probing only a constant fraction of the wires in each mask
refreshing gadget. More precisely, assuming that we can probe n/4 + 2 internal variables
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at each iteration; at the first iteration, the adversary probes variables x1, . . . , xn/4, xn and
xn ⊕ r1 ⊕ · · · ⊕ rn/4. Therefore the adversary can compute:

y1 ⊕ · · · ⊕ yn/4 = (x1 ⊕ r1)⊕ · · · ⊕ (yn/4 ⊕ rn/4)
= x1 ⊕ · · · ⊕ xn/4 ⊕ xn ⊕ (xn ⊕ r1 ⊕ · · · ⊕ rn/4)

Therefore from the knowledge of x1 ⊕ · · · ⊕ xn/4, the adversary can keep the knowledge of
y1 ⊕ · · · ⊕ yn/4 by spending only 2 additional probes within the mask refreshing. Let z1 =

y1⊕r′1, . . . , zn−1 = yn−1⊕r′n−1 and zn = yn⊕r′1⊕· · ·⊕r′n−1 be the second iteration of the mask
refreshing algorithm. The adversary can now probe yn/4+1, . . . , yn/2, yn and yn⊕r′1⊕· · ·⊕r′n/2;
see Figure 32 for an illustration. The attacker can then compute as previously:

z1 ⊕ · · · ⊕ zn/2 = (y1 ⊕ · · · ⊕ yn/4)⊕ yn/4+1 ⊕ · · · ⊕ yn/2 ⊕ yn ⊕ (yn ⊕ r′1 ⊕ · · · ⊕ r′n/2)

Similarly, at the 3rd iteration, the adversary can compute the XOR of 3/4 of the output shares,
and after the 4th iteration, it can eventually recover the XOR of the n shares. The attack can
be adapted when probing any constant fraction of the n shares; see Figure 32. Therefore the
above mask refreshing algorithm is not secure in the region probing model, despite achieving
the re-randomization property.

3.4.3 Privacy in the Stateless Regional Probing Model

The simpler way to achieve security in the region probing model is actually via the t-SNI notion
explained in Section 3.3. The authors showed that the notion allows for securely composing
masked algorithms; i.e. the t-SNI of a full construction can be proven based on the t-SNI of its
component gadgets. However, the notion per se is not enough, as well as n = t+ 1 shares are
not sufficient to ensure it. Thus, to achieve privacy in the region probing model, we considered
the ISW masking countermeasure from Section 3.1.1, but in which we additionally performed
an (n − 1)-SNI mask refreshing algorithm as inputs of each XOR and AND gadgets. For this
purpose, we consider RefreshMasks from Lemma 3.20 which guarantees (n − 1)-SNI security.
Note that, in Lemma 3.20, it is stated the t-SNI property, while, here, we are claiming its
(n − 1) tolerance; this may be confusing, but both statements are equivalent since in the
algorithm is considered a number of shares n = t + 1, consequently t = n − 1. Moreover, as
before, each region is defined as comprising an AND or XOR gadget, and the mask refreshing
of the corresponding output variable so that each output z(j) is used only once in the next
region (see Figure 33 for an illustration, where it is considered a general f fan-out). From
the composability of the SNI and both previous lemmas Lemma 3.19 and Lemma 3.19, it is
straightforward to deduce the (n− 1)-SNI of the "refreshed" AND gadget.
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Fig. 32: Counterexample with n = 8, the red values represent the probes of the attacker.

∗

R

R

R

...

x
y

z(1)

z(2)

z(f)

Fig. 33: A region comprises a AND or XOR gadget, and the mask refreshing of the output
variable.
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Thus, before proving the t-regional privacy for the whole circuit C̃, we need to explicitly demon-
strate that even the XOR gadget from the ISW construction augmented with a RefreshMasks

per output achieves (n− 1)-SNI property. Recalling Section 2.1, we assume that such a gadget
has up to fan-out 2; actually, we assume fan-out exactly 2 since the other case is easier and
straightforward to deduce from the above proof.

Lemma 3.21. Let G be the XOR gadget from Section 3.1.1, where an (n − 1)-SNI mask re-
freshing is applied after it. Such a gadget achieves (n− 1)-SNI security.

Proof. Let (ai)1≤i≤n and (bi)1≤i≤n be the input shares of the XOR gadget, and (ci)1≤i≤n be the
corresponding output shares; let (di)1≤i≤n the output shares of the first Refresh and (ei)1≤i≤n
the output shares of the first Refresh. Let t3,t1 and t2 be the number of probes within the XOR,
Refresh1 and Refresh2 gadgets respectively, with t3 + t1 + t2 + |O| < n, where O = O1 ∪ O2

is the set of output variables to be simulated with O1 ⊂ (di)1≤i≤n and O2 ⊂ (ei)1≤i≤n; see
Figure 34 below.

⊕
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Fig. 34: XOR gadget composed with RefreshMasks.

Now, since by assumption the Refresh1 gadget is (n− 1)-SNI and t1 + |O1| < n, the t1 probes
within Refresh1 and the output variables d|O1

can be simulated from c|R1
, with |R1| ≤ t1;

similarly, the Refresh2 gadget is (n− 1)-SNI too and t2 + |O2| < n, thus, the t2 probes within
Refresh2 and the output variables e|O2

can be simulated from c|R2
, with |R2| ≤ t2. Furthermore,

by the internal structure of the XOR (see Section 3.1.1), the variables c|R1∪R2
can be simply

simulated from a|R1∪R2
and b|R1∪R2

. Lastly, the t3 probes within the XOR gadget can be
perfectly simulated from a|S and b|S , with |S| ≤ t3. Note that no further assumption, but
from the t-privacy, has been considered for the XOR component, for this reason, the set S has
cardinality t3. Additionally, we would like to remark that no specification has been made about
the cis that have been probed by the adversary, namely when they were counted as inputs of
Refreshi or outputs of XOR; nevertheless, as long as they are counted once, the affiliation is
irrelevant. Therefore the output variables d|O1

and e|O2
along with every other internal probes
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the within the full gadget can be perfectly simulated from a|I and b|I with I = R1 ∪ R2 ∪ S;
since by definition, |I| ≤ |R1| + |R2| + |S| ≤ t3 + t1 + t2 < n − |O| as required by Definition
3.18, the whole gadget is (n−1)-SNI. Clearly, the 1-output case would follow the same reason,
with the difference of having only one set R, but the inequalities will be respected anyway.

ut

We can now state the following theorem, proving that the ISW construction for t-privacy in
the stateless model, modified adding a (n − 1)-SNI as input of each AND and XOR gadget,
is secure in the regional settings. This is done by exploiting the SNI property of every single
gadget. More precisely:

Theorem 3.22 (t-privacy in the region probing model). Let C be a stateless circuit of
fan-out 2. Let (T, I,O) be the ISW transformer with n = 2t+ 1 shares, where an (n− 1)-SNI
mask refreshing is applied as input of each XOR and AND gadgets. The transformed circuit is
t-private secure where the adversary can put at most t probes per region, each of size O(t2).
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Fig. 35: Example of a circuit (top), and the same circuit displayed in reverse topological sort
order (bottom).

Proof. We consider the circuit as a set of q gadgets G1, . . . , Gq that we order as a direct acyclic
graph from output to input in a reverse topological sort order; see Figure 35 for an illustration.
We know that each gadget Gi achieves the (n− 1)-SNI property and let denote by (x

(j)
i )1≤i≤n

the input shares of the composed circuit, for 1 ≤ j ≤ m, where m is the number of inputs
in the original circuit corresponding to the q gadgets G1, . . . , Gq. We prove by recurrence on
q that the composition of the q gadgets achieves the following property: any set of t probes
in each gadget can be perfectly simulated from the knowledge of the input shares x(j)|Ij , for
subsets Ij with |Ij | ≤ t for all 1 ≤ j ≤ m. The base case q = 1 is straightforward from the
(n−1)-SNI property of the gadget G1. Thus, let now consider q gadgets G1, . . . , Gq with input
shares (x(j)i )1≤i≤n for 1 ≤ j ≤ m, and an additional gadget Gq+1. By assumption any set of t
probes in each gadget G1, . . . , Gq can be perfectly simulated from the knowledge of the input
shares x(j)|Ij , with |Ij | ≤ t for all 1 ≤ j ≤ m. Let (yi)1≤i≤n be the output shares of the inner
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AND or XOR components of Gq+1, and let (x(m+1)
i )1≤i≤n, (x

(m+2)
i )1≤i≤n be the corresponding

input shares. Since the original circuit C has fan-out 2, the output shares of Gq+1 are used by
at most two gadgets Gj1 and Gj2 . But by construction, the two refreshing masks applied to
(yi)1≤i≤n will output two different sets of shares (y(1)i )1≤i≤n and (y

(2)
i )1≤i≤n. For this reason,

the probes in Ij1 and Ij2 cannot exceed the threshold t; thus, we can define O = Ij1∪Ij2 be the
output shares of Gq+1 that must be simulated; it holds that |O| ≤ |Ij1 |+ |Ij2 | ≤ t. Since Gq+1

is (n − 1)-SNI and |O| + t ≤ 2t < n, the t probes within Gq+1 and the output shares can be
perfectly simulated from x

(k+1)
|Ik+1

and x(k+2)
|Ik+2

, with |Ik+1|, |Ik+2| ≤ t. This proves the inductive
property for the q + 1 gadgets G1, . . . , Gq+1. Eventually, this proves that the transformed
circuit is t-private secure where the adversary can put at most t probes per region.

ut

3.4.4 Privacy in the Stateful Regional Probing Model

Symmetrically, we adapted the ISW construction for the stateful circuits (see Section 3.1.1) to
obtain the t-privacy in the regional probing model. Like in [ISW03], our construction proceeds
as follows; see Figure 36 for an illustration.

in

out

C ′

REt

s0

s′0

in

out

C ′

R
s′1 s′2

Execution 2Execution 1Encoding

tttt

Fig. 36: Illustration of the stateful model. The initial encoding s′0 used in the first execution
gets refreshed into s′1 before getting passed to the next execution. The adversary can put t
probes per region within each execution, where the position of the probes can be changed
between executions.

We used the stateless transformer T (C, t) secure in the region probing model from above, with
t probes per region. Let denote with Et(x) the encoding used by the stateless transformer,
where x is the input being encoded. The initial state s0 of C is encoded as s′0 = Et(s0).7 At
7 Here we can use Et instead of E2t in [ISW03] because we consider a circuit C′ already secure in
the region probing model.
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the i-th invocation, the circuit C ′ = T (C, t) takes as input an encoded state s′i and outputs an
encoded state s′i+1 that is passed to the next circuit execution. Note that the encoded state
s′i must be refreshed after each execution; otherwise, the adversary could recover the internal
state by probing the encoded state t probes at a time; in the circuit C ′ this is done by using
an (n− 1)-SNI mask refreshing R as output. Recall that for a block-cipher, the internal state
corresponds to the key whose encoding must be refreshed after each execution. The regular
input in of C is unprotected, and need not be encoded before getting fed into C ′; for each
execution of C ′, this input is first encoded using Et and the output out is decoded using the
corresponding Dt. This implies that these inputs and outputs are known to the adversary so
that they can be given for free to the simulator. Thus, the perfect privacy in the stateful model
is derived from the perfect privacy in the stateless case, thanks to the region probing model.
Namely, a sequence of invocations of the stateful circuit C ′ can be unwound into a larger
stateless circuit C̃; in the unwound circuit, the adversary can corrupt up to t wires in each
region of each circuit produced by the stateless transformation. This means that every new
circuit execution corresponds to adding more regions in the unwound circuit (see Figure 36).
However, the adversary is allowed to move its probes between circuit executions; therefore
in the unwound circuit C̃, the probes corresponding to the i-th execution must be simulated
without knowing the position of the probes from the (i + 1)-th execution. To perform these
successive simulations we had to consider a slightly stronger definition than t-SNI security just
for mask refreshing between successive executions, which we called free-t-SNI security, where
in a given gadget the set of input variables I that must be known for the simulation, does
not depend on the set of output variables O to be simulated; formally: under this notion, the
output variables c|O must be uniformly and independently distributed for any O ( [1, n] \ I,
and this must be true even conditioned on the probed variables and c|I . This means that
even after the simulation of the probed variables has been provided to the adversary, it is still
possible to simulate the variables in c|O, simply by generating uniformly and independently
random values (this was not necessarily the case with the original t-SNI notion).

Definition 3.23 (free-t-SNI security). Let G be a gadget taking as input n shares (ai)1≤i≤n
and outputting n shares (ci)1≤i≤n. The gadget G is said to be free-t-SNI secure if for any set of
t1 ≤ t probed intermediate variables, there exists a subset I of input indices with |I| ≤ t1, such
that the t1 intermediate variables and the output variables c|I can be perfectly simulated from
a|I , while for any O ( [1, n] \ I the output variables in c|O are uniformly and independently
distributed, conditioned on the probed variables and c|I .

The RefreshMasks (see Algorithm 3.10 from Section 3.3.2) satisfies the above free t-SNI notion.
The proof will be sketched since is essentially the same as the proof of the ISW multiplication
algorithm from [CGPZ16, Appendix B.1]. That is, the proof constructs a subset I = U of
indices such that the t1 probes and c|I can be perfectly simulated from a|I , and in the proof
the other output variables c|O from any O ( [1, n] \ I are simulated by generating a random
value. Therefore the output variables in c|O are uniformly and independently distributed,
conditioned on the probed variables and c|I . This led us to formulate the following lemma:
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Lemma 3.24 (free-(n−1)-SNI of RefreshMasks). The RefreshMasks algorithm from [BBD+16]
is free-(n− 1)-SNI.

Finally, as we made for the stateless setting we provide proof for the construction which satisfies
the t-privacy also in the regional model, where the adversary probes t wires per gadget.

Theorem 3.25 (Perfect privacy, region stateful model). There exists a perfectly t-
private stateful circuit transformer secure in the region probing model which maps any stateful
circuit C of size |C| and depth d to a randomized stateful circuit of size O(|C| · t2) and depth
O(d log t).

Proof. The proof is essentially the same as the proof of Theorem 3.22 from above. The dif-
ference is that in the unwound circuit C̃, the adversary can move its probe between regions
corresponding to different executions of the circuit C ′. This implies that the simulation for the
i-th execution must be performed before knowing the position of the probes for the (i + 1)-
th execution. This is not a problem thanks to the characteristic of the new free-(n − 1)-SNI
property of RefreshMasks (see Lemma 3.24). Namely, the input shares of the next gadget (that
must be known for the next simulation), either belong to the set c|I of outputs shares from
the previous gadget and are already simulated, or to a set c|O of output shares that can be
simulated by generating uniformly distributed values. Therefore the simulation for the stateful
model can be performed by running a sequence of simulations from the stateless model.

ut

Remark 3.26. As obvious as it is, one can obtain privacy in the region model also for the
statistical setting, for both stateless and stateful cases. It is enough to consider the two adapted
ISW constructions for the regional probing model in the original proofs, respectively from
Section 3.1.4 and Section 3.1.5. The proofs would still hold and, from them, one can deduce
the statistical privacy even for adversary probing t wires per gadget.

Remark 3.27. From the next Section on, unless it is not explicitly specified, we will always refer
to the regional probing model. Namely, whenever in the next chapters it is stated t-private or
t-privacy or any other references to the previous definitions, it will still mean with respect to
the regional probing model.

3.5 Software Probing Model

In the next chapter, we will present our work on the first improvement made regarding statis-
tical privacy (see Section 3.1.4). And we will refer to the Software Probing Model. Sometimes,
for the sake of clearness, it is useful (and practical) to work in the RAM model used in the
algorithmic analysis; see [MS08, Section 2.2]; especially when software implementations are
analysed. In this model, each memory access takes a unit of time, and every memory cell can
store an integer whose bit-size is logarithmic in the input size; for a polynomial-time algorithm,
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this enables to store array indices in a single cell. Moreover, in the software probing model, it is
assumed that during the execution the adversary can only probe the input address and output
value of a RAM cell that is read during a table look-up, but not the content of the internal
wires of the circuit implementation of the RAM. This software probing model was already used
for example in the high-order table look-up countermeasure from [Cor14]. For simplicity, as
you will see, we are going to still describe our construction in terms of an expanded circuit C̃ as
in [ISW03]. But, the software implementation of our circuit C̃ is augmented with a RAM unit,
where the adversary can only probe the input address and the input/output value, but not
the internal wires of the RAM. Nevertheless, we would stress the fact that, for completeness,
we also provide in Section 4.2.4 a pure circuit description of our countermeasure, with a proof
of security in the standard wire probing model.



4

Secure Wire Shuffling in the Probing Model

In this chapter, we are going to present our first work, published at CRYPTO21, [CS21]. The
masking countermeasure used in the perfect privacy is quite practical and has been widely
studied with numerous improvements as we presented in the previous chapter, but the in-
herent quadratic factor can not be lowered. For this purpose Ishai et al. relaxed the privacy
to its statistical form, achieving quasi-linear complexity. Up to our knowledge, such proposal
construction has never been under further investigation. Our work describes an improved con-
struction in the statistical model that is better asymptotically and practically, since we argue
that the original construction from [ISW03] was, despite its theoretical potential, essentially
unpractical. To briefly summarize the construction in Section 3.1.4, their gadgets have com-
plexity O(t log t) and they proceed in two steps: 1) it considers statistical security in the weaker
random probing model (Section 3.1.3), achieved through the masking countermeasure against
t = k probes with 2k + 1 shares (where k is the security parameter); 2) the resulting trans-
formed circuit from the previous step is expanded in such a way that each wire is mapped into
` new wires mostly dummies (see Figure 31), so that only a relatively small subset of wires,
randomly distributed, in the circuit would take care of the actual computation. We called
this construction the Wire Shuffling Countermeasure, as it consists in randomly shuffling the
position of the signal among those ` wires.

Since it will be the most significant change in our proposed construction, it can be helpful
to recall the functioning of the final transformed gadget G̃: it takes 2` inputs, (ai)1≤i≤` and
(bi)1≤i≤`, where the information v and v′, from the intermediate circuit, are located at index
j ∈ [1, `] and j′ ∈ [1, `]; then, for each index 1 ≤ i ≤ ` a pair of (keyi, vali) is formed (we
refer to Section 3.1.4 for how such pairs are computed) in such a way that running a sorting
network algorithm on (key1, val1), (key2, val2), · · · (key`, val`), according to keyi, it would put v
and v′ in random but adjacent positions; finally, the i-th output share would be computed
looking at vali, vali+1 and vali+2, leaving the final output v ∗ v′, with ∗ ∈ {AND,XOR}, in a
uniformly random position j′′ ∈ [1, `]. Additionally, recall that the logarithmic factor in the
gadget complexity is given by the sorting algorithm. It is in this part of their scheme that our
improvement took place: we managed to replace the sorting algorithm with a simpler technique,
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achieving linearity, i.e. O(t) complexity, for each gadget. As in [ISW03], we randomly shuffled
the position of the signal vi among the ` wires, independently for each original wire i of the
intermediate circuit. However, we explicitly computed the index position ji ∈ [1, `] of each
signal vi among the ` wires; whereas in ISW this position was only implicitly determined by
the value of the ` wires, as one of them would contain the signal vi while the others would get
the dummy value $.

Informally, consider the two wires i and i′ in C ′, for which the signal is located at positions
j ∈ [1, `] and j′ ∈ [1, `] in the expanded circuit C̃. Since the positions j and j′ of the signal
are now explicitly computed, we don’t need to use a sorting network anymore. Instead, we
can simply generate a new random index j′′ ∈ [1, `], and cyclically shift the information
corresponding to wire i by ∆ = j′′ − j positions modulo `, and similarly by ∆′ = j′′ − j′

positions for wire i′. For both inputs, the signal is now located at the common position j+∆ =

j′ + ∆′ = j′′; consequently, it is possible to process the signal directly at such position j′′.
As a first advantage, a such cyclic shift has the main advantage that it can be computed in
linear time instead of O(` log `), hence we can get statistical security with time complexity
O(|C| · t) the whole circuit instead of O(|C| · t log t) proposed in [ISW03]. In addition, of minor
importance but still appreciable, this construction is also much easier to implement in practice,
as we can use a simple table look-up for the cyclic shifts, instead of a complex sorting network.

We stress the fact that the main difference between our and the original ISW construction
is that the index positions of the signal values are now explicitly computed in the final circuit
C̃. This had to be taken into account in our security proofs since those index positions can
be probed by the adversary, so we may as well assume that the adversary knows all those
index positions. We crucially relied on the fact that, as in [ISW03], the adversary learns those
positions only at the evaluation phase (being generated only at the running time); namely,
after it has committed its probes in the circuit. Therefore when the adversary learns the exact
locations it is actually too late: we showed that even those new information, it can only learn
the signal values with probability at most p. This means that, as in the original ISW, the
adversary cannot learn more from the worst-case probing of the final circuit C̃, than from
the p-random probing of the intermediate circuit C ′; we will see that from this the worst-case
statistical security can be achieved for our transformed circuit C̃.

Everything above introduced has been considered assuming the circuit is stateless. For the
stateful construction, we must add additional countermeasures; clearly, if the adversary is able
to know the position of the signal vi at the end of one execution, it can directly probe vi at
the beginning of the next execution. This holds for memory cells that must be transmitted
from one execution to the next; for instance, the AES key needs to be stored and passed
through subsequent executions. In ISW this is has been achieved by using a t-private encoding
of a random cyclic shift for each pack of ` wires. Such t-private encoding has complexity
O(t2), and since for every memory cell this cyclic shift requires a circuit of size O(` log `), the
additional complexity would be O(st2` log `), which gives a complexity of Õ(st3) for s memory
cells. In order to get an improved complexity we proceed as follows: for each wire i from C ′

at the end of one execution, we perform a random permutation of the ` = O(t) corresponding
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wires in C̃, but without processing the index location explicitly. For this, we used a sequence of
log2 ` layers, wherein each layer the information in all wires of index j and j+2m is randomly
swapped, for 0 ≤ m < log2 `. The complexity is then O(s` log `) = O(st log t), and in turn, the
circuit overall complexity is O(|C| · t log t). In the following Table 4.01, we have summarized
the time and circuit complexities. We will see in detail that, asymptotically, in the stateless
model our construction improves the time complexity but not the circuit complexity; while in
the stateful model, we improve both the time and circuit complexities.

time complexity
circuit complexity(RAM model)

Stateless model
ISW, Theorem 3.11 O(|C| · t log t) O(|C| · t log t)
Theorem 4.12 O(|C| · t) O(|C| · t log t)

Stateful model
ISW, Theorem 3.14 O(|C| · t log t+ s · t3 log t) O(|C| · t log t+ s · t3 log t)
Theorem 4.19 O(|C| · t+ s · t log t) O(|C| · t log t)

Table 4.01: Time and circuit complexity of our new construction vs ISW, where s is the number
of memory cells that must be passed from one execution to the other.

Furthermore, we describe an AES implementation of our shuffling countermeasure, which we
compare with an AES implementation of the perfectly private masking countermeasure. We
are going to see that, in practice, our shuffling construction outperforms the masking counter-
measure for t ≥ 6 000. We also provided the source code in [Cor21].

Before getting into the details of our construction, in the next section, we will explain an
additional minor difference with respect to Section 3.1.4 and Section 3.1.5. In order to make the
readability of the proofs easier, our construction works in a slightly different random probing
model; in this customized model the leakage will not take place at the wire level, instead, it
leaks at the gate level revealing, still with probability p, both input and output values. We
called it the Random Gate-Probing Model. Nevertheless, we will show the equivalence between
the two models.

4.1 Random Gate-Probing Model

As anticipated above, for proving the security of our new construction, it was more efficient
to work in a slight variant of the random probing model for the intermediate circuit C ′, in
which we assume that every gate of the circuit leaks all its information with probability p,
instead of every wire. In our variant, whenever a gate leaks, all its input and output wires are
leaked (see Figure 41 for an illustration); we call this variant the random gate-probing model.
We also assume that the input wires in C ′ are also leaking with probability p; technically, this
corresponds to a "copy gate" applied to each input which also is leaking with probability p.
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Fig. 41: Random probing model (left): each wire leaks with probability p. Random gate-probing
model (right): each gate leaks with probability p, in which case its inputs and output (a, b, c)
are leaked.

Given a circuit C and a set of its wiresW , we define CW as the value of the wires belonging
to W ; thus, the security in such new model is definable as follows:

Definition 4.1 (Random gate-probing security). Consider a randomized circuit C ′ and
a random sampling W of its internal wires, where each gate Gi of C ′ leaks with independent
probability pi. The circuit C ′ is said (p, ε)-random gate-probing secure if for any (pi)i with
pi ≤ p, there exists a simulator SC′ such that SC′(W )

id
= C ′W (Encode(x)) for every plain input

x, except with probability at most ε over the sampling of W .

After a deeper look, it is possible to notice that our above definition is slightly stronger than
Theorem 3.6 from [ISW03]. Specifically, in Theorem 3.6 the simulator needs to produce both
the random sampling W and the leaking values, whereas in Theorem 4.1 the simulator SC′ is
given W as input and it must perfectly simulate the leaking values (except with probability
at most ε) over the sampling of W . Namely, W is fixed by the adversary and, for any chosen
set W , the simulator is outputting |W | indistinguishable values. As it was for Lemma 3.7, the
masking countermeasure is proven secure in the random gate-probing model via Chernoff’s
bound. Since the proof is essentially the same as the proof of Lemma 3.7 (see Lemma 3.1.3) is
therefore omitted.

Lemma 4.2. There exists a circuit transformer T (C, k) producing a circuit C ′ of size O(k2|C|),
such that T achieves (Ω(1/k), ε)-random gate-probing security, where ε is a negligible function
of the security parameter k.

4.2 Shuffling Countermeasure in Stateless Setting

In this section, we describe our new construction that achieves worst-case probing security with
running time O(t) instead of O(t · log t) in [ISW03]. For the moment, let’s consider stateless
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circuits only; we will consider stateful circuits in the next Section 4.3. We are going to explain
the construction (Section 4.2.1) and the security proof (Section 4.2.2); later we will propose
an improvement for the time complexity with respect to the constant k factor (Section 4.2.3);
and lastly, we will provide the results in the pure circuit model (Section 4.2.4).

4.2.1 Description

Our construction proceeds in two steps: first we transform the original circuit C into an inter-
mediate circuit C ′ = T (C, k) with n = 2k+1 shares, Theorem 3.22 from Section 3.4. Then we
transformed the circuit C ′ into an expanded circuit C̃ as follows.

Wires. For each wire i in C ′ we consider a set of ` wires in C̃, labelled (i, 0), . . . , (i, `− 1) and
an index ji. Let a0, . . . , a`−1 be the value of the ` wires. The circuit C̃ maintains the invariant
that if wire i in C ′ has value v, then this value appears at position ji in C̃, that is aji = v,
while the value of the over wires is arbitrary.

Encoding and decoding. The usage of the explicit shuffling index required a redefinition of
the encoding and decoding algorithms. We slightly modified the Encode′ and Decode′ of the
intermediate circuit C ′ as follow:

• Encode’. To encode a value v, first generate at random an index j $←− [0, `− 1] and output
the encoding (j, (0, . . . , 0, v, 0, . . . , 0)), where v is at the j-th position.

• Decode’. Given (j, (a0, . . . , aj , . . . , a`−1)), return aj .

A positive consequential characteristic of the explicit computation of the positional index is
that we don’t need the dummy element $ for the ` − 1 other wires, this allowed us to save
a flag bit at the implementation level, a bit that would have been necessary to recognize the
dummy value; in fact, as shown above, at the encoding phase we could simply assign them to
0.

Algorithm 4.1 Gate ∗ processing
Input: Encodings (j, (a0, a1, . . . , a`−1)) and (j′, (b0, b1, . . . , b`−1))

Output: Index j′′ and array (c0, c1, . . . , c`−1) such that cj′′ = aj ∗ bj′
1: j′′←$ [0, `)

2: ∆ = j′′ − j, ∆′ = j′′ − j′

3: For all 0 ≤ i < `, let a′i ← ai−∆ and b′i ← bi−∆′ . a′j′′ = aj , b′j′′ = bj′ .
4: For all 0 ≤ i < `, let ci ← a′i ∗ b′i . cj′′ = aj ∗ bj′ .
5: return (j′′, (c0, c1, . . . , c`−1))

Gates. Consider a gate G in the intermediate circuit C ′, taking as input a and b, and out-
putting c = a ∗ b where ∗ ∈ {XOR,AND}. Moreover, let (ai)0≤i<` and (bi)0≤i<` be the corre-
sponding input wires for the expanded gadget G̃ in C̃, and let j and j′ be the corresponding
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indexes, with aj = a and bj′ = b. The processing of the gadget G̃ proceeds generating a random
index j′′ ← [0, ` − 1], and making the sparse-shares (ai)0≤i<` and (bi)0≤i<` pass through a
CyclicShift, where the cyclic shifts are computed based on ∆ = j′′ − j and ∆′ = j′′ − j′. This
would produce a change in the position of the `-array (ai) by j′′ − j positions modulo ` and,
similarly, of the `-array (bi) by j′′ − j′ mod ` positions. In this way the input signals a and b
would then be located at common position j′′; in turn, the gadget would apply the ∗ operation
to each position 0 ≤ i ≤ `−1 independently. Clearly, the j′′-th output would carry the original
signal c = a ∗ b as it would have been computed in G belonging to C ′. We provide a formal
description in Algorithm 4.1 above, where all indices computations are performed modulo `;
see also Figure 42 for an illustration.

a
b a ∗ b

a`−1

...

...

a0

a = aj cyclic
shift

∆=j′′−j

−j

j′′

j′′

b0 ...
b = bj′
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−j′

j′′
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∆′=j′′−j′
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aj′′ ∗ bj′′ = a ∗ b

a`−1 ∗ b`−1

Fig. 42: Original gate in C ′ (left) and shuffling gadget in C̃ (right). The bold wires contain the
original signal value from C ′; the other wires contain only dummy values.

Exploiting the visual representation of Figure 42 above, we would immediately address the
maintained soundness property of our new gadget since it is a part of the security definition.
This implies that in the next section we will provide just privacy proof, claiming that is enough
to achieve Definition 3.8. We claim the following:

Theorem 4.3. The transformed gadget G̃ defined above achieves the soundness property, ac-
cording to Definition 3.8.
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Proof. The intermediate circuit C ′ = T (C, k) computes the same function as C. Moreover,
every expanded gate in C̃ computes the same gate as C ′. Namely, consider the gate c = a ∗ b
in C ′. In the final circuit C̃ we have cj′′ = a′j′′ ∗ b′j′′ = aj′′−∆ ∗ bj′′−∆′ = aj ∗ bj′ = a ∗ b = c as
required. Therefore C̃ = T̃ (C, k) computes the same function as C.

ut

Remark 4.4. Note that Algorithm 4.1 can be implemented via a table look-up. Namely, the `
wires can be stored in an array T [i] for 0 ≤ i < `, with T [j] = v for the signal index j, and the
cyclic shift is performed as in Step 3, that is with the loop T ′[i] ← T [i − ∆ mod `] for each
0 ≤ i < `. Moreover, the running time of Algorithm 4.1 is O(`) per gadget.

We just explained how to compute both AND and XOR gates; to complete the description
of T̃ , it remains to describe the expansion of a random gate in C ′. It is managed similarly
to in the original circuit C: with a gate taking no input and outputting a random bit (see
Section 2.1). Such gate would be expanded into a gadget outputting (j, (r0, . . . , r`−1)) with
ri ← {0, 1} for all 0 ≤ i < ` and j ← [0, `). This concludes the description of every type of
gate in the process of transforming C ′ into C̃.

4.2.2 Shuffling Security and Composition

As in [ISW03], our goal is to show that the adversary does not learn more from the worst-case
probing of the final circuit C̃ than what it would have learnt from the p-random (gate)-probing
of the intermediate circuit C ′. For this we proceed with a similar compositional approach
showed in [BBD+16]: 1) we introduced a new security definition for a single gadget in the
expanded circuit C̃, 2) we proved that our shuffling gadget from the previous section satisfies
such definition, and 3) we showed how to get security for the full circuit C̃ by composition.

Gadget. The main benefit of this approach is that 3) only depends on 1), therefore we could
later modify the shuffling gadget and still get security for the full circuit, as long as the shuffling
gadget satisfies the security definition. We called it `-shuffling security and it is defined as
follows:

Definition 4.5 (Shuffling security). We say that a randomized gadget G̃ achieves `-
shuffling security if any set of t probes, excluding the input wires of the gadget, can be perfectly
simulated from scratch, except with probability at most t/`, where the probability is taken over
the randomness used by the gadget.

As one may notice the input wires of the gadget are excluded from the simulation. This choice
has been taken to simplify the proofs and reasoning on the fact that when it will be used in the
composition of the full circuit such wires have a duality essence; namely, in the composition,
the selected among the input wires of a gadget can be handled by the simulation of the output
wires of the previous gadget, with the only exception of the input wires of circuit C̃, which
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we will see how to handle separately. In sum, this assumption will improve the readability of
the proof and will not impact the security anyway. Given this needed digression, we can now
proceed with phase 2) mentioned at the beginning of the Section: proving that the construction
from Section 4.2.1 achieves our `-shuffling security.

Lemma 4.6. The gadget G̃ as described in Algorithm 4.1 is `-shuffling secure.

Proof. We must construct a simulator that can simulate any set of t probes, with failure
probability at most t/`. In the simulation the input indices j, j′ are fixed, as well as the input
arrays (a0, . . . , a`−1) and (b0, . . . , b`−1). From the definition the adversary cannot probe those
input arrays; in particular, the adversary cannot probe the signal a = aj and b = bj′ . Moreover,
the adversary must commit to the position of the probes before the execution of the gadget.
Therefore in the simulation, the probes have fixed positions while the index j′′ is randomly and
uniformly distributed in [0, `). This implies that for a fixed i ∈ [0, `), the variable a′i contains
the secret value a with probability at most 1/`; the same holds for the variables b′i and ci.
Consequently, the t probes can be perfectly simulated, except with probability at most t/`.

ut

Composition.We now prove the worst-case statistical t-privacy of the final circuit C̃, from the
p-random gate-probing security of the intermediate circuit C ′; see Figure 43 for an illustration.
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p =
t

`

t

...

...

Fig. 43: A set of t probes in a shuffling gadget in C̃ (right) correspond to a gate-leaking
probability at most p = t/` in C ′ (left).

Namely, we claim that the existence of an adversary able to break the t-statistical privacy of
our transformed C̃ circuit would result in an attacker able to break the p-random gate-probing
security of C ′; a statement that, in turn, would jeopardise the veracity of Lemma4.2 (which is
a contradiction). Thus, let’s state the following Lemma:
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Lemma 4.7. Suppose that C ′ is (p, ε)-random gate probing secure. Then, the circuit C̃ ′ con-
structed as described above with ` := t/p achieves ε-statistical security in the worst case against
t probes.

Proof. We must construct a simulator S̃ for the t probes of the final circuit C̃, using the
already proved simulator S ′ for the gate average-case security of the intermediate circuit C ′.
According to Lemma 4.2, it exists a simulator S ′ that receives as input a random sampling
W of the gates, where each gate leaks with independent probability pi ≤ p, and S ′ is able
to provide a perfect simulation of the gates in W , except with probability at most ε over the
sampling W .

Therefore, our simulator S̃ can proceed as follows. First, it receives from the adversary
the set of probed wires belonging to the final circuit C̃. Then, it generates randomly every
index position of circuit C̃, like they would have been computed in a real execution. Thus,
as illustrated in Figure 43, a set of ti probes in a shuffling gadget G̃i of C̃ corresponds to a
leaking probability pi = ti/` in the corresponding gate Gi of C ′. More precisely, according to
Lemma 4.6, each gadget G̃i can be perfectly simulated from scratch, except with probability
at most ti/`. Therefore, our simulation for the full circuit C̃ will first run the simulators Si for
all gadgets independently; when any such simulator Si fails (this happens with probability at
most pi = ti/` ≤ t/` = p), we include the corresponding gate Gi in the sampling W .

Moreover, from Definition 4.5 and Lemma 4.6, the failure probabilities are independent,
because in Definition 4.5 the failure probability is taken over the gadget randomness, and
such randomness in each gadget is generated independently. Consequently, the gates Gi is
included in W with independent probability pi ≤ p as required in Definition 4.1. Eventually,
our simulator S̃ runs the intermediate circuit simulator S ′ over the sampling W , and receives
a simulation of the input wires of the corresponding gates Gi ∈ W . Those simulated values
are, now, used to perfectly simulate the ti probes within each expanded gadget G̃i, for the case
when Si has failed. Since the simulator S ′ from the intermediate circuit C ′ provides a perfect
simulation except with probability ε over the sampling W , our final simulator S̃ provides a
perfect simulation of the t probes for C̃ except with probability ε. This proves the security for
the whole circuit, since, by definition, ε is negligible.

ut

Furthermore, our construction has better running time O(|C| · t) with respect to the ISW

construction; while it maintains the same circuit complexity O(|C| · t · log t). From Lemma 4.3
and Lemma 4.7, we could claim the existence of a faster statistical t-private transformer.

Theorem 4.8. There exists a statistically t-private stateless transformer (T, I,O), such that
T (C, k) transforming a circuit C into a circuit C̃ of running time O(|C| · k3 · t) and size
O(|C| · k3 · t · (log k + log t)). The depth of C̃ is the same as that of C, up to polylog factors.

Proof. Lemma 4.3 proved the soundness of C̃, while Lemma Lemma 4.7 ensured its privacy.
This is enough to achieve statistical privacy in the stateless worst-case model. The intermedi-
ate circuit C ′ has size O(|C|k2), while the final circuit has running time O(|C|k2`) and size
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O(|C|k2` log `). Fixing p = t/` and p = Ω(1/k) to achieve gate average-case privacy for C ′, we
get running time O(|C| · k3 · t) and size O(|C| · k3 · t · (log k + log t)).

ut

4.2.3 Improved Time-Complexity

From the proof of Lemma 4.7 the circuit C̃ is actually secure in the region probing model,
where the adversary can put t probes per gadget in C̃. We can, however, further optimize the
circuit complexity, with respect to the security parameter k, if we only require security against
a total of t probes in the full circuit C̃. Namely, in this case, it is possible to consider each
gadget of C̃ having ti probes with the condition that

∑
i ti ≤ t, instead of ti ≤ t for all i in the

proof of Lemma 4.7. This means that for each corresponding gate in the intermediate circuit
C ′, we can consider a leakage probability pi = ti/` such that

∑
i pi ≤ µ over the full circuit C ′,

with µ = t/`. Note that, in this way, we lose the better leakage ratio considered in Definition
4.1 (where we required pi ≤ p = t/` for all gates). In particular, if we take t/` > 1, we can
tolerate a leakage probability pi = 1 for a fraction of the gates in C ′, as long as

∑
i pi ≤ t/`

over all gates of C ′; see Figure 44 for an illustration.
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Fig. 44: A total of t probes in the final circuit C̃ (right) corresponds to a total of leaking
probabilities at most t/` in the intermediate circuit C ′ (left).

Nevertheless, we may handle this weaker condition by modifying the definition of random gate
probing security as follows:

Definition 4.9 (Random Σ-gate-probing security). Consider a randomized circuit C ′

and a random samplingW of its internal wires, where each gate Gi of C ′ leaks with independent
probability pi. The circuit C ′ is said (µ, ε)-random Σ-gate-probing secure if for any (pi)i with∑
i pi ≤ µ, there exists a simulator SC′ such that SC′(W )

id
= C ′W (Encode(x)) for every plain

input x, except with probability at most ε over the sampling of W .
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Note that here
∑
i pi is the average number of leaking gates in the circuit C ′. Due to the

condition
∑
i pi ≤ µ, when applying Chernoff’s bound on the intermediate circuit C ′ = T (C, k)

secure against k probes, we could prove random Σ-gate-probing security with a much-improved
µ = Ω(k), instead of Ω(1/k). We would like to stress that this newly considered trade-off in
the balance leakage ratio vs threshold has to be done with the scope of improving the practical
implementation results (see Section 4.4). The following Lemma provides concrete values for
µ(k) and ε(k) for the intermediate circuit C ′ based on the masking countermeasure:

Lemma 4.10. There exists a circuit transformer T (C, k) producing a circuit C ′ of size
O(k2|C|), such that T achieves (µ, ε)-random Σ-gate-probing security for µ = Ω(k) and ε

a negligible function of the security parameter k. In particular, one can take µ = k/4 and
ε = 2−k/(12 log 2).

Proof. Let X1, . . . , Xm be independent Bernoulli random variables, where Xi = 1 if the i-th
gate of C ′ is probed, and Xi = 0 otherwise. We assume that

∑
i Pr[Xi] ≤ µ with µ = k/4. Let

X = X1+ . . .+Xm be the total number of leaking gates in circuit C ′. The circuit C ′ = T (C, k)

is perfectly secure against an adversary probing at most k variables; hence it is perfectly secure
against the leakage of k/2 gates; namely, a gate can be perfectly simulated from the knowledge
of its two inputs. Therefore we can provide a perfect simulation of the probes if X ≤ k/2. To
compute the simulation failure probability we apply the Chernoff bound for δ ≥ 1 (see ??):

Pr[X ≥ (1 + δ) · E[X]] ≤ exp

(
−δ
3
E[X]

)
We fix δ such that (1 + δ)E[X] = 2µ. Since E[X] =

∑
i Pr[Xi] ≤ µ, we have δ ≥ 1 as required.

We obtain:
δ

3
E[X] =

δ

3
· 2µ

1 + δ
≥ µ/3

Finally, using µ = k/4, we obtain:

Pr[X ≥ k/2] ≤ exp(−k/12)

The simulation failure probability is therefore upper-bounded by ε = exp(−k/12) = 2−k/(12 log 2).
ut

Note that the above circuit C ′ does not need to be secure in the region probing model with k
probes per region; namely in the proof of Lemma 4.10 only the total number of probes matters.
Therefore, as a further improvement, the scheme only requires n = k+1 shares with appropriate
mask refreshing as in [BBD+16] (instead of n = 2k + 1 used in our previous construction).
Eventually, we obtain a statistically t-private stateless transformer with complexity O(|C|·k·t),
instead of O(|C| · k3 · t) in Theorem 4.8. The proof would follow as previously: firstly proving
the worst-case security of C̃ from the average-case security of C ′.
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Lemma 4.11. Suppose that C ′ is (µ, ε)-random Σ-gate-probing secure. Then, the circuit C̃
constructed as described above with ` := t/µ achieves ε-statistical security in the worst case
against t probes.

Proof. The proof is essentially the same as the proof of Lemma 4.7. Instead of having each
gadget G̃i simulator Si fail with probability pi ≤ p, the failure probabilities are still independent
but with the looser condition

∑
i pi ≤ µ = t/`. This gives a sampling W of the gates Gi in

C ′ with the same condition
∑
i pi ≤ µ. Since C ′ is (µ, ε)-random Σ-gate-probing secure, this

implies that C̃ achieves ε-statistical security in the worst case against t probes.
ut

Theorem 4.12. There exists a statistically t-private stateless transformer (T, I,O), such that
T (C, k) transforms a circuit C into a circuit C̃ of running time O(|C| · k · t) .

Proof. From Lemma 4.11, the circuit C̃ achieves worst-case statistical t privacy in the stateless
model. Its running time is O(|C| · k2 · `). With ` = t/µ and µ = k/4, the running time is
O(|C| · k · t).

ut

4.2.4 Shuffling for Pure Circuit Model

Before passing to the stateful model, for the sake of completeness, we consider the pure circuit
model; specifically, here is not allowed the use of RAM, as explained in Section 3.5. The
construction described in Section 4.2.1 has been implemented using table look-ups and it has
been proved secure in the software probing model, where the adversary can only probe the input
address and input/output value of a RAM cell, but not the content of the internal wires of the
circuit implementation of the RAM. However, it is easy to obtain a pure circuit implementation
of the construction, using a circuit implementation of a cyclic shift, with complexity O(` log `);
that is maintaining the original ISW complexity. As a major consequence, the adversary is now
allowed to probe also the wires within the cyclic shift. Therefore we use the same approach
as in [ISW03, Lemma 2], see Section 3.1.4, with ` = O(t/p7) instead of ` = O(t/p4). Thus,
since our expanded gate has complexity O(` log `) instead of O(k · ` log `) in [ISW03], the final
complexity will be O(|C| · k9 · t · (log k + log t)) instead of O(|C| · k10 · t · (log k + log t)). This
is sufficient to prove the following:

Theorem 4.13. There exists a statistically t-private stateless transformer (T, I,O), such that
T (C, k) transforms a circuit C to a circuit C̃ of size O(|C| · t · log t). The depth of C̃ is the
same as that of C, up to polylog factors.

After this section we will come back to the RAM model, namely, the constructions we
are going to see for the stateful settings use RAM implementation of cyclic shifts as well;
consequently, we anticipate now, that similarly, we obtained the same result in the pure circuit
model for the stateful settings using the randomizing network construction from Section 4.3.2.
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Theorem 4.14. There exists a statistically t-private stateful transformer T , such that T (C, k)
maps a circuit C with s memory cells to a circuit C̃ with complexity O(|C| · t · log t). The depth
of C̃ is the same as that of C, up to polylog factors.

4.3 Shuffling Countermeasure in Stateful Setting

We finally discuss our countermeasure(s) in the more useful and practical stateful model.
We propose two constructions in the worst-case statistical stateful model that achieve a better
complexity bound than the ISW construction recalled in Section 3.1.5. Before that let us briefly
recall that in our stateless construction from Section 4.2, the position j ∈ [0, `−1] of the signal
vi among the ` wires is explicitly computed; it is therefore assumed that it is known to the
adversary at the end of a given execution. For the stateful model, this means that without any
additional countermeasure, the adversary could directly probe the signal vi at the beginning of
the next execution; this holds for the hidden state that must be transmitted from one execution
to the other (see Figure 45 for an illustration).
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`
$ $

Execution 1 Execution 2

A

Fig. 45: Without additional countermeasure, the adversary learning the index position j at
the end of a given execution can directly probe the signal vi at the beginning of the next.

Because of that, the adaptive case of the stateful model requires a stronger guarantee
compared to Theorem 4.5. We had to extend the `-shuffling security by ensuring that even
after having observed t probes in the gadget, any set O of output probes can be simulated from
scratch, except with probability at most 2t/`. Note that the construction in Figure 42 from
the stateless case cannot satisfy this definition, since the adversary could directly probe the
output position j′′ of the signal. Thus, we introduce what we called strong `-shuffling security:
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Definition 4.15 (Strong `-shuffling security). We say that a randomized gate G achieves
strong `-shuffling security if any set S of t probes (excluding the input wires) and any set O
of output probes, can be perfectly simulated from scratch, except with probability at most 2t/`,
where the set O is chosen adaptively from the value of the probes in S.

It is interesting to notice that in the original ISW construction for the statistical privacy in
the context of stateful circuits, the authors used a perfectly t-private random cyclic shift;
and such a countermeasure indeed satisfies our Definition 4.15. Since from the t-privacy the
adversary gets no information about the position of the output signal, and therefore for a total
of 2t probes the probability to recover the signal is at most 2t/`; the complexity of the ISW

construction for a single gadget is O(`t2).
As mentioned above, we actually propose two solutions which improve the original time

complexity: the first will exploit several consecutive classical (i.e not masked) cyclic shifts, the
intent was to use a number of cyclic shifts greater than the threshold, so that the adversary can
not probe all. The second (and more efficient) will use a particular randomizing network on the
`-tuple of output wires. The Iterated Cyclic Shift countermeasure saves a linear factor, while the
Randomizing Network a square one, both compared to the Õ(|C| ·t log t+s ·t3 log t) complexity
of [ISW03]. Additionally, both constructions, indeed, achieve strong `-shuffling security. To
complete the section, we are going to show that any construction satisfying Definition 4.15
enables obtaining worst-case statistical security in the stateful model.

4.3.1 Iterated Cyclic Shifts

Our first construction consists of a sequence of t+ 1 random cyclic shifts with uniformly and
independently distributed shifts ∆1, . . . ,∆t+1 ← [0, `− 1], see Figure 46 for an illustration.
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Fig. 46: First construction: sequence of t+ 1 random cyclic shifts.

As in [ISW03], the construction is used as output for every hidden state bit that must be
transmitted from one execution to the next. While, as opposed to our stateless construction,
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the index position of the signal is not explicitly computed in the cyclic shifts; the position
of the signal is only implicitly determined by the value of the wires in {0, 1, $}, where $ is
the dummy value (technically it is a 0). At the end of a given execution, the gadget must,
therefore, convert from a representation with explicit signal index j to the representation with
wire values in {0, 1, $}; this can be done with complexity O(`). Then, the index position of the
signal is computed again explicitly as the beginning of the next execution. The construction
satisfies the strong `-shuffling security, since with at most t internal probes, one of the t + 1

random cyclic shifts is necessarily not probed, and, consequently, the adversary does not get
any information about the position of the output signal. As anticipated, the overall cost of
this first construction is Õ(`t), instead of Õ(`t2) for the ISW construction with the perfectly
t-private random cyclic shift.

Lemma 4.16. The gadget described above is strong `-shuffling secure.

Proof. We consider the following sequence of two security games:

Game1: we follow Definition 4.15, in which the adversary first chooses t probes (excluding the
input wires), obtains their value, and then chooses another t probes among the output wires
of the gadget. The adversary wins the game if he observes the signal value x. We denote by
S1 the event that the value x is revealed by the first t probes, and by T1 the event that the
value x is revealed by the t output wires chosen by the adversary. It holds that Pr[S1] ≤ t/`.
Game2: we proceed as in Game1 above, but now we modify the way the output of the first t
probes is generated, in that we never reveal the value x; instead we always leak the dummy
value $. Let T2 be the event in Game2 that the value x is revealed by the t output wires. We
see that events T1 and T2 are identical unless one of the first t probes would reveal x. This
means T1 ∧ ¬S1 = T2 ∧ ¬S1.

We claim that in Game2 the adversary gets no information about the index position of the
signal in the output variables. Namely, from the first set of t probes the adversary can only
receive the dummy value $; moreover, the adversary can only probe at most t of the t + 1

shifting index ∆i of the cyclic shifts. Since at least one of those t+ 1 random cyclic shifts has
not been probed, the distribution of the signal position after this cyclic shift is independent of
the adversary’s view and uniform in [0, `); this also holds for the signal position in the output
variables. This implies Pr[T2] ≤ t/`. Eventually, we obtain:

Pr[S1 ∨ T1] = Pr[S1] + Pr[T1 ∧ ¬S1] = Pr[S1] + Pr[T2 ∧ ¬S1] ≤ Pr[S1] + Pr[T2] ≤ 2t/`

Therefore, the 2t probes can be simulated except with probability at most 2t/`.
ut

4.3.2 Randomizing Network

Instead, our second construction consists of a network of log2 ` layers, wherein the m-th layer
for 0 ≤ m < log2 ` the information in all wires of index i and i+2m is swapped with independent
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probability 1/2; see Figure 47 for an illustration, where for simplicity we assume that ` is a
power of 2. Letting j′ ∈ {0, . . . , `−1} be the index position of the signal before the randomizing
network, at layer m the m-th bit of the signal position is therefore randomly flipped. Since
this is done for all layers 0 ≤ m < log2 `, at the end the output index of the signal is randomly
distributed in {0, . . . , `− 1}.

∆
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Fig. 47: Second construction: random cyclic shift and randomizing network for ` = 8.

As in the previous construction, the index position j′ is only known as input and not computed
explicitly during the swaps: the position of the signal is only implicitly determined by the value
of the wires in {0, 1, $}; the index position of the signal is computed again explicitly as the
beginning of the next execution; see Figure 48 for an illustration. For a single gadget, our second
construction has complexity Õ(`), instead of Õ(`t) in our first construction and Õ(` · t2) in
[ISW03]. Moreover, our second construction has depth polylogarithmic in t, instead of linear
in t in our first construction.

Finally, to satisfy the strong `-shuffling security (Definition 4.15), we must prepend a
random cyclic shift; otherwise, since, by definition, the input index j is fixed, the adversary
could directly probe the j-th wire after the first layer, and learn the signal with probability
1/2. Thus, we could state and prove the following:

Lemma 4.17. The gadget described above is strong `-shuffling secure, with circuit complexity
O(` · log `).

Proof. The proof is essentially the same as the proof of Lemma 4.16 from the previous section.
We assume that when the adversary probes a swap, it learns the two input wires of the swap,
and additionally a bit b corresponding to whether a swap of the wire values occurred or not.
We consider two security games Game1 and Game2. In Game1 we follow Definition 4.15; while,
as previously, in Game2 we always leak the dummy value $; moreover, when a swap is probed,
we replace the bit b with an independently generated random bit. As previously, we claim
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Fig. 48: Thanks to a strong `-shuffling gadget, the adversary does not get information about
the index position of the signal at the end of an execution.

that in Game2 the adversary learns nothing about the position of the signal among the output
wires. Denoting by S1 the event in Game1 that the value x is revealed by the first t probes, we
have Pr[S1] ≤ 2t/`, since the adversary can now learn 2 wires at a time. Denoting by T1 and
T2 the same events as in the proof of Lemma 4.16, we obtain as previously:

Pr[S1 ∨ T1] ≤ Pr[S1] + Pr[T2] ≤ 2t/`+ t/` = 3t/`

Therefore the 2t probes can be simulated except with probability at most 3t/`. To satisfy
Definition 4.15 we can therefore use 3`/2 wires instead of 2`.

ut

4.3.3 Composition in the statistical stateful model

As in the stateless case, we showed that the worst-case statistical privacy of C̃ in the stateful
model follows from the p-random gate-probing security of C ′, based on the `-shuffling security
(Definition 4.5) and strong `-shuffling security of the gadgets.

Lemma 4.18. Suppose that C ′ is (p, ε)-random gate probing secure. Then, the circuit C̃ con-
structed as described above with ` := 3t/(2p) achieves stateful ε-statistical security in the worst
case against t probes per execution.

Proof. The proof is essentially the same as the proof for the stateless case (see Lemma 4.7 in
Section 4.2.2). But, for the stateful case, we first obtain a p-random secure intermediate circuit
C ′ from Theorem 3.5. The proof then proceeds as in the stateless case. In a given execution
the adversary probes in C̃ generate a random sampling W of the gates in C ′, where from
Definition 4.5 each gate leaks with probability at most p. Moreover, Definition 4.15 implies
that the input wires for the next execution of C ′ also leak with probability at most p. Then,
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from the p-random probing security of C ′, this implies worst-case t-privacy in the stateful
model of the final circuit C̃.

ut

Eventually, due to the randomizing network construction, which has complexity O(` log `),
the complexity of the final circuit C̃ is O(|C| · t log t) instead of O(|C|t log t+s · t3) in [ISW03].
Therefore as opposed to ISW our construction has quasi-linear complexity even for a large
number s of memory cells. Recall we already provided the same result for the pure circuit
model in Section 4.2.4.

Theorem 4.19. There exists a statistically t-private stateful transformer T , such that T (C, k)
maps a circuit C with s memory cells to a circuit C̃ with complexity O(|C| · t · log t). The depth
of C̃ is the same as that of C, up to polylog factors.

Proof. From Lemma 4.18, circuit C̃ achieves statistical privacy in the stateful worst-case model,
with circuit complexity O(|C| · ` log `). With ` = O(t), the circuit complexity is finally O(|C| ·
t · log t).

ut

4.4 Implementation

As a final part of this Chapter and our work at [CS21], we provide some details about the pro-
totype of our stateless construction from Section 4.2.1. For performance reasons, as explained
in Section 4.2.3, our implementation took into consideration the non-regional model.

Security parameters. Recall that the construction proceeds in two steps. Starting from the
original circuit C, we first constructed an intermediate circuit C ′ based on the classical masking
countermeasure with perfect security against k probes, where k is the security parameter. From
Chernoff bound, the intermediate circuit C ′ is also secure in the random gate-probing model;
more precisely, according to Lemma 4.10, the circuit C ′ achieves the (µ, ε)-random Σ-gate-
probing security with parameters µ(k) = k/4 and ε(k) = 2−k/(12 log 2). Here µ(k) = k/4 denotes
the number of gates that are probed on average, and ε(k) = 2−k/(12 log 2) the probability of
simulation failure (for the unlucky case when the number of leaking gates in C ′ is too large).
Therefore, to get ε = 2−80 security, we must fix k = 668. For the intermediate circuit C ′ we use
n = k+ 1 shares with appropriate mask refreshing, as in [BBD+16]. In the second step, every
wire from the intermediate circuit C ′ must be expanded into ` wires in the final circuit C̃,
where according to Lemma 4.11 it is required that ` = dt/µe = d4t/ke to get security against
t probes. This implies that security against t = k · `/4 probes as a function of ` is achieved.
Furthermore, for ε = 2−80 and k = 668, this gives security against t = 167 · ` probes as a
function of the parameter `1. Since the running time of our construction is O(`), with those
1 We see that it would not make sense to use ` ≤ 4, since the intermediate circuit C′ already provides
perfect security against k = 668 probes.
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parameters we can claim it is equal to O(t) for security against t probes, instead of O(t2) for
the masking countermeasure.

Number of operations. We also provide a comparison among the concrete number of oper-
ations between the masking countermeasure and our construction. For simplicity, we consider
a single AND gadget. From Algorithm 3.9, the AND gadget in the intermediate circuit C ′

performs a total of n · (7n− 5)/2 operations, with n = t+1 shares for perfect security against
t probes. This includes n · (n− 1)/2 random generations, and n · (3n− 2) boolean operations.
In turn, this gives Nm = (t+ 1) · (7t+ 2)/2 ' 7t2/2 operations as a function of the maximum
number of probes t. We now consider circuit C̃ corresponding to the expansion of the AND

gadget in C ′. Every random generation in the intermediate circuit C ′ requires `+1 operations
in C̃. From Algorithm 4.1, every boolean operation in C ′ requires 5` + 3 operations in C̃.
Hence, the total number of operations is:

Ns = n · (n− 1)/2 · (`+ 1) + n · (3n− 2) · (5`+ 3) ' 31

2
· n2 · `

With n = k + 1 and ` = 4t/k, we get Ns ' 62 · k · t. Finally, with k = 668, the number of
operations is therefore Ns ' 41 416 · t for worst-case security against t probes. We refer to
Table 4.41 for a summary of the operation count.

Masking countermeasure Shuffling countermeasure
#rand n2/2 1

2 · n2 · `
#bool 3n2 15n2 · `
#op 7n2/2 31

2 · n2 · `
#op 7t2/2 41416 · t

Table 4.41: Number of operations for worst-case security against t probes, where n = t+1 for
the masking countermeasure, and n = k + 1 and ` = 4t/k for the shuffling countermeasure,
with k = 668; we only keep the high-order terms.

Since the masking countermeasure has complexity 7t2/2 and our shuffling countermeasure has
complexity 41 416 · t, the two countermeasures have equal complexity for 7t2/2 = 41 416 · t,
which gives t ' 12 ·103. Therefore we expect our shuffling countermeasure to beat the masking
countermeasure for a number of probes t ≥ 12 · 103.
AES implementation. As one additional contribution, we implemented the AES algorithm
augmented with our shuffling countermeasure, which we compare with an AES implementa-
tion of the masking countermeasure, using the same parameters as above. For our shuffling
construction used the following optimization: in the implementation of SecMult (see Algo-
rithm 3.9, when accumulating ci ← ci ⊕ r (lines 7 and 9), for a given index i we always used
the same signal position ji among the ` wires. This is because the SecMult algorithm would
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t 668 2004 3340 4676 6012 7348 8684 10020
Masking (s) 1.4 12 34 70 111 187 235 310
Shuffling (s) 52 63 78 91 102 119 134 141

Table 4.42: Running time of AES implementation, as a function of the number of probes t. We
use n = t+ 1 for the masking countermeasure and ` = 4t/k for the shuffling countermeasure.
Implementation on a 3,2 GHz Intel processor, running on a single core.

remain secure in an extended model of security where the adversary could obtain all successive
values of the ci variables with a single probe. We summarize the timings in Table 4.42; see also
Figure 49. We see that our shuffling construction outperforms the masking countermeasure for
a number of probes t ≥ 6 000, with a running time of approximately 2 minutes for t ' 6 000.
We provide the source code in [Cor21].

Fig. 49: Running time (in seconds) of the masking and shuffling countermeasure for AES, to
get security against t probes. Implementation on a 3,2 GHz Intel processor, running on a single
core.
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Rivain-Prouff on Steroids: Faster and Stronger Masking of
the AES

In this chapter, we are going to introduce our second work, submitted at CARDIS22. This has
been a joint work with Luan Cardoso dos Santos, François Gérard and Johann Großschädl. Our
paper is focused on obtaining a faster implementation of the Rivain-Prouff masking scheme;
we propose a more efficient table-based multiplication in F28 . This new technique facilitates
a further improvement in the exponentiation function (see Algorithm 3.5), which, as we are
going to see, has been adapted to work faster and with less randomness. Hence, it is possible to,
conceptually speaking, divide our work into three contributions: 1) improved table-based multi-
plication technique, via a new approach for the 0-operands; 2) new exponentiation function, the
power-to-254 is performed slightly differently and it uses less randomness (i.e. RefreshMasks);
3) twice-faster implementation of masked AES with order 1. For the sake of fairness, our per-
sonal contribution concerns mainly the new SecExp254, while the implementation has been
entrusted to the more expert hands of Luan, François and Johann. We directly worked on the
algorithm and its SNI property; for this reason, this chapter will recall the table-based mul-
tiplication, informally outlining our differences with the classical technique (see Section 5.1);
then, we will give a full explanation of the new exponentiation algorithm (see Section 5.2);
lastly, we will briefly mention the practical results of our masked AES, comparing it with some
of the well-established implementation in the literature (see Section 5.3).

5.1 Table-Based Multiplication

We start recalling the classical table-based multiplication of elements of F28 technique. At
its core, it essentially involves two look-up tables: the Log table, where it is stored the order
of every 255 non-0 elements of the field (based on the generator g(x) = x + 1); and the
AntiLog table, where it is stored the elements themselves, i,e, every element corresponding to
the orders in the range [0, 254]. It should be clear that, if we consider only the non-0 elements,
AntiLog[Log[a]] = a is always respected. Therefore, supposing a(x) and b(x) are two non-0
elements of the field, their product c(x) = a(x)b(x) is computed as follow:
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1. The Log table is accessed to obtain u = ord(a(x)) and v = ord(b(x)).
2. The modular sum of the orders is computed s = u+ v mod 255.
3. The AntiLog table is used to recover the multiplication element corresponding to order s.
Consequently, three table lookups and a modular addition are required to perform a table-
based multiplication, [DR02, Gla07]. Since it has been used in our implementation, it is worth
mentioning that is possible to extend the AntiLog table in order to avoid the modular sum of
the orders and treat it as a simple addition. In particular, the table is duplicated in such a way
that AntiLog[255+i] = AntiLog[i] for i ∈ [0, 254]; in this way, u+ v can be added without
the modular subtraction. The disadvantage of this technique is that the AntiLog table doubles
in size with an overall 768 bytes length, but the efficiency benefits overcome the memory costs
if considering that the two tables are static and so they can be stored in non-volatile memory
and do not occupy the RAM.

Treatment of 0-Operands. As specified above, the table-based multiplication took into ac-
count only non-0 elements; since 0 is not an element of the multiplicative group and, therefore,
it has no multiplicative order. But for implementation reasons, Log and AntiLog tables are
treated as a 256-entries array (when the non-0 operands are 255). This has been taken as
best practice since in this way it is possible to exploit the integer representation of the field
elements as the index access for the lookups. Consequently, the 0 element is required but it
needs a special treatment: assigning Log[0] = 255 and AntiLog[255] = 0 the aforementioned
condition AntiLog[Log[a]] = a holds for any a(x) ∈ F28 . In turn, in the multiplication algo-
rithm has to check now whenever a(x) or b(x) are equal to 0 and in case compute artificially
the multiplication. Specifically, in addition to the above three steps, a fourth one is required
where a 0-check is performed over the product factors and in case is set the result to 0. Clear,
this slows down the time complexity of the multiplication; for a pseudocode description of the
whole algorithm, we refer to Subsection 7.2 of [Gla07].

This check is indeed time-consuming; to reduce such time, we propose a different approach
for the 0-element case. In particular, it can be completely removed at the cost of increasing the
size of both the Log and AntiLog tables. The idea comes from the observation that no sum in
the order of two non-0 elements in F28 is strictly greater than 509. Thus, we can rearrange the
tables in this way: first, it is set Log[0] = 509, and second, it is possible to extend the AntiLog

table from 512 to 1024 entries, in particular for every 509 ≤ i ≤ 1023 is AntiLog[i] = 0. In other
words, this modification will have the two following consequences: the 0-element has order 5091

and every sum of orders that involves at least one 0-element will have an order greater than
509; in turn, accessing the AntiLog table with orders greater than 509 will result in the value
0. Note that the above modifications in the tables have no impact on any products involving
both non-0 elements, the yield correct result can be deduced from the classical table-based
multiplication. Therefore, with our new technique the fourth checking step can be completely
1 Please note that from a strictly mathematical point of view the 509 order makes no sense; but, as
will see, it still guarantees the correct final computation of the product.
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avoided; and when applied reduces the time complexity of the GF2P8MULB2 macro by up to
36, 4%. However, this speed-up comes at the expense of larger look-up tables. The Log table
still consists of 256 entries but needs to be able to accommodate the 9-bit integer 509, which
means it has to be of 16-bit type hword instead of 8-bit type byte. Furthermore, the AntiLog

table requires 1024 entries instead of 512, whereby all entries in the upper half (i.e. index 509

and above) are 0. Hence, the two tables become twice as large, i.e. the size of both tables
amounts to 1536 bytes altogether, which is still relatively small compared to the non-volatile
memory consumption of other masked AES implementations.

Reducing the Number of Table Look-Ups. We didn’t mention it before, but with the
same reasoning and a slight change, it is possible to reduce the number of lookups for the
original exponentiation algorithm in [RP10] (see Algorithm 3.5). Such exponentiation-based
secure inversion consists of four masked multiplications, three other masked arithmetic opera-
tions in F28 (i.e. squaring, fourth-power, 16th-power), and two mask refreshings. However, the
three other arithmetic operations are all linear in F28 and they can, therefore, be performed
separately on each of the n shares. In addition, the three operations have in common that each
of them can be implemented with a 256-byte look-up table. Moreover, if we just do not con-
sider the mask refreshings for a moment, the first two steps of the inversion in Algorithm 3.5
are a squaring followed by a multiplication3, and this operation sequence (i.e. a multiplica-
tion preceded by a linear operation that requires just an ordinary table look-up) appears two
further times, namely in lines 4 and 6, and in lines 7 and 8. Based on this observation, it is
possible to reduce the total number of table look-ups during an exponentiation by modifying
the squaring table (resp. fourth-power/16th-power table) to contain the order of the square
ord (b) instead of the actual square b. Note that this modification does not increase the size
of the table, but allows one to accelerate the exponentiation by using the order read from the
table as an operand in a subsequent multiplication, which saves a look-up into the Log table.
In the ideal case, i.e. when both operands are given as orders, the multiplication only consists
of an addition and a single table lookup.

Remark 5.1. This optimization to reduce the number of table lookups is not particularly effec-
tive when applied to the original masked exponentiation given in Algorithm 3.10 because of
the mask refreshings between the squaring and multiplication at line 2 and line 5 (which we
ignored in the above description of our idea). However, in the next Section, we will introduce
a modified variant of the exponentiation that is much better suited for our optimization and,
therefore, faster than the original exponentiation of Rivain and Prouff.
2 GF2P8MULB is the instruction for multiplication in F28 for modern x64 processors.
3 To be precise, these two steps are a masked squaring and masked multiplication. However, for the
explanation of our optimization, it does not matter whether these operations are masked or not.
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5.2 New Exponentiation-Based Inversion

In this Section, we are going to introduce the new exponentiation algorithm; the exponentiation
x 7→ x254 is the main operation of the masking scheme. For this reason, it is crucial to find the
most efficient way to compute it using the F28 multiplication technique described previously;
the goal is to minimize the number of table lookups by minimizing the number of conversions
between the normal domain and the order domain. There are four main operations ("gadgets")
that are used in a secure exponentiation: SecMult, SecSquare, SecPow16, and RefreshMasks. The
optimal representation for those operations is as follows:

1. RefreshMasks: As mentioned before, this operation injects fresh randomness into the shares.
Since there is no trivial way to do it from the order domain, the inputs and the outputs
should be in the normal domain.

2. SecMult: Since the first operations in the SecMult algorithm are ordinary multiplications
in F28 , the order domain is preferred for the inputs. Conversely, the last step is somewhat
similar to a mask refreshing and, thus, the outputs are in the normal domain.

3. SecSquare and SecPow16: These are the most flexible operations. Since the tables are pre-
computed and the lookups are performed share by share, there is no efficiency difference
between the two representations and the implementer is free to choose them for inputs and
outputs, but of course the lookup tables have to be generated accordingly.

Algorithm 5.1 new_SecExp254 computation

Input: shares x0, x1, . . . , xd satisfying x =
⊕d

i=0 xi
Output: shares e0, e1, . . . , ed satisfying e =

⊕d
i=0 ei = x254

1: (zi)0≤i≤d ← SecSquare((xi)0≤i≤d) .
⊕

i zi = x2

2: (zi)0≤i≤d ← RefreshMasks((zi)0≤i≤d)

3: (yi)0≤i≤d ← SecMult((zi)0≤i≤d, (xi)0≤i≤d) .
⊕

i yi = x2 · x = x3

4: (zi)0≤i≤d ← SecSquare((yi)0≤i≤d) .
⊕

i zi = (x3)2 = x6

5: (yi)0≤i≤d ← SecMult((zi)0≤i≤d, (xi)0≤i≤d) .
⊕

i yi = x6 · x = x7

6: (zi)0≤i≤d ← SecSquare((yi)0≤i≤d) .
⊕

i zi = (x7)2 = x14

7: (yi)0≤i≤d ← SecMult((zi)0≤i≤d, (xi)0≤i≤d) .
⊕

i yi = x14 · x = x15

8: (yi)0≤i≤d ← SecPow16((yi)0≤i≤d) .
⊕

i yi = (x15)16 = x240

9: (ei)0≤i≤d ← SecMult((yi)0≤i≤d, (zi)0≤i≤d) .
⊕

i ei = x240 · x14 = x254

In the original Rivain-Prouff exponentiation, the order of operations is such that, when using
our gadgets, some extra conversions between representations would be needed. For example,
at the end of Algorithm 3.5, the two SecMult operations are sequential, which means that
a conversion from normal to order domain is required in between. To improve efficiency, we
propose a new exponentiation algorithm in Algorithm 5.1. In this algorithm, we can see that
the four SecMult operations are separated by SecSquare (resp. SecPow16) operations, which
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means that, when the squaring and 16th-power table are pre-computed to output the result in
the order domain, no extra conversions are needed except after the RefreshMasks. Furthermore,
one less RefreshMasks is carried out compared to the original exponentiation. This modification
invalidates the security proofs we saw in [RP10]; for this purpose given the changes the t-SNI
property of our new exponentiation algorithm is faced in the following lemma:

Lemma 5.2 (t-SNI of SecExp254). Let (xi)1≤i≤t+1 be the input shares of the x254 operation
and let (yi)1≤i≤t+1 be the output shares. For any set of t1 intermediate variables and any subset
O of output shares such that t1+ |O| ≤ t, there exists a subset I of indexes with |I| ≤ t1, such
that those t1 intermediate variables, as well as the output shares y|O can be perfectly simulated
from x|I .

Proof. The proof will exploit the SNI property of SecMult (Lemma 3.19) and RefreshMask

(Lemma 3.20), as well as the linearity of the squaring operation (note the exponentiation to
16 can be seen as four subsequent squarings).

Let I be the set of indices corresponding to the internal variables observed by the adversary,
such that |I| ≤ t1. And let O be the set of indices corresponding to the output probes observed
by the adversary, such that t1 + |O| ≤ t. Moreover, consider a partition of I =

⋃9
i=1 Ii ≤ t1

depending on the subgadget in which observation occurs (see Figure 51).
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Fig. 51: x254 as a composition of squaring (·2), multiplication (⊗) and refreshing mask (R)
gadgets.

Thus, to prove the SNI property of Algorithm 5.1, by Definition 3.18 there must exist a
subset of input indices S with |S| ≤ t1, such that the t1 intermediate variables along with
the output variables corresponding to O can be perfectly simulated from x|S . We are going
to build such set S starting from the output probes and continuing backwards, subgadgets by
subgadgets, until the input shares. Formally:

Gadget 1. By assumption, |I1 ∪ O| ≤ t1 + |O| ≤ t. This allows us to exploit the SNI

property of the multiplication ⊗ gadget. Namely, there exists, by Theorem 3.19, two sets of
indices S11 , S12 such that |S11 |, |S12 | ≤ |I1|. In particular, it is possible to simulate the gadget
probes along with the observed variables O from its input shares corresponding to indices in
S11 and S12 .
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Gadget 2. As a composition of squarings over a field of characteristic 2, the gadget ·16 is
linear. Hence, by its NI property, there exists a set of indices S2 such that |S2| ≤ |I2| + |S11 |
and every probe in the last two gadgets (including the output probes) can be simulated from
its input shares corresponding to S2 and S12 . Note that, |S2| ≤ |I2|+ |S11 | ≤ |I2|+ |I1|.

Gadget 3. From the previous steps, |I3 ∪ S2| ≤ |I3| + |I2| + |I1| ≤ t. So, we can apply
the SNI property of the ⊗ and claim that there exist two sets of indices S31 , S32 such that
|S31 |,|S32 | ≤ |I3| and every probe in the previous gadgets can be simulated from its input
shares corresponding to S31 , S32 and S12 .

Gadget 4. From the previous steps, |I4 ∪S32 ∪S12 | ≤ |I4|+ |I3|+ |I1| ≤ t. That joined to
the NI property of ·2, allows the existence of a set of indices S4 such that |S4| ≤ |I4|+|I3|+|I1|
and every probe in the previous gadgets can be simulated from its input shares corresponding
to S4 and S31 .

Gadget 5. From the previous steps, |I5∪S4| ≤ |I5|+ |I4|+ |I3|+ |I1| ≤ t. This means we
can use the SNI property of ⊗ and define two sets of indices S51 , S52 such that |S51 |,|S52 | ≤ |I5|
and every probe in the previous gadgets can be simulated from its input shares corresponding
to S51 , S52 and S31 .

Gadget 6. From the previous steps, |I6 ∪S51 | ≤ |I6|+ |I5| ≤ t. Hence, by its NI property,
there exists a set of indices S6 such that |S6| ≤ |I6| + |I5| and every probe in the previous
gadgets can be simulated from its input shares corresponding to S6, S52 and S31 .

Gadget 7. From the previous steps, |I7 ∪ S6| ≤ |I7| + |I6| + |I5| ≤ t. So, we can apply
the SNI property of the ⊗ and claim that there exist two sets of indices S71 , S72 such that
|S71 |,|S72 | ≤ |I7| and every probe in the previous gadgets can be simulated from its input
shares corresponding to S71 , S72 , S52 and S31 .

Gadget 8. From the previous steps, |I8 ∪ S71 | ≤ |I8| + |I7| ≤ t. By Theorem 3.20, also
the refreshing mask R is proven to be SNI. Thus, there exists a set of indices S8 such that
|S8| ≤ |I8| and every probe in the previous gadgets can be simulated from its input shares
corresponding to S8, S72 , S52 and S31 .

Gadget 9. Lastly, |I9 ∪ S8| ≤ |I9|+ |I8| ≤ t. Hence we can, again, apply the NI property
of ·2 and define a set of indices S9 such that |S9| ≤ |I9|+ |I8| and every probe in the previous
gadgets can be simulated from its input shares corresponding to S9, S72 , S52 and S31 .

In conclusion, from the above statements, we ensured the existence of a simulator for each
gadget. Furthermore, let S = S9 ∪S72 ∪S52 ∪S31 , we can compose these simulators to perfectly
simulate the computation of x254 from x|S . As the last thing to prove, it must hold that the
cardinality of such set of indices has to be less or equal than the number of intermediates
probed variables t1. But, from Step 3, Step 5, Step 7, Step 9 and I =

⋃9
i=1 Ii ≤ t1:

|S| ≤ |S9|+ |S72 |+ |S52 |+ |S31 | ≤ |I9|+ |I8|+ |I7|+ |I5|+ |I3| ≤ t1
ut

Before continuing with the next section concerning our implementation, we think it is wor-
thy to address one particular comment given to us during the reviews phase of our submission.
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In fact, more than one reviewer have suggested to use the Probe Isolation Non-Interference
(or PINI) security notion from [CS18] for the above exponentiation gadget, given the fact that
it is considered stronger than the SNI counterpart. Let’s start recalling its definition; but, we
will state it explicitly for 1-input gadgets since it is the case for Algorithm 5.1. For the sake
of clarity, we use the definition as it was proposed in [CGZ20]4:

Definition 5.3. Let G be a gadget with input shares (xi)1≤i≤n, and output shares (yi)1≤i≤n.The
gadget G is PINI if for any t1 ∈ N, any set of t1 intermediate variables and any subset O of
output indices, there exists a subset I ⊂ [1, n] of input indices with |I| ≤ t1 such that the
t1 intermediate variables and the output shares y|O can be perfectly simulated from the input
shares x|I∪O.

It should be clear that in the case of 1-input gadgets the two definitions are (almost)
identical since they both require a unique set for a unique input. That is, SNI requires that
every probe needs to be simulated (only) from x|I , and the PINI definition requires the same
set I but it can simulate every probe from x|I∪O. Consequently, the SNI privacy requires even
fewer input shares, since |I| ≤ |I ∪ O|. This allows us to claim that, in this specific 1-input
gadget case, SNI implies PINI: the simulator S described in the proof of Lemma 5.2 satisfies
the PINI definition as well. In conclusion, Algorithm 5.1 is indeed PINI, but we decided to stay
with the SNI security since, in this specific case, it gives better guarantees.

Lemma 5.4. The exponentiation-to-254 algorithm described in Algorithm 5.1 is PINI.

5.3 Implementation Aspects and Results

Regarding the final part of our work, we also propose a 1-order implementation of our modified
masked AES. Every transformation, i.e. SubBytes, ShiftRows, MixColumns and AddRoundKey,
has been implemented in Assembly language to exclude the theoretical possibility that the
compiler itself could leak. As mentioned, we put the focus on our main contribution and, while
we are going to give an overview of the results and leakages, we will only discuss implementation
aspects of the SubBytes transformation, referring to the original paper for a full detailed
panoramic of all the whole AES.
Implementation Aspects of SubBytes. SubBytes is, from an implementer perspective, by far
the most challenging round transformation because it has a significant impact on the overall
execution time and is particularly leakage-sensitive due to its non-linear nature. It consists of 16
S-box operations; our masked inversion is based on the exponentiation technique we presented
in Section 5.2 and uses (variants of) the optimized low-level gadgets introduced in Section 5.1.
In particular, Algorithm 5.1 has three advantages over the original exponentiation method of
Rivain and Prouff. First, it allows us to better exploit our optimization to reduce the overall
4 Actually, in [CGZ20], the definition considers gadgets with any arbitrary number of inputs; while
we explicitly consider only 1-input and 1-output gadgets only.
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number of table look-ups and is, therefore, faster. Second, it needs only one RefreshMasks

gadget instead of two, thereby reducing the number of random bytes from six to five. Lastly,
as explained in the last section, it achieves SNI, which is a stronger notion of probing security
that is not met by the original (i.e. flawed) exponentiation algorithm from [RP10]. On the other
side, there are two aspects related to the new exponentiation that deserve further explanations.
First, Algorithm 5.1 provides only a high-level description of our exponentiation using the
four main gadgets (i.e. SecMult, SecSquare, SecPow16, and RefreshMasks), but omits gadgets
for auxiliary operations like the conversion of operands between the normal domain and the
order domain. For example, at the very beginning of the exponentiation, the shares xi of the
input operand x have to be converted from the normal domain to the order domain so that
they can be fed into the SecMult gadgets at lines 3, 5, and 7. In addition, as explained in
the last section, the RefreshMasks gadget operates in the normal domain, and therefore its
output masks have to be converted from the normal domain to the order domain because
they are used as input for the first SecMult gadget in line 3. The input of RefreshMasks is the
output of the first SecSquare gadget in line 1, which would normally be given in the order
domain. However, instead of converting the SecSquare output from the order domain to the
normal domain, we implemented a second SecSquare gadget that operates fully in the normal
domain, i.e. both its inputs and outputs are elements of F28 and not orders. Moreover, besides
the inversion in F28 , an S-box operation also involves and affine transformation, which is a
linear operation and can be performed share-by-share using a 256-byte look-up table. At the
highest level, our implementation of the first-order masked SubBytes transformation consists
of a simple loop that is iterated eight times and executes in each iteration a pair of two masked
S-box operations (i.e. two inversions followed by two affine transformations). Each first-order
masked S-box requires five bytes of randomness (four for the SecMult gadgets and one for
RefreshMasks), which amounts to 80 random bytes for the complete SubBytes.
Results. We give in Table 5.31 a comparison between our work and the previous implemen-
tations on a similar architecture. It is somewhat hard to make a direct comparison since even
if the platforms are similar, the techniques used for the masking schemes are quite different
and might not offer a similar level of security, neither in theory nor in practice.

The most straightforward scheme to compare to is naturally the Rivain-Prouff masking
scheme studied in [GR17] since it is the starting point of our work. We can see that the
techniques described in Section 5.1 and Section 5.2 largely improve the masking scheme as the
cycle count is almost divided by two. The cycle-count for [SS17] is from Table 2 of [BWG+22].
The reason why this value (17.5k cycles) is twice the cycle-count reported on the authors’
GitHub repository5 (3439.5 + 5288.1 ≈ 8.75k) is that the implementation in [SS17] is bit-
sliced and processes blocks pairwise, but on GitHub the cycles/block are given. The minimum
execution time is 8.75 · 2 = 17.5k (but two blocks are encrypted). For Goudarzi-Rivain, the
cycle-count of 49,329 corresponds to "Standard AES (KHL)" in [GR17, Table 3] (resp. [GR16,
Table 16]) for d = 2: 7640 · 4 + 6229 · 2 + 6311 = 49, 329. Note that d in [GR17] and [GR16] is
5 See https://github.com/Ko-/aes-armcortexm.

https://github.com/Ko-/aes-armcortexm
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Table 5.31: Comparison of masked AES implementations for ARM Cortex-M3/M4 microcon-
trollers. 1Schwabe et al’s size is given for a full AES-CTR implementation, no size for AES block
encryption was given in their paper. 2 [AP20] indicates two versions of similar performances
but [BWG+22] does not report which one was used for the benchmarks. 3 See [FMPR10] for
a discussion of the security of affine masking.

Implementation Exec. time Code size Theoretical PracticalReference
details (cycles) (kB) security security

[GR17] RP masking 49,329 (ARM7) 4.8 Probing unknown
[SS17] Bitsliced 17,500 (M4) 39.91 Probing? t-test (failed [BWG+22])

[GSDM+19] Bitsliced 6,800 (M4) 25.2 Probing t-test (failed [BWG+22])
[AP20] Fixsliced 6,200 (M4) 22 or 42 Probing t-test (failed [BWG+22])

ANSSI (compact) Affine3 53,072 (M4) 5.5 Affine Attacked ([BS20, MS21])
ANSSI (unrolled) Affine3 29,920 (M4) 25.0 Affine Attacked ([BS20, MS21])

Our work RP masking 25,413 (M3) 3.2 SNI t-test (passed)

the number of shares and not the masking order. Besides, our implementation is significantly
more compact with a code size improvement of over 30%6. On the affine masking side, the
ANSSI implementation is beaten on both metrics when considering first-order security. The
contenders are thus the bitsliced/fixsliced implementations offering better speed results than
ours and that are capable to process two blocks in parallel. We can first observe that their
code is larger. However, we should fairly assume that large implementations were unrolled and
that they did not try to optimize this metric. Regarding security, [GSDM+19] and [AP20]
are reducing to the bare minimum the amount of randomness required to mask the whole
scheme (only 2 bits). While they used a formal verification tool to assess the security in the
probing model, using such an aggressive technique is quite naturally raising concerns for the
practical security of the scheme and would not fit in our theoretical framework. Also, their
technique does not generalize to arbitrary orders. More importantly, all the bitsliced/fixsliced
schemes are actually leaking according to the recent analysis in [BWG+22]. This means that
all those schemes need to be fixed before proper benchmarking can be performed. Since it is
impossible to tell beforehand how large the performance penalty incurred by this fix will be,
the cycle-count reported does not offer the possibility to compare to our result.

6 While our code size is relatively small, we need six tables with an overall size of 3328 bytes: Log-
table (512B), AntiLog-table (1024B), two squaring-tables (one with outputs in normal-domain for
subsequent RefreshMasks, one with outputs in order-domain for subsequent SecMult, each 512B),
16th-power-table (512B), affine-transformation-table (256B). A fast Rivain-Prouff implementation
like [GR17] needs 1792 bytes for tables (Log-table 256B, AntiLog-table 512B, squaring-table 256B,
4th-power-table 256B, 16th-power-table 256B, affine-transformation-table 256B)
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Conclusions

We have seen how, since their first appearance, side-channel attacks represent a serious threat
to any cryptosystem, and for so, they have been meticulously analysed both in academia and
in the industry sector. Moreover, the increasing usage of software applications in our daily
life is pushing security to become more suitable for embedded systems, which are limited
in computational power. Side-channel countermeasures are, surely, not exempted from such
challenges. Motivated by that, we presented, in this thesis, our contributions on the provable
security of cryptographic implementations against side-channel attacks.

We showed how those countermeasures passed from being built ad hoc, i.e customizing
specific hardware to resist against specific attacks, to being incorporated at the implementa-
tion level. Over the years, the seminal work proposed by Ishai, Sahai and Wagner in [ISW03]
established itself at the very top among the most widely used protection strategies. In par-
ticular, they provided the very first provable secure model able to achieve privacy against a
wide range of side-channel attacks. They exploited a secret sharing scheme to mask sensitive
data, an approach already investigated by Chari et al. in [CJRR99], and that was identified as
a good fit to prevent attacks based on power and electromagnetic leakage or differential anal-
ysis. Furthermore, the ISW probing model responded to the necessity of protection against
high-order attacks; while, before it, masking was mainly constrained to the first-order (as in
[CJRR99]) or second-order (like in [SP06]).

A decade after Ishai et al.’s work, in 2010, Rivain and Prouff showed an efficient way to
adapt the ISW schemes to be applied to the block-cipher AES. Specifically, in [RP10], they
were able to extend the ISW multiplication algorithm, over F2, to work and still be secure
over any general F2n . Their work influenced the side-channel field towards several improve-
ments that are leading the masking countermeasures to achieve more practical performances.
Barthe et al. strengthened the probing security with more independency between input and
output shares, defining the so-called strong non-interference security. It is considered among
the strongest, with the probe isolation non-interference [CS18], security definitions against
side-channel attacks. Through SNI, it has made it possible to reduce the number of shares
from 2t+ 1 to t+ 1.
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Thus, after retracing the milestones in the context of the ISW model, we saw our main con-
tribution: secure wire shuffling in the probing model. We have described the first improvement
made to the wire shuffling countermeasure from [ISW03]; namely, the construction achieving
statistical privacy in the worst-case setting, having running time O(t log t). Through a simpler
way to process the "adjacent-position" property, carried out via a more expensive sorting net-
work in [ISW03], we were able to lower the complexity to linear, i.e. O(t). Our construction
is somehow practical in that for an AES implementation we can beat the classical masking
countermeasure for a reasonable running time. However, such a crossover point occurs for
t ' 6 000; consequently, it is still probably unpractical for embedded implementations.

However, those theoretical achievements produced in the last decade came at the expense
of relatively poor performance in terms of real-world implementations; especially if we con-
sider masked implementation of AES based on the Rivain-Prouff technique. We saw how the
efficiency of this technique is mainly driven by the efficiency of the multiplication in the field.
Those multiplications are usually performed using so-called Antilog and Log tables, which map
elements to their order in the multiplicative group of the field and vice-versa. We explained
the classical way to multiply two elements: firstly, mapping them to their orders, then adding
the orders (modulo 255), and finally mapping the result back to an element corresponding to
their product. But, since the inversion is only defined in the multiplicative group, multiplica-
tions by 0 need to be treated as special cases; which, in turn, would increase additionally the
computational time.

Thus, starting from the investigation proposed by Goudarzi and Rivain in [GR17, GR17],
we demonstrated that the Rivain-Prouff masking scheme can be made much faster, namely
by almost a factor of two in comparison with the, to this date, best implementation in the
literature. We achieved this speed-up by (i) an optimization of the multiplication in F28 that
allows us to overcome the special treatment of 0-operands and avoid branch-and-compare
instructions, and (ii) a new exponentiation technique that reduces the overall number of table
look-ups. Furthermore, we saw that our masking scheme is not only (almost) twice as fast as
the original Rivain-Prouff scheme, it also satisfies SNI, which gave to it also strong theoretical
guarantees.



List of Figures

21 State and Key layout for Nb = 4 and Nk = 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
22 Number of Rounds of Rijndael. Note that for AES Nb is fixed to 4 and

Nk ∈ {4, 6, 8}. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
23 The input state (right) vs ShiftRows’s output state. . . . . . . . . . . . . . . . . . . . . . . . . . 15
24 The multiplication of the polynomial 3x3+x2+x+2 mod x4+1 is performed

per each column of the state, i.e for 1 ≤ i ≤ 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
25 The input state (right) is XORed with the key computed by ExpandedKey for

the r-th round, with 1 ≤ r ≤ Nr. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

31 A wire with signal vi in C ′ (left), and the corresponding ` wires iñ C (right);
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