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Abstract

Cognitive control is essential to human cognitive functioning as it allows us to adapt and

respond to a wide range of situations and environments. The possibility to enhance cognitive

control in a way that transfers to real life situations could greatly benefit individuals and

society. However, the lack of a formal, quantitative definition of cognitive control has limited

progress in developing effective cognitive control training programs. To address this issue,

the first part of the thesis focuses on gaining clarity on what cognitive control is and how

to measure it. This is accomplished through a large-scale text analysis that integrates cog-

nitive control tasks and related constructs into a cohesive knowledge graph. This knowledge

graph provides a more quantitative definition of cognitive control based on previous research,

which can be used to guide future research. The second part of the thesis aims at furthering

a computational understanding of cognitive control, in particular to study what features of

the task (i.e., the environment) and what features of the cognitive system (i.e., the agent)

determine cognitive control, its functioning, and generalization. The thesis first presents

CogEnv, a virtual cognitive assessment environment where artificial agents (e.g., reinforce-

ment learning agents) can be directly compared to humans in a variety of cognitive tests. It

then presents CogPonder, a novel computational method for general cognitive control that

is relevant for research on both humans and artificial agents. The proposed framework is a

flexible, differentiable end-to-end deep learning model that separates the act of control from

the controlled act, and can be trained to perform the same cognitive tests that are used

in cognitive psychology to assess humans. Together, the proposed cognitive environment

and agent architecture offer unique new opportunities to enable and accelerate the study of

human and artificial agents in an interoperable framework.

Research on training cognition with complex tasks, such as video games, may benefit from

and contribute to the broad view of cognitive control. The final part of the thesis presents

a profile of cognitive control and its generalization based on cognitive training studies, in

particular how it may be improved by using action video game training. More specifically,
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we contrasted the brain connectivity profiles of people that are either habitual action video

game players or do not play video games at all. We focused in particular on brain networks

that have been associated with cognitive control. Our results show that cognitive control

emerges from a distributed set of brain networks rather than individual specialized brain

networks, supporting the view that action video gaming may have a broad, general impact

of cognitive control. These results also have practical value for cognitive scientists studying

cognitive control, as they imply that action video game training may offer new ways to test

cognitive control theories in a causal way.

Taken together, the current work explores a variety of approaches from within cognitive

science disciplines to contribute in novel ways to the fascinating and long tradition of research

on cognitive control. In the age of ubiquitous computing and large datasets, bridging the gap

between behavior, brain, and computation has the potential to fundamentally transform our

understanding of the human mind and inspire the development of intelligent artificial agents.
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B.1 From data collection to analysis. 1) Subjects interact with digital artifacts

and produce data. 2) The resulting data (“source data”) is typically stored

in idiosyncratic formats, possibly determined by technical constraints of the

digital artifacts. Furthermore, this “source data” may contain data that is

not of direct relevance to researchers (e.g., technical information about the

software) and important information may come from other sources (e.g., in-

formation about the study that is present only in the corresponding research

paper). 3) It is typically necessary to extract the relevant data from the source

data. Here we distinguish “event” data and “trial” data. Event data describes

the behavioral data as a sequence of time stamped events, which have specific

types (e.g., a mouse click) and data (e.g., the screen coordinates of the click).

Trial data organizes those events following a task-pattern into a tabular form,

where each row describes one trial. Further data files are necessary for example

to describe the study. Note that it is typical for the data collection artifacts

to already embed some data processing code and keep as source data only the

“trial” data. 4) The most important type of behavioral data appears to be

the event data from which different trial datasets may be extracted—this is

in our opinion what should be viewed as the raw data and it will be valuable

in the future to standardize behavioral event data and develop effective tools

to deal with such data and extract trial-based data from them. 5) We define

as Level 1 data, the data tables which are organized by trial. These are the

tables we believe are most useful given current practices. In particular, we

define the L1-Trial table, where each row contains complete and standardized

information describing a particular trial (as is already currently the case, al-

beit inconsistently) and where the trial identifier is used as a primary key to

additional, more detailed or specific tables (e.g., a table describing each of

the mouse clicks that occurred during a trial). 6) The L1 data serves as the

standardized input to data processing pipelines, which will derive additional

tables (e.g., L2, L3), for example by transforming and summarizing data or

aggregating across subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209xviii



B.2 L1 Trial data. 1) In source data, relevant information may be scattered across

multiple data files in a way that is not practical for subsequent processing.

There are various design options to reorganize the source data into data struc-

tures that can be standardized and are easier to use. 2) One solution is to

factor the data into many compact tables within a relational database system.

While this solution has many technical advantages, it doesn’t play well with

current practices. 3) An alternative design solution—the one we chose for

the current behaverse data model— defines a main “L1 Trial” table which is

similar to what researchers already use today. However, in addition to pro-

viding the trial data, the L1 dataset contains additional, related tables (as in

2). Tables in L1 are related to each other by various primary keys, the most

important one being the trial identifier within the Trial table. We believe that

this solution is both of practical use for researchers and offers the possibility

to augment the Trial table in a principled way to capture more of the richness

of behavioral data than is typically the case. . . . . . . . . . . . . . . . . . . 220
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General Introduction

It is said that humans are creatures of habit. But even habits are established and managed by

a higher-order cognitive system—a human capacity expressed in innumerous situations that

remains unmatched by any other species or artificial intelligence. My thesis aims to further

our understanding of higher-order cognition. More specifically, I’m interested in our ability

to be goal-driven and which enables us to produce complex, meaningful, context-dependent

behavior, in uncertain environments, inhibit prepotent responses, monitor and manage the

cross-talk between conflicting tasks.

The role this ability plays in daily life is evident, for instance, when making pizza! We

first need to plan a sequence of tasks, from creating a shopping list, buying the ingredients,

preheating the oven while proofing the dough, pausing the preparation of the toppings because

the oven is beeping, and possibly multitasking to wash the dishes while cooking. Some skilled

chefs can make great pizza on a stovetop burner rather than an oven, demonstrating that

their ability to make pizza can generalize and transfer from one environment to another.

Tasks like making pizza are complex because they require a variety of cognitive functions,

including planning, multitasking, task switching, attention, flexibility, monitoring, handling

feedback, practice, and generalization, to name just a few. Yet most people can routinely

perform such complex tasks.

Goal-driven higher cognition is of utmost importance to humans as it determines many

aspects of our lives (e.g., academic and professional success, social relationships, health).

Unfortunately, we don’t yet fully understand how this type of higher-order cognition works

1



and how to improve it for the benefit of individuals and society. There are, however, many

ideas, theories, and experimental work across multiple scientific fields that we can draw from.

Here, I will apply a multidisciplinary approach to clarify what this specific higher-order

cognition is and how it operates in computational, quantitative terms. There are two primary

motivations for me to focus on computational/quantitative accounts. First, they may provide

principled ways towards understanding and developing interventions to improve humans’ goal-

directed cognition; a large body of work indicates this is indeed possible but we currently lack

a clear theoretical framework to understand why and how those effects come about. Second,

there have been important advances in artificial intelligence in recent years and these may

benefit our understanding of human cognition. Conversely, the study of human cognition

may, as it has several times in the past, lead to insights that benefit new developments in

artificial intelligence.

The scientific concept that best characterizes what I referred to as “goal-driven higher-order

cognition” is “cognitive control”, as articulated in Badre (2020) and J. D. Cohen (2017). In

this context, cognitive control is an umbrella term for a set of processes that generate and

monitor plans and actions in pursuit of evolving goals, often in noisy environments. Other

related terms used (sometimes interchangeably) in the scientific literature include for instance

“executive functions”, “attentional control”, “executive control”, and “self-regulation”. For

consistency and simplicity, I will only refer to “cognitive control” in the remainder of this

thesis, acknowledging, as have many before, that this is a complex and to a large extent

ill-defined concept.

Exploring cognitive control across cognitive sciences dis-
ciplines

This thesis is interdisciplinary and grounded in cognitive sciences. In particular, it applies

principles and techniques from cognitive psychology, neuroscience, and artificial intelligence

as these are key fields in which cognitive control related questions have been extensively

2



investigated. This interdisciplinarity offers synergies that support the systematic study of

cognitive control using modern tooling, and the development of artificial agents that may

benefit from human-like control abilities by aligning to human cognitive functioning (Russell,

2020).

Cognitive Psychology and Neuroscience

In cognitive psychology, concepts that capture higher-order cognitive abilities such as cog-

nitive control are difficult to define—and consequently also to quantify. This may in part

be due to cognitive control being related to many other psychological constructs (see J. D.

Cohen, 2017), and to its role in explaining task-dependent, contextual phenomena (Otto et

al., 2013; Appendix A; Ralph, 2014). It may also be due to the more general limitation of

psychological constructs being low-dimensional representations of distributed brain mecha-

nisms (Jolly & Chang, 2019; Zink et al., 2021). Nevertheless, to understand cognitive control,

psychologists have devised a variety of theoretical constructs and cognitive tasks (see Chap-

ter 1 and Baggetta & Alexander, 2016) the relationships between which are not always very

clear. This lack of a cohesive understanding calls for conceptual and empirical clarifications

about what researchers mean by cognitive control and how to quantify it. Greater clarity

and an integrated framework of cognitive control is required to advance the field.

In this regard, greater clarity may come from recent machine learning advances in natural

language processing which have made it possible to analyze a large body of texts in order to

identify and connect underlying ideas (Angelov, 2020; Beam et al., 2021; Dieng et al., 2020).

Computational techniques such as ontologies and large language models can be leveraged to

parse the ever-growing research on cognitive control in order to develop a cohesive framework

that provides a holistic and pragmatic view of cognitive control that shows how cognitive

control is conceptualized and operationalized in the scientific literature. This type of integra-

tive work seems critical to make sense of currently disparate research that comprises many

psychological constructs and computational models, several brain mechanisms, and multiple

cognitive tasks.
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An integrated and formal account of cognitive control would be invaluable for programs

aiming to improve cognitive control abilities in humans. Given the role of cognitive control

on daily functioning, long-term achievements, and psychological health (Diamond & Ling,

2019; Moffitt et al., 2011), for example, the possibility to improve cognitive control in a way

that transfers to real life could have important implications across a wide range of use cases

(e.g., rehabilitation, healthy aging, education, peak performance). The study of cognitive

training and its consequences is also important from a theory perspective as interventional

methods (as in cognitive training regimes) offer a means to causally test computational

theories of cognitive control.

Despite the ubiquity of cognitive training studies (Bediou et al., 2018), we currently lack

a satisfactory theory of how training on specific tasks generalizes to new ones (Moreau &

Conway, 2014; Oei & Patterson, 2014b). It’s not entirely clear which interventions impact

the cognitive systems and how they do so—including what neural mechanisms in the brain

enable cognitive control, how they are impacted by cognitive training, and how this impact

causes the behavioral outcomes.

Currently, the main theories in this context revolve around one of two types of hypotheses.

The first states that cognitive training interventions train multiple elementary cognitive pro-

cesses and to the extent that new tasks rely on those same processes (or a subset of them),

transfer effects will be observed on those new tasks (Oei & Patterson, 2014b). An alternative

class of hypotheses state that cognitive training enhances domain-general abilities which are

involved in virtually all cognitive tasks—among these domain-general abilities, cognitive, and

attentional control are the most prominent (Anguera et al., 2013; Green & Bavelier, 2008).

Which of these (if any) are true, remains an open question and part of the difficulty in making

progress is the lack of theories that would allow predictions of how certain forms of training

would or would not transfer to which other tasks.

The study of action video game training is of particular interest in cognitive control research.

There is now a large body of research, including many training studies, that have established
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that playing specifically action video games causes improvements in performance across a

broad range of cognitive tasks (Bediou et al., 2018)—some of which generalize to real-life

abilities (Franceschini et al., 2012)—and there is also an increasing body of research investi-

gating the neural mechanisms involved in video game play and their effects (see Chapter 4).

These constitute a fertile ground to build cognitive control theories and bridging a gap be-

tween experimental psychology, cognitive neuroscience, and computational cognitive sciences.

Brain function may for instance inspire new computational theories and behavioral experi-

ments that involve cognitive control and generalization. In addition, action video games may

offer cognitive neuroscientists a practical and safe means to causally study cognitive control

and may also provide new cognitive control assessments tools that may be more effective and

valid than traditional batteries of tasks. Finally, the idea that effective cognitive training

requires specific complex tasks, such as action video games, and is mostly ineffective when

using simple cognitive task (Owen et al., 2010) seems to imply that as a field we need to study

cognition within those complex tasks rather than focusing solely on standard cognitive tests,

like the Stroop task for example. This calls for a paradigm shift in studying cognitive control

which may benefit from modern technological advances in artificial intelligence (Botvinick,

2022; Doebel, 2020; Perone et al., 2021; Zink et al., 2021).

To sum up, cognitive neuroscience and psychology face two main challenges: (a) gain greater

clarity on the cognitive control constructs (what it is and how to measure it), and (b) un-

derstand what features of the cognitive system (i.e., the agent) and what features of the

task (i.e., the environment) determine cognitive control, its functioning, and generalization

in humans. Chapters 1, 2, and 3 aim to tackle these challenges.

Artificial intelligence

The field of artificial intelligence provides a unique perspective on human cognition. Recent

advances in machine learning have dramatically changed our ability to build accurate and

scalable models of human cognition that previously relied on minimal theoretical frameworks

and limited data (Ho & Griffiths, 2022). That is, modern cognitive science requires not
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only understanding cognitive control from a neural and psychological basis (Lindsay, 2020)

but also understanding the computational mechanisms and to build artificial agents that are

aligned and comparable to human cognition (Botvinick, 2022).

Control in artificial intelligence

Since its conception, artificial intelligence researchers have sought to develop computational

models that mimic human intelligence. Unsurprisingly then, cognitive control has been in-

vestigated in artificial intelligence early on (G. Miller et al., 1960).

What does cognitive control look like in AI? Ideas in AI related to cognitive control have taken

many forms. In its most abstract conception, control has been associated with optimizing

parameters of computational models to allow them to learn how to perform a task and achieve

a specific goal (Bensoussan et al., 2020). This limited view of control can be nevertheless

very powerful when it is implemented in advanced model architectures that allow for the

emergence of complex behavior. Indeed, this approach has been very successful in designing

generic artificial agents capable of performing many different, complex tasks (Reed et al.,

2022; Yang et al., 2019).

There are, however, more elaborate views of cognitive control that have emerged over the

past decade, inspired by research in computational cognitive science (Ho & Griffiths, 2022).

One such view offers that humans may simultaneously entertain two internal systems when

performing a task: a model-free system and a model-based system (Daw et al., 2011). In

essence, the model-free system learns a policy (i.e., “how to act”) that maps states (e.g.,

stimuli) to actions (i.e., “responses”). This system is fast but simple and task-specific and it

may thus generate errors and limit generalization. The other system is model-based, meaning

that in the process of learning a policy, the system exploits its understanding of how the world

works (e.g., by incorporating beliefs about state-transition in the decision making process).

This system is slower and more “effortful” but it may also be more flexible and lead to higher

performance levels. What is interesting about this work is that it has been used to evaluate

human behavior. The results of that work show that not only do humans rely on both systems
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(Dolan & Dayan, 2013), but the extent to which they do so depends on how much resources

they have (Otto et al., 2015). For example, by putting people in a stressful situation it can be

observed that their reliance on the model-free system increases presumably because internal

resources are deviated towards addressing the stressor (Otto et al., 2013).

Recent work shows that in addition to accounting for human phenomena, this idea of “two

systems” may in fact be grounded in computational principles (Moskovitz et al., 2022). More

specifically, this framework posits the existence of two systems where one of the systems

aims to perform a task well, while the other system aims in addition to simplify itself (by

minimizing its description length) an idea that resonates in psychology with the concepts

like automation of behavior, habit formation and the reduction of effort with practice. A key

motivation for a system to be implemented in this way is not only the long-term reduction

of computational resources but also its ability to generalize to new tasks as simpler models

will need to discard more minute elements that are specific to a task and may thus generalize

more than the full model.

Other interesting ideas in this context includes what we call “recycling” (or the active attempt

to match what was previously learned to a new situation rather than starting from scratch;

Tomov et al., 2021) and “composition”—the idea that complex behavior may emerge from

models that are composed of computationally specific building blocks (Yang et al., 2019).

These are just a few of the many ideas that are relevant in this field and that offer new

avenues for the study of cognitive control both in psychology and computer science.

The value and challenges of interdisciplinary research

It is clear from the literature reviewed above, that there is great scientific and practical value

in aiming to bridge the gaps between psychological and computer sciences; computational

models can inform psychological theories and vice versa.

It is important to note that both in psychology and in artificial intelligence, the concept

of generalization is a major current scientific challenge. Humans are endowed with unique

7



abilities to flexibly adapt their behavior and generalize what they’ve learned in one context

to new, never-before seen situations (Tenenbaum et al., 2011). Playing action video games,

for example, is thought to improve cognitive control abilities and generalize to a broad set

of tasks, ranging from visual contrast perception (Chopin et al., 2019) to reading (Frances-

chini et al., 2017). The mechanisms underlying these human generalization abilities remain,

however, largely unknown. Current artificial agents, on the other hand, have very limited

generalization abilities despite their tremendous success in performing complex tasks well

(Chollet, 2019). To be more specific, these models are able to generalize from a training

dataset to unseen test datasets that follow the same distribution of data (e.g., a cat-dog clas-

sifier can classify new images of cats and dogs; i.e., these models are robust) but they cannot

easily generalize to new tasks (e.g., a cat-dog classifier can’t play chess; i.e., these models are

not flexible). It appears then that there are great opportunities for psychology and artificial

intelligence to join forces and develop new models of cognitive control that could help both

better understand the human mind and develop the next generation of artificial agents.

A key step towards making this happen is to make it possible, and even easy, to compare

human and artificial agents directly. There are many cases where this has been successfully

done at the single task level (e.g., Daw et al., 2011; Otto et al., 2015, 2013). There is

comparatively less work comparing human and artificial agents across multiple tasks (Mnih

et al., 2015; Yang et al., 2019). Yet, as stated by Yang et al. (2019): “The brain has the

ability to flexibly perform many tasks, but the underlying mechanism cannot be elucidated

in traditional experimental and modeling studies designed for one task at a time.” A virtual

environment allowing human and artificial agents to perform the exact same battery of tasks

would be highly valuable and support the integration of cognitive control theories across

psychology and artificial intelligence. It may help ground cognition in computational terms

(Mnih et al., 2015; e.g., which types of tasks can be performed by a given computational

architecture and which cannot; Yang et al., 2019), provide new insights and concepts to both

psychology and computer science (Christian & Griffiths, 2016; Laird et al., 2017; Stocco

et al., 2021), offer benchmarks for human and artificial agents as well as their comparison
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(relative performance profiles;), lead to the development of new tasks (e.g., tasks that are

diagnostic of types of artificial agents and that could be tested on humans), and perhaps new

computational architectures that truely generalize (Chollet, 2019).

Current research

The main strategy in this thesis has been to establish a broader, interdisciplinary view of

cognitive control that can be conceptually, computationally, and empirically studied and

integrates work within and across scientific fields. In line with this strategy, the current work

explores a diverse set of approaches that together aim to better delineate the fuzzy concept

of cognitive control.

The thesis comprises five research articles. Each of these articles are summarized in the fol-

lowing information sheets and discussed as a whole in the general discussion. Together this

work illustrates, I hope, the benefits of the synergy between experimental psychology, neuro-

science, and artificial intelligence in the study of cognitive control and opens up interesting

future research perspectives.
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Information sheets

Table 1: TL;DR – Chapter 1 (CogText)

Title Linking Theories and Methods in Cognitive Sciences via Joint
Embedding of the Scientific Literature: The Example of Cognitive
Control

Challenge Gain clarity on what is meant by cognitive control in the scientific literature and
how it can be measured empirically.

Context Despite a large volume of publications, cognitive control remains a rather vague
concept both theoretically and operationally (Baggetta & Alexander, 2016).
Literature reviews by human domain experts have had limited success in bringing
such clarity: they are not exhaustive, can’t keep up with the rate of new
publications, and may depict a biased, subjective perspective rather than an
objective, quantitative view of the research field.

Why it
matters

Greater clarity on cognitive control and its measurement are critical to advance the
field and integrate currently disparate research branches.

Method We conducted automated text analysis on a large corpus of scientific abstract
(+500K) downloaded from PubMed. We used a state-of-the-art language model
(GPT-3) to encode scientific texts and create a joint view of cognitive control related
constructs and tasks. This method allows the grounding of theoretical constructs
on cognitive tasks (in the sense that tasks are used to measure the constructs) as
well as the grounding of tasks on cognitive constructs (in the sense that constructs
are used to theorize behavior in tasks). It also offers a unique holistic view of
cognitive control constructs and tasks within a single knowledge graph.

Results The results confirm the complex nature of cognitive control, explain the difficulty of
defining cognitive control and may lead to new theoretical and empirical insights.
We conclude that cognitive control can’t be assessed using a single task and should
instead be measured using a battery of tasks (varying contexts and demands) or
more complex tasks (e.g., video games). We also conclude that as a construct
cognitive control may benefit from being decomposed into smaller, better defined
constructs to make progress in the field.

Output The article was accepted as a conference paper for the CogSci2022 conference, the
preprint is published on ArXiv (Ansarinia et al., 2022) and will be submitted for
publication soon. The dataset is available on
huggingface.co/datasets/morteza/cogtext ,and the code is publicly available on
github.com/morteza/CogText.
The methods and implications are further described in Chapter 1.
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Table 2: TL;DR – Chapter 2 (CogEnv)

Title CogEnv: A Virtual Environment for Contrasting Human and Artificial
Agents across Cognitive Tests

Challenge Modeling the environment: develop a virtual environment that allows the direct
comparison of human versus artificial agents and thus supports the integration of
cognitive control theories across psychology and artificial intelligence.

Context There have been important advances in artificial intelligence but those advances are
not readily accessible to psychological scientists. Similarly, psychological scientists
have developed tasks, concepts, and theories that might not be accessible or
perceived as relevant by computer scientists. One impediment to a shared
understanding is the lack of an interoperable environment in which both human
and artificial agents can interact with the exact same tasks.

Why it
matters

Being able to record and directly compare behavior from both human and artificial
agents opens up many new possibilities. It may help ground cognition in
computational terms (Mnih et al., 2015; e.g., which types of tasks can be performed
by a given computational architecture and which can’t; Yang et al., 2019), offer
benchmarks for human and artificial agents as well as their comparison (relative
performance profiles), lead to the development of new tasks (e.g., tasks that are
diagnostic of types of artificial agents and that could be tested on humans), and
new computational models. It also allows to train a given artificial agent on a
battery of tasks and to study task correlation and transfer effects (i.e., training on
one task leads to improved performance on other tasks depending on how “similar”
the tasks are) that can be compared with and tested on human participants.

Method We developed CogEnv, a virtual environment that lets us interface both human and
artificial agents to perform the exact same computerized battery of cognitive tasks.
A wide range of artificial agents can be tested with this battery, provided they
follow a common protocol (i.e., use pixels/symbols as input, process reward signals,
and emit action). The data collected from these agents is in the same shape and
format as human data and can thus be processed using the exact same data
analysis code that is typical in experimental psychology (thus facilitating the direct
comparison of human and artificial agents). As a proof of concept, we successfully
trained baseline RL agents to perform a battery of cognitive tasks for which we also
collected human data.

Results The overall framework is operational and appears very promising. A preliminary
investigation illustrates the idea that the comparison of performance/error profiles
of human versus baseline RL agents may reveal aspects of human cognitive control
that are yet to be addressed by artificial agents.

Output The article was accepted and published as a conference paper for the CCN2022
conference. The code is available at github.com/morteza/CogEnv.
The method and implications of the proposed environment and expected
performance profiles are further described in Chapter 2.
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Table 3: TL;DR – Chapter 3 (CogPonder)

Title CogPonder: Towards a Computational Framework of General Cognitive
Control

Challenge Modeling the agent: developing a shared account of response times for human and
artificial agents using a new type of computational model that functionally
decouples control from controlled processes.

Context Computational models embody our theoretical understanding in an explicit and
testable way. Current computational models of cognitive control are lacking in
important ways. In psychology, cognitive control models tend to be designed for
specific tasks (e.g., Stroop) which makes it hard to study cognitive control in
general (e.g., across a battery of tasks, while playing video games or in real-life
activities). Computer science, on the other hand, has recently been able to develop
artificial agents that can perform complex tasks. However, computer scientists
typically ignore resource limitations and how long it takes for an agent to make
decisions and act (in some cases, the environment is “paused” for the agent
computation to be completed).
A defining (and measurable) property of human cognitive processing is that it takes
time and that this amount of time varies depending on numerous factors in a
meaningful way (De Boeck & Jeon, 2019; i.e., response time; see Ratcliff & Starns,
2013). The exertion of cognitive control impacts response times and this impact is a
major source of information in psychological research (e.g., “task-switching costs”;
Monsell, 2003). What is missing then is a new type of computational model of
cognitive control that is flexible enough to be used in combination with any model
(hence being able to address more complex tasks), which decouples control from
operation in a way that might be theoretically meaningful and which offers
computational scientists a means to add control mechanisms to their computational
models.

Why it
matters

The envisioned computational models would benefit psychology by offering a
principled means to investigate cognitive control across a wide range of situations
as well as the possibility to exploit innumerous complex models that have been
developed in computer science. It would also benefit computer science by offering a
principled and computationally practical (i.e., differentiable, modular) means to
augment existing computational models with control abilities resulting in time
varying responses. The comparison of response time profiles across human and
artificial agents furthermore may offer insights benefitting both disciplines.
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Table 3: TL;DR – Chapter 3 (CogPonder)

Method We propose a general deep learning framework that functionally decouples control
(generating varying response times) from the decision making processes (making
choices). The framework involves a controller that acts as a wrapper around any
computational models (that “perceive” the environment and generate “actions” on
that environment) and controls when the model should stop its processing and
output a choice (this is known as the halting problem).
This model is inspired by the Test-Operate-Test-Exit (TOTE) architecture (G.
Miller et al., 1960) that conceives control as a recurrent mechanism that ultimately
halts a computational process once a specific condition has been met. We
instantiated TOTE using PonderNet, a recent deep learning framework for adaptive
computing. By controlling the halting, the fameworks allows to continuously
control how much resources are dedicated to the decision making agent and jointly
affects the choices (accuracy) and response speed of the system.
We implemented CogPonder, a flexible, differentiable end-to-end deep learning
model that can perform the same cognitive tests that are used in cognitive
psychology to test humans. We then trained CogPonder to perform two cognitive
control tasks (i.e., Stroop and N-back) while at the same time aligning it with
human behavior. Next we compared the behavior of CogPonder (i.e., accuracy and
response times distributions) with the behavior of humans.

Results CogPonder can be trained to perform cognitive tests and generates behavior that is
similar to human behavior across multiple experimental conditions. CogPonder
therefore provides a means for further investigating both human cognition and the
computational models.
The proposed model is very flexible (i.e., CogPonder can wrap around any deep
learning model so is unattached to specific model choices) and can be extended in
many ways (e.g., using more advanced computational techniques to perform
complex tasks). Most importantly, the proposed framework explicitly connects
human behavior to artificial agents that produce human-like behaviors on a battery
of cognitive control tasks. The framework thus provides interesting new insights
and research opportunities for both psychological and computer science.

Output The manuscript will be submitted for publication soon. The code is available at
github.com/morteza/CogPonder. The method and results of the proposed
computational model of response time are further described in Chapter 3.
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Table 4: TL;DR – Chapter 4 (Review)

Title Training Cognition with Video Games
Challenge Clarifying the relationship between training cognitive control with action video

games and its transfer effects by reviewing behavioral and brain evidence.
Context Experience impacts brain functioning and structure and there is now considerable

evidence that specific training regimes can improve cognitive control. In particular,
playing action video games, as opposed to other kinds of games, has been shown to
cause improvements across a broad range of cognitive abilities (Bediou et al., 2018).
Although there is no satisfactory explanation of these effects yet, one prominent
view states that video games improve cognitive/attentional control abilities and
that this improvement in cognitive control explains the transfer effects (Green et al.,
2012).

Why it
matters

Training cognition in a way that transfers to real life has many practical
implications (e.g., rehabilitation, healthy aging, education, peak performance).
Understanding the underlying mechanisms would allow us to devise more effective
interventions. The study of transfer effects is important because it offers a setting
to test cognitive control theories in a non-trivial way. We currently have no
satisfactory theory that could account for how training on one task would impact
performance on a never seen before task. Understanding transfer requires
developing computational models that can perform multiple tasks—this is a general
goal that computational cognitive control models aim for. The study of training
effects and their consequences is also important because they offer a means to
causally test computational theories. Finally, the study of behavior during video
game play poses interesting new questions to cognitive control scientists. Video
games are complex interactive environments that engage cognitive systems in
multiple, context dependent ways. Studying behavior during video game play may
offer new insights on cognitive control that are relevant in the real world and that
might not be apparent when using elementary cognitive tests.

Method This chapter reviews the behavioral and neuroimaging literature on the cognitive
consequences of playing various genres of video games.

Results Our review highlights that different genres of video games have different effects on
cognition. Action video games—as defined by first and third person shooter
games—have been associated with greater cognitive enhancement, especially when
it comes to cognitive control and top-down attention, than puzzle or life-simulation
games. Playing action video games seems also to impact reward processing, spatial
navigation, and reconfiguration of attentional control networks in the brain.
Interpretations of the effects of playing action video games on behavior and the
brain have been attributed to various psychological constructs, in particular
attentional control, quick processing of sensory information, and rapid responses.
These results suggest that cognitive training interventions need to be endowed with
specific game mechanics for them to generate cognitive benefits, presumably by
enhancing cognitive control abilities. We discuss what those game mechanics might
be and call for a more systematic assessment of the relationship between video
game mechanics and cognition. We also note that as video games become more and
more advanced (i.e., mixing genres and game-play styles within the same video
game), it will become increasingly difficult to study and understand their effects on
cognition. This article lays a foundation for the study of cognitive and brain
functioning using video games and illustrates the value of this approach to
investigate general cognitive control.
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Table 4: TL;DR – Chapter 4 (Review)

Output The article has been published as a peer-reviewed book chapter (Cardoso-Leite et
al., 2021). It is further provided in Chapter 4.
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Table 5: TL;DR – Chapter 5 (ACNets)

Title Neural Correlates of Habitual Action Video Games Playing in
Control-Related Brain Networks

Challenge Test the idea that action video game play affects neural functioning in ways that
are compatible with cognitive control hypotheses according to which action video
gaming improves cognitive control which in turn explains improved performance
across a wide range of cognitive tests (i.e., transfer).

Context On the one hand, research shows that playing action video games improves
cognitive performance across a wide range of cognitive tasks, presumably by
enhancing people’s cognitive control abilities (Bediou et al., 2018). On the other,
the cognitive neuroscience literature has highlighted integration of several
functional brain networks as being important for cognitive control (Menon &
D’Esposito, 2022). These two sets of theories have not yet been empirically
confronted despite there being great value to do so. Indeed, there are competing
hypotheses regarding the effects of action video gaming—some highlighting
domain-general abilities (e.g., attention, cognitive control), others focusing on
domain-specific ones (e.g., response speed). These alternative views make rather
different predictions regarding changes in brain function (e.g., changes in specific
functional networks vs changes in specific areas).
Similarly, research on functional brain networks has highlighted numerous cognitive
control networks. There are however some inconsistencies across such theories.
Studying the impact of playing action video games provides a means to empirically
test those theories and improve our understanding of how those networks work.

Why it
matters

The study of the differences in functional brain networks between habitual action
video game players and non-video game players can advance our understanding of
both the mechanisms underlying the action video game training effects and the
neural mechanisms supporting cognitive control in general.
Confirming that action video game play affects cognitive control (via its functional
neural underpinnings) has important implications for the study of cognitive
training. It also has practical value as it would offer cognitive neuroscientists a new
tool to causally study cognitive control. Finally, this type of work could lay a
foundation towards bridging a gap between experimental psychology, cognitive
neuroscience and computational cognitive sciences (brain function may for instance
inspire new computational theories and behavioral experiments).
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Table 5: TL;DR – Chapter 5 (ACNets)

Method We curated a dataset collected by (Föcker et al., 2018). The dataset comprises
resting-state fMRI data (7 minutes and 30 seconds, or 125 time points) and
task-fMRI data from a total of 32 human subjects (16 habitual action video gamers
and 16 non-gamers). The original study focused on task-fMRI; here we analyze the
resting-state data.
We developed a machine learning pipeline to investigate the differences between
habitual action video gamers and non-video gamers in terms of their functional
resting-state brain connectivities, focusing in particular on networks associated with
cognitive control. We used a robust approach to preprocess, remove confounds,
parcellate, aggregate networks, and extract resting-state functional connectivity
measures from the BOLD signals. The whole pipeline was cross-validated, and
several arbitrary choices in the preprocessing were considered as hyperparameters of
the model (for example parcellation atlas and connectivity measure). We trained a
classifier to discriminate unseen participants as action video gamers versus
non-gamers based on their resting-state functional connectivities. We then
investigated what features were responsible for the model prediction accuracy by
applying a permutation feature importance test. Additionally, SHAP analyses were
conducted to investigate the contribution of each feature to the output (not the
accuracy) of the model.

Results Our model is able to classify unseen participants as action video game players based
only on their resting state functional connectivities with an accuracy of 72.6%. This
high level of accuracy demonstrates the value of resting state functional data to
study action video gaming. Interestingly, the performance of the classifier depended
on the specifics of the method used (i.e., parcellation technique, type of connectivity
metric), supporting the utility of the robust/exhaustive methodology employed in
this study. Investigating why the classification was successful shows that there is in
fact no specialized network that differs among the two groups of participants.
Instead, it is the interplay between networks that matters most, and in particular
the interplay between the cingulo-opercular and the sensorimotor networks and
between the frontoparietal and the sensorimotor networks—a result that is robust
to variations in parcellation and connectivity metric. These results do not support
the view that individual networks are enhanced by action video game play and
suggest instead a mechanism that involves a reconfiguration of a collection of
networks. These results provide new insights and have clear implications for both
theories of action video game training and for cognitive neuroscientific theories of
cognitive control in the human brain.

Output The article is being prepared for journal submission. The code is available on
(github.com/morteza/ACNets)[https://github.com/morteza/ACNets]. The method
and results are described in Chapter 5.
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Chapter 1

Linking Theories and Methods in
Cognitive Sciences via Joint
Embedding of the Scientific
Literature: The Example of Cognitive
Control

Morteza Ansarinia, Paul Schrater, and Pedro Cardoso-Leite

Abstract

Traditionally, theory and practice of cognitive control are linked via literature reviews by

human domain experts. This approach, however, is inadequate to track the ever-growing

literature. It may also be biased, and yield redundancies and confusion.

Here we present an alternative approach. We performed automated text analyses on a

large body of scientific texts to create a joint representation of tasks and constructs. More

specifically, 385,705 scientific abstracts were first mapped into an embedding space using a

transformers-based language model. Document embeddings were then used to identify a task-
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construct graph embedding that grounds constructs on tasks and supports nuanced meaning

of the constructs by taking advantage of constrained random walks in the graph. This joint

task-construct graph embedding, can be queried to generate task batteries targeting specific

constructs, may reveal knowledge gaps in the literature, and inspire new tasks and novel

hypotheses.

1.1 Introduction

A key challenge in cognitive sciences, and in particular cognitive psychology and neuroscience,

is to make sense of observable phenomena (i.e., behavior) in terms of theoretical constructs.

Consider for instance cognitive control (CC)—a broad construct that comprises many com-

ponents and engages multiple mechanisms which collectively aim to describe goal-directed

behavior in a complex, uncertain world. CC is a major construct in cognitive sciences: In the

year 2021 alone, PubMed indexed 974 papers with the term “cognitive control” in the title

or abstract—an average of 3 papers per day. To understand CC, researchers have introduced

a variety of theoretical constructs and conceived numerous cognitive tasks (see Baggetta &

Alexander, 2016). However, the relationships between and within related constructs and

tasks are not always clear. For example, because they are “measured” using the same set of

tasks (e.g., Stroop, N-back, Digit Span, Stop-Signal, Task Switching), it seems reasonable to

assume that cognitive control (Botvinick & Cohen, 2014), executive functions (Baggetta &

Alexander, 2016), attentional control (Rey-Mermet et al., 2021), and self-regulation (Enkavi

et al., 2019) are somewhat equivalent constructs; yet, they are not widely considered equal

(Nigg, 2016).

Traditionally, the meaning and relationships between constructs and tasks are conceptualized

in extensive literature reviews conducted by human experts. In this approach, researchers

“manually” read, synthesize, and criticize the literature and write reviews or reports describ-

ing their understanding. Following such reviews, CC is viewed as interactions between generic

core processes (e.g., inhibition, flexibility, working memory, and interference control in Dia-
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mond, 2013), interactive componential (Badre, 2011), tasks-specific processes driven by goals

(Doebel, 2020; Logan, 2017), or optimal parameterization of naturalistic tasks (Botvinick &

Cohen, 2014). This approach has been invaluable but it may also yield biased results (Beam

et al., 2021; Brick et al., 2021) and seems inadequate to track the ever-growing literature

and stay current. In this context, modern machine learning methods may provide useful and

complementary insights.

When considering terms in the literature, there are two major impediments to creating con-

sistent construct-task associations: construct hypernomy when conceptualizing CC and task

impurity when operationalizing it. Construct hypernomy occurs when description of the same

construct varies across different contexts due to the way it is assessed. It creates different

meanings of the same concept. “Attentional Control”, for example, likely means something

different in Ahissar & Hochstein (1993) (as measured by low-level perceptual tasks) than it

does in Burgoyne & Engle (2020) (as measured by complex cognitive tasks). Task impurity,

on the other hand, refers to the idea that performance on a task loads onto multiple con-

structs (i.e., there is not a one-to-one mapping between constructs and tasks). Because of the

impurity, no task taps into just one isolated construct. Performance in the Backward Digit

Span, for instance, involves short-term memory, visual perception, sustained attention and

working memory, to name just a few. The consequence is that constructs lack a consistent,

groundable semantic content, corrupting interpretations of neural and cognitive research that

depend on them.

Construct hypernomy and task impurity are quite common in CC research because complex

concepts like cognitive control manifest themselves differently across different individuals and

contexts (Burgoyne & Engle, 2020). For that, researchers often use multiple tasks in their

studies and apply statistical methods such as latent factor analysis to discern underlying

constructs. Nevertheless, the resulting latent models of CC are rarely agreed upon, as is

the selection of tasks (Doebel, 2020; Enkavi et al., 2019; Nigg, 2016; see, for example, Rey-

Mermet et al., 2021).
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Ambiguous associations of constructs and tasks make it hard to interpret past results, hin-

der scientific progress and the development of effective interventions. With the advent of

scalable machine learning, however, construct-task associations may be clarified. The goal of

this paper is to approach the conceptual richness of a large body of scientific works and take

advantage of recent context-aware language models in machine learning to clarify the associ-

ation of CC tasks and constructs. More specifically, we collect and analyze scientific texts

about CC tasks and constructs and encode text data into rich semantic embeddings using

transfer learning. Transfer learning exploits the rich representations generated by natural

language models trained to faithfully represent contextual meaning—unlike traditional bag-

of-word or clustering techniques. Similarities between embedded representations are then

used to build up a hypergraph (Battiston et al., 2021) that connects tasks and constructs.

First, we show that this hypergraph representation regrounds constructs on tasks and pro-

vides nuanced meaning of the constructs, ultimately demonstrating construct hypernomy.

Second we show that pulling theoretical and experimental literature into overlapping compo-

nents of a hypergraph may greatly benefit researchers: the joint task-construct embeddings

can be queried to generate special-purpose task batteries, it may reveal knowledge gaps, in-

spire the design of new experiments and yield novel hypotheses regarding the structure and

function of CC. This empirical and descriptive model of the literature, rather than expert-

driven ones, may also be used in future applications to enhance knowledge searches (see

Beam et al., 2021 for a comparison of a data-driven mapping of the literature and expert-

driven knowledge frameworks like DSM for psychiatric illness and RDoC for for basic brain

function).

1.2 Methods

Data. We created a lexicon of CC-related terms (172 terms, of which 72 were task names

and 100 were construct names) based on the previously published work on cognitive control

(Barch et al., 2009), Attentional Control (Bastian et al., 2020), Executive Functions (Baggetta
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& Alexander, 2016; Diamond, 2013), and Self Regulation (Enkavi et al., 2019). Each term

in the lexion was associated with a PubMed-specific search query by which papers with the

term in their title or abstract were retrieved. This resulted in a dataset of loosely labeled

documents, each labeled by one or more lexicon terms (n=522,972 hits, of which 385,705 were

unique). For the purpose of the current analyses we only retained the title and abstract of the

papers, along with the lexicon terms that were used to retrieve them. Having multiple labels

per document was crucial to quantify the co-appearance of the terms in the literature. After

the documents were collected we removed 14 terms from the lexicon because they yielded

too few documents to support cross validation splits (𝑛 < 5).

Analysis. To understand the relationships among and between tasks and constructs, our

goal is to build graphs that represent tasks and constructs as nodes and measure similar-

ity/distance between them as edges. Graph 𝐺 can be used to jointly infer embeddings of

both construct and task nodes in a shared vector space, in that relative closeness of two

nodes is estimated by the similarities of node attributes as well as the shared neighbors in

the graph. Heterogeneous graph 𝐺 = (𝑉𝑡𝑎𝑠𝑘𝑠 ⋃ 𝑉𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠, 𝐸) is defined by its two types of

nodes, 𝑉𝑡𝑎𝑠𝑘𝑠 and 𝑉𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑠, labeled by either a task or a construct term, while the weighted

edges, 𝐸, represent the links between two or more nodes, reflecting similarity of the corre-

sponding terms in the literature. Node attributes being relevant scientific texts, the existence

and weight of a link between two nodes is predicted by the similarity of corresponding node

attributes; the higher the similarity between node attributes, the higher the chance of the

nodes being associated. The core problem becomes learning task and construct attribute em-

beddings that predict co-occurrence and semantic similarity measures. We used the following

steps to create the graph 𝐺 from the collected scientific texts.

The data collection resulted in a dataset of 385,705 unique, but loosely-labeled, abstract texts,

all of which were then encoded into embeddings of 1024 dimensions using a pre-trained trans-

former language model (GPT-3 Ada for text similarity embedding; see Brown et al., 2020).

The language model transformed raw texts into 1024-dimensional vectors, gpt3-embedding,

representing semantic similarity between two or more pieces of text. Since keeping the orig-
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inal structure of the text was important for the model to understand the context, we did

not preprocess the raw text. To convert text similarity into a shared topic representation

(which improves relating task and construct text embeddings), we applied Top2Vec topic

modeling (Angelov, 2020) to the gpt3-embedding which projected them into a space of 473

dimensions, i.e., topic-embeddings. Each column of the topic-embedding matrix represents

a topic, and element 𝑖𝑗 shows the probability of assigning document 𝑖 to the topic 𝑗. Re-

aligning the gpt3-embedding into topic-embeddings improved the quality of the dataset for

a number of reasons. First, it improves the quality of the labels in the dataset by discarding

outlier documents. These are documents that belong to no topics of interest or are assigned

to irrelevant topics (e.g., genetics)—after removing outlier documents, 293’014 unique docu-

ments remained for further analysis. Second, topic modeling allows one to extract a useful,

interpretable representation of the documents, as each dimension of the topic-embedding

shows the probability of assigning a document to a topic while being faithful to the contex-

tual representation of the documents in the gpt3-embedding space. This generates a digraph

between nodes representing lexicon terms and the topic-embedding vectors.

To convert this into a construct-task graph, we grouped lexical terms associated with con-

struct and tasks to generate graph nodes. To compute topic-similarity between groups of

lexical terms associated with each construct or task node, we fitted a multivariate normal

distribution over the topic vectors of each node separately and then calculated the distance

between all nodes as measured by the Jensen-Shannon divergence of those node-level distri-

butions. This step added edges to the graph, G, with edges weighted by the inverse distance

of nodes in the JS-divergence matrix.

To learn a representation of the graph that only preserves paths from tasks to constructs and

vice versa, we then applied Metapath2Vec (1000 random walks of step size 100, accompanied

by skip-gram Word2Vec embedding of size 128 and maximum window size of 5; as recom-

mended in Ruch, 2020). The Metapath2Vec embedding encodes random walks of specific

patterns in a heterogeneous graph, here patterns being alternating random walks between

task and construct nodes.
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Finally, by applying HDBSCAN soft clustering to the node attributes and thresholding the

edges (discarding all the edges weighed within one standard deviation from median), we

transform the graph G to a homogeneous hypergraph, i.e., nodes are now only of type task,

while constructs are hyperedges that group a subset of tasks in overlapping clusters.

1.3 Results

We used a variety of data-driven approaches to collect and understand CC publications.

Briefly, we (a) created an all-inclusive lexion of construct and task terms, (b) queried PubMed

to collect relevant abstract texts, (c) vectorized all the raw texts using GPT-3 Sentence

Similarity Embedding, an unsupervised pre-trained language model, (d) applied Top2Vec

topic modeling technique to all the document embeddings together and identified dimensions

of a useful latent space, i.e., topics. We then created a graphical representation of the lexicon

terms, i.e., task-construct graph, and used them to predict the association between terms.

The richness of tasks and constructs in the literature. Although there are many task

and construct terms, their relative frequencies differ widely. For example, “Stroop Task” is

mentioned 8,003 times in the period 1973–2022 while “Delay Discounting Task” was only

mentioned 466 times over the same period of time. The use of each term tends to increase

over time. Interestingly the rate at which new constructs and tasks are introduced does not

follow the same curve as the number of publications in the field; rather there seems to have

been a peak of innovation for constructs around 1980 and for tasks around the year 2000

(panel a in Figure 1.1). Such patterns, visible in simple descriptive statistics (Figure 1.1),

may provide interesting insights into understanding the maturity and vitality of a research

field.

Regrounding constructs on tasks. It took on average 7 years for the constructs to be

explicitly associated with a task (see panel b in Figure 1.1). The meaning of a theoretical

construct may change across time and gain clarity and precision with new empirical measures

and cognitive tasks being used by the research community to flesh out the construct. A core
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idea in this paper is that by evaluating how constructs are operationalized (i.e., linked to

cognitive tasks) key insight can be gained about what a construct means. Grounding the

definition of constructs on tasks provides a nuanced meaning of constructs that relies on

observable measures. It also allows the computation of useful measures on constructs (e.g.,

specificity) and on between pairs of constructs (e.g., measures of redundancy, similarity, and

distance). To investigate the relationships between cognitive constructs, we use hyperedges in

the task-construct graph as a measure of similarity, indicating the extent to which a construct

hyperedge can be reconstructed by neighboring tasks.

Construct hypernomy. The task-construct graph readily demonstrates construct hyper-

nomy and task impurity in the CC literature. We first sought hypernomy as highly over-

lapping hyperedges of seemingly incompatible constructs, as well as a high degree of task

nodes with neighboring constructs as a measure of the task impurity. Figure 1.2 illustrates

overlapping hyperedges of the most popular constructs where hyperedges for cognitive con-

trol, Executive Control, Behavioral Control, Central Executive, and Attentional Control are

overlapping and identical.

(a) (b) (c) (d)

Figure 1.1: (Panel a) Introducing new tasks (task innovation) and constructs (concept in-
novation) is characterized by a burst followed by declining innovation. (Panel b) Task and
Construct occurrences in publication abstracts are temporally decoupled. Time to opera-
tionalize constructs (blue) is the time between the first occurrence of a construct and the
first co-occurrence of that construct with any tasks, while Time to conceptualize tasks (or-
ange) is the time between the first occurrence of a task and the first co-occurrence of that
task with any of the construct. (Panel c) The majority of the literature only used one task in
their studies, showing a lack of multitask design of experiments. (Panel d) While the number
of papers published each year increases exponentially, the number of tasks per study remains
fairly constant across time.

Task inconsistency across disciplines. A major source of hypernomy stems from descrip-
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Figure 1.2: Task-Construct hypergraph: representations of control-related constructs as hy-
peredges (vertical black lines) over a subset of tasks (nodes). Construct hypernomy is re-
flected as overlapping hyperedges (e.g., green regions), and task impurity as nodes scattered
over multiple hyperedges (e.g., blue region). Distances between nodes are not meaningful.
Nodes are reorganized for visual clarity and only a subset of the graph is displayed.
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tions and measurements of the constructs often being inconsistent across scientific commu-

nities. To test this idea, we sought to determine whether construct hyperedges, and their

task associations, vary across four cognitive disciplines (psychology, neuroscience, cognitive

science, and social science). Using the same method described in the analysis section we

created four discipline-specific graph embeddings. The only difference was that publica-

tions were grouped by discipline, which was determined by searching for the terms “social”,

“psycho”, “neur”, or “cognit” in the journal titles. Constructs that have inconsistent task

associations across the disciplines are hypernomic (Figure 1.3).

Refactoring tasks and constructs. Designing effective assessments of CC can be chal-

lenging for a number of reasons. Participants have limited time to spend on cognitive tasks.

1) If these tasks are poorly selected, performance on these tasks may not be very informa-

tive (e.g., measures are conceptually redundant); 2) If only one task is used, the inferential

resolution of performance to construct is very limited. Thus in order to be able to make

specific theoretical claims about CC it is necessary to use multiple, well-chosen tasks in ex-

periments. This is currently not the case. As shown in Figure 1.1 (panel c), most research

uses only one task. In fact, only 17 percent of publications used 2 or more tasks. The task-

construct graph presented here may facilitate novel experimental designs of such multi-task,

max-information experiments by providing a similarity-based space in which tasks can be

identified, and grouped, by the overlapping subgraphs (i.e., constructs) that they belong to.

In the task-construct graph, two tasks are similar if they share identical neighbors, i.e.,

constructs. And tasks cover a set of constructs if their union set overlaps the corresponding

hyperedges of the constructs. These principles equip researchers with sound and quantified

methods to refactor tasks (e.g., discard redundant tasks, quantitatively measuring similarity

of tasks via constructs, and performing set operations on a group of tasks). Such a refactored

set of tasks controls the construct-redundancy of tasks and will shorten the time required

to complete comprehensive assessments. It provides a method to design a task battery to

effectively cover constructs (i.e., minimal redundancy while measuring different facets of the

constructs).
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Sparsity in the task space. There are numerous cognitive tasks in the literature; how

these tasks relate to each other remains unclear. There are many cognitive control tasks that

are rarely used (see Baggetta & Alexander, 2016), and even fewer used in combination with

other tasks. Even when tasks were used together, their relationship might still be unclear.

The question of how tasks relate to each other is key in the cognitive training domain where

researchers aim to train cognitive abilities in general rather than performance on a specific

task. In that context, a common point of disagreement is to predict and interpret transfer

effects (i.e., how much training in task A improves performance in task B). A measure of

distance between tasks based on their grounding on constructs may provide an objective foun-

dation to understand these transfer effects—the task-construct graph embedding proposed

here provides a means to compute such inter-task distances.

To quantify the distance between two cognitive tasks, we compute the Jensen-Shannon di-

vergence between their node embeddings in the task-construct graph. Figure 1.4 shows, for

example, that the Trail Making Task is relatively close to the Digit Span Task, suggesting

its training effects transfer more easily to the Digit Span Task than to tasks such as the

Discounting Task.

Distance between the task nodes can also allow us to identify gaps in the task space: gaps

may be visible as disconnected graph components. Identifying such gaps may reveal opportu-

nities to develop new useful tasks. Alternatively, there may only exist associations between

groups of tasks and groups of constructs—i.e. the task-construct associations are not atomic.

This reflects a lack of purity in the tasks or constructs or both that might be improved by

refactoring constructs or decomposing tasks into components.

Querying the graph embedding for task batteries targeting specific cognitive

constructs. Some studies use batteries of tasks that together address a research question

and measure one or more constructs from several viewpoints. The process of building such

task batteries can be facilitated by leveraging the task-construct graph embedding; one can

query the graph for an array of tasks spanning a given set of constructs. The joint embedding
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translates queries into arithmetic operations in the embedding space (positive samples and

negative samples), allowing for more explicit and visible decisions.

Query operations on the task-construct graph are made possible by using the underlying

node embedding vectors extracted as a part of Metapath2Vec graph embedding. Queries

include, for example, prioritizing tasks for a given construct, or a set of tasks for a set

of constructs. To prioritize tasks for a construct, the task-construct graph looks for task

nodes that are closest to the simple mean of the queried construct, e.g., in terms of sum of

weighted node embeddings. And for a list of tasks for multiple constructs, find the minimum

spanning tree that covers all the queried construct hyperedges. For example, if one queries

(Reward Processing + ReversalLearning - GoNoGo - SortingTask), one will get the

recommendation to use the BART, GiftDelay, BalanceBeam (Baggetta & Alexander, 2016),

and StimSSS (Enkavi et al., 2019) tasks, which are ordered by the cosine similarity between

the mean vector of the query and the task vectors in the graph embedding model.

Figure 1.3: Associations between tasks and constructs minimally overlap across scientific
disciplines. Rose plots show the relative association between constructs and tasks, with each
color representing a different field. Lack of overlap between the “spikes” indicates disjoint
operationalizations across fields.

1.4 Implications

Ambiguous meanings and relationships between cognitive tasks and constructs call for a

more rigorous way to handle constructs—an obvious solution would be to adopt a more

formal notation and refer to specific knowledge models (e.g., ontologies). The knowledge

29



Figure 1.4: Pairwise distances between the 25 most popular cognitive control tasks as mea-
sured by the symmetric Jensen-Shannon divergence of two multivariate normal distributions
of their node attributes in the task-construct graph. Higher divergence indicates higher dis-
similarity between corresponding scientific texts. Task-task distances may for example pro-
vide a data-driven proxy for predicting and explaining transfer effects in cognitive training
research.
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model must be flexible enough to capture a wide range of association between constructs and

tasks. The proposed task-construct graph embedding provides a useful representation of the

cognitive control literature built upon topic embedding. In this representation, association

of two entities, e.g., task-construct, relies on shared topics as well as the walks between them

in a graph representation. By predicting links using topic embeddings of the nodes, we find

most similar aspects of, for example, two constructs, a similarity that could be explainable

in natural language.

A consistent, sound, and parsimonious framework of CC has been desired from the beginning.

Yet, the growing number of publications and newly introduced constructs makes it impossi-

ble to integrate them into a bigger picture. While researchers may disagree on theoretical

perspectives and thus on which terms to use, they generally might agree on the fact that if

two constructs are “measured” by the same tasks, the constructs must be somewhat related.

We proposed a joint embedding of constructs and tasks (based on scientific texts in a graph

representation) to drive a more nuanced interpretation of the constructs by regrounding

abstract constructs on the concrete set of observable tasks.

The proposed graph-based embedding enables explanatory reasoning driven by scientific texts.

Unlike expert-driven models, the models reason regardless of the preferences in research; yet

it is not clear whether other kinds of biases are addressed as the knowledge source and pre-

trained language model are themselves produced by humans. By scaling up the knowledge

model to a large body of available texts, the model is able to encapsulate even more aspects

of cognitive control, and in general, multidisciplinary research.

Disagreements about the meaning of a construct are partly explained by differences in how

we interpret responses to a particular task. By focusing on the co-occurrence of task and

construct names in scientific texts, our approach implicitly makes strong assumptions about

the relationship between abstract constructs and their imperfect but observable measures.

The limitations of the present work can be partially addressed by expanding the hypergraph

to include, for example, concepts such as brain mechanisms, research communities, and
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analysis techniques.

Explainable symbolic AI and machine learning have been long in debate to model knowledge.

Regardless of the specific topic discussed here (i.e., cognitive control), the proposed model can

be seen as an effort to connect symbolic modeling (as in ontologies) and machine learning (as

in embeddings). Our method informs an ontology of scientific texts using context-aware em-

beddings that are extracted from a loosely-labeled body of scientific texts requiring minimal

human input. It is an automated pipeline that only requires a lexicon, builds on large-scale

language models and that can scale to millions of documents, making it a viable approach

to meaningfully monitor the scientific literature continuously and extensively.
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Chapter 2

CogEnv: A Virtual Environment for
Contrasting Human and Artificial
Agents across Cognitive Tests

Morteza Ansarinia, Brice Clocher, Aurélien Defossez, Emmanuel Schmück, and Pedro

Cardoso-Leite

Abstract

Understanding human cognition involves developing computational models that mimic and

possibly explain behavior; these are models that “act” like humans and produce similar

outputs when facing the same inputs. To facilitate the development of such models and ulti-

mately further our understanding of the human mind we created CogEnv—a reinforcement

learning environment where artificial agents interact with and learn to perform cognitive

tests and can then be directly compared to humans. By leveraging CogEnv, cognitive and

AI scientists can join efforts to better understand human cognition: the relative performance

profiles of human and artificial agents may provide new insights on the computational basis

of human cognition and on what human abilities artificial agents may lack.
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2.1 Introduction

Understanding the computations underlying human cognition is vital for scientific progress.

Most efforts in cognitive sciences to understand how people perform cognitive tests focus on

models that describe the data (e.g., factor analysis). There are only a few models describing

the mechanisms underlying the performance of a task (i.e., models that “act” like humans

and produce responses) and fewer still that can account for performance across many tasks.

One productive strategy has been to develop cognitive architectures (e.g., ACT-R, Anderson

et al., 2004). Alternatively, recent developments in AI allow the application of flexible, generic

architectures to solve a wide variety of problems. Their ability to do (or not do) so may

reveal computational constraints underlying specific tasks (Yang et al., 2019). Reinforcement

Learning (RL) seems particularly well suited to model performance in cognitive tests as they

typically involve the presentation of a stream of stimuli and the execution of a discrete set

of actions followed by a reward signal that may drive learning (Mnih et al., 2015).

Despite the relevance and potential of RL to model cognition, there is currently no easy way

to train RL models on the same cognitive tests that are used to assess humans. Here we

present CogEnv, a configurable multi-task environment for RL agents to emulate cognitive

tests. Under the hood, CogEnv uses DeepMind’s AndroidEnv (Toyama et al., 2021) to

run the Behaverse cognitive assessment battery (see behaverse.org). Behaverse tasks are

customizable at many levels, allowing the construction of a large number of randomized

trials for training RL agents. In the following sections, we present the technical details of

CogEnv and its ability to run RL agents on cognitive tests.

2.2 Technical specification

We simulate a real-time RL environment, where the environment, upon receiving an obser-

vation, invokes a callback method in the agent. We use AndroidEnv to run and manage the

Behaverse cognitive assessment battery in a virtual Android device. A set of task-specific
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parsers then decodes screenshots, event streams, and system logs to extract numerical re-

wards and symbolic observations (see Figure 2.1). The reward and the observed state are

then sent to the agent via the callback. CogEnv then waits for the agent to respond with

an action, and issues a timeout if no response occurred within a duration specified by the

cognitive test.

Figure 2.1: Overall architecture of CogEnv. CogEnv communicates with AndroidEnv via
Protocol Buffer messages and manages access to the Behaverse events. 𝑂𝑡 is the screenshot
of the task at time t, 𝑂′

𝑡 is the extra observations extracted from the Behaverse events
including information about the task and stimuli, 𝑟𝑡 is the reward, and 𝐴𝑡 is the agent’s
action.

2.2.1 Tasks

CogEnv currently runs four Behaverse tasks (see Figure 2.2) selected to cover main compo-

nents of cognitive control (see Chapter 1). In the Belval Matrices test for example, agents

are shown a matrix of symbols on a 3x3 grid, where one of the cells of the matrix has been

removed, and they are tasked to identify the missing cell from a set of eight options (panel

D of Figure 2.2). The Belval Matrices can randomly generate a large number of test items

of varying difficulty and structure, which makes this test interesting for human and artificial

learning studies.
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Figure 2.2: Screenshot (𝑂𝑡) of four Behaverse tasks. A) Digit Span (working memory), B) N-
Back (working memory), C) Trail Making Test (cognitive flexibility), and D) Belval Matrices
(matrix reasoning). See behaverse.org.

2.2.2 Timing

CogEnv supports both step-lock (i.e., turn-based, where the environment pauses between two

consecutive actions) and real-time mode (where the environment runs asynchronously from

the agent). A real-time environment is necessary to study the timing of actions: in cognitive

psychology, human behavior is typically evaluated in terms of both accuracy and speed.

2.2.3 Action space

Each test defines a discrete action space that is in fact bounded tap gestures on the buttons of

the graphical interface. The Action Coordinator component (see Figure 2.1) automatically

constructs a sequence of AndroidEnv gestures (TAP, TOUCH, and LIFT) that together

perform the requested action as a set of movements in the emulated device.

2.2.4 Observation space

CogEnv asynchronously invokes and waits for the agent to act. The invocation is accom-

panied by a screenshot of the Behaverse screen, as well as the reward value and symbolic

representations of the task state extracted from the logs and event streams.

2.3 Comparing humans and artificial agents

CogEnv allows us to compare human and artificial agents on the exact same cognitive tests,

generating for both the same type of data that can be analyzed using a common data analysis
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pipeline. Figure 2.3 illustrates how such comparisons may yield new insights.

We collected data (accuracy and response time) from 200 human participants completing

20 items of the Belval Matrices (see Figure 2.3) and are currently training a selection of

discrete control agents on the same test (i.e., DQN and R2D2 from the Acme Tensorflow

library; see Hoffman et al., 2020; Toyama et al., 2021): agents are trained on 1000 randomly

generated items and tested on a set of 20 unseen test items, the exact same used with human

participants.

Contrasting human and artificial agents may yield one of the following main scenarii: (A)

The artificial agent mimics the human performance profile well, suggesting it captures some-

thing fundamental about human cognition and that its study may help us better understand

humans. (B) The artificial agent performs the task well but displays a different performance

profile than humans. This could suggest that there are in fact several ways of solving the

task and that the human performance profile has a characteristic computational signature.

(C) The artificial agent performs like humans on some items but very differently on others.

This may indicate that humans use a mixture of cognitive strategies or that the artificial

agent needs to be augmented to perform human-like.

Whatever the case may be, it is clear that the comparison of human versus artificial agents,

as well as the comparison among artificial agents provides a unique source of information

that significantly augments our ability to make sense of human behavior in cognitive tests.

2.4 Conclusion

Cognitive tests play a central role in the study of human cognition. We introduced CogEnv,

a framework that runs cognitive tests within a virtual environment that enables training and

evaluating artificial agents in a way that is directly comparable to human studies. CogEnv

also provides a way to study cognitive tests and how learning to perform well in one cognitive

test might transfer to others.
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Figure 2.3: Hypothetical scenarios when comparing the performance of humans versus com-
putational agents (see text).

Environments like CogEnv have proven quite useful in other fields, e.g., AnimalAI 3 for animal

cognition (Crosby et al., 2020) and RecSym for recommendation systems (Ie et al., 2019).

We believe that CogEnv can complement other approaches (e.g., cognitive architectures)

and hope it will yield new insights on human cognition and help coordinate efforts across

disciplines to better understand the computational foundations of cognitive performance.
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Chapter 3

CogPonder: Towards a Computational
Framework of General Cognitive
Control

Abstract

Current computational models of cognitive control are lacking in important ways. In psychol-

ogy, cognitive control models tend to be designed for specific tasks which makes it hard to

study cognitive control in general (e.g., across a battery of tasks, playing video games, or in

real-life activities). Computer science, on the other hand, has been able to develop artificial

agents capable of performing complex tasks but typically ignores resource limitations and

how long it takes for an agent to make decisions and act. Response time is of the essence

in human cognition and varies meaningfully depending on numerous factors, including in

particular cognitive control which supports adapting behavior to environmental constraints

to achieve specific goals. Recent work further points to the fact that cognitive control models

could equally greatly benefit the development of a next generation of intelligent agents in

computer science. Here we propose CogPonder, a flexible, differentiable end-to-end general

cognitive control framework that is inspired by the Test-Operate-Test-Exit (TOTE) architec-
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ture (G. Miller et al., 1960) in psychology and by PonderNet (Banino et al., 2021) in computer

science. CogPonder is a general deep learning framework that functionally decouples the act

of control from the controlled decision making processes. The framework involves a con-

troller that acts as a wrapper around any computational end-to-end model (that “perceive”

the environment and generate “responses” on that environment) and controls when to stop

processing and output a response (thus producing both a response and a response time). Here

we implemented a simple instance of CogPonder and trained it to perform two classic cogni-

tive control tasks (i.e., Stroop and N-back) while at the same time aligning its behavior to

humans (i.e., similar responses and response times). The results show that across both tasks,

CogPonder effectively learns from data to generate behavior that resembles the behavior of

humans. This work thus demonstrates the value of this new computational framework of cog-

nitive control and provides novel insights and research opportunities for both psychological

and computer science.

3.1 Introduction

The scientific study of human cognition has largely focused on how long it takes people to

perform tasks (e.g., press a key in response to a light, multiply two numbers or name the

capital of Luxembourg) and on what factors impact those response latencies (e.g., intensity

of the light, magnitude of the numbers, familiarity of the content). There is a long and rich

history of research on response times and many computational models have been developed

to account for response time phenomena (De Boeck & Jeon, 2019; Forstmann et al., 2016).

Furthermore, the study of response times is particularly relevant because in contrast to other

measures, such as percent correct or IQ, response times express a physical quantity in a ratio

scale (Jensen, 2006) which allows the direct comparison of raw measurements.

An important class of response times models derives from the drift diffusion model (DDM;

Ratcliff, 1978) which is specifically designed to model binary decision making. It considers

both the response (what choice the person made) and the response time Ratcliff et al. (2016).
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In this model, the stimulus triggers a stochastic (“noisy”) signal which is accumulated until

it eventually reaches an upper or lower threshold (“decision bounds”)—the threshold that

is reached determines the decision and the time when threshold is reached determines the

response time. This type of model is appealing because it can account for a large range of

behavioral data, has an intuitive computational interpretation (i.e., sequential probability

ratio test) and seems to map well with neural decision-making signals (Forstmann et al.,

2016; Gold & Shadlen, 2007). Furthermore, models like the DDM can be fit to behavioral

data and the underlying model parameters provide useful and meaningful quantities that

help better understand human cognition (e.g., the quality of the signal, people’s biases for

one option versus another). Indeed, with this model it becomes possible to make principled

predictions about the effect of task parameters (e.g., instructions emphasizing speed versus

accuracy) on behavior (e.g., decrease in both response times and accuracy) via their impact

on model parameters (e.g., decrease of the decision bound parameter).

Of particular interest in this context are a family of tasks that relate to the psychological

construct of cognitive control (Baggetta & Alexander, 2016). These tasks include for instance

the Stroop task, Task-switching, the Go/No-go task, the Flanker tasks, and the N-back task,

to name just a few. While cognitive control is a complex construct with a meaning that

lacks consensus in the literature (see Chapter 1), one of its key properties is that it allows

the cognitive system to regulate its processing to achieve particular outcomes (e.g., inhibit

a prepotent response, maintain attentional focus), and this regulation of processes typically

has a measurable impact on response times (i.e., control is effortful and takes time). Indeed,

response times have long been the main variable of interest to cognitive control scientists,

and computational models like the DDM have been used to capture these cognitive control

effects on response times (Eisenberg et al., 2019; Pedersen et al., 2022; see e.g., Ratcliff et

al., 2018).

Note that DDM is not a cognitive control model per se but rather a general two alternative

decision making model. Adapting DDM to cognitive control settings would thus require

additional machinery. Note also that there are computational models of cognitive control
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(e.g., Botvinick & Cohen, 2014) that could be coupled with DDM. However, these cognitive

control models are typically custom-made for specific tasks, meaning that the model for the

Stroop task cannot be readily transposed to the N-back task for example.

The models mentioned above constitute major achievements in psychology and they provide

invaluable insights into the human mind. They are, however, imperfect. For instance, DDM-

like models apply to a limited class of tasks. They are adequate for speeded two alternative

choice tasks but not for multiple alternative choice tasks (Ratcliff et al., 2016) or tasks where

the response is more complex than a choice (e.g., continuous tracking). Furthermore, these

models do not in fact perform a task but instead generate data that looks like human data

(i.e.,they are models of the data and not models of the cognitive processes). This is in contrast

to “acting” models, like modern reinforcement learning models for instance, which may for

instance receive the pixel values of images displayed on a computer screen as input and

generate actions to play video games at human level performance (Mnih et al., 2015). Finally,

models like the DDM are rather complex mathematical objects, without reliable closed-form

solutions and are typically not differentiable. This makes it difficult to incorporate DDM

in modern deep learning architectures that compute gradients to backpropagate errors and

learn from data. These limitations are well-known and there are ongoing efforts to overcome

them (e.g., Christie & Schrater, 2019; Rafiei & Rahnev, 2022).

In recent years there have been tremendous advances in machine learning, with computational

agents learning to perform highly complex tasks better than humans (e.g., modern video

games, Go, Stratego). These models are interesting because they are “acting” models and

they are generic (i.e., the same model architecture can be used to learn to perform many

different tasks). They are, however, also limited in important ways. First, these large

models typically lack structure that would facilitate the interpretation of the underlying

computations. This is in contrast to computational cognitive control models that employ an

adequate level of computational abstraction but then lack the ability to perform complex tasks.

Secondly, by and large, the machine learning community hasn’t yet picked up on the concept

of cognitive control and the idea that machine learning models could regulate themselves to
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adapt their computations to the level of complexity of the task to be performed or the amount

of available resources (Moskovitz et al., 2022; Shenhav et al., 2017). A notable exception

here is PonderNet (Banino et al., 2021) which we describe below. Finally, and related to the

previous point, in contrast to researchers in psychology, researchers in machine learning have

largely ignored response times, not only as a metric of interest (the time needed for a given,

standard neural network to make a decision does not vary with the complexity of the task

or the quality of the input; it depends only on the structure of the network), but also as a

behavioral constraint for the artificial agent. There are many situations that require people

to stop deliberating and commit to a decision. In RL models, it is common to place the

agent in a sort of turn-based environment where its world stops, waiting for the agent to act

(Ramstedt & Pal, 2019). Artificial agents that could control how long they deliberate would

be able to adapt to changing environmental constraints.

To summarize, computational models in psychology and in computer science have different

strengths and weaknesses. There could be great benefits for both fields to cross fertilize

ideas and develop new types of computational control models. The work presented here is

an attempt to move in that direction.

3.2 Desiderata for a general computational cognitive
control framework

Our goal is to develop a computational framework for cognitive control models that would

be valuable to both psychology and machine learning researchers and which combines the

strength of their respective approaches. More specifically, we want our framework to have

the following main features:

• agency: the model is able to perform the task at hand;

• completeness: the model accounts for both responses and response times;

• versatility: the same model can perform a wide range of tasks; this allows the study

of performance across multiple tasks under a common computational framework;

43



• modularity: the model allows to augment any end-to-end computational model with

cognitive control abilities; this allows both for great flexibility in model architectures

and interpretability.

• learnability: the model is differentiable and can thus be integrated in state-of-the-art

deep learning models and benefit from modern software (e.g., PyTorch, TensorFlow,

or JAX) that use automatic differentiation for parameter optimization and GPUs for

faster computing.

• composition: the model forms a building block of sorts and multiple such building

blocks may be arranged in structures (e.g., sequence, hierarchy) to perform complex

tasks; this allows for scalability while controlling complexity.

The inspiration for our model comes from two primary sources; PonderNet from machine

learning and TOTE from psychology. The following is a description of both before we describe

our framework named CogPonder.

3.2.1 PonderNet

PonderNet is a recently developed algorithm that adjusts the complexity of the computations

executed by a neural network as a function of the complexity of the task and the input (Banino

et al., 2021). With PonderNet, the same neural network uses fewer computational steps to

perform simple tasks than complex ones. The rationale behind PonderNet is straightforward.

In addition to learning to perform a specific task (using a reconstruction loss function), the

network evaluates at each time step whether to stop or continue computation. This halting

behavior is determined by learning a halting probability distribution that is constrained

by a hyperparameter (a temporal regularization term encouraging fewer computation steps

while exploring other possibilities). This approach is in stark contrast to traditional machine

learning approaches where the complexity of the neural networks is determined by the size

of the input, adjusted manually and set once and for all for a specific task.

PonderNet is interesting within the context of cognitive control. First, because PonderNet
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adjusts computational resources of a system based on the complexity of the task to be solved,

it can be seen as a form of cognitive control. Second, by controlling the halting distribution,

PonderNet highlights the conceptual importance of considering the time needed to perform

a task (more exactly the number of computational steps). By doing so, PonderNet creates

a bridge between the rich literature in experimental psychology grounded in the study of

response times and the booming field of deep learning.

3.2.2 TOTE

PonderNet is reminiscent of the famous cognitive control model named TOTE (G. Miller

et al., 1960), where TOTE stands for Test-Operate-Test-Exit. In TOTE, as in PonderNet,

computations (or operations) unfold in cycles with tests evaluating on each cycle if a specific

condition is met and consequently deciding whether to exit (halt) the process or trigger a

new cycle of operations. As in PonderNet, the control mechanisms are functionally separated

from the operators. Interestingly, the main motivation behind the TOTE model was to ad-

dress complex human behavior. While this might be achieved with PonderNet by increasing

the complexity of the underlying operator, in TOTE, the authors argue that complex be-

haviors could be modeled by organizing multiple TOTE units in sequences, hierarchies or

other structures. Under this view, TOTE units are computational building blocks that can

be assembled to generate complex behaviors. With the advent of modern computers and

computational tools it is now possible to translate the ideas behind TOTE in computational

models capable of performing complex tasks.

3.3 The CogPonder framework

The general idea behind the CogPonder framework is illustrated in Figure 3.1. The starting

point for a CogPonder model instance is an end-to-end model, termed “Operator”, which

on a given trial 𝑛 takes an input 𝑋𝑛 and outputs 𝑦𝑛 (see panel “a” in Figure 2.1). This

operator may for example be a deep neural network performing the Stroop task, in which
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Figure 3.1: The CogPonder framework. (A) An end-to-end model, termed “Operator”, which
on a given trial 𝑛 takes an input 𝑋𝑛 and outputs 𝑦𝑛. (B) CogPonder disconnects the Oper-
ator from its direct inputs and outputs and encapsulates the Operator inside a local virtual
environment that is governed by the Controller (blue box). The Controller intercept both
the inputs and outputs of the Operator, and determines what inputs are fed to the Operator
and ultimately what output to be emitted on a given trial. Within a given trial 𝑛 the Con-
troller will repeatedly call the Operator, with each of these iterations being indexed by step
𝑠, until it decides to halt processing for trial 𝑛 and to emit a response 𝑦𝑛. The halting is
determined by a sample from a Bernoulli distribution parameterized by 𝜆𝑠 (decision diamond
in the figure).
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case 𝑋 might be a textual description of the stimulus or the pixel values of the screen and 𝑦
might be a label of a color or a motor command to press a specific button.

The key idea behind CogPonder is to disconnect the Operator from its direct inputs and

outputs and to encapsulate the Operator inside a local virtual environment that is governed

by the Controller. The Controller intercept both the inputs and outputs of the operator, and

determines what inputs are fed to the Operator and ultimately what output to be emitted

on a given trial. There are many possible ways to implement the Controller, and different

types of control the Controller could exert on the Operator. Here we consider the Operator

as a blackbox (i.e., the Controller has no read or write access to the Operators internal

parameters) and use a formulation that is very similar to PonderNet (possible extensions are

discussed in “Limitations and possible future extensions”). More specifically, within a given

trial 𝑛 the Controller will repeatedly call the Operator, with each of these iterations being

indexed by step 𝑠, until it decides to halt processing for trial 𝑛 and to emit a response 𝑦𝑛.

The number of iterations performed on trial 𝑛, 𝑠𝑛, reflects the response time for that trial.

Following PonderNet, the decision to “halt” or to “continue” iterating at step 𝑠 is determined

by a Bernoulli random variable Λ𝑠, with Λ𝑠 = 1 meaning “halt” and Λ𝑠 = 0 meaning

“continue”. The conditional probability of halting at step 𝑠, given that the process was not

halted in the previous step is given by:

𝑃(Λ𝑠 = 1|Λ𝑠−1 = 0) = 𝜆𝑠 ∀ 1 ≤ 𝑠 ≤ 𝑆

where 𝑆 is the maximum number of steps allowed before halting.

From this expression one can compute the unconditioned probability of halting at step 𝑠:

𝑝𝑠 = 𝜆𝑠
𝑠−1
∏
𝑗=1

(1 − 𝜆𝑗)

Importantly, the value of 𝜆𝑠 is computed by the Controller at each timestep 𝑠, endowing it
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with the power to adjust the system’s computational complexity and determining its response

time distribution 𝑝𝑠. The other major quantity that the Controller needs to compute on each

iteration is 𝐻𝑠, the input to the Operator (using 𝑋𝑛 and 𝐻𝑠−1). Because 𝜆𝑠 is computed

from 𝐻𝑠 (see Figure 3.1), speed and accuracy are intrinsically coupled at the within-trial

level. The Controller can be instantiated using neural networks and its parameters adjusted

using standard methods and labeled data (see “Evaluation of a CogPonder model”).

It is important to note that CogPonder is conceptually quite different from RTNet (Rafiei &

Rahnev, 2022). In RTNet, the same input is passed multiple times through a neural network

with each pass using slightly different weights (i.e., weights are not fixed but sampled from

a distribution) and the output of each pass is accumulated in a special output layer until

reaching a decision threshold (similar to DDM). In CogPonder a given model is wrapped by a

controller, the model is iteratively fed different inputs (they are generated by the Controller)

and the response time (number of computational steps) is determined by computational

requirements rather than resulting from stochasticity that is injected in the system.

CogPonder is very similar but also different from PonderNet in the sense that CogPonder aims

to align computational models with human behavior rather than adjusting computational

resources of neural networks to the complexity of a particular task. CogPonder also aims to

embrace the “building blocks” metaphor of TOTE and further our understanding of cognitive

control (i.e., it aims to become a theoretical framework and not “only” a method).

3.4 Evaluation of a CogPonder model

3.4.1 Objectives and rationale

This work aims to be a proof of concept, demonstrating the value of CogPonder to both

psychology and computer science research. The preliminary work presented below has two

main objectives: demonstrate that the same CogPonder model instance can learn to perform

two different cognitive control tasks from cognitive psychology; this is important because it
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shows tasks that have so far mostly been considered in isolation can now be investigated

within a common computational framework. demonstrate that the behavior of a CogPonder

model aligned to human behavior is able to capture important patterns in the human data;

this is important because it shows that CogPonder might be useful to understand behavior

and might also be used to run simulation (“what if”) experiments.

3.4.2 Dataset

Here we use a subset of the Self-Regulation Ontology dataset (publicly available and pre-

viously published in Eisenberg et al., 2019) which contains behavioral data from 521 of

participants who completed computerized cognitive tests as well as questionnaires. In this

study we consider only data from one human participant who completed two cognitive tasks:

the Stroop test and the 2-back test. We chose these specific tasks because they have both

been associated with the construct of cognitive control but are quite different in that they

involve different types of stimuli (words versus letters), task instructions (name ink versus

same/different), cognitive processes (involving the inhibition of a prepotent response versus

updating memory) and responses options (2 versus 3 options).

In the Stroop task, participants were presented with a name of a color written in ink that

was either congruent or incongruent with the word (e.g., the text “red” written in a blue

color is incongruent, while the text “red” written in a red color is congruent) and they were

instructed to report quickly and accurately the color of the ink (i.e., ignore the text) by

pressing one of three keys (corresponding to the options red, green, blue). Each participant

completed 24 practice trials and 96 test trials; here we consider only test trials.

In the N-back task, participants were presented with a stream of letters (e.g., “A”, “X”,

“a”) and they were instructed to report for each letter whether it was the same letter as

the one presented N letters ago (irrespective of capitalization) by pressing one of two keys

corresponding to “same letter” (i.e., target) and “different letter” (i.e., non-target). Each

participant completed several versions of the N-back task; here we consider only the cases
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where N=2 (i.e., 2-back trials), which amounted to 342 trials.

In both tasks, we use the trial-level data for participants which includes a description of the

stimulus (e.g., “A”), trial index, the participants response (e.g., the choice of the response

option “red”) and time needed to make that response (i.e., response time, in milliseconds).

For more details on the original datasets, see Eisenberg et al. (2019).

3.4.3 Method

Our goal is to train the same computational cognitive control model (i.e., “agent”) to perform

both the Stroop and the 2-back tasks. In both cases, the model will receive as input a sequence

of stimuli (i.e., color words or letters) and will generate a response to each stimulus (i.e., color

words or same/different). Note that this is an “acting” model that is actually able to perform

the task and not a “fitting” model that aims to fit patterns in the data. Note also that by

responding to each stimulus, the data generated by the agent will have the same structure

as the human data (i.e., trial-level data with a stimulus description, the choice made by the

agent and the time it took the agent to make that decision).

In addition to training the agent to accurately perform the task, we want to align the agent

with humans. By this we mean that we want to adjust the internal parameters of the

computational model so that it will generate a behavior in response to stimuli that is similar

to human behavior (e.g., similar response time distributions and accuracy levels).

This alignment is obtained by the following loss function, the value of which will be minimized

during the training phase of the model (see “Model evaluation procedure”):

𝐿total = 𝐿response + 𝛽𝐿time (3.1)

This loss function comprises two terms which are weighted by the hyperparameter 𝛽. The

first term aligns the agents choices with the choices made by human participants (“response

reconstruction loss”):
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𝐿response =
𝑆

∑
𝑠=1

ℒ( ̂𝑦𝑠, 𝑦)𝑝𝑠 (3.2)

where ℒ represents the cross entropy loss function.

The second term aligns the agent’s response times (the distribution of the halting probability

𝑝𝑠) with the response times distribution of human participants 𝑑 using KL divergence (“time

regularization term”):

𝐿time = 𝐾𝐿(𝑝𝑠||𝑑) (3.3)

It is important to note that computers typically perform tasks much faster than humans

do and that depending on the specific computer hardware (or software), the time needed

to respond may vary considerably. This means that elapsed computation time is not the

relevant variable to track and that we should instead track the number of computational

steps (Cormen et al., 2022). In a given computational context (e.g., a particular task and

performance constraint) this number may be stable despite the time needed to execute those

steps varying significantly depending on the underlying hardware.

Equation 3.3 (𝐿time) requires computing the similarly (via KL divergence) between the dis-

tribution of halting times, which are expressed in number of steps, and participants response

times distributions, which are expressed in milliseconds in our dataset. To compute this term

it is necessary to either convert number of steps into milliseconds (e.g., using a hyperparame-

ter that expresses the duration per step) or to convert the response times from milliseconds to

number of steps (e.g., using a hyperparameter that expresses duration per step and dividing

the response time by that duration). We used the second approach and manually determined

an adequate value for the step duration hyperparameter (see “Model evaluation procedure”).

51



3.4.4 Model evaluation procedure

3.4.4.1 Model architecture: CogPonder instantiation

Figure 3.1 (panel B) describes the general template for a CogPonder model. CogPonder

is a framework that can be instantiated in many different ways. Here we chose a specific

implementation to perform the Stroop and N-back tasks, noting nevertheless that other

implementations are equally valid and that for other tasks more complex instantiations might

be needed. Our goal is to demonstrate the value of the framework, not the value of this specific

instantiation of the framework.

For the Operator in the model (see panel B in Figure 3.1) we used a simple neural network

with one dense linear layer and ReLU activation. The Controller includes two separate

networks: a recurrent network and a halting network. The recurrent network is a GRUCell

that iteratively computes inputs to the Operator. At each iteration 𝑠 it computes 𝐻𝑠 and

serves it as the input to the Operator. The halting network approximates the probability of

halting at each time step (𝑙𝑎𝑚𝑏𝑑𝑎𝑠). It is a fully connected linear layer with ReLU activation

that receives as input 𝐻𝑠 and determines the halting of the CogPonder model at a given time

point 𝑠 within a trial and the emission of the output for that trial.

Finally, the decision to halt or to continue processing is made at each processing step 𝑠 within

a given trial based on a biased coin flip (Bernoulli sample with probability of 𝜆𝑠), which is

emitted by the halting network (see panel B in Figure 3.1).

Note that the same model architecture was used to fit the Stroop and N-back tasks (sep-

arately) but there were slight differences between these two cases because the stimuli and

responses are different in the two tasks. More specifically, a stimulus in the Stroop task is

encoded using 2 inputs (color and word), while a stimulus in the N-back task requires 6 inputs

(one-hot encoded letters). Similarly, in the Stroop task, the network needs to emit one of 3

choices while in the N-back only one of two choices. This being said, it is straightforward to

extend these models so the exact same model architecture could apply to both cases.
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3.4.4.2 Model training

Here we present preliminary work to align CogPonder to human data. CogPonder was fit

to a single participant taken at random from the dataset and separately for the Stroop and

the N-back tasks (i.e., different sets of parameters were adjusted for each task). Participants’

data in each task represents a time series (i.e., trials are ordered and there is a dependency

across trials). This data was split into 75% training set and 25% test set, corresponding to

72 train and 24 test trials in the Stroop task and 256 train and 86 test trials in the N-back

task.

The training involved a maximum of 10000 epochs (i.e., loops over the dataset) which was

stopped when no improvement was observed in minimizing total validation loss (early stop-

ping with 0.01 patience on the validation 𝐿total). We used stochastic gradient descent (Adam

optimizer) to minimize 𝐿total (see loss function in Equation 3.1). All model parameters within

the Operator and Controller were adjusted simultaneously and using the same procedure with

the exception of the step duration hyperparameter which for this preliminary analysis was

set manually to 20ms. In total, 62 parameters were adjusted for the Stroop task and 239

parameters for the N-back task and it takes around 15 minutes to fit one participant on one

task on an average laptop.

The evaluation of the model used the 25% of trials that were not used for training. Once the

model parameters are set, the model can be used to generate behavior (i.e., responses and

response times) in response to stimulus sequences. This artificial agent generated behavior

can then be compared with human generated behavior using standard descriptive statistics

such as average accuracy and average response time for example.

3.4.4.3 Step duration hyperparameter

As a first approximation we manually tested several values (10ms, 20ms, 50ms, 100ms) and

selected the value of 20ms as this seemed to lead to the best alignment with human data

and faster convergence of the model parameters. In a future iteration of this analysis, this
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hyperparameter will be estimated directly from the data using a dedicated validation set.

3.4.4.4 Non-decision time hyperparameter

In line with past computational models in psychology, we included in our model a non-

decision time which reflects the sum of durations that affect the measured response time but

are not related to the decision process per se (e.g., the time taken for light to be converted

to action potentials in the retina). We assume that this non-decision time is approximately

the fastest possible human response time for a given task. Thus, to remove this non-decision

time from the recorded response times we subtracted the minimum response time from all

data points, which resulted in response times being expressed in time steps ranging from 1

to 𝑚𝑎𝑥(𝑅𝑇 ) − 𝑚𝑖𝑛(𝑅𝑇 ) + 1. Compared to the raw response times, using these transformed

response times resulted in faster convergence of the model parameters. In a future iteration

of the analysis, non-decision time will be treated as a hyperparameter and estimated from

the data.

3.5 Results

Our first goal is to determine if the same CogPonder model can learn to perform two differ-

ent tasks using data from one human participant. Figure 3.2 shows the total loss (𝐿total, as

defined in Equation 3.1) computed on the test data as a function of the number of epochs

during the training phase. It is apparent from this figure that CogPonder does indeed learn

in both tasks, with the loss reaching an asymptote after about 100 epochs (i.e., iteration

through the training dataset). This figure also demonstrates that because of its design, Cog-

Ponder (like PonderNet) can take advantage of modern deep learning software to efficiently

fit complex models.

Our second goal is to determine to what extent a CogPonder model acts like a human once

it has been trained with human data. Because CogPonder is an acting model it generates

trial-by-trial responses that have the same data shape and type as human responses. This
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Figure 3.2: CogPonder learns to behave like humans. With increasing learning iteration
(epochs) the loss decreases and asymptotes. This is true both when aligning CogPonder with
the Stroop task (red curve) or with the N-back task (blue curve). Note that the two tasks
were trained and tested separately.
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Figure 3.3: CogPonder behavior is comparable to human behavior. CogPonder captures the
overall pattern of average accuracy (left column of panels) and average response times (right
column of panels) in both the Stroop task (upper row of panels) and in the N-back task
(bottom row of panels) when grouping all types of trials (“All”). However, when separating
trials by type (“congruent” and “incongruent” in the the Stroop task and “target” and “non-
target” in the N-back task), some discrepancies are observed. Error bars show 95% confidence
intervals.
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Figure 3.4: CogPonder also mimics finer grained phenomena (e.g., response time distribu-
tions).
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allows to directly compare the behavior of CogPonder and human agents using the same

descriptive statistics and data visualization code. As a first step, we compare the average

accuracy and average response time of a human versus CogPonder agent in both the Stroop

and N-back tasks (see Figure 3.3). It is apparent from Figure 3.3 that CogPonder is able

to capture these broad patterns in the human data. In particular, for both the Stroop and

N-back tasks, CogPonder produces a behavior with accuracy levels and response speeds that

are in the same ballpark as human data when considering all types of trials (“All” label in

the x-axis of Figure 3.3).

Next, we investigated to what extent CogPonder was able to reproduce finer grained human

phenomena. To do so, we plotted average accuracy and average response time as a function of

conditions (see Figure 3.3), as well as the distribution of response times for both the human

and the CogPonder agent, separately for the Stroop and N-back tasks (see Figure 3.4). The

“fits” are obviously not perfect. For example, while the human data shows a congruency effect

in the Stroop task, whereby accuracy is lower and response times longer in incongruent trials

than in congruent trials, no such effects are apparent in the CogPonder data. One should

note however that the error bars are quite large and that it remains plausible that with a

larger training dataset, CogPonder will be able to capture these Stroop effects. What is most

encouraging is these results is the similarity between the response time distributions of the

human participant and the CogPonder agent in both the Stroop and N-back tasks. Overall,

these results suggest that CogPonder is able to mimic important markers of human behavior,

which makes CogPonder a promising new approach to the study of human cognition.

3.6 Discussion

The present work is a first step towards developing CogPonder, a computational cognitive

control framework that can be applied to a broad range of use-cases—including in particular

batteries of cognitive tests. In this framework, cognitive control is envisioned as a model

that wraps around any end-to-end operator model and controls both its inputs and outputs
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to achieve a desired performance profile. In this work we focused in particular on two classic

experimental psychological tests (the Stroop and the N-back tests) and showed that a basic

instance of CogPonder can be trained to align with human behavior and will then generate

behavior that captures some key patterns in the human data, in particular average accuracy

and response time as well as response time distributions. While these results are still pre-

liminary and more work is needed to fully explore the capabilities of CogPonder, this work

constitutes a proof of concepts and speaks for the value of the CogPonder framework.

CogPonder is unique in that it satisfies a number of important desiderata that are only par-

tially satisfied by current models in cognitive sciences. First of all, CogPonder has agency—

meaning it is an architecture that is able to perform tasks (e.g., make timed decisions when

faced with particular stimuli). This is in contrast to models that focus on describing the

structure of the data.

Second, CogPonder is complete in the sense that its behavior can have all the same dimensions

as human behavior. This is in contrast to models that account only for the choices made by

an agent but not their response times.

Third, and most importantly, CogPonder is versatile in the sense that it can in principle

perform a wide range of tasks. In the present study, we focused only on two tasks but there

is no reason this framework cannot account for a much broader range of tasks. This is in

contrast to models that are tailored for individual tasks and limit our ability to use the model

to understand cognitive control in general (i.e., across many tasks).

Fourth, the model is modular in the sense that different control models may be used to wrap

any type of end-to-end model. This feature is important because it allows the development of

models that are both flexible (i.e., can adapt to a large range of use cases), while at the same

time offering interpretability (i.e., it’s clear which effects can be attributed to the controller

versus the operator). Fifth, CogPonder is learnable in the sense that the controller model is

differentiable and can thus be incorporated into modern deep learning software that is highly

effective to train large models on big datasets. This feature of CogPonder facilitates the use
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of CogPonder in practice, compared for example to models that require custom made code

and fitting procedure. Finally, we believe, but haven’t yet shown, that CogPonder allows for

model composition. By this term we mean that CogPonder can be seen as a building block

that models a local aspect of cognitive control and multiple CogPonder units may be chained

or organized into hierarchical structures in order to achieve highly complex behavior while

limiting the complexity of the overall computational model.

3.7 Implications

The present study shows that CogPonder can be applied to multiple tasks and is able to

account for both responses and response times.

The implication for psychology is that CogPonder now offers new opportunities to study

behavior and in particular cognitive control across a large range of tasks (e.g, beyond the

Stroop test, beyond the two alternative choice family of cognitive tasks) using a common

framework. This is important as it provides a common theoretical and computational ground

to investigate human behavior. There are, in particular, two use-cases where we believe

CogPonder will be particularly useful. The first use-case relates to simulations and the

ability for CogPonder models to run “what if” experiments. More specifically, if we have

computational models that can account for multiple cognitive tasks, one could use these

cognitive models to develop new cognitive tasks that may be more diagnostic of certain model

parameters or may help discriminate between competing computational models. The second

use-case relates to cognitive training and transfer. There is currently a lack of quantitative

theories that would allow one to predict how one person would perform a new task (given some

historical data about that person), nor how exactly cognitive training would transfer to which

other tasks and how much exactly performance should improve on those tasks. Multitask

computational models of cognition are necessary to understand transfer and CogPonder is

one way to develop such models.

Finally, it is also important to note that current models in computational psychology focus
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on modeling tasks that are relatively simple (e.g., the Stroop test) and are inadequate to

model more complex human behavior (e.g., video game play). It is not obvious how models

developed for the simpler tasks could be extended to grasp more of the complexity of human

behavior. This is not the case for CogPonder. Because of its properties, it is rather con-

ceptually straightforward to expand CogPonder to develop agents able to perform any task

modern AI is able to solve. Thus an important achievement of CogPonder is its ability to

break a “complexity of behavior ceiling” relative to existing approaches.

The present work also has numerous implications in computer science. As explained earlier,

most current models in AI (i.e., deep learning, RL) have not yet caught up on the importance

of response times and cognitive control as valuable modeling concepts. Currently, the focus

in these fields is mostly on developing models that are able to perform difficult tasks with the

highest possible level of accuracy, irrespective of the computational resources (for training

and computation) and training data needed to achieve those accuracy levels. This strategy

is clearly valuable and is quickly pushing the boundaries of AI. However, there is obviously

the need to also develop computational models that can adjust their internal complexity to

the complexity of a task to be solved (cf. PonderNet) and to the fluctuating demands of the

environment. An artificial agent, acting and learning in the world, may not have the luxury

of quasi infinite resources and unlimited time to act and may instead have to commit to quick,

albeit less accurate decisions, the same way humans do. The CogPonder framework provides

a principled way to extend modern end-to-end models developed with a focus on maximizing

accuracy in a way that allows for graded, time-sensitive, and adaptive computation. Finally,

AI aims to develop agents that are able to perform highly complex tasks (e.g., making pizza).

A major challenge in this context is to control complexity so that models can be effectively

trained using a reasonable amount of data. We believe that CogPonder, and in particular its

potential for composition, may provide an interesting solution to this problem.
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3.8 Limitations and future extensions

The current work is a proof of concept, and as such, it has obvious limitations that future

work will address. First, there are improvements that can be made to implementation of

the CogPonder model and its evaluation. For example, in the above work we set some

hyperparameters manually instead of learning their values from data. Second, we trained the

model on only one participant’s data. In future iterations we will align the model to a larger

set of participants and evaluate to what extent the CogPonder can capture inter-individual

differences. Applying CogPonder to groups of participants may also require rethinking the

CogPonder training procedure to allow for hierarchical as well as shared model parameters

across participants. Third, we only tested two cognitive tasks, the Stroop and the N-back task,

and only performed limited descriptive analysis to compare human and agent data on those

tasks. In future work, we will more systematically explore CogPonder’s ability to perform

cognitive tests and develop finer grained analyses to assess its behavior. In particular, we aim

to integrate CogPonder in the CogEnv virtual cognitive task environment (see Chapter 2)

and develop automated data analysis pipelines that apply to both human and artificial data.

Finally, although we showed that the same CogPonder model can be trained to perform

different tasks, we have not yet investigated the relationships between those two trained

model instance (e.g., are model parameters similar across the two tasks) nor have we trained

a model to jointly perform both tasks (e.g., by including a task description as an input to the

system). These steps seem crucial to assess the value of CogPonder as a theoretical model

for cognitive control in psychology.

Although CogPonder is already a very flexible framework, there are several ways in which

it could be further be extended, both inwards (i.e., changing the mechanics of CogPonder)

and outwards (i.e., changing how CogPonder interfaces with other modules). In the current

work, the Controller controls only one Operator. In more advanced versions, CogPonder could

encapsulate and orchestrate multiple, perhaps competing Operators in parallel. Furthermore,

in the current work, the Operator is conceived as a black box—a module that could be
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imported as is, without having to expose its internal workings and parameters. This is an

interesting property from an engineering point of view as it clearly separates the development

and testing of Operator models from the development and testing of Controller models. If,

however, the Controller has reading and writing rights to the internals of the Operator, the

Controller could be endowed with much greater control abilities (e.g., set or reset model

weights, learn to continuously predict accuracy of the Operator based on the values of its

internal parameters). Also, in the current work, the Controller focuses only on the current

trial and on learning what inputs to provide to the Operator to achieve a desired outcome.

But there are other roles that the Controller could play. For instance, the Controller could

have a much more active role in the training of the Operator. This could be achieved for

example by controlling the learning rate of the Operator but also by controlling what data to

use for learning. For example, CogPonder could maintain an internal dataset—using historic

(“episodic memory”) or synthetic data (e.g., generated from a time-consuming process that

the system aims to automate)—and train the Operator to perform well on that dataset. This

type of mechanism would allow for offline (“replay”) learning, and could be useful to achieve

overall better performance with fewer new observations.

In addition to extensions that could be envisioned for the inner workings of CogPonder, there

are also extensions in line with the “building-blocks” view of the TOTE model that might

be worth investigating further. In the current implementation, CogPonder receives as input

the stimulus description and outputs the response. It would make sense however to consider

CogPonder as a piece of a larger system rather than the system as whole. Even in the case

of simple response times, computational models in psychology have argued for the need to

model not only the decision process but also other processes involved in the task (including

for example, the transduction of photons to action potentials in the retina, the transmission

of signals from the retina to the visual cortex, and the transmission of action potentials from

the motor cortex to skeletal muscles)—these processes are typically lumped together and

modeled as a non-decision process whose duration is added to the decision time to form the

response time. In addition to providing more detailed accounts of simple tasks, composing
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CogPonder networks into more complex neural architectures may provide a means to model

planning and performance in complex sequential tasks. This is a key idea of TOTE: by

organizing relatively simple TOTE building blocks into hierarchies and sequences it becomes

possible to orchestrate and control complex sequences of behavior, such as preparing a pizza

for example. CogPonder provides a principled way to build and train those building blocks;

but much work is still needed to evaluate what exactly can be construed with them—we hope

this preliminary work on CogPonder ignites interest in these exciting new lines of research,

both in psychology and computer science.
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Chapter 4

Training Cognition with Video Games

Pedro Cardoso-Leite, Morteza Ansarinia, Emmanuel Schmück, and Daphne Bavelier

Abstract

This chapter reviews the behavioral and neuroimaging scientific literature on the cognitive

consequences of playing various genres of video games. The available research highlights that

not all video games have similar cognitive impact; action video games as defined by first

and third person shooter games have been associated with greater cognitive enhancement,

especially when it comes to top-down attention, than puzzle or life-simulation games.

This state of affair suggests specific game mechanics need to be embodied in a video game

for it to enhance cognition. These hypothesized game mechanics are reviewed; yet, we note

that the advent of more complex, hybrid video games poses new research challenges and call

for a more systematic assessment of how specific video game mechanics relate to cognitive

enhancement.
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4.1 Introduction

Across all ages, cognitive abilities play an important role in our quality of life and the type

of life we lead. At young ages, executive functions, a cornerstone of cognitive abilities, are

thought to determine educational achievement (Bull et al., 2008; e.g., Diamond, 2013; Geary

et al., 2019; Goldin et al., 2014) and more generally to be “critical for success in school and

life” (Diamond et al., 2007). Longitudinal studies in young children, for example report that

cognitive abilities predict educational achievement attained two years later (Bull et al., 2008;

Gathercole et al., 2004). Among executive functions, attentional control abilities have been of

special interest as they mediate a various array of skills, from sustained attention in school to

divided attention in team sports. In older adults, for example, attentional abilities correlate

with driving accidents—the shrinkage in a persons’ useful field of view, which is the spatial

extent of their visual field to which they effectively pay attention, is strongly associated with

a higher incidence of car accidents prior to the attentional test (Ball et al., 1993). The

central role cognitive abilities play in our lives has led to many attempts to devise behavioral

training programs to improve cognition, and in particular executive functions (Katz et al.,

2018). While cognitive enhancement raises ethical concerns (similar to doping in sports), it

also holds the promise for broad societal benefits (Bavelier & Green, 2019).

Numerous forms of cognitive training exist; yet, their efficiency and the underlying causal

mechanisms remain controversial. This is the case, for example, of interventions attempting

to improve fluid intelligence by training executive functions (Au et al., 2015; e.g., Jaeggi et

al., 2008; Melby-Lervåg & Hulme, 2013). A key concern in the cognitive training literature

is that training of specialized cognitive functions may lead to improvements in only those

trained functions (i.e., “near transfer”) and may not transfer to a broader range of tasks

and situations (i.e., “far transfer”). While the necessary conditions for far transfer remain

to be firmly established, variety in the training regime and the trained functions appear to

be key factors (for an example in the domain of sports, see Güllich, 2018). An alternative

perspective on the plasticity of cognitive abilities is to focus, not on targeted interventions
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designed by researchers, but rather to consider the impact of changes in our environment.

The Flynn effect, or the rise of IQ scores through the 20th century, is one such example. With

the advent of digital media, our lifestyle and cognitive activities—starting at the youngest

ages—have radically changed over the past decades. For example, it has been argued that the

excessive consumption of multiple media at the same time (e.g., texting while watching TV

and browsing the web) may cause an attentional impairment in filtering out distraction (Ophir

et al., 2009); although more recent data are less clear cut (Uncapher & Wagner, 2018; for

reviews, see Wiradhany & Nieuwenstein, 2017). Whether those media-based environmental

changes are for the better or for the worse remains highly debated (Bavelier et al., 2010; e.g.,

Ophir et al., 2009; Sparrow et al., 2011). Yet, investigating those effects holds the promise

of bringing new insights into human brain plasticity and cognitive training.

Digital media occupy an increasingly large portion of our waking time. In the US, 8-12 year

olds spend close to 6 hours on media each day (Rideout, 2016)—with similar trends being

reported all over the world (e.g., Bodson, 2017; Waller et al., 2016). Digital media affect

every aspect of our lives; these effects are complex and not fully understood yet (Bavelier et

al., 2010). They depend not only on the specific medium being used but also how they are

consumed and what content they deliver (e.g., Cardoso-Leite et al., 2016). Here we limit our

scope by focusing on the effects of playing video games on cognition. This choice is motivated

by three main points: (i) while the field of media and cognition is quite young, it is already

clear that not all media use have the same impact on cognition implying that different media

uses need to be considered separately (as stated earlier, media multitasking may be related to

attentional deficits, while playing specific video games have instead be linked to attentional

improvements); (ii) video games stand on their own by immersing players in extremely rich

and complex experiences with high cognitive demands (a person watching television may

spend hours without performing any significant action, while people playing video games

may perform multiple meaningful decisions and actions per second); (iii) and finally, the

literature concerning the impact of video game play on behavior, including cognition, is

arguably one of the best documented today. We will focus only on the relationship between
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video game play and cognition and will not consider other aspects that might be equally

important but are outside the scope of this work, such as the impact of violence, self-image,

well-being, creativity, social functioning, or addiction (for reviews on such topics see, Gentile

et al., 2017; Király et al., 2017; Stanhope et al., 2015).

Almost everyone plays video games now. Although the term video game raises the stereotyp-

ical image of the adolescent glued to his screen, there are now as many females, 50 or older,

playing video games as there are boys under 18 playing video games. Interestingly, these

two groups do not engage with the same genres of video games; older females mostly play

puzzle or casual games, while boys play predominantly action-packed, role-playing games.

This state of affairs highlights the need to pay close attention to video game genre or the

type of experience different video games deliver. In 2015, both “tweens” (8-12 years old)

and teens (13-18 year olds) in the US devoted on average about 1 hour and 20 minutes

to playing video games each day; with boys playing substantially more than girls (Rideout,

2015). The relationship between video game play and cognition has been investigated in

various large-scale correlation studies that collect data about children’s gaming habits and

various measures of interest (Adachi & Willoughby, 2013; Kovess-Masfety et al., 2016; Stan-

hope et al., 2015). One such study, conducted in Europe, reported that video game play

was associated with enhanced intellectual, social and academic functioning (as rated by the

child’s teacher; Kovess-Masfety et al., 2016). Another associated gaming in 7-11 years old

with faster response speeds, enhanced sustained attention and academic performance; but

only for intermediate amounts of video game play per day (Pujol et al., 2016). A recent

study on 3 to 7-year-old children furthermore documents that casual video game play at this

young age may increase fluid intelligence (Fikkers et al., 2019). It thus appears that, at a

macro-level, playing video games in general might have beneficial effects on cognition and

educational achievement. However, in these studies, researchers typically don’t evaluate the

effects associated with specific genres of video games. Thus, the above macro-level effects

actually represent an average over numerous micro-level effects induced for example by play-

ing different genres of video games. Some of these micro-level effects may be negative and
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others positive.

The purpose of this chapter is to review the scientific evidence regarding the relationship

between playing commercially available video games, as assessed behaviorally or through

brain imaging and their potential impact on human cognitive abilities. While many unknowns

remain on this topic, it appears clear today that among the many factors to consider is the

specific genre of video game being played (Bediou et al., 2018; Powers et al., 2013; Powers

& Brooks, 2014; e.g., Sala et al., 2018; Toril et al., 2014; P. Wang et al., 2016). Following

this work, we review below our current understanding of the impact of video games first

in general and then narrowing in on the specific game genre that appears most effective to

improve cognition.

4.2 Which video games improve cognition?

Video games come in many different flavors; classifying video games in genres has proven

elusive and there is no consensual taxonomy to date. Fifteen years ago when the research

on the cognitive effects of video games gained significant traction, researchers seemed to

commonly classify video games in a small set of video game genres (see Table 1). Since

then, video games, video gamers and gaming has changed considerably and it seems that the

video game classifications that have been used in this field are not adequate to characterize

contemporary gaming (Dale et al., 2020; Dale & Green, 2017). This being said, because the

current review focuses on past research that tended to use older games, and to keep in line

with the cited literature, we will use the game genres as described in Table 1. Note that in

this literature “action video games” has been used to refer to first and third person shooters,

although some authors have made it more inclusive. In this review, “action video games”

will strictly refer to first and third person shooters.

A wide range of commercial video games have been used in psychological research to evaluate

their relationship to or impact on cognition (Bediou et al., 2018; Sala et al., 2018). Video

game research has proceeded using a variety of study designs, including cross-sectional and
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intervention studies (“true experiments”). Among the latter, we find studies looking at short-

lived effects on the scale of a few minutes and intervention studies looking at more long-lasting

effects, from days to months or even years (see Figure 4.1) for the design of such intervention

studies). True experiments are necessary to rule out the possibility that the observed group

differences pre-date the video gaming activities, and thus assess the causal role of video game

play.

Figure 4.1: Intervention design to evaluate the causal impact of playing a specific type of video
games on cognition (here termed experimental game). Participants are randomly assigned
to play experimental video games or control video games. The training program typically
requires at least 8 hours, and typically tens of hours of gameplay, distributed over weeks or
months. Participants’ cognitive skills are first evaluated on a battery of tests (pre-test) and
tested again after completion of their training (post-test). If playing the experimental video
games specifically improves the cognitive abilities assessed, then we expect the experimental
group to improve more from pre- to post-test than the control group.
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Table 4.1: Main ‘classical’ video game categories cited in the reviewed literature. These
categories are based on the Video Game Questionnaire from the Bavelier lab. We provide
in the supplemental materials the current version of the video game questionnaire and the
selection criteria used in the Bavelier laboratory (version September 2019). The game cat-
egories it lists are motivated by research considerations and not by industry classifications.
Yet, examples of games and our labels for game categories have evolved over the years in
concert with the changing landscape of video games.

Category Description Examples

First & Third-person

Shooters

game involving medium to long range

weapon-based combat in first/third person

perspective, against other players or AI

characters.

Call of Duty,

Overwatch,

Unreal,

Counterstrike

Real Time Strategy /

Multiplayer Online Battle

Arena

game in which the player manoeuver units

to take control of the map and/or destroy

enemy assets, usually in top-down view.

StarCraft,

League of

Legends, Age of

Empire, Rise of

Nations

Action Role Playing

Game / Adventure Game

game involving varied action gameplay

(e.g., shooting, close-combat, driving

vehicles) in which the player controls a

character that can be customized during

the course of the game.

Uncharted, Mass

Effect, Skyrim,

Rise of The

Tomb Raider

Sports or Driving Games game that simulates real-life sports or

driving a vehicle in the context of a

competition.

Need for Speed,

Mario Kart,

NBA 2K12
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Category Description Examples

Non-Action Turn-based

Role Playing or Fantasy

Games

game in which the player controls a

character or party of characters that can be

customized during the course of the game.

Combat emphasizes decision making over

rapid actions (i.e., turn-based or

cooldown-based actions),.

World of

Warcraft, Final

Fantasy, Ultima,

Pokemon

Turn-based Simulation,

Strategy or Puzzle Games

turn based game centered around player

decisions rather actions, involving strategic

thinking and problem solving.

Solitaire,

Bejeweled, Angry

Birds, The Sims,

Restaurant

Empire,

Rollercoaster

Tycoon

Music Games games centered around the interaction with

a musical score, often involving rythm and

memory.

Audiosurf, OSU!,

Guitar Hero

Other games that don’t fit into any other

category, or of unspecified type.

Cognitive

training games,

edutainment

games, older 2D

arcade games

such as Pac-man

or Zaxxon.

An important point to keep in mind in this literature is that all video games are not created

equal as to their impact on cognition. Specific genres of video games have been shown to

be effective in improving some aspects of cognition while others haven’t. Studies that lump
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together all types of video game play are therefore at risk of blurring existing effects; for this

reason, a number of studies adopt a more principled approach and focus on specific genres

of video games.

A recent meta-analysis evaluated the impact of playing video games on cognition using a

rather broad view of what counts as a video game (Sala et al., 2018). Figure 4.2 and Figure 4.3

use data from that meta-analysis and list the video games (or other activities) and their

frequency of use in intervention studies aiming to enhance cognitive abilities. Figure 4.2

lists the games that were used for the experimental group, while Figure 4.3, lists games and

activities that were used in active control groups. Several points are worth noting here. First,

experimental and control activities vary widely. This variety makes it difficult to regroup

these studies under one common research question as they each test different hypotheses. For

example, when contrasting playing Unreal Tournament (FPS) vs. Tetris (Puzzle), one asks

about the cognitive impact of action, first-person shooter games as compared to other games

that also load highly on speed of processing and motor control; yet when contrasting playing

Tetris (Puzzle) vs. The Sims (Life-Simulation Game), one rather asks about the possibility of

training mental rotation by contrasting a game that requires such process and one that does

not. Second, many of the activities listed are in fact not video games (e.g., paper-and-pencil

games, watching videos). When contrasting, for example, playing a specific video game to

playing paper-and-pencil games it is unclear if such studies evaluate the effectiveness of a

specific video game, the impact of using a console, looking at a screen, or of digital media

in general. Given the complexity of interpreting the outcome of grouping together and

contrasting such a wide variety of activities, other meta-analyses investigating the impact of

video game play on cognition have been more focused. The rationale here has been to group

together video game genres that share features hypothesized to enhance cognition and to

include only studies using other commercial video games as active control. Twenty years ago,

researchers noticed by chance that study participants playing regularly first and third person

shooters exhibited outstanding performance in attentional tasks (Bavelier & Green, 2016)

and subsequently conducted an experimental study to test and verify the causal impact of
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playing those types of video games on attention (in contrast to a control group that played

a different type of games; Green & Bavelier, 2003). These results led most of the field to

focused on the impact of first and third person shooter games (e.g., Unreal Tournament;

Medal of Honor (FPS)), also known as action video games, on cognition. Not surprisingly

this is the most represented video game genre in the available literature. This is followed by

racing games (e.g., Mario Kart, Crazy Taxi, Need for Speed) with rarer reports on real time

strategy games (e.g., StarCraft, Rise of Nations, see Figure 4.2). While we will discuss below

why these video game genres may be specifically well-tuned to change aspects of cognition,

we now turn to the control games used in such studies. As illustrated by Figure 4.3, the

video games most commonly used as controls are social simulation games such as The Sims

(a life simulator game) and puzzle or visuo-motor coordination games (e.g., Tetris, Ballance,

Angry Birds). This raises the possibility these genres have the least impact on cognition. Yet,

it should be clear that different game genres might have different cognitive effects. Thus,

depending on the study, the same game may be used for the experimental or for the control

group. It appears from these figures that there is minimal overlap between the two lists

(Figure 4.2) vs. Figure 4.3; see also Figure 4.4 and Figure 4.5)). A notable exception is

Tetris which has been frequently used both as a control and as a cognitive training game,

especially targeting mental rotation abilities. Below we review the literature for the main

active game video game genres listed above.

4.3 First and third person shooters (“action” video
games)

The game genre that has been most studied within the context of cognitive improvement

is without a doubt First and Third Person Shooters “”Meta-analysis of Action Video Game

Impact on Perceptual, Attentional, and Cognitive Skills”” (2018). This category of games has

traditionally been called “Action Video Games” (AVG) in the field; however, the changing

landscape of video games has made this nomenclature outdated and better classifications are
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Figure 4.2: List of commercial video games used in cognitive training studies from Sala et
al. (2018). This list contains a wide range of video game genres that have been used for
training in the scientific literature (e.g., first person shooters, racing games, puzzle games,
real-time strategy games, sports games) as well as non-video games (Space Fortress). Large
differences in experiences between different game genres (a fast-paced multiplayer FPS is
nothing like a slow paced, single player puzzle game) render the interpretation of any such
results (positive, negative or null impact on cognition) quite difficult. This figure counts the
number of publications cited in Sala et al. (2018) that used a particular video game (out of
a total of 63 publications). Note that a publication could involve multiple experiments, each
using potentially a different set of video games.

75



Figure 4.3: List of activities used as control treatment in video-game based training studies
from Sala et al. (2018). Control treatments vary widely from playing video games to playing
paper-and-pencil games; this makes it difficult to abstract the construct measured by such
studies. This figure counts the number of publications cited in Sala et al. (2018) that used a
particular video game or activity (out of a total of 63 publications). Note that a publication
could involve multiple experiments, each using potentially a different set of video games.
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needed (Dale et al., 2020; Dale & Shawn Green, 2017). First/Third Person Shooter games are

(1) fast-paced, involving rapidly moving objects (e.g., projectiles) and transient events (e.g.,

explosion); they (2) require participants to distribute their attention to monitor events from

central vision to the visual periphery; they (3) demand a high attentional focus by loading

perceptual, cognitive and motor systems; and finally they contain (4) temporal and spatial

uncertainty preventing full task automatization (Pedro Cardoso-Leite et al., 2020). Games

in this category are typically violent and include titles like Medal of Honor and Call of Duty.

It is critical to note that, contrary to what some have argued, action video games are not

simply “any physically challenging video game in which reaction time plays a crucial role”

(p1.; Karimpur & Hamburger, 2015). There are many games that require fast and accurate

responding (e.g., fighting games, games like the The World’s Hardest Game) that do not

fulfill the criteria listed above.

Two types of studies investigated the relationship between action video gaming and cognition:

correlation studies—where habitual first/third person shooter video game players (AVGP)

are contrasted to individuals playing almost no video games at all (i.e., non video game play-

ers; NVGP)—and intervention studies—where individuals with only moderate video game

play experience are asked to play either an action video game or a non-action video game

for multiple hours distributed over weeks (see Figure 4.1). Correlational studies document

significant differences between habitual AVGP and NVGP, leaving unclear the source of the

difference. Intervention studies can clarify the causal role of video game play, as they eval-

uate whether game play changes performance between a baseline time before participants

engage in the game play to a time after they have completed their game play training. Re-

search on action video games has matured over the past 20 years and there is now a growing

body of correlational and intervention studies—almost all of which however focus on healthy

young adults. These intervention studies show for example that playing action video games

rather than other forms of video games, causes improvements in visual perceptual abilities

(Chopin et al., 2019), spatial cognition (Spence & Feng, 2010),some forms of memory (Pavan

et al., 2019; Sungur & Boduroglu, 2012), and perhaps even academic topics such as reading
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(Franceschini et al., 2015) or mathematical skills (Libertus et al., 2017). A recent meta-

analysis has evaluated the impact of action video game on cognition subdividing outcome

variables into one of 7 cognitive domains (Bediou et al., 2018): (1) perception, (2) top-down

attention, (3) spatial cognition, (4) multitasking, (5) inhibition, (6) problem solving and

(7) verbal cognition. Data from correlational studies show that habitual AVGP outperform

NVGP in all of these domains with statistically significant effects for all but the less studied

(6) problem solving category. Data from intervention studies show a similar trend, with AVG

training causing numerically improved performance in all domains as compared to training

with other commercial games. These effects are however smaller in size and less reliable

than those observed in correlational studies, certainly calling for caution. Of all the domains

studied, we note that top-down attention and spatial cognition seem most reliably improved

by action video gaming interventions. The reduced effect sizes in intervention studies com-

pared to correlational studies may be due to action video game players in the latter having

substantially more gaming experience than the tens of hours typical of training studies. The

reduced reliability on the other hand is due to both the effect sizes being smaller and to

the reduced number of intervention studies per domain. As more studies are conducted, it

will become clearer how much each specific domains may be positively impacted by playing

action video games.

Most action video game studies focus on healthy young adults. A reason for this is that

action video games are not adequate for children because of their violent content and they

are not adequate for older adults because of their high difficulty level. While no experimental

study would expose children to violent video games, some children do in fact play those age-

inappropriate, violent games in their homes. In their meta-analysis Bediou et al. (2018) list

three such cross-sectional studies focusing on the relationship between action video game

and children’s cognition. One such study tested typically-developing children and young

adults, with ages ranging from 7 to 22 years, on three attentional tasks: the Useful Field

of View (spatial attention), the Attentional Blink (temporal attention) and the Multiple

Object Tracking task (sustained, dynamic attention; Dye et al., 2009). In addition, these
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Figure 4.4: List of action video games (all first person shooter games; FPS) used for cognitive
training according to Bediou et al. (2018). Focusing on this specific video game genre
substantially reduces the number of games titles but still represents a major portion of
the scientific literature (contrast this with Figure 4.2). This figure counts the number of
publications cited in Bediou et al. (2018) that used a particular video game (out of a total
of 23 publications). Note that a publication could involve multiple experiments, each using
potentially a different set of video games.
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Figure 4.5: List of games used in the active control treatment when action video games were
tested for cognitive training as tabulated by Bediou et al. (2018). This list includes only
commercial video games (with the exception of the Sight Training program; contrast this
with Figure 4.3). This figure counts the number of publications cited in Bediou et al. (2018)
that used a particular video game (out of a total of 23 publications). Note that a publication
could involve multiple experiments, each using potentially a different set of video games.
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authors collected survey data about each participants’ video gaming habits, allowing them

to form two subgroups of participants: AVGP and NVGP. This type of data can be used

to describe the time course of attentional development and evaluate how these time courses

differ between AVGP and NVGP. The results show that AVGP presented a time course of

attentional development that was accelerated compared to that of NVGP. The extent and

onset of these group differences depended on the specific aspect of attention being considered.

AVGP performed better than NVGP on the temporal attention task (i.e., attentional blink)

starting at age 7-10, on the spatial attention (i.e., UFOV) at ages 11-13 and on the dynamic

attention task (i.e., MOT) at ages 14-17. Such results confirm that various components of

attention mature at different speeds and suggest they may be differentially affected by action

video game play. Overall, the cross-sectional data collected on children present a pattern of

results similar to what is observed in adults and indicate that action video games training

may also be effective at younger ages.

To investigate the causal role of action video games on cognition in children, while avoiding

exposing them to violent content, a few studies have selected commercial, age-appropriate

mini-games that contain features similar to those attributed to action video games. Frances-

chini et al. (2013) have used this approach in 7-13 year old dyslexic Italian children to test

the hypothesis that enhancing visual attention in Italian readers may in part alleviate reading

difficulties. Children trained for 12 hours over two weeks either on action-like mini-games or

control mini-games from Rayman Raving Rabbids. Note that Rayman Raving Rabbids com-

prises a large set of varied, small party games and thus does not technically fall in the first or

third person shooter category. However, the authors rated each of the party-games from that

collection as being action-video-game-like or not based on game features typically assigned

to action video games. Mini games classified as action-video-game like were used for the ex-

perimental group while the mini games devoid of action mechanics were used for the control

group. The training was distributed over about two weeks; those children assigned to play

the action like mini-games displayed improvements in attention and in reading abilities, at

least as measured by timed tasks of reading, as compared to a control group that played non-
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action-like games for the same amount of time (Franceschini et al., 2013). These first results

were later confirmed in an English speaking sample of dyslexic children (Franceschini et al.,

2017) and supported by a small sample, correlationational study on typically reading French

adults (Antzaka et al., 2017). Yet, whether action or phonologically-based video games may

help remediate dyslexia certainly remains controversial as other intervention studies have

failed to find a positive impact on reading acquisition (Łuniewska et al., 2018). Moreover,

a recent large sample correlational study that contrasted children who report playing video

games to those that do not found a negative association between video game play and read-

ing (Seok & DaCosta, 2019). The interpretation of this latter result remains difficult as it

did not differentiate between game genres and had an overrepresentation of male children

in the video game players group (indeed, if most video game players are boys, it’s unclear

if the effects relate to playing video games rather than other factors associated with boys

being worse readers). Exploiting the proposal that action video game enhanced top-down

attention, a recent study documents enhanced ability at performing optimal cue combina-

tion in 4-5 year old children after 7.5 hours of action-video-game-like mini-games (e.g., Fruit

Ninja), as compared to playing control mini games (e.g., Puzzingo; training was distributed

over 2 weeks; Nava et al., 2019). While the reviewed evidence points towards action video

games having some efficacy in enhancing cognition, and especially attention in children, the

empirical data is scarce and further studies are needed to confirm or infirm these results.

The use of action video gaming to train older adults’ cognition is also quite rare (for a review,

see Toril et al., 2014). One study had 65-91 year olds play either a first-person shooter (Medal

of Honor), a puzzle game (Tetris) or an attention-training task (UFOV training) for six 90-

minutes session or nothing (no-contact control group). Contrary to what was observed in

younger adults, action video play did not improve attentional performance more than playing

the puzzle game (Belchior et al., 2012). However, as pointed out by the authors, action video

games might be too hard for older adults and training duration not long enough for them

to learn how to play the game before the game could train their cognitive abilities. Indeed,

players in the action video game group had to receive a step-by-step, PowerPoint-based
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explanation of the game by an experienced coach to make the difficulty level “manageable”.

Supporting this view, Boot et al. (2013) reported lower compliance in the action group than

the other training groups in a sample of older adults. Because off-the-shelf action video

games are designed to be challenging for adolescents and young adults already cognizant

of the genre, they are likely too hard to be used with older adults (for a discussion, see

section “Does Action Video Game Play Impact All Ages Equally?” in Bediou et al., 2018).

Indeed, training with video games obey the same learning rules as training with any other

forms of behavioral interventions (Stafford & Dewar, 2014). In particular, to be efficient, the

training difficulty needs to be adapted to the learner’s level, a concept pioneered as early as

the 1900’s by Vygotsky and his proposed “zone of proximal development”. Thus, to train

cognition in older adults it might be preferable to specifically design video games tailored for

this population (Anguera et al., 2013).

4.4 Racing games

One of the most promising game genres for cognitive research are racing video games (Belchior

et al., 2019; Cherney, 2008; L. Li et al., 2016; Wu & Spence, 2013). This is because they are

typically less violent than first person shooter games; they are also easier to grasp by new

gamers (Belchior et al., 2013) and easier to create for developers—which makes this genre

ideal for cognitive training research (Anguera et al., 2013). Most importantly, this genre

of video games can be easily adapted to capture the key mechanics of first or third person

shooter games, and thus may offer similar cognitive benefits than first or third person shooter

games do.

One study for example had young adults train for 10 hours on either an FPS (i.e., Medal

of Honor), a racing game (Need for Speed) or a puzzle game (Ballance) and evaluated the

impact of playing those games on visual search performance (Wu & Spence, 2013). Compared

to training on the puzzle game, training on either the FPS or the racing game lead to

improvements in divided attention and top-down attention control. Similarly, training on an
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FPS (Unreal Tournament 2004) or on a racing game (i.e., Mario Kart) may both improve

visuo-motor control; although the effects might not be strictly identical (L. Li et al., 2016).

Racing games have also been used to train older adults. One study had 65-86 year olds

train for a total of 60 hours on either a racing game (i.e., Crazy Taxi) or a brain-training

software (i.e., PositScience InSight) while others were part of a no-training control group

(Belchior et al., 2019). The results suggest that both forms of training had modest transfer

effects which for some were not present at post-test but only in the follow-up, 3 months later.

Mental rotation, which was reported to improve with playing a racing game in younger adults

(Cherney, 2008) does not seem to be affected in older adults.

While these studies suggest that using racing games might be viable pathway to cognitive

enhancement, more data is needed to fully substantiate such a claim.

4.5 Real-time strategy games

A video game genre that has comparatively gained a lot of attention lately is real-time

strategy video games. While older generations of strategy video games, not unlike chess,

were mainly focused on strategic thinking and slow paced (i.e., “turn-based”), real-time

strategy games include fast-paced action game mechanics. For example, in the real-time

strategy game StarCraft, the player typically has control over multiple units in parallel, each

of which requires frequent orders (e.g., move, attack, build) delivered through precise mouse

clicks. Optimal play may require over 200 of such actions per minute (Lewis et al., 2011).

Using participants’ self-reported video gaming habits data, Dale & Shawn Green (2017)

formed four groups of participants and asked them to complete a large battery of cognitive

tasks, including simple response time task, choice response time task, a go/no-go task, the

Attentional Blink task, the Useful Field Of View, the Multiple Object Tracking and the

Operation Span task. The four groups of participants (about n=14 per group) were habitual

action video game players (AVGP), habitual real-time strategy players, people who rarely
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play video games (NVGP) and those who play more frequently but a wider range of game

genres (i.e., “Tweeners”). Performance on the cognitive tasks differed between these groups.

Overall, AVGP tended to perform best on these tasks and NVGP to perform worse with

players in the real-time strategy and Tweeners groups performing somewhere in between

these two groups. These cross-sectional results suggest that playing action video games but

also real-time strategy games may improve performance on a variety of cognitive tasks.

To evaluate the causal effect of playing real-time strategy games on cognition, one study as-

signed 72 twenty year old (on average) women to play either one of two versions of StarCraft

(a real-time strategy game) or The Sims (a slow pace life-simulator) for a total of 40 hours

(completed on average in 43.7 days; Glass et al., 2013). The alternative versions of StarCraft

differed in the amount of information players had to simultaneously keep track of and switch

between. Before and after playing these video games, participants underwent a battery of cog-

nitive tasks (including for example the Stroop task, Task Switching and the Operation Span

task) selected to represent a latent construct of “cognitive flexibility”. The results show that

playing StarCraft improved cognitive flexibility more than playing The Sims. Additionally,

the effects were strongest for the game version with higher load on cognitive flexibility.

Real-time strategy games have also been used for cognitive training in older adults (Basak

et al., 2008). 70 year olds were randomly assigned to either play Rise of Nations (a slow

paced real-time strategy game) for a total of 23.5 hours (distributed over 4 to 5 weeks) or

to a no-training, no-contract control group (about 20 persons per group). Before and after

the training (or non-training) all participants completed a battery of tasks covering what the

authors call “executive control” (which included tasks like task-switching and the N-back)

and “visuospatial skills” (e.g., mental rotation, attentional blink). The authors reported that

playing Rise of Nations led to improved performance in the executive control but not in

visuo-spatial skills (but see, Strenziok et al., 2014).

Studies investigating the association between real-time strategy game play and cognitive

abilities in children are hard to find. One study had 3rd graders either play a fire-fighting
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real-time strategy game (Fire Department 2: Fire Captain) or read information about fire-

fighting on a webpage for 40 minutes before taking a quiz about fire-fighting which included

questions requiring to retrieve factual information, compare situations and solve problems

(Chuang & Chen, 2007a, 2007b). Those who played the game performed better than the

reading control group on fact retrieval and problem-solving items. However, it is rather

unlikely that these effects are due to the game being a real-time strategy game (rather than

say a puzzle game); instead it appears more plausible that learning about fire-fighting is more

engaging and effective when that content is learned through active playing rather than by

just reading.

4.6 Tetris

Tetris is arguably one of the most used video game in psychological research. It has been used

to reduce cravings for food, drugs and other (Skorka-Brown et al., 2015), reduce intrusions of

mental images related to traumatic events (Holmes et al., 2009) and to tone down the negative

emotions associated with specific autobiographical memories (Engelhard et al., 2010). Tetris

has also been used within the domain of cognitive training, sometimes as the experimental

game and other times as the active control game (for a review, see Sala et al., 2018).

When used for cognitive training, Tetris is thought to train visuospatial cognition and more

specifically mental rotation abilities as the game heavily relies on mental rotation. One study,

for example, had 8-9 year old children either play Tetris (the experimental group) or Where

in the USA is Carmen Sandiego? (a commercial game focusing on geography with minimal

load on mental rotation; the active control group) for eleven 30-minutes sessions distributed

over multiple days (De Lisi & Wolford, 2002). The results showed that playing Tetris, but

not the control game, improved children’s 2D mental rotation abilities as measured using a

paper-and-pencil mental rotation test.

Studies on young adults, suggest that 6 hours of training on Tetris (as compared to a no-

contact, no-training group) may improve performance on some visuospatial tasks (Okagaki
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& Frensch, 1994; see also Boot et al., 2008; Terlecki et al., 2008). The effects however seem

to be rather specific—training on a 2D Tetris version improved 2D mental rotation but not

3D mental rotation, while training on a 3D version of Tetris improved both (Moreau, 2013)—

and several studies failed to observe improvements on 2D mental rotation after training on

Tetris (Pilegard & Mayer, 2018; Sims & Mayer, 2002). Tetris has also been used for cognitive

training in older adults, however not to train mental rotation but rather as a control-game.

Yet, one study reported that in older adults playing Tetris may improve selective attention

to the same extent as an action game or training on the attention task itself (Belchior et

al., 2013), perhaps because for this age group, Tetris is already challenging and action video

games are too difficult. The evidence supporting the usefulness of Tetris to improve cognition

remains, therefore, mixed.

4.7 Casual mobile games

Casual mobile video game play is among the most common form of video gaming in the

general population and it is increasingly popular among older adults (Chesham et al., 2017;

Whitbourne et al., 2013). There have been several attempts to evaluate the impact of such

video games on cognition; the results however are not always consistent. Note that we restrict

here our review to commercial games and do not include the larger literature on computerized

experimental psychology tasks, such as those developed by PositScience, Lumosity or tested

by Owen et al. (2010).

One study for example (Oei & Patterson, 2013), had young adults train for a total of 20

hours over four weeks in various such games (Hidden Expedition-Everest, Memory matrix

1.0, Bejewelled 2, Modern Combat: Sandstorm, The Sims 3) and reported broad benefits (in

various attentional and working memory tasks) only for the group playing the first-person

shooter video game on mobile (i.e., Modern Combat: Sandstorm). Playing other, more

casual video games did however improve performance on specific tasks (e.g., Bejewelled 2

improving visual search) suggesting that casual video games might be used for targeted
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cognitive training interventions. However, using partly a different set of games and outcome

measures, the same authors (Oei & Patterson, 2014a) reported no benefits of training for

20 hours on an FPS (Modern Combat), a real-time strategy (Starfront Collision) or a fast-

paced arcade game (Fruit Ninja). Instead, they reported that slow-paced, physics game (Cut

the Rope) lead to improvements in executive functions as indexed by performance in task-

switching, flanker task and a go/no-go task. The authors provide various suggestions as to

why their study failed to show improvements in the action-video-game trained group (e.g.,

differences in the experimental design). They also offer that the efficacy of the slow-paced

physics game may be explained by that game involving cognitive processes that are important

for executive functions (e.g., “strategizing, reframing and planning”). More research is needed

to substantiate these claims.

A recurrent issue in this literature is to determine a priori and explain why training on a

given game should improve performance on a given cognitive task. An interesting approach,

grounded in Thorndike and Woodworth’s principle of identical elements (Thorndike & Wood-

worth, 1901), consists in first evaluating the extent to which performance in various (casual)

games correlate with performance on cognitive tasks, which are typically designed to isolate

cognitive processes (Baniqued et al., 2013). Correlations between the two sets of measures

may be caused by them involving the same set of underlying cognitive processes. Games that

correlate with working memory and reasoning tasks may then be used to train those abili-

ties. Using this approach, Baniqued et al. (2014) had participants play various categories of

casual video games for 15 hours and measured their cognitive abilities across a large battery

of tasks both before and after that training. The authors note that playing video games

selected to tap into working memory and reasoning did not improve performance on working

memory and reasoning tasks but instead improved performance on divided attention tasks

(Baniqued et al., 2014). While this is undoubtedly an interesting and principled approach,

more research is needed to solidify these results and gain insights into the differential effects

of various game genres.

The literature reviewed above highlights the need to consider video game genres separately
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and argues for an empirical approach that contrasts specific commercial video game based on

the mechanics it embodies rather than one that opposes any kind of video game to any kind

of non-video game activity (Dale et al., 2020). While most evidence for the efficacy of video

games for cognitive training currently rests on the use of action video games, future studies

might reveal that other game genres are also (maybe differently) beneficial for cognition.

Such studies may help to identify which game mechanics in video games are important to

cause various cognitive improvements. An alternative, yet complementary route, consists in

evaluating the neural processes involved in various forms of video game play as well as the

consequences of video game play on the human brain. Below we review the literature on the

neuroscience of video game play.

4.8 The neuroscience of video game play

Understanding what happens in the brain when people play video games, as well as the con-

sequences that significant amounts of video game play has on brain structure and function

may provide new insights to interpret the behavioral results described above. Playing video

games has been associated with extensive neural alterations all over the brain, from sensori-

motor regions to higher-order cortices such as prefrontal areas (Gong et al., 2019; Gong et

al., 2015). For example, faster motor response times to visual stimuli in AVGP, compared

to people who don’t play video games, has been linked to increased white matter integrity in

visual and motor pathways (Zhang et al., 2015), and AVGP in particular exhibited reduced

brain activity during task preparation in the cuneus, middle occipital gyrus, and cerebellum

which was interpreted to be indicative of increased neural efficiency (Gorbet & Sergio, 2018).

In the following sections, we briefly review the literature to highlight how video games affect

brain organization, and how these functional and structural changes might in turn explain the

reported behavioral consequences of playing video games. Yet, as discussed in the behavioral

section above and exemplified in a recent review (Palaus et al., 2017), identifying the impact

of video game play, as if it were a homogenous activity, on brain functions may be misguided.
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Rather a more fruitful approach appears to focus on the information processing demands of

the game play, and the exact processes engaged by the player. As a first step in that direction

we consider below the impact of video game play on the brain systems linked to first reward

system, and then spatial navigation before turning to the special case of action video games

and the fronto-parietal networks of attention. Other brain systems (e.g., the motor system)

may play important roles, but they will not be considered here.

4.8.1 Reward system

The brain’s reward system is involved in learning and motivation. All successful video games

tap into this system by using complex reward schedules to engage players for long play

durations. Differences in the cognitive effects of training with various genres of video games

might be related to differences in how these video game genres specifically activate the reward

system. Although recent efforts attempt to characterize the specific cognitive effects of action

video gaming involving the reward system (for a review, see Bavelier & Green, 2019), much

remains to be uncovered as most research so far has focused on the relationship between

video games and the reward system without differentiating what exact type of video game

is being played. This being said, recent results show that the reward system may be a key

player to consider when studying the effects of video games on the brain.

When contrasting playing a first person tank shooter game to watching a blank screen, Koepp

et al. (1998) reported an increase in dopamine release in the ventral striatum (measured

indirectly using Positron Emission Tomography) that correlated with the performance in the

game (as measured by the highest game level reached by the participant) demonstrating that

playing some video games can indeed causally affect the reward system.

Other studies investigated the potential long-term effects of video game play on brain function

and structure. Kühn et al. (2011) observed that 14-year-old children who played frequently

video games had a larger left striatum than same aged children who played infrequently,

suggesting that prolonged video gaming may affect the structure of their reward system.
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Furthermore, these changes in structure were accompanied by functional changes in that the

frequent video players also displayed a larger BOLD activity than infrequent video players

in response to losses during a gambling task. Similar studies conducted on adults provide

somewhat different results. Kühn, Gleich, et al. (2014) observed that past video game

experience correlated with gray matter volume in various brain areas (e.g., parahippocampal

region) but not in the ventral striatum. These results may indicate that the effects of playing

video games on the reward system may critically depend on the players age.

The evidence presented so far in this section is correlational implying that the observed brain

differences may actually not be caused by video gaming but rather preexist and partially

determine video gaming habits. There are however at least two studies that used an in-

tervention design (contrasting video game training to a passive control group) in order to

probe the direction of the causality effect (Kühn, Gleich, et al., 2014; Lorenz et al., 2015).

Each of these studies had adults in the training group play a 3D platformer game (Super

Mario 64) for 30 minutes per day over a period of two months and compared their changes

in brain function and structure to those of a passive control group. Both studies reported

that playing video games affected the size of various brain structures but did not, contrary

to what was observed in the cross-sectional study on children, observe any structural changes

in the striatum. The video game training did however affect the responsiveness of the ven-

tral striatum to rewards. Lorenz et al. (2015) had their participants complete a task while

under the fMRI scanner both before and after the video game training (for the intervention

group) or before and after the waiting period (for the passive control group). The results

show that for the participants in the control group the reward responsiveness in the ventral

striatum decreased substantially from pre to post-test sessions while for the participants in

the video gaming group this was not the case: participants trained on the 3D platformer

video game exhibited similar activation levels in the ventral striatum in the pre and post-test

session. The authors suggest these results may indicate a greater ability in the video game

trained participants to maintain high levels of task motivation through the flexible control of

the reward responsiveness of the striatum. They further hypothesize that this video-gaming
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induced effect on the reward system may be exploited for a broad range of uses cases.

Rewards schedules are a key component of all successful video games and it is still unclear how

long term exposure to video games impacts the reward system. Current evidence supports

the view that video games may alter the reward systems functioning as well as its structure

(although, possibly only during childhood). While the results reported in this section may

apply to all types of video games, the behavioral evidence clearly shows that it is necessary

to distinguish various video game genres. The reward schedules implemented in different

video game genres may have drastically different effects on the reward system, and through

the reward system, on learning. There are ongoing efforts to clarify the possible mechanisms

relating playing specifically action video games, the reward system and broad cognitive per-

formance improvements (Howard-Jones & Jay, 2016; Miendlarzewska et al., 2016). More

work is needed to formalize reward mechanisms in video games and assess the impact of dif-

ferent types of video games on the functional and structural properties of the human reward

system.

4.8.2 Spatial cognition and the hippocampal formation

Video game play often requires discovering, and thus navigating, new worlds, be they land-

scapes, buildings or intergalactic spaces. Such video games are likely to engage the hippocam-

pus whose role in memory and navigation is well established (Eichenbaum, 2017; for reviews

see Lisman et al., 2017).

Frequent video gaming in adolescence and adulthood has been associated with volumetric

changes of gray matter in the hippocampal region and its projections. Kühn, Gleich, et al.

(2014) explored the correlation between gray matter volume and frequent gaming in adults,

irrespective of the type of game being played. They measured gaming experience in a unit

called joystick years, which reflects the lifetime amount of video game play, and evaluated

to what extent joystick years was correlated with gray matter volume across all regions of

the brain. Higher numbers of joystick years was associated with larger gray matter volume
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in both the occipital lobe and the hippocampal formation. Different gray matter volume

in these two regions was proposed to reflect superior visuospatial expertise in video game

players and to suggest that navigational exploration in early visual processing is affected

by playing video games. Interestingly, recent findings also suggest a mediating role of the

hippocampal formation during visual guidance (see Nau et al., 2018). Another correlational

study reported a positive correlation between the amount of time spent on video games and

gray matter volume in the hippocampus, in particular the entorhinal cortex that surrounds

hippocampus (West et al., 2015). The navigation demands of most video games is in line with

such changes in entorhinal cortex as this structure acts as a gateway to the hippocampus,

and has been associated with spatial navigation, memory, and the perception of time (Bird

& Burgess, 2008).

Changes in hippocampal volumes have been recently qualified as dependent on game genre

and player strategies. Kühn, Gleich, et al. (2014) measured gray matter volume of the hip-

pocampus and entorhinal cortex in relation to the lifetime amount of video game playing.

Their results show that while playing puzzle and platformer games was associated with in-

creased parahippocampal volume, playing action video games was associated with a decrease

in parahippocampal volume (Kühn, Lorenz, et al., 2014). West et al. (2015) further qualified

this effect as being related to particular cognitive strategies gamers might use for navigation,

strategies that rely on different brain structures. One strategy that can be qualified as “spa-

tial” involves constructing an internal cognitive map of the environment using landmarks

and their relationships and then exploiting this map for navigation. The use of this strategy

is thought to involve the hippocampus. An alternative, “non-spatial” strategy might instead

rely on memorizing a fixed sequence of actions to be completed from a given location to reach

a particular endpoint (e.g., when facing the entrance of the building, go left, then right, then

left again). This second strategy therefore does not involve building internal representations

but merely memorizing stimulus-response mappings. This non-spatial strategy is thought

to involve the striatum. West et al. (2015) used a task where players navigated through a

maze in the presence of landmarks that could be exploited to create an internal cognitive
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map. They then tested the same players on the same maze but removed the landmarks.

Participants using a “spatial” strategy would be unable to use their internal maps in this

situation as the landmarks were necessary to ground their cognitive map. Participants using

a “non-spatial” strategy, on the other hand, would not be affected by this manipulation as

they could still execute the memorized sequences of actions to reach the target. West et al.

(2015) argue that the decrease in hippocampal volume observed in AVGP relative to NVGP

may be accounted for AVGP relying more systematically on a non-spatial navigation strategy;

in agreement with their hypothesis, AVGP performed better than NVGP when landmarks

were removed, indicating that they exploited more systematically the non-spatial navigation

strategy.

To further investigate the impact of spatial strategy during action video game play on hip-

pocampal volume, West et al. (2018) conducted an intervention experiment comparing three

groups of participants, one that was trained for 90 hours on action video games (e.g., Call of

Duty: Modern Warfare), one that was trained for 90 hours on a 3D platformer video game

(e.g., Super Mario 64) and a no contact group. Before and after the training entorhinal cor-

tex, gray matter volume in the hippocampus was measured. Contrasting video game genres

and play strategies shows that gray matter volume was reduced in the hippocampus after

action video game training but only in participants using a non-spatial strategy. Yet, when

a spatial strategy was used during training, action video game training resulted in increased

hippocampal volume. Interestingly, among those trained on the 3D platformer, spatial learn-

ing was associated with increased gray matter volume in the hippocampus and non-spatial

learning to increased gray matter volume in entorhinal cortex. The authors confirmed the

impact these results in an additional training experiment which entailed training for 90 hours

on action video games (e.g., Call of Duty Modern: Warfare). They note that it is only when

the use of spatial strategy was encouraged during training that participants showed increased

hippocampal formation volume. In conclusion, the neural impact of playing video games is

mediated not only by the game genre but also by the very game play characteristics the

player exhibit. This state of affair makes it clear that the impact of video game play on
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brain organization need to be qualified according to the processes the players engage while

playing. As video games span widely different experiences, looking for the neural correlates

of video game play in general is likely to remain an ill-posed research question. Finally, while

the possibility to increase hippocampal volume through video games is promising to possibly

address cognitive decline and in particular memory loss in aging, the directionality of the

effects are yet not well understood. For example, reduction in gray matter volume was also

observed after 5 days of intense mental calculation training (4 hours per day with two 10 min-

utes breaks), while at the same time performance being improved by the training (Takeuchi

et al., 2011). Such results indicate that reductions in gray matter volume might not always

be negative and/or reflect cognitive decline. Taking everything into account, genres and

strategies affect how playing video games alters anatomical structures of the brain, calling

for careful consideration of the way video games are designed, what content they present,

and what strategies must be used to achieve the goals of the game.

4.8.3 Attentional networks and action video games

The strongest behavioral evidence regarding the impact of action video game training on

cognition concerns increases in players’ attentional resources over space, time, and objects

as well as enhanced flexibility in the allocation of attention (Bavelier & Green, 2019). In

this section we present functional and structural brain modifications that may underlie such

attentional improvements.

Attentional functions are mediated by two main neural networks (Buschkuehl et al., 2012):

a ventral network of attention, which encompasses the temporoparietal junction (TPJ) and

ventral frontal cortex (VFC) and has been implicated in switching attention (as when redi-

recting attention towards a novel element in the environment); a dorsal network of attention,

which consists of the dorso-lateral prefrontal cortex (DLPFC) and intra-parietal cortex and

has been associated with strategic, goal-directed, top-down control over attention allocation.

Coordination between the bottom-up and top-down networks has been associated with faster

and more accurate responses to targets in a variety of cognitive tasks. Interventions targeting
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the dorso-lateral prefrontal cortex region, at least in children, enhances executive functions

performance, including attentional control (Siniatchkin, 2017; e.g., J. Wang et al., 2018). Fur-

thermore, these brain structures work in concert with the anterior cingulate cortex (ACC)

which monitors and resolves conflicts, regulating in part the activity in the frontoparietal

systems of attention (Petersen & Posner, 2012). Action video game play has been associ-

ated with more efficient neural activities in frontoparietal regions, and enhanced structural

and functional connectivities in prefrontal networks, limbic system, as well as more poste-

rior sensorimotor networks (Gong et al., 2017). This enhanced neural resource allocations

in dorsal attentional network may contribute to the improved top-down attentional control

and more efficient suppression of distracting information documented in AVGP (Bavelier

et al., 2012). Attentional control can indeed optimize the selection of sensory information

by two different mechanisms: by selecting more relevant signals, or by suppressing irrele-

vant signals and preventing noise to be transmitted to higher-order processes. Interestingly,

AVGP not only benefit from enhanced attention to targets, they also show superior ability

to suppress distractors (Bavelier et al., 2012). To track the fate of distractors during an

attention-demanding visual task, several studies measured steady state visually evoked po-

tentials (SSVEP), an imaging technique that uses periodic stimuli to frequency-tag neural

responses in the visual cortex. Using this technique, both Mishra et al. (2011) and Krishnan

et al. (2013) documented active suppression of distractors in AVGP, in line with enhanced

selective attention. Since the SSVEP have the same frequency as the driving stimulus, it is

possible to concurrently record responses to several stimuli if they are presented at different

flickering rates. Mishra et al. (2011) measured SSVEP amplitudes, which are affected by

selection and filtering processes in attention, in response to peripheral and foveal stimuli in a

target detection task. While the SSVEP amplitude in response to attended targets was the

same in AVGP and NVGP, SSVEP amplitude to distractors was decreased in AVGP relative

to NVGP, suggesting enhanced filtering of irrelevant information. Similarly, Krishnan et al.

(2013) compared SSVEP responses to targets and distractors in two groups of video game

players, AVGP and role-playing video game players who served as their control group. Mea-
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suring signal-to-noise ratios of evoked potentials to both targets and distractors, Krishnan

et al. (2013) showed that playing first person shooters could improve both the selection of

targets and the suppression of distractors.

How bottom-up and top-down processes may change to both improve target selection and

distractor suppression was assessed in an fMRI correlational study comparing AVGP relative

to NVGP. Föcker et al. (2018) recorded fMRI scans while AVGP and NVGP participated

in a cross-modal, endogenous Posner-cueing task. Young adults were presented with an au-

ditory cue indicating the most likely location of a subsequent target on which participants

were to perform a difficult, near-threshold visual discrimination task. This paradigm, closely

modeled after Corbetta & Shulman (2002), allows one to separate neural responses to the

auditory cues, which direct the attention allocation for the task to come, from the neural

responses during the difficult visual task itself. The frontoparietal network, which is thought

to mediate attention allocation, was more activated in NVGP than in AVGP when partic-

ipants processed the cue and thus prepared for the task to come. This result may suggest

that attention allocation is more efficient in AVGP than in NVGP. Interestingly, a small

percentage of trials were in fact catch trials where only visual noise, but no visual target,

was presented. In these catch trials, participants needed to withhold their response. AVGP

outperformed NVGP on such trials exhibiting less false alarms. Moreover, only for AVGP

did activation in the temporoparietal junction, middle frontal gyrus, and superior parietal

cortex predicted their reduced false alarm rate, suggesting that these areas may operate and

interact differently in AVGP compared to NVGP. Overall, these studies suggest that AVGP

may benefit from better attentional control, or more flexibility in allocating attention, per-

haps through a reconfiguration of the cross-talk between the main frontoparietal areas that

mediate attention.

Whether these superior attentional skills result from alterations of processing in the goal-

oriented, top-down attentional network, or rather from better filtering of irrelevant, poten-

tially distracting information within early sensory cortices (or both) remains an open question.

Neural markers of early attentional filtering were compared in EEG-based correlational stud-
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ies contrasting AVGP and NVGP. Föcker et al. (2019), for example, tested if visual event

related potentials (ERP) components differed between AVGP and NVGP in a high precision

visual selective attention task. Faster response times and improved perceptual performance

in AVGP was observed; yet, early markers of attentional selection such as the posterior N1

and the P1 were identical across groups. Differences between AVGP and NVGP were only

observed in parietal generators such as the P2 and the anterior N1 components. As the

P2 has been previously linked to task demands (Finnigan et al., 2011; Lefebvre et al., 2005),

these results may indicate that AVGP are able to more effectively adapt attentional resources

to varying tasks demands. A similar conclusion was reached by another intervention ERP

study (Wu et al., 2012) that recruited 25 adults and recorded ERPs before and after 10 hours

of video game training.

Participants with no video game experience in the previous 4 years, were randomly assigned

to one of two training groups: the action group played Medal of Honor: Pacific Assault

(FPS), whereas the control group played Ballance, a 3D puzzle game. Later, during the

testing session, participants performed an attentional visual field task which assesses the

ability to detect a target among distractors. As in Föcker et al. (2019), the two train-

ing groups exhibited comparable early sensory ERPs, in line with comparable comparable

early attentional selection processes across training. Also, as in Föcker et al. (2019), the

action trained group showed an increased P2 amplitude. Moreover, the amplitude of the

P3 was also increased in the action trained group, possibly indicating enhanced attentional

resources being allocated to the task (Kok, 2001). Overall, these results are in line with

the proposal that the differences in attentional performance between AVGP and NVPG may

reflect a functional reorganization of the goal-oriented, top-down, dorsal attentional network

with distractor suppression being implemented at a central level, rather than through early

perceptual filtering.

Furthermore, playing video games, irrespective of the specific game genre, seems to affect

structural and functional properties of parts of the frontal cortex. A longitudinal training

experiment study for example, evaluated the structural changes in the dorsolateral prefrontal
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cortex (DLPFC) resulting from two-month of training with Super Mario 64, a 3D platformer,

non-action video game that requires navigational skills (Kühn, Gleich, et al., 2014). The

results indicate that playing this video game induced structural changes by increasing the

gray matter volume in the right DLPFC. Similarly, a correlational study reported that the

self-reported weekly hours adolescents spent playing video games correlates positively with

the thickness of their left DLPFC and left frontal eye fields (FEFs; Kühn & Gallinat, 2014)—

cortical thickness is similar but not identical to gray matter volume (Winkler et al., 2010).

It has also been reported that relative to NVGP, AVGP have enhanced intra- and inter-

network connectivities in the central executive network and salient network (Gong et al.,

2016). These two networks are highlighted using fMRI measurements; the central executive

network is associated with working memory, planning, and getting prepared to select an

appropriate response to a stimulus, whereas the salient network with nodes in the subcortical

reward system has been linked to salient stimuli detection as well as integrating emotional,

sensory, and interoceptive signals (Menon, 2015). The central executive network typically

contains the DLPFC and is engaged during attention-demanding tasks (Fox et al., 2006).

Further analysis of large-scale networks with diffusion tensor imaging, which evaluates how

strongly specific areas are connected, shows that those who spend more weekly hours playing

action video games display an increased efficiency (as defined in graph theory) in local, global,

and nodal levels of prefrontal, limbic, and sensorimotor networks (Gong et al., 2017). The

local, global, and nodal efficiencies, respectively, reflect an increased fault tolerance across the

network, improved information flow across the whole network, and the importance of a node,

respectively. These neural regions are responsible for processing visual information, spatial

orientation, motion perception, selective attention, and integrating multimodal stimuli. This

finding supports the view that neural efficiency increases by mediating goal-oriented, top-

down attentional processes as a consequence of automating visual sensorimotor tasks and

delegating them to areas that handle low-level sensory processing.

While our understanding of the effects of playing video games on the human brain has

improved considerably over the last decade, it remains nevertheless limited. Most of the
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literature reviewed is correlational in nature and based exclusively on adult participants.

Studying young adults cross-sectionally is a cost-effective strategy to highlight candidate

structures and generate and test hypotheses. Indeed, cross-sectional studies only involve a

subject selection phase (using surveys for screening) and an assessment phase, while interven-

tion studies require in addition multiple training sessions and a second assessment phase (to

serve as a post-intervention test to be compared to the pre-intervention test). Intervention

studies furthermore involve a high management cost to assure that participants don’t drop out

and complete the various steps of the study within the planned time frame. Cross-sectional

studies are cost-effective to highlight interesting patterns; however, as for behavioral studies,

this strategy needs to be complemented with intervention studies to establish causality and

rule out the possibility that the neural differences between habitual action video gamers and

non-gamers pre-dated the gaming experiences. Furthermore, the studies reviewed above were

mainly conducted on young adults. However, the mechanisms involved may differ with age

as the time course of brain plasticity is likely to differ across brain areas. It will thus be

important to include pediatric samples in the future.

4.9 Concluding remarks

Research on the cognitive consequences of video game play has boomed over the past 15 years.

As the range of video games tested widens, it becomes apparent that not all video games have

the same cognitive impact. Rather, studies systematically contrasting specific game genres

indicate that the content of the video game, the user interactions it requires, and attentional

processes it engages are of paramount importance. This fact has two consequences. First,

it makes little sense to ask about the cognitive impact of video game play; rather, it is

important to recognize the variety of experiences video game play affords. Here we have

reviewed game genres that have been used over the past 15 years using a game classification

that might have been relevant for the covered research but is unlikely to upstand the drastic

changes in game types, gamer profiles and gaming habits that have emerged since (Dale et
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al., 2020; Dale & Green, 2017); some initial work is being done to better characterize video

gaming for cognitive research (Dale et al., 2020; Pedro Cardoso-Leite et al., 2020). Second,

there is a need to build better theories on why playing certain video games but not others

improve cognitive abilities; one route towards building such theories is to contrast commercial

video games which differ by specific game mechanics or by specific content (Pedro Cardoso-

Leite et al., 2020). Following this strategy, past research has focused mainly on contrasting

“action video games” (i.e., mostly first and third person shooters) to other commercial video

games (e.g., puzzle games). A recent meta-analysis supports a causal relationship between

playing action video games and improvements in top-down attention and spatial cognition,

with effects on other domains requiring further studies (Bediou et al., 2018). This is not

to say, however, that this genre of video games is the only genre of interest for cognitive

training. More recently, studies have investigated the effectiveness of racing games and real

time strategy games, which may be suitable for a wider audience than action video games.

While promising results have been reported, more research is needed to evaluate the efficacy

of these alternative game genres and determine the mechanisms by which they may enhance

cognition. The strategy of contrasting multiple game genres within the same study may be

useful to both evaluate the relative efficacy of different game genres and to unveil the relevant

game mechanics.

The study of how video games in general, and action video games in particular, engage

and affect the brain has revealed network wide changes in reward, memory and attention

brain circuits. This variety of effects suggests that the neural mechanisms responsible for

the observed cognitive benefits is likely to go beyond the training of a few specific cognitive

processes (Bavelier et al., 2012). Rather, aligned changes in memory, reward processing

and mood, as well as attentional networks efficiency may result in faster processing speed,

facilitating in turn a variety of cognitive processes. Future work is needed to unravel the

link between the behavioral improvements noted after action video game play and their

neural bases. Overall, while significant progress has been made over the past 15 years on our

understanding of how to leverage video games for cognitive enhancement, there remain many
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unknowns in this young emerging field. First, the work so far makes it clear that different

genres of video games have different effects on cognition, differences in game mechanics have

been hypothesized but they remain to be fully tested to firmly document why playing action

video games but not social simulation games may improve cognition, for example. Unpacking

key game mechanics is central if we are to leverage lessons from action video game research

to design therapeutic or educational video games. Second, although a theoretical framework

around brain plasticity, attention and learning for the documented effects has been proposed,

many of the mechanistic details remain to be worked out (Bavelier et al., 2012; Bavelier &

Green, 2019). Third, our work has focused so far chiefly on cognition; understanding how to

best induce plastic changes in other domains, such as emotion or social behavior, is equally

important. Finally, most of the literature so far has focused on adults. As we now better

understand the game mechanics that promote brain plasticity, the time has come to ask how

to best use video games to foster children’s development.

4.10 Future perspectives

Research over the past 15 years has focused mainly on establishing and validating the impact

of action video games and probing the breadth of their impact on various cognitive constructs

(e.g., top-down attention vs. bottom-up attention). Much remains to be done to catalogue

and fully describe the impact of different video game genres on various aspects of behavior.

Furthermore, our understanding of the taxonomy of video games needs to be improved so

that we can move from vague high-level labels (e.g., “action video games”) to objective,

measurable indices (e.g. type of attention required; exact reward schedule implemented etc).

In the future, we should be able to make quantitative predictions as to which video game

to train on in order to enhance performance in one cognitive construct versus another. The

challenges that lie ahead of us will require methodological and theoretical innovations as well

as multi-lab and interdisciplinary team work.
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Chapter 5

Neural Correlates of Habitual Action
Video Games Playing in
Control-related Brain Networks

Abstract

Playing action video games has been reported to lead to broad cognitive benefits, implying

that this form of cognitive training may be exploited for positive societal impact. Although

the underlying cognitive and neural mechanisms are not yet fully understood, current ac-

counts revolve around the idea that playing action video games enhances cognitive control—a

general ability modern cognitive neuroscience suggests is the result of the coordination of a

multitude of brain networks that may be highlighted by recording functional brain connectiv-

ity of people at rest. In this study we use resting-state fMRI functional connectivities to train

a machine learning model to classify people as habitual action video gamers or non-gamers

and investigate which aspects of functional brain connectivity have the greatest effect on

the prediction accuracy of the classification model. Our results show that this classification

is indeed possible, with the best model reaching an accuracy level of 72.6%. This result is

important for both theoretical and practical reasons, as it adds to a growing body of ev-
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idence reporting long-term effects of action video gaming on the brain and demonstrates

that resting-state imaging may be an effective research tool for studying cognitive training

and transfer. Our results also show that what distinguishes action gamers from non-video

game players most is not the activity in individual brain regions, nor the activity within

individual specialized brain networks but rather the relationships between networks. This

result is important in that it casts these cognitive training effects in the cognitive control

framework in cognitive neuroscience, provides support to current theories of action video

game training in psychology, and offers new insights into why action video game training

generalizes to new cognitive tests. More specifically, our analyses highlight the importance

of the interplay between cognitive control networks on the one hand (the fronto-parietal

and cingulo-opercular networks) and the sensorimotor network on the other, suggesting that

action video gaming may optimize cognitive control for the purpose of enhanced perception

and rapid action. Overall, this work advances our understanding of the effects of action video

gaming, of cognitive training and their transfer effects as well as the neural basis of cognitive

control. We hope this work will contribute to the development of more effective cognitive

training programs.

5.1 Introduction

Playing action video games has been shown to enhance a broad range of cognitive abilities—

including the ability to switch between different tasks, filtering out irrelevant information,

and focusing on important stimuli—while leaving other abilities unaffected (e.g., bottom-up

attention) (Bediou et al., 2018). These results are important from a practical and theoretical

point of view. Indeed, training cognition with action video games could be used for broad

positive societal impact (see Chapter 4 for a review).

From a theoretical point of view, the mechanisms underlying the cognitive benefits of playing

action video games are not yet fully understood. In psychology, the transfer effects of action

video game play have been attributed to enhancements in task-specific processes (the “com-
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mon demands hypothesis”; Oei & Patterson, 2014b), but also to domain-general abilities

including reward processing (Nahum & Bavelier, 2020; West et al., 2015), cognitive control

(Anguera et al., 2013; Benady-Chorney et al., 2020; R. West et al., 2020) and, most promi-

nently, attentional control (Bavelier & Green, 2019; Föcker et al., 2019). To simplify, we

will use “cognitive control” as an umbrella term to encompass related concepts (e.g., “exec-

utive control”, “attentional control”, “cognitive flexibility”) and conceptualize it broadly as

“the coordination of mental processes and action in accordance with current goals and future

plans” (Menon & D’Esposito, 2022). We purposefully ignore certain nuances and state that

a main family of hypotheses pinpoint changes in cognitive control as the key consequence of

action video game play that causes transfer effects to a broad range of cognitive tasks.

In cognitive neuroscience, playing video games has been associated with numerous changes in

brain structure—e.g., increased gray matter in the caudate nucleus and decreased gray matter

in the hippocampus (West et al., 2018) and brain function—the specifics of these changes

however depend on the type of game being played and how it is played (for a review see

Chapter 4). One study for example, used functional resonance imaging (fMRI) to record the

brain activity of participants while they performed an attention demanding visual detection

task in the presence of distractors. When contrasting habitual action video game players

(AVGPs) with people who don’t play video games (i.e., non-video game players; NVGPs), it

was clear that the frontoparietal brain network, a key neural actor in attention control, was

less activated by increased attentional demands in AVGPs than in NVGPs (Bavelier et al.,

2012). This type of result has been interpreted as implying increased top-down attentional

control abilities in AVGPs compared to NVGPs: because the attentional system is more

effective in AVGPs, their BOLD response increases less with increasing attentional demands

(Bavelier & Green, 2019; Green & Bavelier, 2012).

The empirical evidence, both in experimental psychology and cognitive neuroscience is rich

and the theoretical accounts too complex to be accurately depicted here. It is however fair

to say that the main hypotheses regarding the transfer effects of action video games involve

domain-general cognitive abilities (i.e., cognitive control) which are assumed to be subserved
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by networks of brain areas (e.g., the frontoparietal attentional network) rather than by a

single brain area (e.g., the left prefrontal cortex). It appears then that a brain-wide systems

approach would be invaluable to the study of action video game training and their transfer

effects. There have been recently important advances in applying graph-theoretical tools to

cognitive neuroscience that are now providing new insights about brain function in general

and cognitive control in particular (Menon & D’Esposito, 2022; Zink et al., 2021). By

applying these new approaches to the study of action video gaming we hope to tell apart

competing hypotheses and better understand the underlying mechanisms as well as human

cognitive control systems in general.

5.2 A graph-theoretic approach to cognitive control in
cognitive neuroscience

5.2.1 The brain is intrinsically organized into networks.

It has become increasingly clear in cognitive neuroscience that the traditional, modular ap-

proach (where cognitive function X is performed by brain area Y) is limited (R. Poldrack,

2006); and that instead we need to reason in terms of known systems and networks that

interact with each other to generate intelligent behavior (Hutzler, 2014). This is particularly

true in the case of cognitive control, where the scientific evidence was unable to pinpoint

a single cognitive control area and instead highlighted multiple control networks (Menon &

D’Esposito, 2022; Zink et al., 2021).

For example, a large body of work recording fMRI while humans perform a variety of visuo-

spatial attentional tasks has highlighted two attentional systems: a dorsal frontoparietal

system involved in top-down attentional control (e.g., maintaining attentional focus on a

stimulus) and a more ventral system responsible for bottom-up attention (e.g., detecting

a danger) (Corbetta & Shulman, 2002). These two systems are also known as the dorsal

(DAN) and ventral (VAN) attentional networks respectively. It is important to note that
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although these two networks are specialized and functionally separate, their coordination is

required for adaptive behavior and thus the two systems must interact. More specifically, in

this particular model, the ventral system is thought to act as a circuit breaker, interrupting

activity in the top-down system when an important signal calls for immediate attention.

In recent years, many computational approaches have been developed to directly model

brain activity as a timeseries of interacting brain networks (as opposed to previous work

inferring networks from snapshots of average co-activation patterns) and to adopt a more

systematic study of the relationships between brain networks and cognition across many tasks.

Using such graph-theoretic approaches on multi-task fMRI datasets (Cole et al., 2013), on

resting-state datasets (Dosenbach et al., 2008, 2010) or both (Dadi et al., 2020), researchers

have identified several brain networks as playing key roles in cognitive control (see below).

It is important to note that these networks do not represent the ground truth yet; there

are inconsistencies across methods, some subjectivity in the choice of hyperparameters and

limitations in the current computational approaches (e.g., a given brain area can be assigned

to only one network by most standard methods). As our methods and datasets will improve,

so will the validity and accuracy of the highlighted functional networks.

5.2.2 The cognitive control brain networks

Multiple brain networks, relevant to the current study, have been identified in the literature

and are presented below. These networks are part of a parcellation atlas which assigns

brain voxels to a brain region, and brain regions to networks. Alternative methods led to

alternative parcellations, meaning that a given brain region may be assigned to different

networks depending on the parcellation or even not be assigned at all, and some networks

exist only in some parcellations but not others.
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5.2.2.1 The Dosenbach2010 atlas

In a cross-task analysis of 10 cognitive tasks, Dosenbach et al. (2010) identified 160 re-

gions over the whole brain that were consistently active during cognitive control tasks (also

see Dosenbach et al., 2007). Those regions served as seeds to extract a graph from the

resting-state fMRI. Edges of the graph were weighted by the correlation between respective

resting-state time-series and then thresholded to identify six networks, to which they assign

specific roles based on their involvement in cognitive tasks. Once this atlas is applied, ac-

tivities in 160 seeds are mapped to one of those six networks, which we describe next. The

fronto-parietal network (FPN) includes regions in the dorsolateral prefrontal cortex, inferior

parietal lobe, dFC, ventral anterior prefrontal cortex, and IPS (for more details see, supple-

mentary material). FPN is thought to be involved in the rapid adjustments to real-time

changes in tasks demands. The cingulo-opercular network (CON) includes regions in the

anterior prefrontal cortex, ventral prefrontal cortex, basal ganglia, anterior insula, adjoining

fronto-insular cortex, thalamus, precuneus, superior temporal, temporoparietal junction, and

dorsal anterior cingulate cortex. CON is thought to be involved in maintaining attention and

stable task sets. The sensorimotor network (SMN) includes regions in precentral gyrus and

mid insular, supplementary motor area (SMA), preSMA, superior parietal. SMN is involved

in integration of sensory information and motor movements. The occipital network includes

regions in primary (V1) and secondary visual cortices (V2). Occipital network is involved

in visual processing, The cerebellum network includes regions in lateral, medial, and inferior

cerebellum. Cerebellum is thought to be indirectly related to task performance and may be

involved in generating error codes (Fiez, 1996). The default mode network (DMN) includes

ventromedial prefrontal cortex, ventrolateral prefrontal cortex, inferior temporal, post cin-

gulate gyrus, and angular gyrus. DMN is activated in the absence of attentional demands.

It may not directly be involved in cognitive control, but may influence cognitive functions

indirectly (Anticevic et al., 2012; Brandman et al., 2020; Greicius & Menon, 2004).
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5.2.2.2 The Gordon 2014 atlas

The Gordon2014 atlas is a surface-based parcellation that was derived from boundary maps

of BOLD activations in two resting-state fMRI datasets. This atlas identifies 13 cortical

networks: The cingulo-opercular network (cf. CON in Dosenbach2010), The fronto-parietal

network (cf. FPN in Dosenbach2010), DorsalAtt, (aka DAN); centered on the intraparietal

cortex and superior frontal cortex, is involved in top-down goal-directed selection of stimuli

and responses. Regions of the dorsal network show sustained activation when subjects are

cued to attend to a feature of stimulus (attention set). VentralAtt, (aka VAN); centered

on the temporoparietal cortex and inferior frontal cortex, is specialized for the detection of

behaviorally relevant stimuli, particularly when they are salient or unexpected. The default

mode network (cf. DMN in Dosenbach2010), The cingulo-parietal network (aka CPN) in-

cludes regions in anterior cingulate cortex, ventral and dorsal parts of the precuneus, inferior

temporal cortex, and lateral parietal cortex, and superior frontal cortex. This network has

been often observed when the subjects do not perform any task [i.e., resting; toro2008]. The

sensorimotor network of the hand (SMNhand), The sensorimotor networks of the mouth (SM-

Nmouth), The salience network (SN) includes a set of regions with hubs in dorsal anterior

cingulate and ventral anterior insular cortices. It receives inputs from limbic and sensory

regions and is often attributed to monitoring and dynamic switching. The auditory network

includes regions in superior temporal gyrus, and is thought to process auditory information.

The visual network is located in the occipital lobe, and is thought to process sensory inputs

originating from the eyes. The retrosplenial temporal network (aka RTSC) is located imme-

diately behind the corpus callosum. The function of this region isn’t fully understood yet.

It is thought to be involved in coordinating perceptual and memory functions because of its

proximity to visual and hippocampal areas. Unassigned set of regions. The regions that were

not assigned to any networks were not excluded from further analysis, but rather labeled as

“unassigned”.

This atlas is particularly important in the context of studying the effects of action video

gaming because it comprises the two attentional networks that are often cited in this context
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(Corbetta et al., 2008; Föcker et al., 2018); namely the dorsal and the ventral attention

networks (DAN and VAN). For a list of coordinates of regions and corresponding networks

see supplementary materials.

5.2.2.3 The DiFuMo atlas

In addition to the two parcellation atlases listed above, we included in this study a more

recent data-driven atlas, called DiFuMo, which has been developed on a large structural and

functional dataset rather than prior research on cognitive control (Dadi et al., 2020). The

reasons to include DiFuMo is that DiFuMo may be less biased by theoretical considerations

and may highlight networks that are more stable because they are grounded on a larger

dataset.

DiFuMo differs slightly from Dosenbach2010 and Gordon2014 atlases as it is a probabilistic

functional parcellation that is extracted from thousands of task-fMRI and rs-fMRI scans,

with different versions of DiFuMo, identifying varying numbers of regions (i.e. 64, 128, 256,

512, or 1024 regions). Hence, voxels across the whole brain are mapped to either 64, 128,

258, 512, or 1024 regions. We used the mapping for 64 regions, each of which was mapped

to seventeen networks proposed by Yeo et al. (2011). For each region, DiFuMo provides an

anatomical name, MNI152 coordinates, the mapping of regions to networks defined in Yeo

et al. (2011), and the ratios of white matter, gray matter, and CSF. We mapped voxels

to regions and then applied the mappings to map regions to networks. Coordinates of the

DiFuMo regions and their corresponding assignment to brain networks is provided in the

supplementary materials.

5.3 Measuring intrinsic networks can be studied during
resting state.

While task fMRI is frequently used to identify brain activities that are attributed to cogni-

tive functions, spontaneous brain activities during rest (intrinsic networks) show substantial
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overlap with task-driven networks, both in their spatial organization and functional roles

(Kraus et al., 2021; Varoquaux, 2020)—provided resting state brain activity is recorded for

long enough (Birn et al., 2013). If action video gaming impacts brain function, this impact

should be manifest not only during the performance of cognitive tasks, but also during rest

(A. L. Cohen et al., 2008; Kraus et al., 2021). Moreover, domain general processes like cog-

nitive control and attention, which are thought to be altered by action video game play, are

processes that are common to many tasks and therefore one would expect that long-term

coactivation of their corresponding brain networks during gaming to alter functional resting

connectivity (R. A. Poldrack et al., 2015).

The similarity between task-induced and intrinsic networks, makes resting-state recordings

an invaluable tool to understand long-term effects of action video gaming on cognitive control

networks. First, resting-state data may offer an effective way to measure individual differences

in executive functions (Reineberg et al., 2015), cognitive control performance (FPN, Salience

Network, CON, and DMN; see Menon & D’Esposito, 2022 for a review), attention (VAN and

DAN; see Corbetta & Shulman, 2002 for a review), and numerous other behavioral dimensions

(Seguin et al., 2020). This could for example be useful to rapidly evaluate the efficiency of

new cognitive training programs and evaluate to what extent they will transfer to new tasks.

A second reason resting-state data is an interesting method in this context relates to the

controversy around expectation effects (action gamers performing better because they believe

they should perform better) rather than genuine cognitive improvements being responsible

for some of the observed performance differences between AVGPs and NVGPs (Parong et

al., 2022; Tiraboschi et al., 2019). Resting-state data might provide a means to assess such

differences, untainted by prior task experience or expectation effects.

5.4 Hypotheses

The graph theoretic approach to cognitive control that we just presented allows us to cast

cognitive theories in more explicit terms. According to the common demands theory one
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might expect to see changes only at the level of specific, specialized brain regions, but no

changes at a systems level and possibly no changes that would not be visible in resting-state

functional connectivity data. Alternatively, there is a class of theories predicting changes

beyond the isolated brain region. Some researchers might for example expect to see changes

specifically in the top-down attentional control system (DAN) but not for example in the

bottom-up attentional system (VAN). This type of result would be in line with the notion

that a domain-general subsystem (e.g., top-down attention) is enhanced by action video

game play. Finally, some researchers may expect the effects of action video games to go

beyond individual networks and affect cognitive control more broadly. This hypothesis would

translate into changes in inter-network connectivity differences between AVGPs and NVGPs.

A main goal of the present study is to test these three families of hypotheses (which are not

mutually exclusive). Discriminating between these macro-hypotheses will not only help us

understand the effects of action video games but also the breath of generalization effects as

the broader the effect on the brain networks, the broader one would expect those changes to

manifest as improved behavioral performance across a wider range of cognitive tasks.

In addition to these macro-hypotheses, numerous more detailed predictions can be made.

Among the six networks of the Dosenbach2010 atlas, we specifically expect FPN, CON,

and SMN to be diagnostic of AVGP, as these networks have been frequently highlighted

in that literature. For instance, AVGPs have been reported to both be able to focus their

attention better than NVGPs and to be less disrupted by distractors, while at the same

time being more capable to switch between tasks (Bediou et al., 2018). This phenomenology

suggests more effective CON (for sustained performance) and FPN (for flexibility) networks.

In addition, AVGPs have also been shown to outperform NVGPs on sensorimotor tasks (Gozli

et al., 2014). This increased behavioral performance may be linked to superior cognitive

control abilities but could also result from changes in the SMN network itself. Changes in

other networks of the Dosenbach2010 seem less likely (e.g., DMN, Cerebellum). It appears

then that these three networks, FPN, CON and SMN, as well the relationships between them,

may best characterize the functional connectivity differences between AVGPs and NVGPs.
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Among the 13 networks of the Gordon2014 atlas, we expect AVGPs and NVGPs to differ

mostly on the dorsal attentional network (DAN) and the frontoparietal networks (FPN). We

expect no differences between AVGPs and NVGPs with respect to the remaining networks.

In addition to these network-specific effects, one can make predictions about differences in

inter-network relationships between AVGPs and NVGPs. Indeed, there is growing evidence

that FPN and CON become more integrated with increased task demands and that their

integration correlates with task performance (J. R. Cohen et al., 2014), even at the trial-by-

trial level (Shine et al., 2016; Shine & Poldrack, 2018). This being said, how exactly cognitive

control is achieved within a neural network perspective is not yet fully understood (Menon

& D’Esposito, 2022; Zink et al., 2021) and the results of this study may perhaps contribute

to that understanding.

5.5 Data

For the purpose of this study, we used an unpublished resting-state fMRI dataset that was

collected in a previous study (Föcker et al., 2018). The dataset included a total of 32

subjects (16 AVGPs and 16 NVGPs) who participated in a resting-state fMRI session after

completing several cognitive tasks in the scanner. The aim of the original study was to

investigate attentional control in action video gamers. In that study, researchers excluded

from their analyses 1 NVGP for being a music expert, and 2 AVGPs for being high media

multitaskers (see Föcker et al., 2018 for details). In this study, we decided to exclude none

of the participants and to use the entire cohort of 32 subjects.

The fMRI data were acquired using a Siemens TrioTim 3T scanner with an eight-channel

head coil, 4mm isotropic resolution, 125 time points, TE/TR = 30/3000 ms, flip angle =

90°. Anatomical T1w images were defaced prior to the preprocessing to ensure participants’

privacy. Overall, the resting-state dataset included a time series of 7 minutes and 30 seconds

per subject.

All the participants were volunteers and gave informed consent. In accordance with the
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Declaration of Helsinki, the Research Subject Review Board of the University of Rochester

approved the study.

A noteworthy point about the design of the study is that participants attended the resting-

state fMRI scanning session after completing a task-fMRI session in which an auditory Posner-

cueing task was used (see Föcker et al., 2018). It is therefore possible that this task may have

somewhat contaminated the subsequent resting-state functional connectivities (Hasson et al.,

2009; Lor et al., 2022; Tailby et al., 2015). In our particular case, the auditory Posner-cueing

paradigm was designed to engage perceptual and attentional processes, both of which are

thought to differ between AVGP and NVGP (Föcker et al., 2018). Hence, observing AVGPs

versus NVGPs differences in resting-state activities involving the auditory cortex may either

reflect differences in intrinsic brain function and/or differences in task-related brain activation

patterns that persist after completion of the task. It is therefore important to be cautious

when interpreting the present results and to replicate this study using additional datasets.

5.6 Methods

5.6.1 Formal problem statement

The goals of this study are (a) to evaluate whether intrinsic brain functioning (as assessed

using resting-state fMRI data) differs between habitual action video game players and non-

video gamers and (b) whether the observed differences (if there are any) are compatible with

current theories of action video game training effects.

We trained a computational model to classify people as habitual action video gamers (AVGP)

or non-action video gamers (NVGP) using their resting-state functional connectivity data.

We expect the ability of the model to correctly classify unseen participants as AVGP vs

NVGP to exceed the chance level. If this is indeed the case, we will further investigate

the fitted model to understand the causes of its performance (e.g., by identifying the most

diagnostic resting-state functional connectivities in the model). Our hypothesis is that both
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inter- and intra-network connectivities contribute to classification performance.

The classification problem we want to tackle can be formulated as follows:

𝑋 ∈ ℝ|subjects|×|networks|×|timepoints|

𝑦 ∈ {AVGP,NVGP}

̂𝑦 = 𝑓(𝑋, 𝜃)

̂𝜃 = argmin
𝜃

|𝑦 − ̂𝑦|

Where 𝑋 is the resting-state functional connectivity matrix of the networks (see “Network

Aggregation” section below for details), 𝑦 is the true label of the subject (either AVGP or

NVGP), 𝑓 is a classification model that receives as input 𝑋 and outputs ̂𝑦—a prediction

of 𝑦 (label). The classification model has parameters 𝜃, which are learned from data while

minimizing 𝑦 − ̂𝑦. These model parameters include the choice for a particular parcellation

atlas and connectivity metric as well as model weights.

Given this setting, the hypotheses of this study are (H1) resting-state connectivity differences

allows the robust classification of AVGP vs NVGP, and (H2) difference between AVGP and

NVGP involve both specialized networks (i.e., within network connectivity) and the cross-talk

between brain networks (i.e., between-networks connectivity). If we consider the connectivity

pattern as a graph with brain networks as its nodes, and connectivity between networks as

its edges, then the two hypothesis can be formally expressed as follows:

(H1) ̂𝜃nodes ∪ ̂𝜃edges ∈ Control Networks

(H2) | ̂𝜃nodes| < | ̂𝜃edges|
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5.6.2 Preprocessing

Considering that even minor changes to the preprocessing steps can affect the result of the

analysis (Lindquist et al., 2019), we used a reproducible pipeline for the entire preprocessing

stage. Specifically, we opted for MRIQC (v21.0.0rc2; Esteban et al., 2017) for data quality

checks and fMRIPrep (v20.2 LTS; Esteban et al., 2019) for preprocessing, without making

any modifications to the default parameters. The only exception was that we skipped the

skull stripping because the scans were already defaced for privacy reasons (see Figure 5.4).

For each participant, the preprocessing pipeline resulted in 125 images of size 646464 iso-

morphic 4mm voxels in the MNI152NLin2009cAsym common space (Ciric et al., 2021). The

preprocessing pipeline extracted an additional set of motion-based artifacts which was fur-

ther removed from the signals by applying confound regression during the parcellation step

(described below). Note that the extracted motion signals did not differ between AVGPs and

NVGPs. Indeed, the performance of a AVGP vs NVGP classifier using those motion signals

did not exceed chance level (chance level=50%, mean validation accuracy=51%, SD=18%,

100-repeated 4-fold cross-validated; see supplementary materials).

All the additional preprocessing decisions were made automatically based on the “simple”

denoising strategy in the Nilearn package (v0.9, Abraham et al., 2014) which recommends

high pass filtering at 0.1 Hz, 6 degree head motion correction, basic CSF component removal,

demeaning, no global signal removal, no scrubbing, no compcor correction, and no ICA-

AROMA (Abraham et al., 2014; see Fox et al., 2005; Team, 2022 for details). We also

examined whether the removed confounds, motion as well as other signals, differed between

AVGP and NVGP groups. We observed no significant difference between AVGP and NVGP

with respect to the removed confounds (see supplementary materials).

5.6.3 Data analysis pipeline

The complete data analysis pipeline is illustrated in Figure 5.1. All data were first prepro-

cessed using a standard procedure (step 1 in Figure 5.1, see “Preprocessing” for details).
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Figure 5.1: Data analysis pipeline. All data were first preprocessed using a standard pro-
cedure (step 1). The same steps were applied irrespective of the AVGP/NVGP label of
participants. This preprocessed data then served as input to the next steps which aimed to
2) train and 3) diagnose a AVGP versus NVGP classifier (see text for details).
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The same steps were applied irrespective of the AVGP/NVGP label of participants. This

preprocessed data then served as input to the next step which aimed to train a AVGP versus

NVGP classifier (step 2 in Figure 5.1).

To train our model to classify participants as AVGP versus NVGP, we first split the data

into a training set and a test set (by randomly assigning participants to either subset). Next

we performed a sequence of operations on the training set, which include confound removal,

parcellation (i.e., mapping time-series of voxels to time-series of regions according to a given

parcellation atlas), network aggregation (i.e., mapping time-series of regions to time-series of

networks as defined in the atlas), connectivity extraction (i.e., calculate connectivity metrics

for the network time-series) and ultimately the classification model see 5.1. For the classifica-

tion model we used a support vector machine (SVM with linear kernel and L1 regularization)

as this type of model is often used as a first baseline. Following best practices in machine

learning (R. A. Poldrack et al., 2020) we computed the accuracy of the classification on the

test dataset (i.e., on data from participants that were not used to train the model). This

is to ensure that the model will generalize to other participants and is not overfitting the

training data. Finally, the whole procedure was repeated 100 times to ensure the metrics

were representative of the data and not of a specific random split of the data.

The next step of the data analysis pipeline (step 3 in Figure 5.1) takes as input the fitted

model and aims to diagnose what features of the input data are responsible for the observed

classification accuracy. More specifically, we used permutation importance to assess the

contribution of functional connectivity features on the models’ prediction accuracy. In this

procedure, the importance of a given feature is quantified by how much the prediction ac-

curacy of a model decreases as a result of randomly shuffling the values of that feature. In

addition to permutation importance, we also applied SHAP analyses—a more recent machine

learning technique used to interpret fitted models. While permutation importance focuses on

the models accuracy, SHAP focuses on what features are responsible for the models output

(i.e., classifying a person as an AVGP regardless of whether that person is or is not an AVGP).

The results of the SHAP analyses are presented in the supplementary materials.
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These were the broad data analysis steps involved in this study. Below we present further

details about each step.

5.6.4 Evaluation of the classifier

The cross-validated pipeline was trained on 75% of the data (24 subjects) and evaluated on

the remaining (8 subjects). The training/testing step was repeated 100 times on randomized

splits of the data (hence 100-repeated 4-fold stratified and shuffled cross validation). As a

result of this repeated cross-validation, the prediction performance of the model was measured

by the distribution of 100 accuracies on the test sets.

The cross-validated steps included parcellation (three candidates), factoring voxels to net-

works (see below), calculating functional connectivity metrics (five candidates), flattening

the upper triangular connectivity matrix, normalization, model-based feature selection (se-

lecting half of the features based on linear L1-regularized SVM coefficients), and a classifier

(linear L1-regularized SVM).

For each cross-validation split, a new model was created, separately trained on the training

set, before recording its prediction accuracy on the test set. To optimize hyper-parameters of

the pipeline, we used grid search tuning on the training set (75% of the entire dataset or 24

subjects) with 5-fold cross validation. The hyper-parameters included whether to standardize

features or not, and the SVM regularization parameter, all of which were evaluated by the

classification accuracy on the validation folds. Test splits were not used to tune or train the

model.

5.6.4.1 Parcellation

Grouping data from voxels into meaningful brain regions allows both to reduce the complexity

and noise in the data but also to inject semantics in the data (i.e., brain regions and networks

are more meaningful than isolated voxels; Varoquaux & Craddock, 2013). Because there is

no consensus yet on which parcellation atlas is the best (Salehi et al., 2019), we opt for
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using three different parcellation atlases as the parameter of the classification model: 1)

Dosenbach2010, 2) Gordon2014, 3) DiFuMu64 (see the supplementary material for a list of

parcellation parameters).

To create a reduced and more meaningful spatial representation of brain function we ag-

gregated voxels into regions according to the selected parcellation atlases (Dosenbach2010,

Gordon2014, and DiFuMo64; see “Introduction” for more details and motivations on selecting

these atlases). This step first produced region-wise time-series (step 1) and then network-wise

time-series (step 2).

We first used the maximum likelihood method to estimate time-series of the defined regions

in the atlases (i.e., parcels or spatial maps) from a set of preprocessed voxel-wise time-series.

(Step 1) ̂𝑈𝑟 = argmin
𝑈𝑟

‖𝑌 − 𝑈𝑟𝑉𝑝→𝑟‖

𝑌 ∈ ℝ𝑡×𝑝, 𝑈𝑟 ∈ ℝ𝑡×𝑟, 𝑉𝑝→𝑟 ∈ ℝ𝑝×𝑘

t time points, p voxels, r regions, n networks

̂𝑈𝑟 here represents the maximum-likelihood estimate of the region-wise time-series, 𝑌 is the

observed voxel-wise preprocessed time-series, 𝑈𝑟 is the tested region time-series, and 𝑉𝑝→𝑟

is the mapping of each voxel to regions from the atlas. The atlases and data instances were

both resampled to a 2mm resolution. We used Nilearn (v0.9) to mask the brain and resample

images. Ultimately, this step yielded parcel-wise subject-level time-series for the regions in

each atlas.

We then aggregated regions into networks in order to obtain a representation that is seman-

tically relevant, and produced network-wise time-series. The reason to aggregate regions into

networks was twofold. First, regions may become active during several cognitive functions

which makes it challenging to attribute regions to specific cognitive functions (R. Poldrack,

2006). Second, one region may belong to multiple networks, so they may become active
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in different contexts and processes. By assigning semantics to the networks (rather than

regions), the model would be simpler (yet less comprehensive), which makes it possible to

interpret the results in terms of general cognitive functions that are commonly related to cog-

nitive control (e.g., attention, inhibition, multitasking, or working memory to name a few)

rather than sparse activation in regions (Dadi et al., 2019; Varoquaux & Craddock, 2013).

Smaller number of features is also important for computational and statistical traceability

of the model (e.g., 7 networks instead 135 networks in Dosenbach2010 atlas) . For instance,

empirical benchmarks show that the baseline classification algorithm that we use (binary

SVM) works best when there are fewer features (A. Li, 2022).

In order to estimate the network time-series, we applied the same maximum likelihood meth-

ods as the one used to aggregate voxel-wise time-series into region-wise time-series.

(Step 2) ̂𝑈𝑛 = argmin
𝑈𝑛

‖ ̂𝑈𝑟 − 𝑈𝑛𝑉𝑟→𝑛‖

𝑈𝑛 ∈ ℝ𝑡×𝑛; 𝑉𝑟→𝑛 ∈ ℝ𝑛×𝑟

n networks

̂𝑈𝑛 represents time-series for each networks of a given atlas, ̂𝑈𝑟 is the estimated region-wise

time-series extracted in the previous step 1, 𝑈𝑛 is the candidate network-wise time-series,

and 𝑉𝑟→𝑛 is the mapping of the regions to networks as defined by the parcellation atlas. For

every network in the atlas, this step resulted in one time-series.

Aggregating voxels into networks allows to compute a functional connectivity matrix that

shows relationships between networks rather than between regions or voxels. The diagonal

values of the network functional connectivity matrix would further represent within-network

activities.
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5.6.4.2 Functional connectivity metrics

Given the network-level time-series, we calculated functional connectivity matrices that mea-

sure the relationship between networks. We computed five alternative resting-state functional

connectivities metrics: covariance, Pearson’s correlation, partial correlation, tangent projec-

tion of covariance, and precision (sparse inverse covariance). For 𝑛 networks, the connectivity

matrix would contain 𝑛2 values. As the connectivity matrices were symmetric, we flattened

the upper triangular part of the matrix (including diagonal values) and used the resulting

vector as the input to the classification task.

5.6.4.3 AVGP vs NVGP classifier

As the final step of the pipeline, we fitted a binary classifier that receives participants’ vec-

torized functional connectivity matrices and predicts their label (AVGP or NVGP). Choices

of parcellation atlases and connectivity metrics were then contrasted in terms of prediction

accuracy on the out-of-sample test set.

More specifically, we trained an L1-regularized linear SVM classifier after standardization (re-

moving the mean and scaling) and model-based feature selection, for which hyper-parameters

were optimized based on the training set (see Figure 5.1 and cross-validation section for de-

tails). We trained the model on 75% of the data, and validated it on the remaining 25% (8

subjects). The classification was independently trained 100 times and in each iteration the

prediction accuracy of the model was evaluated on the test set. This resulted in 100 numerical

values that represent the goodness-of-fit for a given set of parameters and hyperparameters

(i.e., atlas name and connectivity metric).

5.6.4.4 Model diagnostics

Feature ranking is a common first step when aiming to explain machine learning models.

To measure and rank the contribution of each resting-state functional connectivity to the

classification performance, we used cross-validated permutation importance. Permutation
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importance is a model-agnostic technique where the importance of a feature is measured by

the change in the accuracy when the feature is shuffled (Molnar, 2022). However, permutation

importance is more appropriate for datasets with uncorrelated features—this is not the case

here since spatial dependence between adjacent and overlapping brain regions might result in

multicollinearity between network connectivities. To partially address this limitation, we used

repeated cross-validated permutation importance techniques to not only extract the feature

importance but to infer confidence intervals for the measured importance. We repeated

the permutation procedure 100 times, yielding 100 measurements for each train/test split.

This procedure was repeated 1000 times with 4-fold cross validation to compute confidence

intervals on feature importance.

Permutation importance measures the impact of individual features on the performance of

the model; it may still suffer from interaction between features (McGovern et al., 2019).

This limitation is mainly addressed in techniques such as multi-pass permutation importance

where the correlation between features is broken by keeping previously assessed features

permuted while assessing the new features. This provides an improved interpretation of

model performance, yet for models that produce suboptimal predictions, interpreting the

output of the model rather than its performance may provide a deeper understanding of

how individual features and their interaction contribute to a prediction. Therefore, we also

performed an additional feature importance analysis using SHAP values (SHapley Additive

exPlanations). While permutation importance methods focus on the impact of features on a

model’s performance, SHAP values focus on understanding what features are responsible for

the output of the model, irrespective of whether the prediction is correct or not. Additionally,

when using SHAP, the correlation between features is broken by considering the effects of

all the other features and interactions between features. As we only applied SHAP analysis

to one specific model (i.e., the model with highest prediction accuracy), the results of the

SHAP analysis are presented separately in the supplementary materials. We expected to see

similar ranking of features in both the permutation importance test and the SHAP analysis.

Finally, we anticipated that the prediction accuracy of the classification model would be
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affected by particular combinations of parcellation atlases and connectivity metrics. There

are indeed different lines of evidence and reasoning that led to the development of those

parcellations and metrics and these may be more or less relevant for the purpose of AVGP

vs NVGP classification. The Dosenbach2010 atlas, for instance, results from an attempt to

identify networks that enable cognitive control—this atlas may therefore be more relevant in

our analysis than atlas that were developed for other purposes. To assess which parcellation,

connectivity metric and their combination were most effective in terms of classification accu-

racy, we used Bayesian model comparison. The details of this analysis are provided in the

supplementary materials.

5.7 Results

5.7.1 Participants can be accurately classified as AVGPs versus
NVGP based on their resting state functional connectivities.

We trained machine learning models to classify unseen participants as either AVGPs or

NVGPs (see Methods). The best predictive model classified participants with a 72.6% accu-

racy (95% CI [69.9, 75.4]), which is substantially above the 50% chance level (i.e., train/test

splits were stratified and half of the participants in the sample were action video gamers).

These results are robust and cannot be attributed to chance or overfitting. Indeed, the

model performance was validated on unseen participants and it was unable to make accurate

predictions on random data. More specifically, when randomly shuffling participants group

membership within a bootstrapped permutation test, the model yielded an average classifi-

cation performance of 50% (95% CI [47, 53])—considering this distribution of bootstrapped

classification accuracies as an empirical null distribution, the probability of observing a classi-

fication accuracy of 72.6% is only p=0.015. These results are important because they clearly

show that action video gamers and non-gamers have different functional brain connectivity

patterns during rest.
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As explained earlier, the specific data analysis results of fMRI data may vary considerably

depending on details of the data analysis pipeline. To ensure that our results are robust, we

systematically evaluated multiple parcellations and connectivity metrics. The model with

the highest classification accuracy used the Dosenbach2010 parcellation atlas and the partial

correlation connectivity metric (see Figure 5.2).

This type of analysis begs several additional questions. A first question asks to what extent

particular choices of parcellation or connectivity metrics impact the model’s classification

accuracy (e.g., are some atlases more effective than others?). Figure 5.2 displays the classi-

fication accuracy for each combination of parcellation and connectivity metric used in this

study. It appears from this figure that both of these choices do indeed have a major in-

fluence on the prediction accuracy, with parcellation playing a major role (i.e., overall, the

Dosenbach2010 atlas yields higher accuracy levels than DiFuMo64) and connectivity metric

a somewhat lesser role (i.e., partial correlations are more effective than simple correlations).

These effects were quantified and confirmed using Bayesian model comparisons (for details,

see supplementary materials).

A second question we want to address is to what extent the interpretation of the results

depends on specific methodological choices. That is, beyond their impact on classification

accuracy, do specific data analysis choices affect the conclusions about which aspects of brain

function differ among AVGPs and NVGPs. This question will be addressed in the next

section.

5.7.2 Resting-state functional connectivity differences between
AVGPs and NVGPs are not circumscribed to a specialized
brain network: they involve multiple networks and interplay
between them.

The previous results show that resting-state fMRI data can be used to accurately classify

participants as AVGPs vs NVGPs. Now we want to investigate which aspects of the rest-

ing state data are responsible for that prediction accuracy. For example, functional brain
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Figure 5.2: AVGPs vs NVGPs classification accuracy as a function of parcellation and con-
nectivity metric. The distribution of cross-validated out-of-sample prediction accuracies are
displayed in orange for the actual data and in gray for a shuffled version of the data (to
form an empirical null distribution; see text for details). Dots and diamonds represent the
mean of the distribution; error bars represent the 95% confidence intervals. This figure shows
that new participants can be accurately classified as AVGPs vs NVGPs based on their rest-
ing state functional brain connectivity with the best model reaching an accuracy of 72.6%.
Classification accuracy varies however considerably with the specific parcellation and con-
nectivity metric used. The black triangle on the X-axis shows the prediction accuracy using
motion confounds; the observed accuracy (51%) was not significantly different from chance
(see supplementary materials for details).
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networks have been identified as being responsible for attentional control (e.g., Corbetta et

al., 2008). If habitual action video gaming alters a specific network one would expect that

network to be an important feature in a classification model. Habitual action video gaming

could however have broader effects on brain function and alter multiple networks or even the

relationships between those networks.

To determine how each network and connectivity between networks contributes to the model’s

classification accuracy, we performed permutation importance analysis on the 6 top per-

forming classifiers—those that perform better than chance level. The permutation feature

importance method assigns an importance score to each input feature by evaluating how

much randomly shuffling the values of that features would decrease the model’s classification

accuracy (for details, see section “Model diagnostics”).

The permutation importance results are displayed in Figure 5.3. When focusing on the best

model (in terms of classification accuracy)—that is the model that uses the Dosenbach2010

parcellation and the partial correlation metric—it is clear that the connectivity between the

cingulo-opercular network and the sensorimotor network (CON-SMN) is the most important

feature. The second most important feature is the connectivity between the fronto-parietal

network and the sensorimotor network (FPN-SMN).

It is interesting, and perhaps surprising even, that the best performing model is one where the

connectivity within individual brain networks that have previously been associated with cogni-

tive control, in particular FPN and CON, is discarded (i.e., the within-network connectivity

is quantified only when using the tangent or precision connectivity metric). Connectivity

within networks, more specifically within CON, is only ranked third in the third best per-

forming model (i.e., when using the tangent as the connectivity metric on the Dosenbach2010

atlas); in all other cases, the influence of individual networks seems negligible.

Overall, it appears that the relationships between networks play a much bigger role in dis-

criminating AVGPs from NVGPs than the networks themselves (e.g., the importance of FPN

is negligible). In particular, the present analysis suggests that habitual action gaming may af-
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fect how cognitive control networks (FPN and CON) interface with the sensorimotor network

(SMN).

5.7.3 Key results are robust to changes in the data analysis
pipelines.

Are these results robust to changes in parcellation and connectivity metric? Answering this

question is somewhat challenging because different atlases identify different networks with

different semantic interpretations which thus leads us to somehow compare apples to oranges.

This being said, when considering the cases using the Dosenbach2010 atlas, it appears that

the results are very reliable (see Figure 5.3). Indeed the top two features—which involve

inter-network connectivities—are the same across variations in connectivity metric. When

considering the cases using the Gordon2014 parcellation, the results highlight again the im-

portance of relationships between networks. However, the specific networks are somewhat

different. In particular, in these cases we observe that the connectivity between the Audi-

tory network and the FPN network has the highest impact on classification accuracy (note

that Dosenbach2010 does not include an Auditory network). The consistency of the results

across variation of connectivity metric is however greatly reduced when using Gordon2014

parcellation rather than Dosenbach2010. One of the factors that determines this consistency

is the model’s prediction accuracy (i.e., models closer to chance performance will yield less

consistent feature importance ranks) and thus our interpretation of the results should weight

feature importance ranks by the models’ classification accuracy.

5.8 Discussion

In this study we have shown that using resting-state functional brain connectivity it is possible

to reliably classify new participants (i.e., participants whose data were not used to train the

classifier) as a habitual action video gamer player (AVGPs) or a non-video game player

(NVGPs). This result is important for several reasons. First, these differences in resting-
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Figure 5.3: Permutation features importance of the top 6 AVGPs versus NVGPs classification
models ordered by classification accuracy (see Figure 5.2). Each panel shows the 12 most
important features (ordered by importance) for a given classifier, which is characterized by
an atlas (i.e., Dosenbach2010 versus Gordon2014) and a connectivity metric (e.g., partial
correlation, precision). Error bars represent 95% confidence intervals.

129



state data provide additional support to the growing literature documenting the correlates

and consequences of action video game play, and offer new insights regarding the underlying

neural mechanisms. Second, this result supports the notion that resting-state data may be

used to study the correlates and consequences of action video game play (and possibly other

forms of media consumption) on brain function in a way that is both time-effective and less

contaminated by potential expectation and placebo effects (Boot et al., 2011). Finally, this

result suggests that resting-state brain connectivity data may be an invaluable tool in the

quest to develop effective cognitive training programs. The rapid measurement of changes

in brain connectivity may be able to detect subtle training-induced effects (with the specific

pattern of brain changes being likely related to the breath of transfer). In addition, resting-

state connectivity can easily be measured repeatedly (for example to assess dose-response

curves; Chopin et al., 2019). This is in stark contrast to traditional behavioral measures

where participants may get better at a cognitive test each time they are exposed to that

same test, confounding the benefits of the training program with the learning effects on a

specific cognitive test (Green et al., 2019, 2014).

The second main result of this study concerns the overall patterns of brain connectivity that

are important in classifying new participants as AVGPs versus NVGPs and how these pat-

terns relate to current theories of cognitive training and transfer using action video games. We

group current theories into three main families. The first family assigns action video gaming

effects to improvements in specific brain areas and predicts no AVGP vs NVGP differences

in resting-state connectivity. The second family of hypotheses, states that action video gam-

ing is associated with improvements in specific functional networks (for example, a more

effective dorsal fronto-parietal network supporting top-down visuo-spatial attentional con-

trol). Finally, the third family of hypotheses states that action video games affects cognitive

control more broadly, which manifests in changes in the relationships between functionally

specialized brain networks (i.e., a reconfiguration of brain networks, a more efficient coordi-

nation of multiple networks). Our results show very clearly that the main differences in brain

connectivity between AVGPs and NVGPs are at this higher-level, inter-network connectivity
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level. This result is incompatible with views that attribute action video game effects exclu-

sively to specific cognitive processes, or to specific domain-general cognitive functions and

also provides some insights about why playing action video games may yield broad transfer

effects.

The third key result of this study concerns methodology. Previous work has shown that the

results of brain imaging analysis can vary substantially depending on details of those analyses

(Botvinik-Nezer et al., 2020). To yield more robust conclusions, we adopted a data analysis

strategy that involved testing many combinations of parameters and choices and evaluating

the impact of those combinations on the end results (Dadi et al., 2019). In line with past

work, we observe indeed that some results are highly dependent on specific methodological

choices while others are more robust. More specifically, we tested three parcellation atlases

and five connectivity metrics. Our results show that the choice of parcellation atlas has a

major impact on a machine learning model’s ability to accurately classify participants as

AVGPs versus NVGPs: Dosenbach2010 parcellation atlas yielded overall better classification

performance than either Gordon2014 and DiFuMo parcellation atlases. This result may seem

surprising because DiFuMo is grounded in a much larger data collection than Dosenbach2010.

We speculate that the Dosenbach2010 performs best in this context because it is grounded

in a more careful selection of tasks. Alternatively, DiFuMo may perform worse because

by aggregating data from multiple contexts without formally accounting for context (e.g.,

within a hierarchical model), DiFuMo may wash out some important distinctions. Regarding

connectivity metric, their impact on classification accuracy is also clear, although perhaps less

dramatic. For example, quantifying relationships between brain regions or networks led to

higher classification accuracy when using partial correlation rather than simple correlations.

This result may indicate that although the correlation between two nodes may be high due

to external factors (all nodes are co-activated), what seems to matter most is the specific

association between nodes that cannot be accounted for by other nodes. More work is needed

to understand why some metrics perform better than others. This is not a trivial question

and it implies that before a satisfactory response is found, future research should adopt a
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robust methodology and test multiple connectivity metrics rather than arbitrarily picking

a specific one. This being said, our results show rather consistently that the best atlas for

our purposes is Dosenbach2010, and that features that are highlighted as important among

the best performing models are consistent across variations of connectivity metric. This

consistency across parameter variations increases the confidence in the results we report in

the next section.

The fourth and final set of results of this study concerns the specific networks and inter-

network relationships highlighted by our analyses. Within our set of models, those using the

Dosenbach2010 parcellation performed best and some of those using Gordon2014 performed

above chance level. When using Dosenbach2010, the most important features in the data

to accurately classify participants as AVGPs vs NVGPs were the relationships between the

cingulo-opercular network (CON) and the sensori-motor network (SMN) on the one hand,

and the relationship between the fronto-parietal network (FPN) and the SMN on the other

hand. The FPN and CON networks are hypothesized to work in tandem to provide both

the stability and the flexibility required for adaptive cognitive control. More specifically,

CON is associated with task-set maintenance that promotes long-term stable control while

FPN has been associated with moment-to-moment control that is demanded for flexible,

stimulus-driven control. Interestingly, in our results, the direct relationship between these

two networks is not discriminative of AVPGs vs NVPGs; what is discriminative, however, is

the relationships between these two networks and the sensorimotor network. That is, the pre-

dictive performance of this classifier relied mostly on the interplay between control networks

and lower perceptual networks rather than activities within a specific brain network. One

potential explanation for the observed interplay may lie in the computational mechanisms

involved in the connectivities between control networks and lower perceptual networks. Pre-

vious research has suggested that the integration of information from multiple brain networks

is crucial to successfully exert cognitive control over behavior, as it allows for the flexible use

of various sources of information to make predictions (Jiang et al., 2018). For example, the

control networks may help prioritize certain sources of information and guide the allocation of
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computational resources, while the lower sensorimotor networks may provide detailed sensory

input and fast motor response. This dynamic interplay between control and perceptual brain

networks may be a key factor in the ability of AVGPs to achieve high levels of performance.

The Gordon2014 atlas yielded overall lower classification accuracies and a reduced consistency

in the feature importance ranks across connectivity metrics. Yet, this atlas is particularly

interesting in the present context because it comprises two networks that are often cited in

the context of action video gaming: the dorsal attentional system (DAN) that is responsible

for top-down attention and the ventral attentional system (VAN) that is responsible for

bottom-up attention. On their own, neither of these two networks seem important to classify

participants as AVGPs vs NVGPs during rest. This result seems at odds with other results

using task-related fMRI and may (e.g., Bavelier et al., 2012). There are however several

potential explanations for this pattern of results. Perhaps there are in fact differences, but

they are just less important. Perhaps a better parcellation would yield stronger effects and

perhaps there are network relationships that are apparent only during task performance and

not during rest. More work is needed to tell these apart.

The most important feature when using the Gordon2014 atlas was the relationship between

the fronto-parietal network and the auditory network. To the best of our knowledge, this

relationship was not to be expected. We believe that it does not reflect a stable difference

between AVGPs and NVGPs but rather is a temporary consequence of the specific task

participants completed just prior to the resting-state recording (an attention demanding,

auditory Posner-cueing task). This is a very interesting result per se as it suggests that

cognitive tasks have a different short-term impact on resting-state connectivity depending on

participants’ gaming status. It also makes the point that post-task resting state connectivity

reconfiguration effects may be an interesting new type of measurement to consider for the

study of cognitive control, cognitive training and transfer effects.
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5.9 Limitations and future research

The generalizability of our current conclusions are limited by the dataset we have used.

Indeed, in this study we used only a single dataset, which included a limited number of

participants and a relatively short resting-state recording period. The methods developed

in this study can however easily accommodate additional datasets and we leave it for future

work to replicate and extend the present results.

In addition, in the current dataset, the resting-state data was recorded after participants

completed a cognitive task. It is possible that performing that task tainted the resting-state

brain activity (Lor et al., 2022). More specifically, participants completed a demanding

attention task that required paying attention to auditory cues—the highlighted CON-SEN

connectivity when using the Dosenbach2010 atlas and the Auditory-FPN connectivity when

using the Gordon2014 atlas may therefore not be intrinsic to participants resting state brain

activity but instead reflect AVGPs versus NVGPs neural differences during task performance.

To clarify this point, the current analysis must be replicated on a separate dataset where no

cognitive task is completed prior to recording resting-state fMRI.

It seems plausible to us that the differences we report here on functional brain connectivity

among AVGPs and NVGPs is caused by playing action video games. At this stage, such

a statement is however speculative. It will be necessary to run an actual training study to

establish a causal relationship between playing action video games, increased inter-network

connectivity and behavioral transfer effects. It is also possible that long-term effects of

playing action video games which may be observed when studying habitual gamers (like in

this study) are rather different from the short term effects that one might observe in cognitive

training studies. This calls for caution when interpreting results and for studies combining

multiple methods and types of participants.

In this study we established that brain connectivity differed between AVGPs and NVGPs;

we did not establish however that these same connectivity indicators simultaneously account

for changes in behavioral performance. It could be that brain metrics that are useful to dis-
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criminate AVGPs from NVGPs are different from the brain metrics that explain high versus

low behavioral performance. Furthermore, while past research has demonstrated a strong

overlap between task-induced and resting-state brain connectivity, the possibility remains

of there being important differences. Some differences in brain function between AVGPs

and NVGPs may only emerge during task performance while some differences observed dur-

ing resting-state may vanish when people engage in a specific task. Again, we leave these

important questions for future research.

Our results are in line with a growing body of work in highlighting the value of using graph-

theoretic approaches to study brain function and its relationships with cognition (Zink et

al., 2021). While there has been tremendous progress in this approach over the past decade,

more work is still needed. Of particular value is recent theoretical work aiming to explain

cognitive control from a network perspective (Menon & D’Esposito, 2022). This type of work

is important not only to the study of the effects of action video gaming, but more generally

to our understanding of how the human brain enables intelligent behavior.

5.10 Conclusion

By unveiling the mechanisms underlying the effects of playing action video games on brain

function we can further our understanding of transfer of cognitive training and devise more ef-

fective training programs for positive societal impact. The results of this study show that new

participants can be accurately classified as habitual action video game players or non-video

game players based on their resting-state functional brain connectivity. What distinguishes

the brain connectivity most between these two groups of people are not changes in isolated

brain regions or even functional networks but rather the cross-talk between multiple net-

works, in particular between cognitive control networks on the one hand and a sensorimotor

network on the other. These results are important because they suggest that the broad

cognitive transfer effects observed after training with action video games may result from a

reconfiguration of cognitive control networks.
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5.11 Supplementary Materials

Figure 5.4: The effect of skipping skull stripping. It was necessary to skip the skull stripping
step of the preprocessed T1w images of MRIQC because the scans were already defaced. The
left panel in this figure shows a scan with skull stripping and the right panel, without skull
stripping. As can be seen in this figure, by skipping skull stripping the recognition of the
brain volumes became more accurate.

5.11.1 Parcellations

5.11.1.1 Dosenbach2010 parcellation atlas

Figure 5.5 shows the networks as defined in Dosenbach2010 parcellation atlas. For a full list

of regions, their MNI coordinates, and corresponding networks, see (Dosenbach et al., 2010;

Nilearn Team, 2022b).

5.11.1.2 Gordon2014 parcellation atlas

Figure 5.6 shows the networks as defined in Gordon2014 parcellation atlas. For a full list of

regions, their MNI coordinates, and corresponding networks, see (Gordon et al., 2016).
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Figure 5.5: Dosenbach2010 networks.

Figure 5.6: Gordon2014 networks.
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5.11.1.3 DiFuMo64 parcellation atlas

Figure 5.7 shows the networks as defined in DiFuMo64 parcellation atlas. For a full list of

regions, their MNI coordinates, and corresponding Yeo2011-17 networks, see (Dadi et al.,

2020; Nilearn Team, 2022a; Yeo et al., 2011).

Figure 5.7: DiFuMo64 networks.

5.11.2 Motion signals during resting state fMRI recording do not
differentiate AVGPs from NVGPs

Participants’ motion is a major confound in the analysis of resting-state functional connec-

tivity. It can create spurious functional connectivity particularly when there are systematic

differences between groups of participants (Powers & Brooks, 2014). Previous research has

highlighted sensorimotor differences between AVGPs and NVGPs (Gozli et al., 2014); these

differences may be masked or confounded with behavior induced brain activations during

resting-state. Hence, before interpreting group differences in functional connectivity it is

important to assess participants’ movement behavior so that functional connectivity group

differences can be accurately interpreted as genuine differences in brain function rather than

as movement-induced artifacts.

To ensure that group differences in functional connectivity can be attributed to the cognitive
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functions rather than motion, we extracted motion-related data (6 variables; see Fox et al.

(2005) for more details) and used that data to train a support vector machine (SVM) to

classify people as AVGPs vs NVGPs. The rationale of this analysis is that if the motion data

differs among these two groups of participants, it should be possible to classify participants

as AVGPs vs NVGPs based on their motion patterns. If instead, there are no differences in

motion behavior between these two groups of participants, the classifier should perform at

chance level.

We trained a binary support vector machine (linear L1-regularized SVM) to classify partic-

ipants as AVGP or NVGP based on their motion confounds. The accuracy of the classifier

was evaluated on out-of-sample test data (100-repeated 4-fold cross validation). The results

show that the performance of the classifier is not significantly different from chance (accuracy

= 51%; see Figure 5.2). This suggests that motion confounds in habitual action video gamers

and non-gamers are equivalent and that group differences in functional brain connectivity

are unlikely related to group differences in motion behavior. Following standard practice,

we removed the motion confounds from the resting-state signals (see the “Preprocessing”

section).

5.11.3 Classifying habitual AVGP using intrinsic functional con-
nectivities depends on the parcellation technique as well as
the connectivity metric

In this study we used a robust methodology, testing multiple parcellations and connectivity

metrics. Here we want to quantify how these different choices impact the results (i.e., the

accuracy of the AVGPs vs. NVGPs classifier). To do so, we used a Bayesian model that

estimated the effect of parcellation choice and connectivity metric choice on classification

accuracy. The Bayesian model aimed to fit the data using the following formula:

𝑦 ∼ 𝑃 + 𝐶 + 𝑃 ∶ 𝐶
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where 𝑦 represents prediction accuracy (in percent), 𝑃 is categorical variable representing the

choice of parcellation atlas (three levels including Dosenbach2010, Gordon2014, and DiFuMo),

𝐶 is a categorical variable representing the choice of connectivity metric (five levels including

Pearson’s correlation, partial correlation, tangent, covariance, and precision), and 𝑃 ∶ 𝐶 is

the interaction between parcellation and connectivity metric.

We used the evaluation scores from the cross-validated classification pipeline described in

Methods section (100-repeated 4-fold cross-validation), which resulted in 100 measurements

per each combination of 𝑃 and 𝐶 (in total, 1500 data points for 𝑦). We then used the Bambi

package (v0.9.2; Capretto et al. (2022)) to fit the Bayesian model depicted in Figure 5.8. As

shown in the graph, we contrasted all choices for 𝑃 against DiFuMo as the baseline reference,

and choices for 𝐶 against correlation as the baseline reference. To estimate the posterior

distributions, we used NUTS (“no U-turn sampler”) with 4 chains, 500 tuning samples (dis-

carded before sampling from posteriors), and 2000 samples drawn from the posterior.

Figure 5.8: Bayesian model fitted to the choice of atlas (𝑃 ), choice of connectivity metric (𝐶),
and prediction accuracy (𝑦); See Formula Supp-1. We used full-rank coding of categorical
variables (𝑃 and 𝐶), with 𝐶=correlation and 𝑃=DiFuMo64 being the baseline references.

The results are shown in the Table 5.1 and Figure 5.9 below. Overall, they show that choices

of parcellation atlas and connectivity metric have a big impact on the results. For our

purposes, the best parcellation atlas is Dosenbach2010 and the best connectivity metric is

the partial correlation.
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Table 5.1: A Bayesian model comparison analysis shows that the choice of parcellation atlas
affects classification accuracy most. In general, choosing Dosenbach2010 atlas and precision
connectivity metric leads to the highest classification accuracy. Results from a “y ~ P * C”
model (which reads “accuracy ~ atlas * metric” ) are shown in the table. Note that the
table shows contrasts against the baseline reference of correlation connectivity metric and
DiFuMo64 atlas.

mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat

Intercept 2.948 0.125 2.72 3.19 0.002 0.002 2610 4279 1

P:C[Gordon2014, tangent] 1.346 0.25 0.858 1.785 0.004 0.003 3358 5024 1

y_sigma 1.235 0.023 1.193 1.279 0 0 12350 5695 1

P:C[Gordon2014, covariance] 1.006 0.247 0.557 1.48 0.004 0.003 3576 5031 1

P:C[Dosenbach2010, tangent] 0.987 0.249 0.504 1.45 0.004 0.003 3715 4887 1

P:C[Dosenbach2010,

partial_correlation]

0.874 0.247 0.406 1.338 0.004 0.003 3532 5360 1

P[Dosenbach2010] 0.873 0.175 0.531 1.194 0.003 0.002 2931 4186 1

P:C[Gordon2014,

partial_correlation]

0.746 0.249 0.318 1.256 0.004 0.003 3408 5267 1

C[precision] 0.583 0.176 0.248 0.903 0.003 0.002 3343 4276 1

P:C[Gordon2014, precision] 0.157 0.248 -0.287 0.651 0.004 0.003 3516 4153 1

C[partial_correlation] 0.113 0.175 -0.215 0.436 0.003 0.002 3114 5076 1

P[Gordon2014] -0.008 0.178 -0.34 0.333 0.003 0.002 2791 4114 1

P:C[Dosenbach2010, covariance] -0.283 0.246 -0.729 0.199 0.004 0.003 3611 5076 1

P:C[Dosenbach2010, precision] -0.295 0.248 -0.764 0.165 0.004 0.003 3510 4848 1

C[tangent] -0.307 0.174 -0.652 -0 0.003 0.002 3289 5000 1

C[covariance] -0.376 0.175 -0.725 -0.061 0.003 0.002 3361 4674 1

5.11.4 SHAP Analysis

The permutation feature importance method presented in the main text identifies the impor-

tance of individual features in the machine learning model that predicted AVGPs vs NVGPs.

Alternatively, SHAP (SHapley Additive exPlanations) values are a method for explaining

the output of a machine learning model. They provide a breakdown of the contribution of

each feature to the model’s output, taking into account the interactions between features.

The main difference between permutation importance and SHAP values is that permutation

importance only considers the effect of a single feature on model performance, while SHAP

values consider the effects of all features and their interactions. Additionally, permutation im-

portance is a measure of feature importance, while SHAP values are a method for explaining

model predictions.

Thus, here we ask a somewhat complementary question to the feature importance analysis:
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Figure 5.9: Comparing the choice of atlas and connectivity metric on classification perfor-
mance. Error bars represent 2 standard deviations. We used full-rank coding of categorical
variables with baseline reference being correlation for connectivity metrics (𝐶=correlation)
and DiFuMo for parcellation atlases (𝑃=DiFuMo64). Intercept and baseline references are
not shown.

142



what role do features play in the choices made by the classifier? For example, which features

determine most misclassifications?

We applied SHAP analysis to assess the importance of individual features on classification out-

put (e.g., in binary classification, probabilities of assigning a given observation to two possible

outcomes) while considering the effects of other features and their interactions (Lundberg &

Lee, 2017). Note that we only report here the results of the SHAP analysis on the best per-

forming classification model (i.e., Dosenbach2010 model with partial correlation connectivity

metric; see main text for details). The results of this analysis are illustrated in Figure 5.10.

As in the permutation importance analysis, the three most important features in SHAP are

the CON-SMN, FPN-SMN, and CON-FPN connectivities.

Next, we ask which features contribute most to misclassifying participants. To address this,

we used SHAP values to investigate all the predictions regardless of their correctness and

differentiate “important” features from “misleading” ones. This is enabled by calculating

the contribution of features to misclassified predictions (misses) and comparing the ranking

of features against the ranking in correctly classified predictions (hits). In our case, SHAP

values for misclassified predictions can identify the connectivities that may be responsible for

misclassifying non-video game players (NVGPs) as video game players (AVGPs) – potentially

through superior cognitive abilities that result in NVGP connectivity patterns being more

similar to those of AVGPs, possibly through compensating cognitive abilities such as expertise

in music, sports, or other types of video games (see Föcker et al., 2018 for details on subjects’

expertise).

As shown in the Figure 5.10, misclassified outputs also relied on a similar set of features

as correct classification. But the ranking of features based on their importances is slightly

different between correct and incorrect predictions. For the correct predictions, the order

of importance as measured by absolute mean SHAP values matches the ranking of features

produced by permutation feature importance (see Figure 5.2 in the main text); yet for in-

correct predictions, the order is not the same, suggesting some other network connectivities
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(rather than CON-SMN and FPN-SMN) may interfere. One important disparity between the

correct classifications and incorrect ones is the connectivity between FPN-CON, which shows

a stronger contribution to the prediction output of the misclassified subjects (it is ranked 6

in correct predictions but ranked 3 in incorrect ones). This compensatory role of the con-

nectivity between two control networks (frontoparietal and cingulo-opercular networks) may

imply improved cognitive control in some non-video game players or, conversely, could im-

ply automatization (hence reduced connectivity) between CON and FPN in some non-video

game players. However, more research is needed to fully understand the role of CON-FPN

in habitual action video game players and cognitive control.

In brief, this specific analysis showed that CON-SMN, FPN-SMN, and FPN-CON connectiv-

ities contribute the most to the prediction, regardless of its correctness. This result provides

additional support for the previously presented results in the main text that habitual action

video gaming may impact cognitive functioning by influencing the cross-talk between control

and sensorimotor networks rather than activities within individual networks. This implies

that attentional and cognitive control, if in fact targeted by playing action video games, relies

on a distributed set of large-scale brain networks, each with distinct cognitive functions.
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Figure 5.10: Shap values for correct (green) and incorrect (red) classifications of participants
as AVGPs or NVGPs. The plot reads from top to bottom, showing the impact of each
connectivity to the model output (i.e., AVGP vs NVGP classification probabilities). Network
features are ordered, from top to bottom, by their average importance (mean(|SHAP|)).

145



General Discussion

On the importance of cognitive control research

Psychology is tasked to make sense of what humans do, and what humans do depends on

what happens in their immediate environment (G. Miller et al., 1960). One ability that

is of utmost importance to human functioning is to exercise cognitive control which enables

pursuing goals in a changing world, avoiding prepotent responses, and effectively generalizing

prior experiences to new situations. Due to its ubiquitous presence in everything we do,

cognitive control plays a crucial role in our daily lives, long-term achievements, and health.

Accordingly, the possibility to enhance cognitive control in a way that transfers to real life

situations could have important implications.

Progress towards developing effective cognitive control training programs is however limited

by the lack of a formal, quantitative definition of cognitive control. The main challenges that

this thesis aims to address are (a) to gain greater clarity on the cognitive control constructs

(what it is and how to measure it), and (b) to understand what features of the cognitive

system (i.e., the agent) and what features of the task (i.e., the environment) determine

cognitive control, its functioning, and generalization.

On the importance of a multidisciplinary view of cognitive control

To address these challenges, this thesis relies on the multidisciplinary synergy within cogni-

tive sciences, primarily between artificial intelligence, psychology, and cognitive neuroscience.
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This synergy is apparent at several levels. First, we apply artificial intelligence techniques

as mere tools in our toolbox to interpret human data. In this sense, modern machine learn-

ing models provide new insights on human cognition as they are applied to behavioral data,

scientific documents, and neuroimaging data. Second, a richer form of interdisciplinary syn-

ergy allows us to build bridges between disciplines, to develop new computational models

that instantiate cognitive control and generalize across tasks, furthering our understanding

of cognitive control in humans.

Defining cognitive control

On the importance of defining and quantifiying cognitive control

Concepts that capture higher-order cognitive abilities such as cognitive control are difficult

to define—and consequently to quantify. To understand those cognitive abilities, previous

research has devised a variety of theoretical constructs and cognitive tasks, the relationships

between which are not always clear. Chapter 1 (CogText) is an attempt to quantitatively

assess this lack of a cohesive understanding by using recent advances in artificial intelligence.

More specifically, we performed a large-scale text analysis to create a knowledge graph that

relates theoretical constructs and empirical tasks about cognitive control. The rationale of

this analysis is that constructs are related to each other to the extent they are assessed

using a similar set of cognitive tasks and, conversely, cognitive tasks are similar to the extent

they are thought to involve similar cognitive constructs. As expected, the knowledge graph

confirms the complex nature of cognitive control and illustrates two specific phenomena

that may explain the difficulty of defining cognitive control: task impurity (tasks measuring

multiple constructs) and construct hypernomy (multiple ways of defining and measuring

constructs). These results have several implications for the study of cognitive control. First,

greater theoretical clarity is needed on cognitive control—this may be achieved by adopting

a more formal approach grounded in computational modeling. Second, there is currently

no single task capable of assessing cognitive control on its own, indicating a need for better
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assessment environments. This could entail, for instance, assessing cognitive skills using a

battery of tasks (varying contexts and demands) or to develop better, perhaps more complex

tasks (e.g., video games). Finally, because cognitive control is not associated with a single

cognitive function but rather involves interactions with many cognitive functions in multiple

tasks, it is likely that cognitive control is associated with a range of large-scale brain networks

as opposed to a single brain area or network.

On the importance of an interoperable battery of tasks for humans and artificial
agents (CogEnv)

There have been significant advancements in both artificial intelligence and psychology, but

they have not yet been fully integrated. This may be due to a lack of appreciation for their

relevance, or the lack of tools to directly compare the behavior of humans and artificial agents.

While there are many examples in the scientific literature of human behavior being compared

to specific artificial agents, this type of comparison is typically done at the level of a single

task, using a limited set of computational agents. Furthermore, these comparisons are not

developed in a way that allows for reuse or extension.

To study cognitive control and other cognitive processes, it is necessary to be able to sys-

tematically compare the behavior of humans and artificial agents across multiple tasks. A

tool that allows humans and artificial agents to perform the same set of tasks and directly

compare their behavior would greatly benefit our understanding of cognitive control in both

psychology and computer science.

To facilitate testing and integration of multidisciplinary theories in an interoperable environ-

ment, Chapter 2 provides a virtual environment called CogEnv. CogEnv lets both humans

and artificial agents perform the same battery of cognitive tasks, providing data that can be

directly compared in typical psychological experiments. As a proof of concept, we trained

baseline RL agents to perform a battery of cognitive control tasks, and also collected human

data for comparison. The overall framework is operational and appears promising. A pre-

liminary investigation suggests that comparing the performance and error profiles of human
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versus baseline RL agents may reveal aspects of human cognitive control that have not yet

been addressed by artificial agents.

On the importance of artificial models that act and functionally decouple control
from the controlled act (CogPonder)

The goal of CogEnv is to allow for the direct comparison of computational agents and humans

performing exactly the same cognitive tasks and thus to promote more systematic progress

in our understanding of cognitive control. Yet, to make progress it is necessary to develop

artificial agents that are capable of performing multiple tasks and which provide insights

on cognitive control. To this end, in Chapter 3, we developed CogPonder, a computational

framework for general cognitive control. . It is a flexible, differentiable end-to-end deep

learning model that decouples the act of control from the controlled act and that can learn

to perform the same cognitive tests that are used in cognitive psychology to test humans.

The goal of CogEnv is to allow for the direct comparison of computational agents and hu-

mans performing the same cognitive tasks, thus promoting more systematic progress in our

understanding of cognitive control. To achieve this goal, it is necessary to develop artificial

agents that are capable of performing a battery of cognitive tasks while being constrained by

computational requirements of cognitive control.

To this end, Chapter 3 presents CogPonder, a computational framework for general cognitive

control. CogPonder is a flexible, differentiable end-to-end deep learning model that separates

the act of control from the controlled act, and can be trained to perform the same cognitive

tests used in cognitive psychology to test humans. We implemented an instance of CogPonder

and trained it to perform two cognitive tasks, aligning its behavior with that of humans

collected in a previous study. The results show that after training, CogPonder behaves

similarly to humans across both tasks in terms of accuracy and response time distributions.

These results demonstrate the potential of the CogPonder framework to provide interesting

new insights and research opportunities for both psychology and computer science.
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Training and generalizing cognitive control

On the importance of cognitive training to study and test cognitive control

Research on the effects of complex tasks, such as video games, on cognitive training may ben-

efit from and contribute to the proposed broad view of cognitive control. Chapter 4 reviews

the literature on the effects of different genres of video games on cognition. Action video

games, such as first- and third-person shooter games, are particularly interesting because

they have been specifically associated with greater cognitive enhancement compared to other

types of video games, such as puzzle or life-simulation games. The transfer effects of action

video game playing to a range of cognitive tasks have been linked to improvements in reward

processing, spatial navigation, and most notably for the context for this thesis, top-down

attention and cognitive control.

This review highlights that cognitive training interventions using video games need to be

endowed with specific game mechanics to generate cognitive benefits, potentially by enhanc-

ing cognitive control abilities. We discuss the potential game mechanics that could be used

and call for more systematic research on the relationship between video game mechanics and

cognition. We also note that as video games become more advanced and mix different gen-

res and gameplay styles, it will become increasingly difficult to study and understand their

effects on cognition. This article lays the foundation for the study of cognitive and brain

functioning using video games and illustrates the value of this approach for investigating

general cognitive control.

On the importance of studying brain function to understand cognitive control
(ACNets)

The study of differences in functional brain networks between action video game players

and non-video game players can advance our understanding of the mechanisms underlying

the training effects and the neural mechanisms supporting cognitive control in general. In

Chapter 5, we show that it is possible to reliably classify new participants as habitual action
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video game players or non-video game players based on their resting-state functional connec-

tivity. Furthermore, an analysis of the features that are most important for this classification

accuracy reveals that what differentiates habitual video game players from non-video game

players is not the connectivity within specialized functional brain networks, but rather the

relationships between networks, supporting current theories of action video game training

that attribute their benefits to domain-general abilities. The results also show that the most

important inter-network relationships in this context involve control-related and sensorimotor

networks, specifically, the relationships between the cingulo-opercular and the sensorimotor

networks, and between the fronto-parietal and the sensorimotor networks.

Because these results suggest that action video game play affects cognitive control, they have

important implications for the study of cognitive training. Furthermore, by demonstrating

that resting-state data contains information related to habitual action video gaming, these

results suggest that resting-state data could be a valuable tool for studying cognitive training

effects and their potential for transfer, potentially leading to the development of more effective

cognitive training programs. Additionally, these results have practical value for cognitive

scientists studying cognitive control, as they imply that action video game training may be

a new tool for causally studying cognitive control.

Future perspectives

There are a number of limitations to the work presented in this thesis. One major limitation of

CogEnv is its scope. For example, in its current form, CogEnv ignores the real-time nature

of most cognitive environments by providing a turn-based mechanism that suspends the

environment until the agent finishes its computations and generates an action—a situation

such as this is unlikely to occur in real life. Possible directions for addressing this limitation

include extending the capabilities of CogEnv by establishing a larger library of computational

models that can interface with the environment perhaps in real-time, such as CogPonder (or

more broadly real-time reinforcement learning Ramstedt & Pal, 2019), and creating a more
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comprehensive set of cognitive tests (e.g., tests that are explored in Chapter 1, Enkavi et

al., 2019, and the Behaverse cognitive assessment battery; see behaverse.org). Additionally,

there is potential for further refinement of the data processing and analysis pipelines, and the

adoption of more standardized data formats that support multiple tasks and experimental

designs (see for example Behaverse data model in Appendix B).

Another area for future research could be the development of more realistic and ecologically

valid cognitive tasks and experiments (cf. Discussion in Chapter 3 and Chapter 5), such as

the use of video games or other rich and challenging environments, as well as the use of more

complex and dynamic scenarios. By testing cognitive models in more realistic environments,

we can better understand the limitations and capabilities of these models, and improve their

performance.

This may also require a more general computational account of cognitive control. By devel-

oping a computational model of cognitive control that is applicable to a wide range of tasks,

we may be able to better understand and improve cognitive control in both humans and

artificial agents. One particularly interesting approach involves the integration of artificial

intelligence techniques into cognitive modeling. This could be facilitated by applying scal-

able machine learning (e.g., deep learning) to complex cognitive models, in order to create

more accurate and comprehensive simulations of the human brain and mind. By testing

sophisticated cognitive models at scale, we can better understand the limitations and capa-

bilities of these models, and improve their ability to explain human phenomena. Another

useful approach consists of developing better taxonomies, concepts, and tasks—ideally via

collaborative efforts of researchers in neuroscience, experimental psychology, and artificial

intelligence—which may lead to more comprehensive and consistent models of cognitive func-

tions. For example, psychologists can provide detailed ontologies of cognitive processes, while

neuroscientists provide insights into the underlying brain mechanisms that support those pro-

cesses, and computer scientists develop new algorithms and technologies for modeling and

testing those processes.
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A multidisciplinary synergy may also be achieved through direct comparisons of human and

artificial agents. By using advanced artificial intelligence techniques, it is possible to create

artificial agents that mimic human cognitive processes. By comparing the performance of

these agents to human subjects on a variety of cognitive environments, we can better under-

stand the similarities and differences between human and artificial cognition, and develop

more accurate and comprehensive models of the human mind. The use of previously unex-

plored experimental techniques is another important direction for future research in cognitive

control. In particular, the combination of functional magnetic resonance imaging (fMRI) and

resting-state fMRI, along with the use of multitask batteries and interventional experimental

designs, can provide valuable insights into the mechanisms of cognitive control. Integrating

task-driven and resting-state fMRI data has the potential to inform us about the neural basis

of cognitive control, and this information can be used to develop scientific theories of cogni-

tive control and identify potential neural markers of cognitive control abilities. By including

multitask batteries to assess transfer effects, it is possible to determine how the brain enables

the generalization of prior performance on one task to another. This type of insight may

contribute to unveiling the mechanisms underlying cognitive control, and to develop theories

about how cognitive control abilities are acquired, how and when they generalize, and why

some interventions are successful and others are not.

Conclusion

Taken together, the current work explores approaches from a variety of cognitive science

disciplines that aim to better understand the concept of cognitive control. I presented cases

in which neuroscience, experimental psychology, and artificial intelligence can collaborate

to advance our understanding of cognitive control and the challenge of generalizing this

capacity to new contexts (i.e., transfer effect). In the age of ubiquitous computing and large

datasets, bridging the gap between behavior, brain, and computation has the potential to

fundamentally transform our understanding of the human mind and inspire the development
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of truly intelligent artificial agents.
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Appendix A

A Formal Framework for Structured
N-Back Stimuli Sequences

Morteza Ansarinia, Dominic Mussack, Paul Schrater, and Pedro Cardoso-Leite

Abstract

Numerous cognitive tasks, like the n-back, employ sequences of stimuli to target particular

cognitive functions. These sequences are generated to satisfy specific criteria but the gen-

eration process typically induces unintentional statistical structure in the sequences which

may not only affect performance but also alter the strategies participants use to complete

the task.

Here we propose that the generation of stimulus sequences can be conceptualized as a soft

constraint satisfaction problem and offer experimental evidence demonstrating the impact of

local sequence features on human behavior. Our approach to sequence generation provides a

means to better control and assess sequence structures, which in turn could help clarify the

cognitive and neural processes involved in cognitive tasks.
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A.1 Introduction

With more than 1600 hits on PubMed, the n-back task is one of the most popular tasks in

cognitive psychology today. It is widely used not only to evaluate working memory capacity

but also as a training protocol to improve working memory and possibly fluid intelligence

Jaeggi et al. (2008). In the n-back task, participants are presented a sequence of stimuli and

have to determine for each stimulus if it matches or not the stimulus presented n-steps ago.

Stimuli that match are called “targets”, those that don’t match are called “distractors”, with

close misses (i.e., distractors that would be targets under a slightly different 𝑁) are called

“lures”. While the task is widely considered a working memory task, it does not correlate well

with other “gold-standard” working memory tasks, such as the complex span task (Jaeggi et

al., 2010; K. M. Miller et al., 2009).

Previous studies have raised concerns that the n-back task may be solved using multiple

strategies, not all of which rely purely on working memory processes (Ralph, 2014). There are

numerous variants of the n-back task, but even within a variant participants could use various

strategies. One source of variation in the n-back task that is potentially biasing participants’

strategies are the statistical properties of the sequences of stimuli used for the n-back task,

which are typically uncontrolled for and differ across studies (Braver, 2012). For example,

(Ralph, 2014) showed that various statistical properties of n-back sequences may favor a

reactive cognitive control strategy whereby people’s performance relies on detecting stimulus

familiarity rather than on active information updating in working memory. Because statistical

properties of stimulus sequences seem to bias cognitive control strategies and hence cause

heterogeneous behavioral and neurophysiological outcomes it is necessary to characterize

those statistical properties and develop methods to generate adequate sequences.

Here, we propose an approach that allows researchers to parameterize interesting features

of the n-back sequences which may affect behavior. We then evaluate the predictive effect

of such uncontrolled parameters on behavioral outcomes. Results from this research may

have implications on the way the n-back task is put into practice to study working memory
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or improve cognitive skills. While our focus here is on the n-back, the principles presented

below apply to a broader range of cognitive paradigms.

A.1.1 Parameterizing the N-Back sequences

While n-back sequences are usually thought of as an ordered set of i.i.d. generated and

sequentially independent stimuli, in practice the sequences of stimuli are neither objectively

nor subjectively independent. Objective local structure is introduced by design constraints

like a fixed number of target or stimulus set size, while subjectively people are highly sensitive

to local sample structure in sequences. For example, unconstrained sampling from a uniform

distribution to generate sequences may lead to frequent local repetitions of stimuli (i.e.,

“lumpiness,”; Abelson, 1995). In the n-back task, such local patterns could encourage people

to identify targets solely based on stimulus familiarity rather than to use their working

memory, as this strategy may in this case lead to high performance at low cognitive cost. Here

we define a few basic measures known to be important for the perception of local structure

in sequences, and show how to use these measures to parameterize families of sequences.

N-Back sequences are typically generated by randomly sampling 𝑀 stimuli from a vocabulary

set 𝑉 (e.g., a set of 8 letters) with the constraint of having a specific number of targets (𝑇 )

in the sequence, given the fixed value of 𝑁 for the intended n-back version. Researchers

typically manipulate 𝑁 and 𝑇 to study behavioral and neural correlates of working memory;

other parameters are treated as nuisance variables.

A common procedure to generate n-back sequences involves two steps: first a sequence of

stimulus-role placeholders (e.g., 𝐷=distractor, 𝑇=target) is generated; then particular stim-

uli are sampled from the vocabulary to fulfill those roles. For example, the first step might

generate the sequence DDDTDTDT while the second step would instantiate particular stimuli

(e.g.,ABCEDEA). Generating n-back sequences using this procedure is problematic however be-

cause the resulting sequences are typically highly skewed with some stimuli being presented

much more frequently than others and frequently presented stimuli having a higher proba-
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bility of being targets (Ralph, 2014). Moreover, lures are more likely to trigger false alarm

responses and to require proactive control processes.

The lack of control for parameters such as lures and lumpiness may compromise results in-

terpretations and generate scientific confusion because such parameter may affect cognitive

strategies and consequently increase behavioral and neurophysiological data heterogeneity

(Juvina & Taatgen, 2007). Ralph (2014) urged researchers to carefully control frequency

distribution of stimuli, stimulus repetition, the fraction of targets and the fraction of lures,

and the number of different stimuli in the vocabulary set in order to have a better handle

on cognitive strategies. However, generating sequences that fulfill multiple criteria may not

always be possible or practical using standard, brute-force approaches; there might for in-

stance be cases where no such sequence exists. Furthermore, future research may require

the addition or removal of criteria and such changes would typically require rewriting new

sequence generators.

In the following section we conceptualize the generation of structured sequences for the n-back

as a constraint satisfaction problem. This approach has several key advantages: a) it provides

an implementation blueprint that accommodates a wide range of use cases b) it supports

the softening of constraints to ensure approximate solutions can be found within a practical

timespan; c) it supports compositional control of constraints that is well suited for hypothesis

testing and d) by taking advantage of the Maximum Entropy optimization framework and

Conditional Random Fields model, it is possible to move from an intuitive definition of

constraints to the space of probability distributions that are invaluable for modeling and

data analysis (Batou & Soize, 2013).

A.1.2 Structured sequences

A sequence is an ordered set of 𝑀 stimuli sampled from a vocabulary of 𝑉 stimuli that

satisfies specific criteria. A sequence of stimuli that (approximately) satisfies a set of specific

constraints on parameters or features is a qualified sequence.
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The problem of generating a qualified sequence can be reduced to a soft constraint satisfaction

problem, 𝑃 :

𝑃 = ⟨𝑋, 𝐷, 𝐶, 𝑊⟩

where 𝑋 is a set of structural variables to be controlled (see Table ??), 𝐷 is the set of

distributions over the variables, 𝐶 is the set of constraints expressed as expected values for

𝑋 (see Table ??), and 𝑊 is a cost function that uses the constraints to map a sampled

sequence to a real value (Table ??); it represents the degree to which a particular sequence

violates the constraints in 𝐶. Generating a qualified sequence for the n-back task can be

formulated as minimizing the aggregated cost of violating the constraints. Note that some

constraints in the n-back task cannot be relaxed; for example, constraints which include the

expected value of the 𝑁 , must be fully satisfied for the sequences to be valid.

Table A.1: List of structural variables (𝑋)

Variable Description

𝑥𝑁 N, number of trials to look back for a target.

𝑥𝑡 Targets ratio describes the number of target trials in a sequence regardless of

the stimulus.

𝑥𝑠 Skewness is maximum deviation of stimuli frequency from uniform distribution.

𝑥𝑙 Lures ratio represents the number of distractors which would be targets for

𝑁 − 1 or 𝑁 + 1.
𝑥𝑣 Vocabulary size is the number of all unique stimuli to be presented.

𝑥𝑡𝑙 Recent targets ratio represents the number of targets in recent trials.

𝑥𝑙𝑙 Local lures ratio describes the number of lures in recent trials.

𝑥𝑣𝑙 Local vocabulary size is the number of unique stimuli presented in recent trials.

𝑥𝑢𝑙 Lumpiness is the maximum number of repetitions in a sequence.

𝑥𝑠𝑙 Local skewness is the number of unique items shown in recent trials.
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Variable Description

𝑥𝑔 Gap is the number of trials since the last time the same stimulus appeared.

Table A.2: List of constraints on structural variables and respective violation costs

Constraints (𝐶) Violation Cost (𝑊 )

𝐸[𝑥𝑛] = 𝑁 𝑊𝑛 ∼
⎧{
⎨{⎩

0 𝑥𝑛 = 𝑁

∞ 𝑥𝑛 ≠ 𝑁

𝐸[𝑥𝑡] = 𝑇 × 𝑡𝑟𝑖𝑎𝑙𝑠 𝑊𝑡 ∼ 1 − 𝒩(𝑇 × 𝑡𝑟𝑖𝑎𝑙𝑠, 1)
𝐸[𝑥𝑡𝑙] = 𝑇 ×𝑤

𝑡𝑟𝑖𝑎𝑙𝑠 𝑊𝑡𝑙 ∼ 1 − 𝒩( 𝑇 ×𝑤
𝑡𝑟𝑖𝑎𝑙𝑠 , 1)

𝐸[𝑥𝑙] = 𝐿 × 𝑡𝑟𝑖𝑎𝑙𝑠 𝑊𝑙 ∼ 1 − 𝒩(𝐿 × 𝑡𝑟𝑖𝑎𝑙𝑠, 1)
𝐸[𝑥𝑙𝑙] = 𝐿×𝑤

𝑡𝑟𝑖𝑎𝑙𝑠 𝑊𝑙𝑙 ∼ 1 − 𝒩( 𝐿×𝑤
𝑡𝑟𝑖𝑎𝑙𝑠 , 1)

𝐸[𝑥𝑣] = |𝑉 | 𝑊𝑣 ∼ 1 − 𝒩(|𝑉 |, 1)
𝐸[𝑥𝑣𝑙] = 𝑚𝑖𝑛(|𝑉 |, 𝑤) 𝑊𝑣𝑙 ∼ 1 − 𝒩(𝑚𝑖𝑛(|𝑉 |, 𝑤), 1)
𝐸[𝑥𝑢𝑙] = 𝑤 𝑊𝑢𝑙 ∼ 1 − 𝒩(𝑤, 1)
𝐸[𝑥𝑠] = 𝑡𝑟𝑖𝑎𝑙𝑠

|𝑉 | 𝑊𝑠 ∼ 1 − 𝒩( 𝑡𝑟𝑖𝑎𝑙𝑠
|𝑉 | , 1)

𝐸[𝑥𝑠𝑙] = 𝑚𝑎𝑥(1, 𝑤
|𝑉 |) 𝑊𝑠𝑙 ∼ 1 − 𝒩(𝑚𝑎𝑥(1, 𝑤

|𝑉 |), 1)
𝐸[𝑥𝑔] = 𝑡𝑟𝑖𝑎𝑙𝑠

𝑤 𝑊𝑔 ∼ 1 − 𝒩( 𝑡𝑟𝑖𝑎𝑙𝑠
𝑤 , 1)

We have argued that sequence structure may affect cognitive performance and that conse-

quently such features need to be controlled. We argued for the use of the constraint satisfac-

tion framework as a principled approach to evaluate and generate qualified sequences. This

approach operates on structural variables which may or may not affect human behavior and

thus may or may not require stringent control.

To evaluate the relevance of the structural variables highlighted above for the n-back task

we will analyze an existing dataset which did not explicitly manipulate or control for these

structural variables. If these structural variables are informative about participants’ n-back
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performance it follows that they are scientifically relevant and should be explicitly listed and

constrained for both sequence generation and performance evaluation.

A.2 Evaluating behavioral impacts of structural fea-
tures

A.2.1 Data

We used a previously published n-back dataset from (Cardoso-Leite et al., 2016). This dataset

contains n-back data from 60 healthy adults (M=20.68, SEM=0.42) completing both the 2-

back and 3-back versions of the n-back paradigm. For each version participants completed 3

sequences of 30 trials each which resulted in a grand total of 360 n-back sequences and 10’800

trials. On each trial, stimulus identity, reaction time and accuracy were recorded. For more

details about this dataset, see (Cardoso-Leite et al., 2016).

A.2.2 Analysis

To evaluate the need to control for structural variables we fit and contrast two nested models

that predict participants accuracy on a trial-by-trial basis, using a different set of predictor

variables.

The base model uses the common approach of relating performance to descriptors of the

sequence as a whole (i.e., 𝑥𝑛, 𝑥𝑣, and 𝑥𝑡) as well as the current stimulus (i.e., target or

distractor) to predict the accuracy of the response to the current stimulus.

The extended model includes in addition all the structural variables listed in Table ?? (e.g.,

𝑥𝑙, 𝑥𝑢, 𝑥𝑠). These structural variables are computed not on the sequence as a whole but

rather on the recent stimulus history (8 previous stimuli, excluding the current stimulus).

This approach exploits local variation along the dimensions of the structural variables to

evaluate the impact of those variables on accuracy.
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The data was subdivided into a training (80%) and a test set (20%). Both models were fit to

the same training set using the imbalanced Partial Least Squares (PLS) method; this method

was chosen because most responses were correct (92%) and the predictor variables are not

mutually independent. Both models were then evaluated by their ability to account for test

data using the area under the curve (AUC) as the model performance metric. The reliability

of the AUC was further characterized using bootstrapping (1000 repetitions).

Two main conclusions can be drawn if the extended model outperforms the base model: a)

structural variables affect behavior and hence need to be controlled by the sequence generator,

b) even when they are controlled at the level of a sequence as a whole, local variations in

structural variables may already be enough to affect behavior and it might be necessary to

use trial-by-trial estimates of local properties to analyze human behavior and brain activity.

A.3 Results

Figure A.1 shows the ROC curves for the two fitted models. The base model predicts response

accuracy above chance level (𝐴𝑈𝐶=59.51; 𝐶𝐼95% = [54.81, 64.21]). The addition of struc-

tural variables as predictors in the extended model improves model performance substantially

(𝐴𝑈𝐶=68.56; 𝐶𝐼95% = [65.76, 71.36]).

To determine which variables drive the performance accuracy of the extended model, we ran

a model-based variable importance analysis using the Boruta package in R (Kursa & Rud-

nicki, 2010). These importance scores were calculated using random forest method alongside

shadow features, which are copies of original features but with randomly replaced values; this

serves to remove the importance of a feature while nevertheless maintaining their distribution

of values unchanged.

This analysis shows that the structural features computed on the recent history contributes

most to the predictability of participants’ accuracy. Figure A.2 shows the relative importance

of the predictor variables used by the extended model.
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Figure A.1: Classification performance for the base and extended models. AUC = Area
Under the Curve
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Figure A.2: Relative importance of structural variables (𝑉 ) on the prediction of participants’
response accuracy.

Although a direct causal relationship cannot be inferred from the results, higher contribution

of recent trials in the extended model (i.e., higher relative importance of 𝑥𝑣𝑙, 𝑥𝑡𝑙, 𝑥𝑙𝑙, and

𝑥𝑠𝑙 than their global counterparts, 𝑥𝑣, 𝑥𝑡, 𝑥𝑙, and 𝑥𝑠) suggests that behavioral responses are

partially guided by a more fine-grained set of structural features.

A.4 Conclusion

In sum, we propose a compositional framework to parameterize and exploit interesting fea-

tures of the n-back sequences and evaluate behavioral effects of the features of random se-

quences. We developed two predictive models to compare the importance of these structural

features.

Methods that are commonly used to generate n-back sequences use independent random sam-

pling for each trial and cannot control all the influential features. Instead of an independent

random sampling process, we proposed a framework to reformulate generating the n-back

sequences as a soft constraint satisfaction problem. This approach can be used to formalize
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the effect of structural patterns in other cognitive tasks that present random sequences of

stimuli.
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Appendix B

Behaverse data model

Aurélien Defossez, Morteza Ansarinia, Brice Clocher, Emmanuel Schmück, Paul Schrater,

and Pedro Cardoso-Leite

B.1 Introduction

Experimental psychologists have been collecting behavioral data for over a century now. As

psychological sciences and related fields are maturing, it has become increasingly clear that

the field needs to establish and converge on standards and standard operating procedures.

Data is essential to science. The recent rise of the open science movement and the increased

propensity to share and reuse data, as well as the need to integrate results across multiple

studies (e.g., within meta-analyses) has revealed many shortcomings in the way we currently

process our datasets and has motivated several initiatives aiming to make these datasets

easier to find and use. Prominent examples include BIDS (Brain Imaging Data Structure,

bids.neuroimmaging.io; see Gorgolewski et al., 2016), which focuses on brain imaging data

and NeuroData without border (Teeters et al., 2015) which tackles neurophysiological data.

Behavioral data, however, has received comparatively less attention, perhaps because at
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glance sight it appears simpler than those large imaging datasets. We argue that behav-

ioral data is in fact more complex than meets the eye and that defining clear standards for

behavioral data may benefit all fields that rely on such data.

Standardizing how we define, name, format, organize, describe and store behavioral data can

provide multiple benefits, including:

• efficiency (e.g., less work, reuse of code, automated software);

• robustness (e.g., less errors because of ambiguous idiosyncrasies);

• transparency (e.g., fewer hidden choices in the code and data);

• quality (e.g., via automated checks of data quality, consistency and completeness);

• usability (e.g., via clear documentation, ready-to-use data).

Note also that non-standardized data formats call for non-standardized data analyses which

may obfuscate results at a time where more papers are published than anyone can read. By

contributing and using data standards, we may accelerate scientific progress in psychological

sciences, as seems to have been the case in other fields (for examples, see Teeters et al., 2015).

Here we present key ideas, concepts and principles that guided us in creating the Behaverse

data model (v2020.12.1); the more detailed, somewhat opinionated and continuously updated

specification of this data model is accessible at behaverse.github.io/data-model. While there

have been significant efforts to make behavioral data easier to share and find, our focus

here is on structuring behavioral datasets to both reveal the essential structure common to

behavioral data and make them easier to (re)use.

B.2 Challenges of behavioral data

There are key challenges to systematizing behavioral data.

First, behavioral data is highly diverse, as it includes body movement, gaze, key presses,

mouse clicks, written output and speech to name just a few. We currently have no clear

standards for each of these measurement types, no standards that would be consistent across
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measurement types and no standards on how to relate multiple measurement types (both

conceptually and practically). Hence, while we are technically able to record rich, multivariate

behavioral datasets, we lack the conceptual and software tools to effectively exploit that

richness.

Second, to interpret behavioral data it is necessary not only to characterize the behavior itself

but also the context in which that behavior occurred. Taking as an example the most basic

of cognitive tests, a particular key press is interpreted as being a response to a particular

stimulus within a particular task that evaluates to “correct” or “incorrect”—the key press on

its own, however, is not very informative. Note that this is not necessarily the case for other

types of measurements (e.g., functional connectivity between two brain areas). Hence, the

accurate description and effective processing of behavioral data requires rich annotations of

the task and its underlying theoretical constructs, the stimulus and the person’s state. Major

efforts have been made in this direction (e.g., R. A. Poldrack et al., 2011); however, current

solutions haven’t yet matured enough to be an integral and standard part of the behavioral

data analysis process.

Third, and related to the previous point, the way we describe behavioral data is limited by

our understanding of what a task is. Indeed, although “tasks” or “tests” are the cornerstones

of experimental psychology and related fields, we do not have a theory of tasks (which

could for instance characterize the structural relationships between any two tasks) or even

a clear framework on how to name or think about fundamental concepts like “instructions”,

“feedback” or “trial”, let alone how to convert them into usable data structures—this applies

not only to concepts in psychology but also more general concepts like “raw data”. This lack

of clarity on concepts that are pervasive in behavioral data have led to the discarding of what

seems to us to be critical information (e.g., task instructions not being recorded anywhere)

and is at least partially responsible for the large inconsistencies one may find today across

publicly shared datasets (e.g., names, meanings and units of measurement). Hence, there is

a clear need to better conceptualize tasks, clarify concepts and converge on standards.
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Finally, the current practices and software tools used today for behavioral data analyses seem

inadequate to handle the rich and complex data structures that seem necessary to accurately

describe behavior. Without a clear understanding of those data structures we can’t create

effective tools that exploit that richness; but without effective tools there is no incentive for

researchers to invest effort in structuring their data accordingly. Hence, until we have clear

standards, well-structured rich datasets, effective data analysis software and a demonstration

of added value, most researchers will understandably continue to work the way they’ve done

in the past. Hence, while we should aim for better standards and tools, we still need to take

into account current practices and tools and offer solutions that can be useful today.

The challenges we just described are considerable and overcoming them will require sustained

efforts over many years. Our goal here is to contribute to overcoming these challenges and

improve the way we describe and organize behavioral data. The solutions we propose here

focus on three dimensions:

• clarity. Below we describe various ways in which current datasets are inconsistent.

We then present and define several key concepts for behavioral data, the most impor-

tant of which being perhaps the notion of a “trial” which we define as an instance

of a “task-pattern”. Rows in a “trial table” are then formed by extracting data from

event data according to a task-pattern (using a query-like process) and each row in

the “trial table” needs to contain all the information that is necessary to evaluate

that trial (i.e., determine whether the response was correct or not). We also define

different types of data tables (e.g., “L1” data) as well as canonical data tables (see

behaverse.github.io/data-model).

• consistency. There are many choices to make when structuring data. These include,

for instance, which naming conventions to adopt (e.g., “RT” versus “response_time”),

which specific names to use for a particular concept (e.g., “subjects” versus “partici-

pants”) and in what units to express certain variables (e.g., “seconds” versus “millisec-

onds”). While many of these choices may be arbitrary, it is vital for achieving the

overarching goal of consistency to actually make these choices and document them in
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a clear way (Martin, 2009)—we have started this process and documented our choices

publicly (see behaverse.github.io/data-model).

• usability. Our particular choices for structuring behavioral data is motivated by the

desire to make this data model useful and compatible with the tools and processes most

researchers already use today. More specifically, we focus on tabular data (rather than

more complex data structures) and aim for a good balance between human readability

and computer/data efficiency. As we describe below, behavioral data involves many

different types of data which could be compactly stored in a wide range of related tables.

Such tables would however be much harder to process for humans as the information

about a particular trial would now be distributed over multiple tables. Instead, we

define, a primary “trial table” that contains all of the high level information about a trial

(in line with current practices), and whose primary key serves to connect additional,

possibly subtrial data (e.g., the timestamp of each of the images presented during

that trial). To keep this paper short, we focus here only on what we believe to be

central ideas; more content and specifics are available in the accompanying website

(behaverse.github.io/data-model).

B.3 Data consistency levels

In this section we describe how typical behavioral data currently available in public reposito-

ries look like and detail various issues that make it hard to reuse them. Behavioral data from

experiments in psychology or related fields are currently scattered across multiple locations,

including researchers’ personal webpages or various public repositories (e.g., osf.io)—which

over the past decade have made it much easier to find relevant datasets. Exploring these

datasets quickly reveals large differences in how behavioral datasets are formatted, named,

organized, described and shared—sometimes even within the same lab. Unfortunately, find-

ing a behavioral dataset today is no guarantee that it will be usable at all and it seems that

in most cases substantial work would be necessary to understand and use them.
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Table B.1: Data Consistency Levels. It is our understanding that current standards in
behavioral sciences places us within levels 0 to 1.

Level Description

0 The dataset is incomplete; critical information is missing (e.g.,
description of what the variables mean).

1 All datasets are formatted in a unique way and can’t be joined without
reformatting.

2 Datasets can be joined when they originate from the same task ”variant”
(e.g., a 2-back task using digits)

but not from distinct variants (e.g., a 2-back versus a 3-back task).

3 Datasets can be joined across all variants of a a task (e.g., all N-back
tasks).

4 Datasets can be joined within a family of tasks (e.g., all CPT-like tasks).

5 Datasets can be joined across several task families.

6 All datasets can be joined.

To qualify the current state and future progress in behavioral data standardization we devised

a data consistency scale which describes 7 levels of consistency, defined by the type of table

joints—or merging of different data tables—that a data model supports (see Table A.1).

Next, to get a rough sense of the data consistency level in cognitive psychology, we selected

three popular cognitive tests—the digit-span task, the N-back task and the AX-CPT task.

We then searched, downloaded and reviewed recent datasets from osf.io. Our goal here is

not to make claims about the quality of the specific data samples we chose or of the research

conducted using that data (hence, we keep them anonymous). Our goal is also not to be

exhaustive and have a definite characterization of the current state of affairs. Instead, we

want to point out the diversity and inconsistencies that currently exist in such datasets and

describe the various issues that one encounters right after discovering what seems to be a

relevant dataset. Below we describe these issues in the order one would encounter them.
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B.4 Inconsistent data formats

Most data sets seem to be in csv format. However, we also found several Excel files and

proprietary formatted data which could not be read at all. Oftentimes, data is shared as a

single data file (containing the data for all participants) or in multiple files that all have the

same structure (e.g., one file per participant). These datasets rarely provide a codebook to

explain the meaning and possible values in their datasets and it would therefore be necessary

to manually go over other available materials (e.g., the corresponding research paper) to

attempt to uncover that information.

B.4.1 Unknown or inconsistent data level

Behavioral data come in various levels of granularity. Some data sets might contain each

response given by every participant while others may only include aggregated data for each

person (e.g., one row per participant versus one row per trial). It is typically impossible

to know which level of data granularity the shared data offers before actually opening and

inspecting the data files.

It is also very common that data tables mix data that are from different sources or levels

of granularity. For example, a data table might include trial-level data for each participant

(i.e., a row for each response the participant gave) but at the same time have a column that

indicates the age and gender of the participants (e.g., the values “21” and “female” repeated

across all rows within a given participant) or even summary statistics (e.g., d’prime), whereby

it can sometimes be ambiguous as to whether those summary statistics were computed on

the trial-level and then joined to the trial-level data or whether they were computed using

other data.

B.4.2 Inconsistent variable naming conventions

Naming variables is notoriously hard and unsurprisingly, there are numerous inconsistencies

in variable names (Martin, 2009). We found inconsistencies in naming conventions across but
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also within datasets. Some data sets use lower-case “snake_case” (e.g., “n_correct”) others

use upper-case snake-case (e.g., “N_Level”). Some use CamelCase (e.g., “TrialList”) or a

mixture between CamelCase and snake_case (e.g., “V_FalseAlarm”) or still something else

(e.g., “TrialList.Sample”). Some variables may be in all uppercase (e.g., “CUE_ACC”) or

include information about the coding scheme (e.g., a column named “FEMALE=1”). While

one may argue that such conventions are more or less arbitrary, it stands to reason that a

given convention should be used consistently across a given dataset. This is not the case

in the random sample of studies we’ve reviewed as within the same table we could find for

example “Span_amount”, “CorrectAnswer” and “TrialList.Sample”.

We also note the variability with which the same construct is named and coded. For example,

most if not all datasets have a variable to refer to individual participants in a study. Common

variable names to refer to participants are “id”, “Subject” and “SubjectID”. The use of “id”

may however be ambiguous (id could perhaps refer to trial index). Sometimes the values

that this variable takes is an integer (e.g., 15), sometimes it’s a concatenation of something

that seems to be a study or condition name and an integer (e.g., “A_15”). Coding schemes

for the subject variable may be somewhat arbitrary but there might be an issue when there

are multiple datasets. For example are “A_15” and “B_15” different people or are they the

same person (participant 15) that completed two different tasks (“A” and “B”)?

Another variable that is common in behavioral data sets refers to individual trials within an

experiment. Again we observed quite some variability. While it is common to use the name

“trial” or “id”, we also found datasets where the trial index variable was missing and seemed

thus to be implicit in the order of the rows of the table and other cases where the “trial”

variable was not used to refer to the index of the trials but rather to describe a type of trial

(e.g., “start”, “nontarget”, “v_target”).
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B.4.3 Unknown values and units

Another common issue, which might be resolved by the use of codebooks, is the absence

of information about the possible values a variable can take and what units a variable is

expressed in. For example, it is very common for data sets in experimental psychology to

include response time data. It is typically not possible to determine if they are expressed in

milliseconds, seconds or minutes before inspecting the data and using domain knowledge to

infer the units.

B.4.4 Conclusion

A quick review of publicly available datasets reveals substantial inconsistencies in the way

individual researchers/research groups (including ourselves) structure their data. Such incon-

sistencies are inconsequential for researchers working on their own data but limit the reuse

of data by other researchers and the aggregation across data sets, even for datasets collected

using very similar tasks.

In what follows we first describe some key properties of behavioral data before introducing

the behaverse data model we currently use.

B.5 Behavioral experiments require multiple types of
data

Data from cognitive psychology experiments are often shared in the form of a single table

where each row refers to an individual trial completed by a person. While it is convenient

to only have one file for data-analysis, this “simplicity” is in fact illusory and valuable data

is currently hidden within the associated paper, computer code (or still other documents), if

not missing altogether.

Typical behavioral data collection scenarios involve collecting data that are semantically dis-

tinct but intrinsically linked by virtue of the data collection situation. Consider for instance
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a typical cognitive psychology experiment. A research group invites participants to their lab

to complete a computerized version of the “digit-span” test twice. What type of information

could one expect this study to collect? Below is a non-exhaustive list of the kinds of data

that are or should be recorded:

1. Information about the study (e.g., who conducted the study, when and where; what

was the intentions; is the study approved by an ethics committee; what was the funding

source); this information is typically idiosyncratically present in manuscripts but should

be structured in a standard way, for example, in a “Study” table.

2. Information about the participants. This can include variables like birth date, gender,

or nationality. Part of this information may be in the manuscript (e.g., “we recruited

participants from city X”) and part of it may be in the trial data (e.g., the “age” and

“gender” variables that are in the trial-level data). It is important to note that some

information about participants is fixed (e.g., birth date) while other information may

be context dependent and linked to the actual moment of data collection (e.g., age).

Static information about the participant should be stored in a “Subject” table, while

dynamically changing information (e.g., age) might be stored in a “Session” table.

3. Information about the activity participants engaged with. In cognitive tests, this would

include for instance the name of the task, task parameters, the instructions given

to participants. This information is typically buried in a research paper and often

incomplete (e.g., the actual task instructions, although essential, are rarely listed in

full). More and more often, the actual code that was used to run the activity is made

available as well—but it may require significant work to uncover task parameters from

code. Information about the task or activity should be organized in an “Activity” table.

4. Information about the hardware being used and of participants’ physical environments.

For example, this could indicate particular brands and models of tablets or computers,

versions of OS and software.

5. Information related to the interactions between the participant and the com-

puter/environment, in particular information about what stimulus was shown, when
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and where and what inputs participants made.

6. Information about events that occurred while participants were engaged in the activity.

For example, this could include information about the quality of the data collection

process (e.g., average frame rate) or observations made during the experiment (e.g., ex-

perimenter notes that a participant seems to be falling asleep); this type of information

might be stored in a lab or personal notebook.

7. Information about participants progress through the study (e.g., list of participants

having completed one test but not the other, data and time of completion of tasks,

order of task completion).

The list above is not exhaustive but includes the main types of data that could in principle

be collected in all behavioral experiments. The point we want to make here is that a data

collection campaign comprises in fact multiple data tables and each data table has its own

type (i.e., specific requirements, formats).

Our goal in this document is not to go over each of these data types and review existing

solutions (although such an enterprise would certainly be useful). Our primary focus in this

document is on the data type (5) which we’ll refer to as the actual behavioral data. In our

opinion, this is the data type that has received the least attention and presents the largest

inconsistencies across studies. It is also the type of data that is most relevant for behavioral

data analysis and which would most benefit from standardization.

B.6 Behavioral, interaction data

There is a lack of clarity on the meaning of terms that are commonly used in behavioral

data (e.g., what constitutes “raw data”? what is a “trial”? what is a “task”). In beha-

verse.org/data_model we define several of those terms and other conventions we use in the

behaverse data model. In what follows, we attempt to present the big picture view of behav-

ioral data and clarify essential terms.
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Figure B.1: From data collection to analysis. 1) Subjects interact with digital artifacts and
produce data. 2) The resulting data (“source data”) is typically stored in idiosyncratic for-
mats, possibly determined by technical constraints of the digital artifacts. Furthermore, this
“source data” may contain data that is not of direct relevance to researchers (e.g., technical
information about the software) and important information may come from other sources
(e.g., information about the study that is present only in the corresponding research paper).
3) It is typically necessary to extract the relevant data from the source data. Here we distin-
guish “event” data and “trial” data. Event data describes the behavioral data as a sequence
of time stamped events, which have specific types (e.g., a mouse click) and data (e.g., the
screen coordinates of the click). Trial data organizes those events following a task-pattern
into a tabular form, where each row describes one trial. Further data files are necessary for
example to describe the study. Note that it is typical for the data collection artifacts to
already embed some data processing code and keep as source data only the “trial” data. 4)
The most important type of behavioral data appears to be the event data from which differ-
ent trial datasets may be extracted—this is in our opinion what should be viewed as the raw
data and it will be valuable in the future to standardize behavioral event data and develop
effective tools to deal with such data and extract trial-based data from them. 5) We define
as Level 1 data, the data tables which are organized by trial. These are the tables we believe
are most useful given current practices. In particular, we define the L1-Trial table, where
each row contains complete and standardized information describing a particular trial (as is
already currently the case, albeit inconsistently) and where the trial identifier is used as a
primary key to additional, more detailed or specific tables (e.g., a table describing each of the
mouse clicks that occurred during a trial). 6) The L1 data serves as the standardized input
to data processing pipelines, which will derive additional tables (e.g., L2, L3), for example
by transforming and summarizing data or aggregating across subjects
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B.6.1 Source data, raw data and derived data

We consider as source data, all the data that is saved by the data collection artifact (e.g.,

computerized cognitive test) in its original structure and format (e.g., a single data file in a

proprietary data format; multiple json files). Source data can contain all sorts of data. It

includes the raw data but may also include metadata (e.g., information about the artifact

itself) as well as derived data (e.g., a performance score computed from the raw data). Source

data is typically in idiosyncratic formats and not usable as is.

Not all source data is raw data; and raw data needs not be source data. There are certain

operations that can be performed on the raw source data to extract and constitute a dataset

that is more usable without that dataset losing the “raw data” status. For example, if a

source file is saved as a csv (comma separated values) file, converting that csv file into a tsv

(tab separated values) file, is a trivial operation that has no consequences on the outcome

of the study. On the other hand, filtering out some data based on performance or rounding

numeric values are operations that may impact the outcome of subsequent analyses; hence

the data that results from applying those operations can no longer be considered “raw”.

Operations we consider to preserve “rawness” are selection by type (not by value), removal

of duplicates, renaming of variable names for clarification, change of units, reordering of rows

and columns and referencing/indexing (e.g., numbering rows of a certain type) and reversible

file format conversion (e.g, csv to tsv). In short, as long as the information in the data is

equivalent to the information in the raw source data, in our opinion, that data can be said

to be raw.

B.6.2 Event data and trial data

Two common ways to structure behavioral data are by event or by trial (source data may

contain either event data or trial data or both). Event data lists particular events that

occurred during a study (e.g., a person pressed a key, a stimulus was displayed on the screen)

with a timestamp (i.e., when did that event occur) and information describing the event
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(e.g., where on the screen did the click occur, how long did it last). The event data format

is common in cases where behavior is related to other, time varying measures (e.g., in fMRI

or EEG studies); it is much less common in behavioral sciences where information about

when particular events occured is often discarded. In those fields, it is much more common

to structure the behavioral data by trial, meaning, as a table where each row corresponds to

a “trial” and each column to a variable describing what happened during that trial (e.g., for

trial_index = 3, correct = TRUE).

It is important to note that beyond the shape factor, trial data and event data are quite

different. Event data may describe events as they occurred and are thus more objective

(e.g. a click occurred at timestamp 6.824). Trial data, on the other hand, are fundamentally

tainted by the experimenter who needs to define (typically implicitly) a “task-pattern” which

defines which events to select from the flow of events that occurred during the study and how

to aggregate and/or transform them in order to constitute a row in the Trial table.

Let’s take an example to make this point clearer. In a N-back task, participants are shown

letters, one at a time, and asked to report whether the letter that is currently displayed is

the same as the letter shown N steps earlier. Let’s further compare a 2-back and a 3-back

test that use the exact same sequence of letters. The event data from these two tasks may

look virtually identical (they have events describing the occurence of letters and key presses).

The trial data, on the other hand should look differently because for the 2-back test we use

a different “task-pattern” than in the 3-back test. For example, in the first case we might

describe the stimulus of the first two trials as “3-1-3” and “1-3-4”, while the same sequence of

events in the 3-back task only forms one trial whose stimulus could be described as “3-1-3-4”.

Figure B.1 shows various steps in the lifetime of a dataset, ranging from its collection to the

aggregation of summary statistics across participants. The format and structure of the source

data is subject to various engineering constraints and specific to particular data collection

software systems; it is therefore unlikely that we’ll converge on standards for source data

that would apply to all use-cases any time soon. However, we could aim to define standards
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for raw event and trial data which could be readily used as input for data analyses pipelines

and shared on public data repositories.

Here we focus on describing the L1 data, leaving for later standardization efforts of event

data. This choice is motivated by our belief that standardizing trial data will be of most

practical value to the research community.

B.6.3 Key concepts for specifying trial data

The data format that seems most useful and characterizes many shared behavioral datasets

displays one row per “trial”—we call this the “Trial table”. For example if an experiment

tested 50 participants and each participant completed 200 trials, the Trial data table would

contain 10’000 rows in total (assuming all the data was in a single table).

It is important to note at this stage that the term “trial” is not used in a consistent manner

in the literature and the corresponding data files. The following section aims to highlight

and clarify this issue.

B.6.3.1 The meaning of “trial”

Different meanings are associated with “trial”. Firstly, “trial” may be used to refer to itera-

tions of a chunk of code that is executed repeatedly (or equivalently a sequence of stimulation

and input recording events). For example, a trial may consist of the presentation of an image

on the screen and the recording of a keypress made by the user after the appearance of that

visual stimulus. Secondly, “trial” may be used as an index to refer to individual rows in a

data table. For example, each time the user presses a key we add a line to a data table that

indicates which stimulus was shown and which button the user pressed. Thirdly, “trial” may

refer to an instance or sample of a specific experiment in the statistical sense. For example,

we want to determine if a particular coin is biased and repeatedly throw that coin and record

the outcome; each throw represents a trial of that particular experiment. Finally, “trial” may

be used to refer to a period of time or “episode” during the experiment (e.g., “the participant
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blinked during the second trial”, “there was a 5 minutes break between trials 50 and 51”).

In the most basic cognitive tests, all three meanings are congruent and thus interchangeable.

But as experimental designs increase in complexity, even slightly, those notions are no longer

equivalent and it becomes necessary to use more precise terminology.

Let’s take a simple example to illustrate this point. Imagine a task where a letter is shown

for 1 second and participants have to press one of two keys in response to that letter during

the subsequent second—this code loop then repeats 100 times. In condition-1, participants

are asked to press the right key each time they see the letter X and to press the left key

otherwise (a “Sustained Attention to Response Task” like test Robertson et al. (1997)). In

condition-2, users are asked to press the right key each time they see the letter X but only if

it was preceded by the letter A and to press the left key otherwise (the AX-CPT task; Braver

et al. (2001)). Finally, in condition-3, both tasks are to be completed at the same time: a

single letter is successively shown on the screen, but there are now two sets of buttons, one

per task.

While the same code can be used to run these three conditions, from the perspectives of the

participant and researcher, they are different in important ways. In condition-1, we would

expect the stimulus description to refer to a unique letter, while in condition-2, a stimulus

would refer to pairs of letters (this information is necessary to determine in each case whether

participants’ responses were correct or not). Furthermore, if condition-1 and condition-2 use

the same sequence of letters, the resulting number of trials will be different across the two

conditions. Consequently, in this example, a “trial” in the code-loop sense no longer maps

directly to a “trial” in the table index sense as information from two different code-loop trials

is now contained in a single table-index trial. Next, if we consider the second experimental

condition, one might assume that an experimenter will be interested only in those instances

where a letter X was shown and it was preceded by another letter. If those instances define

“trials” in the statistical sense, then trials should count only these specific instances. For

example, if we assume that there were 100 code-loop trials (i.e., presentations of letters) but

only 5 of those presented the letter X then there could at most be 5 trials (in the statistical
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sense) in that experiment, and thus only 5 rows in the corresponding data table. Finally, if

we focus on condition-3, we see that for a given letter, there are two “trials” (one per task)

occurring at the same time. Trial in this (and other cases) can therefore no longer be used to

refer to a time period—to refer to particular, temporally distinct and non-overlapping time

periods in an experiment we recommend to use “episode” instead. In condition-3, we could

then have the same episode index correspond both to the 5th trial of the first task and the

first trial of the second task.

The example above illustrates that “trial” can be used in inconsistent ways and that it is

necessary to clarify its meaning. Within the behaverse data model we use the statistical

definition of trial and define a trial with a corresponding task-pattern (see below). For

indexing rows in a table we use a more generic “id” variable and for indexing particular time

periods in a study we use “episode”.

B.6.3.2 The task-pattern

Consider again the example experiment presented earlier where under two different conditions,

letters were presented successively and participants were required to press one of two keys

in response to those letters. The event data from both of these conditions could virtually be

identical, with the same type of events being recorded each time a stimulus is shown or key

is pressed. However, the corresponding trial data would look rather differently across both

sets of conditions.

One can think of the trial data as something that is “created” from the event data (+ some

other stuff). Indeed, one could write “extraction” code that would parse the event data look-

ing for specific sequences of event types, extract the data corresponding to those event types

and process and shape them into a row of the trial table—we call this code the “extractor”

and save its parameters together with its trial data.

The specific sequence of event types, used by the extractor to query the event data, is what

we call the task-pattern (in analogy to pattern in regular expressions). A task-pattern is

214



typically of the form {stimulus-set; action-set}. In condition-1 of our example task, the

stimulus-set might be all letters, while in condition-3 it might be all pairs of successively

presented letters or all pairs of letters where the second letter is the letter “X” (depending on

the experimenter’s intention). In both cases, the action-set is any of the two possible button

clicks that occur within 1 second after the stimulus. Task-patterns can of course be more

complex; the key idea here is that the definition of a trial of a particular type is determined

by a task-pattern. In the behaverse data model, when we index a trial, we index trials for a

given task-pattern.

There are two points we want to emphasize here. Firstly, while the event data can be seen

as an objective description of what actually happened during a study (e.g., the letter “A”

shown on the screen center at 10:42:01”631”; the left arrow key was pressed at 10:42 02’246”),

the trial data necessarily reflects the experimenters view of what that data means (e.g., the

key press is a response to the letter, the response time is computed as the difference of times

stamps and equals 0.615 seconds, and the response is correct given the current task rule).

In fact, a different trial dataset could be generated from the same event dataset. The take-

home message then, is that a) we need to store the event data as this data is privileged and

more objective/raw than the trial data, and b) for a given trial dataset we need to maintain

information about its provenance (e.g., the name of the task-pattern or extractor-code used

to go from event data to trial data). Secondly, we believe that the concept of task-pattern is

important beyond the context of data extraction and might be useful to characterize tasks

for computational modeling or to implement artificial agents capable of performing tasks.

B.6.3.3 Evaluation

The task-pattern defines what constitutes a valid trial within a given experiment; it defines a

subset of all possible stimulus and input sequences. Each element in this set of valid trials is

mapped to a value. For example, it is very common in cognitive psychology for the response

on a given trial to evaluate to “correct” or “incorrect”. The value function or “evaluation”

can be seen as a set of rules which are typically (implicitly) described in the task instructions

215



(e.g., [to be correct:] “if you see the letter X press this key, otherwise press that key”);

the value function may also be defined relative to an idealized policy—the particular way

the experimenter believes participants should map stimuli (sequences) to action (sequences)

within the context of the study.

B.6.3.4 Runtime extraction and evaluation

It is important to note that the software we use to present stimuli to participants and record

their actions typically encodes information that reveals our intentions and may in fact distort

the data. For instance, some researchers might not record event data and instead create the

trial data directly as events unfold in time—their code instantiates an “extractor”. This

will typically discard data (e.g., when did a trial start) which makes it impossible to later

reconstruct the time course of events as they occurred. Furthermore, that same code also

typically includes evaluation code, as this might be necessary within the experiment itself,

for example to display participants a correct/incorrect feedback signal for a given response.

It can be convenient and sometimes necessary to have these data processing functions em-

bedded in the data collection code and operate during runtime on the events as they occur.

However, one should also be wary of the fact that this code may contain errors. If we record

only the output of those processes, i.e., runtime generated trial data but no event data, it

might be impossible to detect and ultimately correct those errors.

B.6.3.5 Trial data versus L1-data

When describing the data that is extracted from the event data we used both the terms L1-

data and Trial data in the sections above. These two terms, however, are not synonymous.

Rather, L1-data refers to the state of the data (typically multiple tables) within a stage of

the data analysis pipeline (see Figure B.1). Trial-data, on the other hand refers to a specific

type of data table where each row contains data from a single trial as defined above. In the

next section we’ll review the structure of the L1-data, and discuss what other tables besides

the Trial table may exist within L1.
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B.6.4 L1 data model

Behavioral data (e.g., from computerized cognitive tests) are typically shared in a tabular

format (e.g., one csv file per task), where rows typically correspond to individual “trials”

and columns refer to different types of variables that describe that trial (e.g., response time).

This, however, is insufficient. Firstly, it is already the case that the single-table trial-data

does not include all necessary information. For example, it is typically necessary to read

the paper about that data to learn about task parameters that did not vary across trials

(e.g., the duration of stimulus presentations). Extracting that data and putting them in a

consistent format would facilitate subsequent data usage. Secondly, behavioral data contains

information that can be grouped into different semantic categories. These subcategories may

have nested structures which do not play well with a simple single-table format but may

instead be properly organized into multiple sets of tidy tables. More specifically, we define

the following semantic data categories for the L1 data:

1. Context: provides context information for a particular trial, such as, identifiers for a

study, a session, a participant and task.

2. Task Information: describes the tasks participants were exposed to (e.g., instructions,

task parameters).

3. Extraction Information: describes how event data was converted into trials.

4. Stimulus Information: describes what stimuli were presented to participants.

5. Options Information: describes the different options participants had for responding

on a given trial.

6. Input information: describes the actions participants made (e.g., a button click).

7. Response Information: describes the meaning of participants inputs within the

context of the task (e.g., option “match”).

8. Evaluation: describes the value associated with participants’ responses (e.g., this

response was correct); this value is not necessarily communicated back to the partici-

pants.

9. Feedback Information: describes if and how participants received explicit informa-
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tion about their response or performance (e.g., green check after a correct response);

this data describes physical events shown to the participants. Note that one may have

the case where a “green check” feedback is shown to participants after an incorrect

response (i.e., evaluation and feedback are distinct constructs).

10. Outcome Information: describes the consequences of the participants’ action in the

test. For example, in a serial ordered search task, participants are asked to open boxes

to search for a token. Opening a box has the outcome of revealing its content and

changing the state of the world (e.g., it reveals an empty box). While an outcome

may implicitly contain feedback information, it is not necessarily the case. On the

other hand feedback is solely meant to convey participants information about their

performance. Outcome and feedback and evaluation are distinct constructs. In our

box opening example, a participant may correctly click on an empty box (evaluation),

see a green check (feedback), and see that the box is in fact empty (outcome).

11. Reward Information: participants sometimes get a reward in tests; this could for

example take the form of points, money or even food.

12. Experimental Design Information: provides additional, optional data or features

that the experimenter believes will be useful to interpret participant’s responses (e.g.,

tagging certain trials in the N-back task as being “pre-lure” or “post-lure” with the

intention to contrast performance on these two types of trials).

13. Hardware information: provides information about the hardware that was used to

collect the data (e.g., this keypress was collected from keyboard #2).

14. Technical Runtime information: provides information about how well the trial was

executed from a technical point of view (e.g., were there unexpected lags?).

15. Information about additional data: provides information about additional mea-

sures that might have been collected during the study (e.g., brain imaging data).

Each of these categories could have its own table with additional tables associated to them

because there are typically different subtypes of data for each of these (for example, there

are different kinds of possible stimuli and each kind of possible stimulus could have its own
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table).

There are two points we want to make here. First, behavioral data, as we hope to have

demonstrated, is more complex than typically assumed; it involves a myriad of interconnected

data tables. Second, current practices and data analysis tools do not address this complexity

and instead focus on an easier to handle subset of the data (i.e., only the data that is strictly

necessary for a particular analysis).

In order to get a more comprehensive and consistent handle on all of the behavioral data

while at the same time remaining compatible with current practices and tools we opted for

a particular set of design principles to organize the multiple L1 tables (see Figure B.2).

The first principle is to keep a trial table which is similar to what is already customary

in the field. Each row in this table describes one trial and columns may contain summary

information about particular aspects of that trial. For example, in a digit-span task where the

stimulus is a sequence of digits presented at a certain rate one may summarise the stimulus

for a given trial as “3;4;5;1”. We define standards and conventions for that trial table to

achieve consistency across datasets (see behaverse.github.io/data-model).

The second principle is to separate information depending on whether or not it is common

or specific (e.g., to a task) and whether it describes the trial as a whole or particular events

that occurred during the trial. Taking again the example of the digit-span test, “3;4;5;1”

describes the stimulus at the trial level and is thus present in the trial table. The timestamp

of the digit 5 during that trial is specific to an event and is thus present in the stimulus table

which describes all the stimuli that occurred within each trial.

The third principle is that the trial table serves as the master table with the id of each row in

that table serving as the key to link all the tables within L1. For example, knowing from the

Trial table that “3;4;5;1” was presented on trial_id 2378, one can find within the Stimulus

table the list of stimuli shown during that trial together with the properties of those stimuli

(e.g., timestamp, location, duration).
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Figure B.2: L1 Trial data. 1) In source data, relevant information may be scattered across
multiple data files in a way that is not practical for subsequent processing. There are various
design options to reorganize the source data into data structures that can be standardized
and are easier to use. 2) One solution is to factor the data into many compact tables within
a relational database system. While this solution has many technical advantages, it doesn’t
play well with current practices. 3) An alternative design solution—the one we chose for
the current behaverse data model— defines a main “L1 Trial” table which is similar to what
researchers already use today. However, in addition to providing the trial data, the L1 dataset
contains additional, related tables (as in 2). Tables in L1 are related to each other by various
primary keys, the most important one being the trial identifier within the Trial table. We
believe that this solution is both of practical use for researchers and offers the possibility to
augment the Trial table in a principled way to capture more of the richness of behavioral
data than is typically the case.
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We believe that this design strikes a good balance between the somewhat contradictory

requirements (e.g., the efficiency of a fully relational database versus human readability and

ease of use); it is compatible with the way researchers are already structuring their trial data

and offers a principled way to organize related data that is currently ignored but shouldn’t.

B.7 Discussion

The standardization of behavioral data structures may not be the most exciting endeavour

for a researcher—after all, great scientific advances were made without such standards, re-

searchers can analyse data without following standards and it may seem to many that time

spent on such mundane issues is time diverted from doing actual research. While there

certainly is some truth to those statements, we believe that developing good standards for

structuring behavioral data holds the promise for significantly improving the quantity and

quality of behavioral research and may lead to novel insights.

As have argued many before us (e.g., Gorgolewski et al., 2016), standardizing data structures

may increase research quality by clarifying concepts that are understood or used differently

by different people. When those standards are public, they contribute to make science more

open, transparent and reproducible. Finally, the use of standards can guide the development

of various software tools that are specifically designed to take advantage of those standards.

There are a few examples that demonstrate how sometimes even simple data organization

principles can lead to the development of an elegant and efficient software ecosystem that

greatly facilitates the analysis of data. In the R community, for example, the notion of

“tidy” data (e.g., “tidy data”; Wickham, 2014) has led and contributed to the development

of the suite of tools known as the “tidyverse” (Wickham et al., 2019) which has had a

massive impact on data science. Similarly, in the neuroimaging community, the BIDS’ way

of organizing imaging data has had profound positive effects for the field as whole, facilitating

the sharing and reuse of imaging data but also leading to the development of software tools

to check for example the integrity of data but also efficient and standardized data analysis
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pipelines (e.g., fmriprep.org; Esteban et al., 2019). What these examples show is that the

development of standards for structuring data can lead to the development of tools and

data analysis standards that greatly benefit the field. It is our hope that by contributing

to standardizing behavioral data, equally impressive progress can be achieved in behavioral

sciences.

In this document, we focused only on a few key concepts; other ideas are presented in greater

detail in the projects’ website (behaverse.github.io/data-model) which holds an updated ver-

sion of the behaverse data model. Many questions remain unanswered, various aspects of

behavioral data to be explored and numerous decisions to be taken. Ultimately, the value

of this or any other data model will require demonstrating that it can indeed represent rich

behavioral data across a variety of settings in a consistent way and that it offers concrete

benefits to the researchers using those standards.

B.8 Conclusion

Behavioral data is fundamental in cognitive sciences and there is clearly a need for standards

to organize such data so it can be efficiently analyzed, shared and reused. Here we emphasized

several key issues and presented constructs we believe are essential for structuring behavioral

data and which currently seem to be used inconsistently.

Much remains to be discussed. To keep this document short and decrease the likelihood of

its content becoming obsolete as our standards evolve, we decided to focus here only on key

points and refer the reader to the online documentation of the behaverse data model (see

behaverse.github.io/data-model).
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