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ABSTRACT  1 
The high rate of urbanization and the ever-increasing number of vehicles on roads require multiple efforts 2 
in order to correctly identify and evaluate interventions to improve transport systems. This phenomenon 3 
pushes cities to invest in new technologies and increasingly advanced support tools. In the era of Big Data, 4 
the exploitation of innovative data can allow the resolution of various issues related to the world of transport 5 
planning. However, data are not always available, e.g. in many rural areas, and even in the cities of 6 
developing countries. In such cases, it is possible to resort to sophisticated models able to fill in the lack of 7 
information. In this respect, this paper focuses on the prediction of traffic flows in areas where no data are 8 
available. To do this, we develop a classification approach using machine learning (ML) models involving 9 
available, but limited, datasets. After the prediction of traffic flows, a validation and similarity analysis 10 
have been performed. From the latter it is possible to identify sensor devices and regions that best represent 11 
those areas with no data. Moreover, a SHAP analysis has been carried out to identify the impact of features 12 
associated to the traffic volume. The main finding of this study is the developing of a support tool able to 13 
aid government agencies by providing an exploratory overview of what should be the traffic volume in 14 
areas with poor data. We believe that the proposed methodology has the potential of becoming a first-step 15 
analysis in the demand forecasting process.  16 
 17 
Keywords: Traffic flow prediction, machine learning, data extraction, data analysis   18 
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INTRODUCTION 1 
Transport systems have long been the basis of the economic development of cities. Inefficient management 2 
of transport networks reflects negative consequences on the entire community. The rapid increase in traffic 3 
volumes generates concrete repercussions in terms of pollution, accidents, and road congestion, constituting 4 
a serious risk for urban sustainability and livability. For this reason, the prediction of traffic flows plays a 5 
fundamental role for providing an idea to what extent this phenomenon negatively affects system 6 
performance (1). Due to the complexity of transport networks, it is crucial to resort to advanced models and 7 
tools able to provide support to the already consolidated theoretical models. In this respect, it is worthy to 8 
underline the important role of ML models, especially for the prediction of transport systems features (2). 9 
Furthermore, the reliability of these models for predicting and simulating the traffic states is strictly 10 
depending on the type of data involved in the modeling process. In recent years, new challenges have arisen 11 
on how to analyze and address these issues with the support of new technologies. The digitalization can 12 
help in providing a large amount of data to monitor transport networks in order to find new solutions and 13 
bringing greater efficiency to the transport system. These data can be collected by different sources such as 14 
GPS devices, sensors, social networks, smartphones, quickly providing huge datasets constituting of 15 
different types of data (structured, unstructured, semi-structured). Precisely with the adjectives velocity, 16 
volume, and variety (3Vs model) a first definition of Big Data was given (3).  17 

The use of Big Data has totally transformed the world of transport thanks to the spread of Internet 18 
of Things (IoT) devices, giving greater importance to Intelligent Transport Systems (ITS) (4). In the 19 
transport field, the exploitation of Big Data is now widespread: OD matrix estimation (5, 6), mobility 20 
pattern analysis (7, 8), travel mode detection (9, 10), road safety analysis (11, 12). In this respect, Big Data 21 
can provide an important aid for both governments and private companies to do in-depth analyses, 22 
monitoring, make decisions, and improve transport network’ performance (13).  23 

The complexity of Big Data requires many efforts to manage the datasets with the aim of obtaining 24 
information that can suggest strategic decisions. For this reason, the world of Big Data analysis is now 25 
exploiting ML models, which take advantage of this data to identify patterns and predict future events (2). 26 
The basic concept of ML models is the capability of learning from data without prior knowledge on 27 
disparate application fields. From a transportation point of view, ML models have been involved for route 28 
optimization analysis (14–16), travel behavior (17–19), traffic flows prediction (13, 20–22). Regarding this 29 
latter, it is worthy to underline the importance of conducting this type of analysis in a more automatic and 30 
reliable way, without resorting to manual counting in the fields (23). The purpose of this paper is framed in 31 
this context, i.e. the prediction of traffic flows through a classification approach using ML models with free 32 
available datasets. The case study is the Grand-Duchy of Luxembourg, in which sensors devices detecting 33 
traffic flows are installed and the relative data are freely accessible by the “Portail des Travaux Publics” of 34 
Luxembourg government website (24). Sensors are localized almost homogeneously around Luxembourg 35 
except for Luxembourg city. For this reason, we decided to develop a methodology capable of predicting 36 
traffic flows also in areas without traffic sensors using the information available from another dataset 37 
retrieved through TomTom move platform (sample dataset) (25) which provides information also for 38 
Luxembourg city but in a limited time period (i.e. January 2020).  39 

The main challenge of this study is the prediction of flows in an area without counting devices. 40 
Research studies that have dealt with a similar topic usually focused attention on the forecasting of flows 41 
in short/long-term (20–22, 26–28). To the best of our knowledge, there are no studies that addressed how 42 
to predict traffic flows in absence of other data sources for the study area under consideration. The 43 
methodology is capable of providing valuable information for government agencies about the most 44 
representative areas and counters useful to obtain a first-step exploratory overview of flows in poor data 45 
regions, without resorting to count fields or data purchasing.  46 

 47 
BACKGROUND  48 
Research on the prediction of traffic flows is rooted in several studies starting from the ‘70s (29–32). One 49 
of the first efforts to predict traffic flows has been carried out by Nicholson and Swann (33), who elaborated 50 
a short-term prediction of traffic flows across the Mersey tunnel (Liverpool) using spectral analysis and 51 
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collecting data from inductive loop traffic detectors. The methodology provided reasonable results, but it 1 
was not able to make predictions for an entire day. Lu (34) proposed an adaptive prediction system which 2 
consists of a set of iterative mathematical steps to minimize the mean squared error and then maximize the 3 
accuracy of the prediction of traffic flows. Despite the results of these studies are promising, the model 4 
seems to have no general applicability, but it is closely linked to the case study considered. An analogous 5 
study is the one conducted by Williams et al. (35). They integrated seasonal AutoRegressive Integrated 6 
Moving Average (ARIMA) analysis with Winters exponential smoothing models to forecast seasonal traffic 7 
flow in urban freeway. The aim was to compare the performance level of the analysis proposed compared 8 
to other similar approaches (e.g. k-Nearest Neighbor, Artificial Neural Network, and historical average 9 
models).  10 

The accuracy of the prediction models increases with the amount of data that are engaged in the 11 
analysis process. The spread of new technologies has generated many sources of mobility data (e.g. sensors, 12 
smartphones) that make available a large amount of real-time information that enhances the quality of the 13 
analysis carried out (36–38). Exploiting innovative data for prediction analysis is extensively addressed in 14 
the literature. Moghaddam and Hellinga (39), developed a data-driven model for the prediction of travel 15 
times in arterial roadways using Bluetooth detectors data, Iqbal et al. (40) elaborated a combined 16 
optimization-based approach with a microscopic traffic simulation analysis for OD matrices estimation, 17 
collecting data from mobile phones and traffic counts devices. Similarly, the study of Cantelmo and Viti 18 
(37) also demonstrated the effectiveness of the combined use of mobile phone data and Floating Car Data 19 
(FCD) for the estimation of OD matrices. The importance of exploiting innovative data is also underlined 20 
by Di Donna et al. (41), who carried out a user mobility pattern analysis gathering data from Call Detail 21 
Records (CDR).   22 

Over the years, pushed by the technologies progresses and the advent of Big Data, research moved 23 
to develop methodologies based on more sophisticated ML models. There are several studies that have dealt 24 
with the prediction of traffic flows adopting a ML approach. Chikaraishi et al. (20) focused on traffic 25 
prediction during disastrous events, conducting an exploratory analysis to test the applicability of a set of 26 
ML models. Lv et al. (21) used a Stacked Autoencoder model (SAE) for the estimation of traffic flows of 27 
roads with different levels of traffic loads. Yi and Bae (22) proposed a Deep Neural Network (DNN) model 28 
in order to predict and analyze link-based traffic conditions. In this study the authors focused on 29 
distinguishing the different levels of congestion using real-time traffic data. A similar study was conducted 30 
by Xu et al. (42) focusing on bikesharing trips dynamic forecasting. Through the use of a deep learning 31 
model, authors gained accurate predictions in terms of produced and attracted trips in different time 32 
intervals. Other studies moved in this direction using different ML models: Fuzzy-neural model, Deep 33 
Belief Networks, Long-Short-Term Memory network (LSTM), Convolutional Neural Network (CNN) , k-34 
Nearest Neighbor, among others (26, 43–46).  35 

This paper proposes a classification approach using ML models able to predict traffic flows in areas 36 
where no data are available, and the only way to obtain it would require field surveys or data purchase. This 37 
is an aspect that has not been investigated in the literature, and this study is aiming at bridging this gap. 38 
Bauer et al. (47) conducted a similar study dealing with the estimation of O/D matrices based on flow count 39 
data from sensors without resorting to a prior O/D matrices. Combining least squares with maximum 40 
entropy methods authors proposed a statistical tool to calibrate path flows even in absence of prior 41 
knowledge. However, the data that the authors used have been collected by devices installed inside the 42 
study area.  43 

 44 
METHODOLOGY 45 
In this section we will describe the data and the methodology adopted to predict traffic flows within areas 46 
in the absence of sensor devices, through a classification approach using ML models with insufficient 47 
datasets. Figure 1 shows the framework steps of the proposed methodology that will be thoroughly detailed 48 
below.  49 
 50 



M. Fazio, P. Vitello, J. Pineda-Jaramillo, R. Connors and F. Viti  

5 
 

 1 
Figure 1 Flowchart of the proposed methodology  2 

Data collection and pre-processing 3 
Data has been collected from two data sources. The first collected data is provided by the “Portail 4 

des Travaux Publics” of the Luxembourg government website. This open data provides car flows detected 5 
by 135 traffic counters (TCs) distributed throughout the country of Luxembourg (Figure 2a). TCs are 6 
classified according to the name and type of road in which they are localized (e.g., Highway, National, 7 
Secondary Roads, and mobile counting). Each TC collects daily traffic flows per hour for the two road 8 
directions, which we classified as “inflow” (i.e., toward the center) and “outflow” (i.e., away from the 9 
center). Nevertheless, TCs have a different time availability depending on the year in which the sensor was 10 
created, besides this data can be only accessed with a limit of the past 5 years.  11 

The second collected data comprises a sample of the traffic flows provided by the TomTom Move 12 
platform. TomTom collects FCD information from different devices: smartphones, car navigators, black 13 
boxes. This data includes information on flows into and out from different user-defined regions, with a time 14 
range of 3 hours. The sample, freely downloadable from the platform, consists of data for the month of 15 
January 2020. For our analysis we divided the study area (i.e. the Grand-Duchy of Luxembourg) into 38 16 
regions (Figure 2b). We also collected aggregate traffic flows coming from outside, into the study area.   17 

As can be seen from Figure 2a the TCs are distributed throughout the country except for the center-18 
south (Luxembourg City), where just one TC is located. Notwithstanding, TomTom data provides 19 
information also for the center regions (Figure 2b), the main issue with using this information is the limited 20 
time period in which is possible to collect the data, whereas the datasets from TCs are available for any 21 
calendar date. In this respect, the purpose of this study is to develop a ML model able to combine both 22 
datasets in order to predict traffic flows in areas in which there are not TCs (i.e., Luxembourg center). Table 23 
1 presents the composition of the final datasets after the pre-processing analysis. 24 
 25 
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   1 
Figure 2 TCs’ location in the study area (a); study area zoning used for the retrieval of TomTom 2 
data (b) 3 

The two datasets were pre-processed using common processes traditionally performed in data 4 
mining (e.g., creating dummy variables for categorical features, normalizing the numerical features by using 5 
the z-score standardization method, among others) (48). Moreover, some additional features were created 6 
using the features of the dataset (e.g., time_range (ranges of 3 hours) in the Traffic_counters dataset, in 7 
order to merge both datasets) and the two datasets were merged using 4 matching features existing in both 8 
datasets (i.e., region_of_origin, region_of_destination, day, time_range). This resulted in a unique dataset 9 
with 101,872 rows and 19 columns. Some features have many “null values” for different reasons (e.g., no 10 
available data for some TCs, no available volume data for some regions or some TCs, etc.). The target 11 
feature, volume in TC, had a right-skewed distribution, with a range between 0 and 3732 vehicles, a mean 12 
of 230, a standard deviation of 306 and a median of 136 vehicles. Therefore, we decided to adopt a 13 
classification approach by creating the “volume_counter_ranges” feature and selecting 12 volume ranges 14 
to the initial “volume_counter” feature based on the distribution of their values. Therefore, the target feature 15 
(i.e., volume_counter_ranges) has the following ranges (in vehicles/hour): (a) 0, (b) 1-50, (c) 51-100, (d) 16 
101-200, (e) 201-300, (f) 301-400, (g) 401-500, (h) 501-600, (i) 601-700, (j) 701-800, (k) 801-900, (l) more 17 
than 900 (see Table 1). By setting specified input features, the model will predict the range of traffic volume 18 
in the counter.  19 
 20 

TABLE 1 Composition of the final dataset. 101,872 observations. 21 

Feature Description type 
null 

values 

TARGET: volume_ranges in 

Traffic_counters 
Traffic flow recorded in the counter [vehicles] in 12 ranges categorical 71824 

ID_counter ID of the counter categorical 52744 

time time of the registered volume in the Traffic_counters dataset categorical 52744 

direction direction of the traffic flow(Inflow, Outflow) categorical 52744 

region_localization_counter region where is located the traffic counter categorical 52744 

route_name 
name of the road in which the traffic counter is located (e.g. 

A7, N2, CR184, etc..) 
categorical 52744 

(b) (a) 
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Feature Description type 
null 

values 

route_type 

type of the road in which the traffic counter is located 

(Autoroute, Route nationale, Chemin repris, Comptage 

mobile) 

categorical 52744 

region_of_origin 
region of origin of the traffic flows (based on the zoning 

shown in Figure 2b) 
categorical 0 

region_of_destination 
region of destination of the traffic flows (based on the 

zoning shown in Figure 2b) 
categorical 0 

day day of the week of the registered volume categorical 0 

time_range (ranges of 3 hours) time range (range of 3 hours) of the registered volume categorical 0 

volume in TomTom_move 
volume registered in TomTom_move dataset in the range of 

3 hours (time_range) 
numerical 0 

peak_time weight indicating if the time is peak time or not numerical 0 

night weight indicating if the time is night or not numerical 0 

regions_OD Feature indicating the OD flow categorical 0 

sum_volume_counter_origin_tomto

m 

This feature adds all the volume for the same origin region 

in the same day and the same time_range 
numerical 0 

sum_volume_counter_destination_t

omtom 

This feature adds all the volume for the same destination 

region in the same day and the same time_range 
numerical 0 

 1 

ML models 2 
The data was divided in three subsets (external, middle, center) according to the regions presented 3 

in Figure 3. This zoning has been performed with the aim of using the external regions data to train the ML 4 
models, and the middle regions data to validate the models. Then the model’s output will be used to perform 5 
a final validation using the single existing TC in Luxembourg city center (i.e., id: 400) and finally the best 6 
model will be applied to predict the traffic volume in the latter regions. 7 
 8 

  9 
Figure 3 Area division for the validation analysis 10 

With the aim of predicting traffic volume ranges in Luxembourg city in absence of TCs’ data, we 11 
selected the subset of external regions to train the models. To achieve this goal, data from external regions 12 
was randomly split into training data and test data (70% and 30%, respectively) where each subdivision 13 
was composed by the traffic volume ranges and the input features in the same proportion for both 14 
subdivisions. The SMOTE method was used to handle imbalanced classes within the target feature (49). A 15 
set of 11 ML models were trained to predict the traffic volume ranges: Logistic Regression (LR), K 16 
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Neighbors Classifier (KNN), Naive Bayes (NB), Decision Tree (DT), Linear Discriminant Analysis (LDA), 1 
Quadratic Discriminant Analysis (QDA), Ada Boost (ADA), Extra Trees (ET), Random Forest (RF), 2 
Gradient Boosting (GB) and Light Gradient Boosting Machine (lightGBM). These models, whose detailed 3 
descriptions can be found in numerous studies (17, 18, 50–55), were selected since they have been widely 4 
and successfully used across a variety of classification problems.  5 

The stratified k-fold cross-validation method has been implemented to validate the trained models. 6 
This method is commonly used to assess the performance of classification models performed, thanks to its 7 
capability of reducing any bias produced by the models (56). Moreover, each ML model has a set of 8 
hyperparameters that need to be tuned in order to improve its performance. This process, commonly known 9 
as “hyperparameter tuning”, is carried out by implementing the random search method,  which allows 10 
assessing the values of the hyperparameter with larger impact on model performance (56, 57). To assess 11 
the performance of the models, the Area Under the Receiver Operating Characteristics (ROC) Curve, 12 
generally known as AUC, the Recall, Precision and F1-score evaluation metrics were employed as loss 13 
functions. Additionally, the learning curve method was implemented to identify possible underfitting or 14 
overfitting problems in the models by analyzing the model performance as more observations are used in 15 
the training process (58). 16 
 17 
Validation analysis 18 

After analyzing the ML models according to the evaluation metrics, the best model was chosen 19 
based on the confusion matrix, where it is possible to analyze the performance of each model in its 20 
prediction of each range. Then, once we obtained the predicted traffic volumes from the best ML model, 21 
we still need to analyze the accuracy of such results. As shown in Figure 3 the validation phase involves 22 
the data of the middle regions in order to compare the predicted traffic volumes with the real ones (i.e., the 23 
data collected by TCs) and then the process is also repeated for the single existing TC in Luxembourg 24 
center. Therefore, we establish the goodness of our model in the test data of the external regions, in the 25 
middle regions, and in one TC in Luxembourg center.  26 

 27 
Identification of important features 28 

After identifying the best model based on the evaluation metrics and the confusion matrices, the 29 
impact of the features associated to the traffic volume range was obtained using the SHapley Additive 30 
exPlanation method (SHAP) (59). This method obtains the importance and the direct impact of each feature 31 
in order to better interpret the results of the model (60), and allows to identify the direct effect and the 32 
magnitude of the contributions of each input feature in the traffic volume ranges. 33 

 34 
Similarity analysis 35 

Similarity analysis is focused on identifying similarity trends between predicted values and the data 36 
collected by TCs. This analysis allows identification of the most representative existing TCs compared to 37 
predicted traffic flows in the center regions. The aim is to depict the inflow and the outflow traffic volumes 38 
from Luxembourg City center only using the TCs in the surrounding areas. The first step of this phase is to 39 
divide the real TCs data into two categories, depending on which type of road they are installed: highways 40 
or national roads. For both categories, we compute the similarity between the predicted TCs in center 41 
regions and the real TCs. To measure similarity between two temporal profiles of TCs, we exploit the 42 
symmetric index of Jensen-Shannon divergence (JSD) that outperforms the asymmetric Kullback-Leibler 43 
divergence (KLD) that always returns a finite value. The similarity of two TCs i and j is calculated through 44 
Equation 1: 45 
 46 

J( Di,Dj
)=H (

Di+Dj

2

) - (
H(D

i  
)+H(D

j
)

2

)          (1) 47 

 48 
where J represents the divergence of two temporal profiles, H is the Shannon entropy (61) and D is the 49 
temporal profile of a TC. The similarity can assume values in the range [0-1]. The value 0 represents the 50 
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maximum similarity (e.g., the temporal pattern of a TC with itself) and 1 represents the maximum 1 
divergence. In our dataset we have 8 TCs from highways, for each of them we compute an average value 2 
of similarity with all the TCs in center regions. The similarity for the k-th TC located in a highway (Sh) is 3 
computed as follows (Equation 2): 4 
 5 

Sh= 
∑ J(Dh,D𝑘)𝑁

𝑘=1

𝑁
          (2) 6 

 7 
where J is the JSD, and N is the number of TCs predicted in the center. From the similarity values, we were 8 
able to detect the highway TCs that have the highest similarity with the predicted traffic flows, and 9 
consequently we can identify which TCs are the most representative for the traffic flows of center regions.  10 

Regarding the TCs installed on National roads, since these are the majority in our dataset (89), we 11 
choose a different approach by combining TCs for a region and hence defining the similarity at a regional 12 
level. The similarity for a region r (Sr) is defined as follow (Equation 3): 13 
  14 

Sr= 
∑ 𝑆𝑖

𝐾𝑟
𝑖=1

𝐾𝑟
           (3) 15 

 16 
where Sr represents the similarity value between a TC and the center TCs described in Equation 2, and Kr 17 
is the number of TCs belonging to region r. Looking at the similarity values at the regional level we can 18 
identify which areas have traffic trends similar to center regions, this tell us where we should focus more 19 
in order to detect the general traffic flows of center regions. 20 

 21 
RESULTS AND DISCUSSION 22 

This section provides the results of the models to predict the traffic flows within a region in the absence of 23 
devices’ data, through a classification approach using ML models. The process involved four main stages: 24 
(a) training a set of 11 ML models to identify the best in terms of the aforementioned evaluation metrics; 25 
(b) validation of the models using middle regions’ data and the single TC in Luxembourg center; (c) 26 
identification of the direct effect and importance of input features in the predicted traffic volume ranges; 27 
(d) application of the best model to Luxembourg center in order to perform the similarity analysis. 28 

ML models results 29 
The ML models were trained with the training data and implementation of the k-fold cross-30 

validation method (with k=10). Evaluation metrics were then obtained using the test data described. Table 31 
2 summarizes the results of the initial models: lightGBM, RF and ET are the best models in terms of the 32 
evaluation metrics. Therefore, the hyperparameter tuning method was applied using the random search 33 
method in order to tune the performance of these models, analyzing the behavior of their learning curves to 34 
ensure they are correct (i.e., the necessary clear convergence trend between training and cross-validation 35 
scores, allowing to foresee if adding more observations to the training of these models will probably 36 
improve their performance, decreasing the risks of overfitting and underfitting). Those results are also 37 
presented in Table 2. 38 
 39 
TABLE 2 Results of the ML models assessed using the test data. 40 

Initial results 

Model AUC  Recall  Precision F1-score 

Light Gradient Boosting (lightGBM) 0.9478 0.5933 0.7166 0.7140 
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Random Forest (RF) 0.9446 0.6020 0.7446 0.7425 

Extra Trees (ET) 0.9166 0.6075 0.7473 0.7458 

Logistic Regression (LR) 0.9012 0.4965 0.5988 0.5584 

K Neighbors Classifier (KNN) 0.9005 0.5881 0.7068 0.6933 

Gradient Boosting (GB) 0.8948 0.4843 0.5888 0.5753 

Decision Tree (DT) 0.8873 0.5999 0.7412 0.7391 

Linear Discriminant Analysis (LDA) 0.8849 0.4511 0.5711 0.5126 

Naive Bayes (NB) 0.7064 0.2683 0.4755 0.2091 

Ada Boost (ADA) 0.5936 0.1791 0.3530 0.2025 

Quadratic Discriminant Analysis (QDA) 0.5023 0.0881 0.2861 0.0685 

Tuned versions after hyperparameter tuning 

Model Behavior of the Learning Curve AUC  Recall  Precision F1-score 

Initial lightGBM Good 0.9478 0.5933 0.7166 0.7140 

Tuned lightGBM Good 0.9569 0.6066 0.7456 0.7441 

Initial RF Good 0.9446 0.6020 0.7446 0.7425 

Tuned RF Good 0.8909 0.5126 0.6132 0.5809 

Initial ET Good 0.9166 0.6075 0.7473 0.7458 

Tuned ET Bad 0.8688 0.4740 0.5690 0.5031 

 1 
Validation of the models in all regions 2 

After the ML analysis, we created confusion matrices for the six best performing models in order 3 
to select the single best model, based on its predictive performance for each range. Figure 4 shows the 4 
confusion matrices of the best model, the Initial lightGBM model. LightGBM is an open-source gradient 5 
boosting framework initially developed by Microsoft, which has gained popularity due to its advantages in 6 
training speed, high efficiency and accuracy, and low memory usage, among others. The gradient boosting 7 
model is a tree-based learning algorithm that combines numerous weak-learner models to build a strong-8 
learner model, where every single weak-learner model meaningfully improves the performance of the entire 9 
model (62, 63). Moving to the description of the matrices, in Figure 4 each cell contains the number of 10 
occurrences of a predicted class when testing true inputs. The legend bars colors represent the percentage 11 
of correct predicted occurrences over the total of true class values. The columns show predicted class values, 12 
while the sum of all values in each row indicates the total occurrences for each such class. The diagonal 13 
presents the occurrences of correct predictions for each class, and the accuracy is the sum of all elements 14 
on the diagonal divide by all elements of the matrix. In more detail, Figure 4a shows the performances of 15 
the classification algorithm for external regions; as explained earlier the model was trained on the data of 16 
these regions. In this case, the matrix depicts a satisfactory accuracy for this area (64.8%), and most of the 17 
predicted occurrences are on the diagonal, except for class 0, in which occurrences are often predicted as 18 
class 1-50. The reason is clearly connected with the length of this class that includes only one value. 19 
Analyzing the middle regions, Figure 4b shows that the total accuracy for this area (49.7%) is lower than 20 
for the external regions. Despite the accuracy, this result is relevant for this study since mispredictions of 21 
our algorithm are often between classes close to each other. Since the number of classes is rather high, and 22 
the focus of the analysis is to estimate the general trend of the TCs, errors between neighboring classes is 23 
acceptable. Note that the highest number of prediction errors occur for higher classes (more than 500), this 24 
is likely due to having fewer occurrences of high traffic volumes, so the model is less trained for those 25 
values. The last confusion matrix in Figure 4c focuses on the center regions. In this area we have only one 26 
real TC, therefore the comparison of true and predicted traffic volumes is based on very few values. The 27 
accuracy for this area (43.3%) is similar to the one obtained from middle regions with the difference that 28 
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in the matrix we have some classes with 0 true occurrences, such as the class 0 and the class >900. As we 1 
noticed for the middle regions’s predictions, also for center areas it is clear how the model finds more 2 
difficulties with higher volumes. The matrix shows us how accuracy decreases as traffic volumes increase. 3 

 4 

 5 
Figure 4 Confusion matrices for external (a), middle (b) and center (c) regions created using the 6 
Initial lightGBM model 7 

To show the results in Figure 4 more intuitively, below we present the predicted temporal profile at TC 8 
level.  First, we order the prediction output by TCs, time, and direction of TCs, then we compare the 9 
predicted temporal profiles with the real ones. Figure 5 shows the results for two TCs (ids: 401 and 432) 10 
that are located in middle region. The plots are divided by direction of the TC (inflow and outflow). From 11 
figure Figure 5a, we can observe how the predicted traffic volumes of TC 401 resemble the true values for 12 
both directions, especially the inflow plot shows high accuracy throughout the week. It is interesting to 13 
notice that the prediction are accurate also on different day profiles, e.g. we can see how the model is able 14 
to detect the differences between the Monday and the Friday profile. Figure 5b presents the temporal profile 15 
of TC 432 in which the prediction results are characterized by a lower accuracy compared to TC 401, 16 
especially for the outflow direction. Despite this, we can notice how for both directions the general trends 17 
are similar, the peaks occur in the same time intervals, while what our model is not able to estimate correctly 18 

(b) (a) 

(c) 
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is the intensity of the peaks. For instance, the 432 Inflow plot shows that the maximum peaks reach the 1 
400-500 class, while the predicted values indicate higher volumes (class 600-700). 2 

 3 

 4 
Figure 5 Comparison between predicted and true traffic flows for TCs 401 (a), and 432 (b) in 5 
middle regions 6 

 7 
Identification of the importance of the input features in the predicted traffic volume ranges 8 

Figure 6 presents the importance of the most relevant input features shown in Table 2 for the traffic 9 
volume ranges in Luxembourg and the direct impact of each one on the output magnitude for the initial 10 
lightGBM model. All features are presented in descending order according to the impact of the features on 11 
the output of the model, and it is also possible to see the magnitude of the prediction power of the feature 12 
for each traffic volume range. According to this, the results suggest that indicators for night, peak time, and 13 
road type are the three features that have a greatest impact on predicting traffic volume in Luxembourg. It 14 
is also possible to visibly identify the different impact of each feature for each range (e.g., night has a 15 
greater impact for traffic volume ranges below 50 vehicles/hour, than for the other ranges; while peak time 16 
has a greater impact on the traffic volume ranges greater than 700 vehicles/hour). Moreover, it is interesting 17 
to note that among road types (Highway, National road, Secondary road, and mobile counting), Highways 18 
(“Autoroute”) and National roads (“Route nationale”) seem to be the most important to identify the traffic 19 
volume range.  20 

(a) 

(b) 
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 1 

Figure 6 SHAP plot with the global feature importance in the lightGBM model 2 

Similarity analysis 3 
 Based on the findings shown in Figure 6 we decided to focus our attention on TCs installed on 4 
highways and national roads. In particular, a similarity analysis has been performed in order to identify TCs 5 
whose data are the most similar to those estimated for the central regions. Figure 7 shows the results of the 6 
similarity analysis for highways TCs. Following the color bar, the lighter TCs are the higher is the similarity 7 
level. From this type of analysis, it is possible to understand which TC provides the most similar information 8 
compared with the predicted inflows (Figure 7a) and outflows (Figure 7b) in the central areas. For national 9 
road TCs, we considered the sum of flows for each TC in each region, to identify the most similar regions 10 
(external and middle) compared to center regions Figure 8. Similarly to the case of highway TCs, in this 11 
way it is possible to infer which are the most representative regions of the center in terms of inflow (Figure 12 
8a) and outflow (Figure 8b). More precisely, in order to obtain a first overview of the amount of inflows 13 
and outflows in center regions, this analysis is able to select which TCs, or regions contain the most similar 14 
traffic flows value to those predicted for central areas. Such analysis can be framed as a support tool for 15 
government agencies offering two services: (i) providing information about which TCs can be considered 16 
the most representative for a fist overview of the possible traffic flows of the target area; (ii) the regional 17 
similarity values can be useful to suggest the best area where to locate new TCs that can better describe the 18 
traffic flows of the target area. 19 
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 1 

 2 
Figure 7 Similarity analysis between highway TCs and the predicted flows in center regions 3 
considering inflow (a) and outflow (b) direction 4 

 5 
Figure 8 Similarity analysis between the sum of national roads TCs data for each region and the 6 
predicted flows in center regions considering inflow (a) and outflow (b) direction 7 

 8 
CONCLUSIONS 9 

The prediction of traffic flows plays a fundamental role in the management of cities and in transport 10 
planning; the increasing availability of Open Data information (64) is empowering rapid development of 11 
new approaches. In this respect, this paper aims at developing a methodology capable of predicting traffic 12 
flows in areas with missing sensors devices using free but limited open datasets whose extracted 13 
information has been used to train ML models for prediction, and for validation. Subsequently, SHAP and 14 
similarity analysis have been used to identify the most important features and the most representative TCs 15 
and regions, to predict traffic flows in center regions. From the analysis carried out we demonstrate that the 16 
model is able to predict traffic flows with an acceptable accuracy level. The final purpose is to provide to 17 

(b) (a) 

(b) (a) 
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government agencies a first-step exploratory approach to gain an overview of the traffic flows in areas with 1 
little or no other data sources, suggesting also the most appropriate location (i.e., road type and regions) 2 
where to install new TCs. However, the methodology has some limitations that can be investigated in further 3 
research, e.g. finding data from other data sources in order to have more heterogeneous features at a 4 
microscopic level that can improve the accuracy level of the predicted flows (e.g. travel times, path-choice). 5 
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