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In Function-as-a-Service (FaaS) clouds, customers deploy to cloud individual functions, in contrast to 
complete virtual machines (IaaS) or Linux containers (PaaS). FaaS offerings are available in the largest 
public clouds (Amazon Lambda, Google Cloud Functions, Azure Serverless); there are also popular open-
source implementations (Apache OpenWhisk) with commercial offerings (Adobe I/O Runtime, IBM Cloud 
Functions). A recent addition to FaaS is the ability to compose functions: a function may call another 
functions, which, in turn, may call yet another function — forming a directed acyclic graph (DAG) of 
invocations. From the perspective of the infrastructure, a composed function is less opaque than a virtual 
machine or a container. We show that this additional information about the internal structure of the 
function enables the infrastructure provider to reduce the response latency. In particular, knowing the 
successors of a function in a DAG, the infrastructure can schedule these future invocations along with 
necessary preparation of environments.
We model resource management in FaaS as a scheduling problem combining (1) sequencing of 
invocations; (2) deploying execution environments on machines; and (3) allocating invocations to 
deployed environments. For each aspect, we propose heuristics that employ FaaS-specific features. We 
explore their performance by simulation on a range of synthetic workloads and on workloads inspired by 
trace from existing system. Our results show that if the setup times are long compared to invocation 
times, algorithms that use information about the composition of functions consistently outperform 
greedy, myopic algorithms, leading to significant decrease in response latency.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Serverless computing allows a cloud customer to run their code 
in production without configuring and allocating the software and 
the infrastructure stack [8]. A cloud customer can thus focus on 
their application, rather than on managing the production envi-
ronment. Major cloud providers offer serverless products (Amazon 
Lambda, Google Cloud Functions, Microsoft Azure Serverless). We 
focus on a variant of serverless computing called Function as a Ser-
vice (FaaS) [12]. In FaaS, a cloud customer uploads the source code 
of a (stateless) function to the provider. When an end-user issues 
a request, this code is executed on the infrastructure provided and 
managed by the FaaS system. The FaaS system isolates requests by 
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providing for each invocation a prepared execution environment — 
usually a Linux container.1

While FaaS is gaining wide adoption, a recent new element is 
still relatively unexplored — the composition of functions [4]. Dur-
ing an invocation of a composed FaaS initiated by a single incom-
ing event (e.g., an HTTP request), a function calls another function, 
that, in turn, may call yet another function and so on. If these in-
vocations are all synchronous, the call structure is a chain; if some 
are asynchronous, it is a DAG. In this paper, we focus on DAGs (our 
conference paper [40] studied chains — in this paper we extend 
our algorithms to DAGs and we also compare how the additional 
complexity of DAGs influence the results).

The existing open-source FaaS systems (OpenWhisk, Fission 
Workflows) do not use the information about the structure of 
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the function compositions. Each invocation in a composition (in 
a chain or a DAG) is treated independently. However, once the first 
function is invoked, the scheduler knows that the functions that 
follow in a DAG will be eventually called too — thus, the scheduler 
can prepare their execution environments in advance. Moreover, 
information about current system state can be used to perform 
optimizations by changing order of execution of incoming invoca-
tions.

The contributions of this paper are as follows:

• We model scheduling in FaaS as a combination of the multi-
ple knapsack problem, scheduling with dependencies and with 
setup times (Section 2).

• We propose a number of heuristics for each aspect (Section 3). 
These heuristics derive from classic approaches, but we adjust 
them to the FaaS specificity.

• By simulations, we show that heuristics examining the com-
position structure lead to lower response latencies (Section 4).

2. Modeling FaaS resource management

2.1. Resource management in OpenWhisk

In this section, we describe from the resource management 
perspective a representative implementation of a serverless cloud 
platform, the open-source Apache OpenWhisk [3]. OpenWhisk 
is mature, actively-developed software also offered commercially 
(IBM Cloud Functions, Adobe I/O Runtime). OpenWhisk alterna-
tives include OpenLambda [17] and Fission [20]. OpenLambda uses 
containers to provide runtime environment for functions. Fission 
is designed for Kubernetes [21]; it can be deployed on existing 
cluster among other applications, which makes its adoption signif-
icantly easier. This section forms a background for our scheduling 
model that follows in Section 2.2.

OpenWhisk allows a cloud customer to upload functions (essen-
tially, code snippets). A function is executed when end-users issue 
requests. A function executes in an environment — an initialized 
Linux container. Different container images are used for each of 
supported languages; a customer can also provide a custom im-
age (with, e.g., additional libraries). Before the first execution of a 
function, the container must be initialized (e.g., setting up the con-
tainer or compiling a Go function code). This initialization can take 
a considerable amount of time (called later the setup time) — [25]
reports at least 500 ms. An environment is specific to a function 
— an environment is not reused by different functions. However, 
subsequent invocations may reuse the same environment with-
out the need to re-initialize it, thus, without the increased latency 
caused by the setup time. By default, in OpenWhisk each environ-
ment executes at most a single invocation at any given moment 
(there is no parallelism inside an environment). However, multiple 
independent invocations can be processed in parallel by multiple 
environments.

OpenWhisk also allows to compose several functions into a 
chain (a sequence). After one function finishes, its result are passed 
to the next function; the last function responds to the end-user. 
While sequences are natively supported, in order to spawn two 
or more functions in parallel (resulting in a DAG), the developer 
may use an additional OpenWhisk Composer module or call the 
OpenWhisk API from the function code. These composed functions 
are now relatively uncommon. To the best of our knowledge, there 
is no publicly available FaaS trace with function composition and 
setup times. However, we argue that their introduction follows the 
standard trend in software engineering of refactoring large func-
tions into a series of smaller ones; or from monolith applications 
to meshes of microservices. FaaS is still a new paradigm and we 
assume that soon this trend will follow.
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Fig. 1. Core architecture of OpenWhisk.

Architecture of OpenWhisk is complex. Fig. 1 presents a high-
level overview of OpenWhisk internal modules. From our perspec-
tive the key components are the controller and the invoker. The 
controller communicates with the invokers by message passing 
(via Apache Kafka).

The invoker is an agent running on a worker node. The invoker 
is responsible for executing actions scheduled on a particular node. 
Each invoker has a unique identifier; it announces itself to the con-
troller while starting.

The controller acts as a scheduler handling incoming events and 
routing each function invocation to a concrete invoker. The con-
troller monitors the status of workers and the currently executing 
invocations.

The controller attempts to balance load across nodes. The de-
fault algorithm selects for each function the initial worker node
based on a hash of the workspace name and the function name. 
Similarly, the algorithm picks for each function another number, 
called the step size (a number co-prime with the count of worker 
nodes). Each time a function is invoked, the controller attempts to 
schedule the invocation on its initial worker. If a worker doesn’t 
have sufficient resources immediately available, the controller tries 
to schedule the invocation on the next node (increased by the step 
size). If the invocation cannot be immediately scheduled on any 
node, it is queued on a randomly chosen node.

2.2. A scheduling model for FaaS

In this section we define the optimization model for the FaaS 
resource management problem. The aim of this model is to have 
the simplest possible (yet still realistic) approximation of a FaaS 
system that enables us to show that explicitly considering FaaS 
compositions allows optimizations. We thus deliberately do not 
take into account some factors that we argue are orthogonal for 
this work.

We use the standard notation from [6]. A single end-user re-
quest corresponds to a job J i . A job is composed of one or more 
tasks O i,k , each corresponding to a single FaaS invocation. The re-
quest is responded to (the job completes) at time Ci when the 
last task completes, Ci = maxk Ci,k (where Ci,k denotes the com-
pletion time of task O i,k). Tasks have dependencies resulting from, 
e.g., before-after relationships in the code. We denote set of task 
O i,k dependencies (predecessors) by Pi,k , i.e., task O i,k may start 
(at time σi,k) only after all its predecessors ∀ j∈P i,k O i, j complete, 
σi,k ≥ max j∈Pi,k Ci, j .

We assume that individual functions are repeatedly executed 
(modeling similar requests from many end-users but also shared 
modules like authorization). We model such grouping by mapping 
each task O i,k to exactly one task family f (O i,k) (obviously, two 
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tasks O i,k and O i,l from a job J i might belong to different fami-
lies). All tasks from a family f require the same environment E f , 
have the same execution time (duration) p f and require the same 
amount of resources q f .

A task O i,k from a family f (O i,k) is executed on exactly one 
machine in an environment (OS container) E f . E f requires set-
up time s f (initialization of the environment) before executing 
the first task. Subsequent tasks executed in this environment do 
not require set-up times. Typically, s f is non-negligible and much 
longer than the task’s duration, s f > p f but we don’t assume this 
in our optimization model, i.e. there is no restriction on the rela-
tion between s f and p f .

A machine commonly hosts many environments, thus support-
ing parallel execution of tasks. Our machine corresponds to a sin-
gle OpenWhisk worker node, thus it may be a VM running on 
a IaaS cloud or a bare-metal node. Since the moment the envi-
ronment’s preparation starts — and until it is removed — each 
environment E f uses q f of the machine’s resources (e.g., bytes of 
memory) whether a task executes or not. The number of simulta-
neously hosted environments is limited by the capacity of the ma-
chine Q (e.g. total amount of available memory; 

∑
q f ≤ Q ). We 

consider only a single dimension of the resource requests as Open-
Whisk, as well as Google Cloud Functions and AWS Lambda, allow 
customers to specify only the memory requirement — the amount 
of CPU power is determined by memory limit. However, it should 
be relatively easy to extend our model to (multi-dimensional) vec-
tor packing [9].

We do not consider the cost of the communication between 
tasks as the dependent functions exchange negligible amount of 
data, compared to a high-throughput, low-latency network of a 
modern datacenter. We assume that the machines are homoge-
neous (machine resources Q and execution times p f are the 
same). If a FaaS system is deployed on VMs rented from an IaaS 
cloud, it is natural to use a Managed Instance Group (MIG) that re-
quires all VMs to have the same instance type. If FaaS is deployed 
on a bare-metal data-center, the amount of machines having the 
same hardware configuration should be higher that other scalabil-
ity limits (e.g. in a Google data-center, 98% of machines from a 
10,000-machine cluster belong to one of just 4 hardware configu-
rations [33]).

We assume that jobs have no release times, i.e., the first tasks of 
all the jobs are ready to be scheduled at time 0. This assumption 
approximates a system under peak load, when we observe tem-
porary, rapid growth of incoming requests — there is a queue of 
pending requests to be scheduled at approximately the same time. 
Note that in contrast to jobs, individual tasks (in particular, the 
tasks that follow the first task of a job) do have non-zero release 
times, resulting from inter-task dependencies.

Our model is clairvoyant. A FaaS system repeatedly (thousands 
of times) executes individual functions. Thus, once a particular 
family is known for some time, q f , p f and the function struc-
ture should be easy to estimate using standard statistical methods 
— and before that, the system can use conservative upper bounds 
(e.g., defaults used by OpenWhisk). [23] shows that even sim-
ple methods estimate precisely memory and CPU requirements for 
long-running containers, which, in principle, is harder than esti-
mating for FaaS systems, as functions in FaaS systems are shorter, 
thus repeated much more frequently.

The system optimizes the average response latency. As all N
jobs are ready at time 0, this metric corresponds to 1

N

∑N
i=1 Ci .

To summarize, the scheduling problem consists of finding for 
each task O i,k a machine and a start time σi,k so that:

1. at σi,k , there is a prepared environment for f (O i,k) on 
that machine that does not execute any other task during 
[σi,k, σi,k + p f ) (a scheduling constraint);
20
Algorithm 1 Framework scheduling algorithm.
function schedulingStep(t, queue, wait, policy)

� policy ∈ {def ault, start}, wait ∈ {true, f alse}
for task ∈ finishedTasks(t) do

if policy == def ault then
queueDependentTasks(task, t)

for task ∈ order(queue) do
e ← FindUnusedEnvironment(task)

if e is nil and wait then
e ← FindEnvironmentToWait(task)

if e is nil then
e ← PlaceNewEnvironment(task)

if e is nil then
e ← RemoveAndPlaceEnvironment(task)

if e is not nil then
assignTask(c, task, releaseTime(task))

removeFromQueue(task)

if policy == start then
p ← duration(task)

queueDependentTasks(task, t + p)

2. O i,k starts after all its predecessors complete: σi,k ≥ Ci, j, ∀ j ∈
Pi,k (a dependency constraint);

3. at any time, for each machine, the sum of requirements of the 
installed environments is smaller than the machine capacity (a 
knapsack-like constraint).

This problem is NP-hard, as generalizing several NP-hard problems 
(bin-packing [14], P 2|D AG| ∑ Ci [6]). A bin-packing instance can 
be encoded as an instance of our problem with items to pack cor-
responding to 1-task jobs (each from a distinct family, and the task 
size q f equal to the size of the item to pack). With all the process-
ing times p f = 1, if the instance can be scheduled on m machines 
so that all tasks finish at time 1, this corresponds to packing items 
on m bins. Similarly P 2|D AG| ∑ Ci can be encoded by setting q f
all to 1; capacity of both (m = 2) machines to 1 (Q = q f ) (so that a 
machine always executes at most one task); and having each tasks 
in a separate family, with processing times p f equal to processing 
times of tasks in the P 2|D AG| ∑ Ci instance.

3. Algorithms

In this section we describe heuristics to schedule FaaS invo-
cations. We decompose the FaaS scheduling problem into three 
aspects: sequencing of invocations; deployment of execution envi-
ronments on machines; and allocation of invocations to deployed 
environments. We start with a framework algorithm (Algorithm 1) 
to show how these aspects are combined to build a schedule; we 
then describe for each of the aspects several specific heuristics. Se-
quencing corresponds to the ordering policy (Section 3.1) and the 
awareness of task dependencies (Section 3.4). Deployment corre-
sponds to the removal policy (Section 3.2). Allocation corresponds 
to the waiting/non-waiting variants (Section 3.3).

The framework algorithm is a standard scheduling loop execut-
ing schedulingStep at time t when at least one task completes. The 
algorithm maintains a queue of tasks [O i,k] to schedule and pro-
ceeds as follows:

1. Queue the successors of tasks completed at t ({O i,k : σi,k +
p f = t}) if all their dependencies are already scheduled, along 
with their release time (queueDependentTasks). We maintain in-
formation about task’s release time during scheduling process 
to ensure that dependency constraints are met (in particular 
the task may wait for completion of its dependencies after be-
ing assigned to the environment — we describe this case later).

2. Apply a scheduling policy to the queued tasks (Order). We de-
scribe policies for this step in Section 3.1.
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3. Try to find an environment e for each queued task. Our goal is 
to avoid unnecessary setup of environments, therefore we take 
the following steps:
(a) Try to claim an initialized environment of the required 

type (FindUnusedEnvironment, and — if wait — FindEnviron-
mentToWait). In this step we iterate over all machines and 
take the first matching unused environment. Section 3.3
describes action taken in the wait variant.

(b) If (a) fails, try to create a new environment without re-
moving any existing one (PlaceNewEnvironment). As above, 
we use the first machine that fits.

(c) If (b) fails, try to find a machine with sufficient capacity 
for e that is currently claimed by environments that do 
not execute any task; remove these idle environments, and 
install e (RemoveAndPlaceEnvironment).

(d) If (c) fails, the task remains in the queue.
4. If an environment e is found, assign the task (AssignTask); oth-

erwise (3.a-c all fail) the task remains in the queue.

After each iteration of the main loop, the time t is shifted to the 
lowest completion time of the running tasks (in an implementa-
tion in a runtime system, the loop would block until the next task 
completes). AssignTask starts a task on an environment as follows. 
Each environment has a queue of assigned tasks. Immediately af-
ter creating an environment, it is initialized (which takes time s f ). 
Then, the environment starts to execute tasks sequentially from its 
queue. If the head task is not ready (waiting for dependencies), the 
environment waits (no backfilling). This may happen in the start
policy (see Section 3.4).

In the following, we propose concrete variants for these func-
tions. We denote the full scheduling policy by a tuple (A, B, C, D)

where A denotes the tasks’ ordering policy, B denotes the en-
vironments’ removal policy, C indicates if variant is waiting
and D describes whether the variant is dependency-aware, e.g., 
(F I F O , LRU , wait, start).

3.1. Ordering policy (Order)

We compare the baseline FIFO and SJF policies with four poli-
cies taking into account the compositions and setup times:

• FIFO (First Come First Served): use the order in which the tasks 
were added.

• SJF (Shortest Jobs First): order by increasing tasks’ durations p f ;
• EF (Existing First): partition the tasks into two groups: (1) there 

is at least one idle, initialized environment e of matching type 
E f (O i,k); (2) the rest. Schedule the first group before the sec-
ond group. The relative order of the tasks in both groups re-
mains stable (FIFO). For example, if queue contains five tasks 
[O i1,k1 , O i2,k2 , O i3,k3 , O i4,k4 , O i5,k5 ], there is only one environ-
ment e that is idle and only tasks O i1,k1 , O i3,k3 , O i4,k4 re-
quire environment with type matching e, the resulting order 
is [O i1,k1 , O i3,k3 , O i4,k4 , O i2,k2 , O i5,k5 ].• SW (Smallest Work): order by increasing remaining sum of work 
of the task and its successors. This extends the SJF principle by 
taking into account the whole remaining work to be processed 
for the job, rather than just the ready task.

• SP (Smallest Work on Critical Path): order by increasing remain-
ing sum of work of the task and its successors on critical path 
(the longest path between the current state of each job and 
its completion). This extends the SW principle by taking into 
account the structure of the job: jobs with higher degree of 
parallelism will be favored.

• RT (Release Time): order by the time the task’s predecessors are 
completed.
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3.2. Removal policy

When choosing an idle environment to remove, RemoveAnd-
PlaceEnvironment removes environments according to either a 
baseline LRU policy, or one of policies considering either initial-
ization time s f or environment popularity:

• LRU: remove the least recently used (LRU) environment(s) 
from the first fitting machine (i.e. having enough space to be 
freed).

• min time removal: remove the environment(s) with the small-
est setup time s f (if more than one, select a single machine 
having environments with the smallest total s f ).

• min family removal: remove the idle environment(s) from the 
family with the highest number of currently initialized envi-
ronments. As it may be needed to remove more than one envi-
ronment, choose a machine to minimize the resulting number 
of families without any environment.

3.3. Greedy environment creation

If there is no unused environment of the required type E f , 
a greedy algorithm just attempts to create a new one. However, 
when setup times s f are longer than task’s duration p f , it might 
be faster just to wait until one of currently initialized environ-
ments completes its assigned task. We implement this policy by 
setting wait to true in Algorithm 1. When no idle environment is 
available, function FindEnvironmentToWait computes for each ini-
tialized environment e of type E f the time Ce the last task cur-
rently assigned to this environment completes. If an environment 
e∗ is available sooner than the time needed to set up a new envi-
ronment (min Ce ≤ t + s f ), the task is assigned to e∗ . This variant 
use the (limited) clairvoyance of the scheduler by taking into ac-
count the knowledge of tasks’ durations and setup times of their 
execution environments.

The waiting variant is analogous to scheduling tasks in Hetero-
geneous Earliest Finish Time (HEFT [5,39]) that places a task on a 
processor that will finish the task as the earliest.

3.4. Awareness of task dependencies

A myopic (default) scheduler queues just the tasks that are cur-
rently ready to execute: O i,0 (the first tasks in the jobs), or the 
tasks for which the predecessors completed {O i,k : ∀ j∈Pi,k Ci, j ≤ t}. 
However, when a task’s O i,k predecessors complete, it might hap-
pen that there is no idle environment e f (O i,k) , and thus O i,k must 
still wait s f until a new environment is initialized.

We propose two policies, start and start with break (stbr), that 
use the structure of the job to prepare environments in advance. 
Assume O i,l is the currently-scheduled task. These policies queue 
successors of O i,l when all predecessors completion time can be 
estimated. Of course, these successors are not yet ready to be ex-
ecuted (as their predecessors have not yet completed). We thus 
introduce the notion of the release time for each successor. These 
release times can be easily computed: as for each task we know its 
processing time p f , the release time for each of the task’s succes-
sors can be computed by the maximum completion time among 
its predecessors.

Note that start and stbr may result in an environment that is 
(temporarily) blocked: e.g., if an empty system schedules a chain 
of two tasks, the second task from the chain is added to the queue 
immediately after scheduling the first task; this second task will 
be assigned to its environment, but cannot be started until the 
first task is completed. In start variant, after schedulingStep com-
pletes and new tasks were added to queue, scheduler tries placing 
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them following the same procedure. Compared with start, stbr im-
mediately after adding O i,k successor reorders tasks in the queue 
according to the scheduling policy and restarts the placement (for 
clarity, stbr is not presented in Algorithm 1).

4. Evaluation

We evaluate our algorithms with a calibrated simulator. We use 
a simulator rather than modify the OpenWhisk scheduler for the 
following reasons. First, a discrete-time simulator enables us to 
execute much more test scenarios and on a considerably larger 
scale (we simulate 1440 test instances each on 15 machine en-
vironments; Section 4.1 gives details on how we generate them). 
Second, as our results will show, to schedule tasks more efficiently, 
the OpenWhisk controller (the central scheduler) should take over 
some of the decisions currently made by the invokers (agents re-
siding on worker machines). For example, min family removal needs 
to know which family has the highest number of installed environ-
ments in the whole cluster — thus, the state of the whole cluster 
(note that this policy can be implemented in a distributed way: the 
cluster state can be broadcasted to the invokers). To ensure that 
our simulator’s results can be generalized to an OpenWhisk instal-
lation, in Section 4.2 we compare the performance of an actual 
OpenWhisk system with its simulation. We observe high Pearson 
correlation coefficient and a high coefficient of determination, con-
firming the realism of our simulation.

4.1. Method

We tested the performance of our algorithms on two kinds 
of test instances. First, we use synthetic test instances with a 
wide range of parameter values to test the general trends. Second, 
in Section 4.10, we adopt a recently-published Microsoft Azure 
Trace [26] to our model: there, we generate randomly only the 
data missing in the trace (such as the setup times).

Many parameters of test instances have a relative, rather than 
absolute, effect on the result. For example, multiplying by a con-
stant both Q , the machine capacity, and q f , the size of the 
task, results in an test instance that has very similar scheduling 
properties. There is a similar relationship between setup times 
s f and durations p f ; and between the total number of tasks n
and the number of tasks in a job l. We thus fix one parame-
ter from each pair to a constant (or a small range); and vary the 
other.

In each simulation we use m machines of capacity Q . We have 
n = 1000 tasks assigned to n f families. p f is generated by the 
uniform distribution over integers p f ∼ U [1, 10]; similarly q f ∼
U [1, 10]. The remaining parameters have ranges:

• family count n f : 10, 20, 50, 100, 200, 500;
• setup times s f : [0, 0], [10, 20], [100, 200], [1000, 2000];
• number of tasks in a job (size of a job) l: [2, 10], [10, 20], 

[50, 100];
• machine count m: 2, 5, 10, 20, 50;
• machine capacities Q : 10, 20, 50.

For each combination of the parameters (or ranges) n f , s f , l, we 
generate 20 random test instances, resulting in 1440 test instances. 
We evaluate each test instance on each of the 15 possible machine 
environments.

These ranges of parameters are wide. As we experiment on syn-
thetic data, one of our goals is to explore trends — characterize test 
instances for which our proposed method works better (or worse) 
than the current baseline. In particular, jobs larger than 10 (l > 10) 
may have longer critical path than what we suspect is the current 
FaaS usage. On the other hand, it is not a lot compared with a call 
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graph depth in any non-trivial software. At this point of FaaS evo-
lution it is difficult to foresee the degree of compartmentalization 
future FaaS software will have — and DAGs larger than 10 invoca-
tions represent fine-grained decomposition (similar to the modern 
non-FaaS software).

We consider two sets of test instances: DAGs and chains. While 
DAGs fully express function compositions, we consider chains as 
an important case as they are directly supported by OpenWhisk 
platform — therefore results of our research can be applied to a 
real system. Moreover, chains enable us to validate our simulator 
against OpenWhisk (Section 4.2).

In FaaS system a single function is able to spawn an arbitrary 
number of other functions by connecting directly to the platform 
API. In general, executing DAGs by appending to each function code 
invoking successors using the platform’s API hides the structure of 
the DAG from the scheduler. While spawning a new function using 
the API is straightforward, defining function that has more than 
one predecessor without direct platform support is more sophis-
ticated, as it requires e.g. to store information about which of the 
predecessors completed their execution. In our analysis we assume 
that scheduler has information about defined DAGs and we ana-
lyze platform supporting function compositions that all forms of 
DAGs.

We generate a chain test instance as follows. Given n f , [smin,

smax], [lmin, lmax], for each of n f , we set s f ∼ U [smin, smax] and 
p f ∼ U [1, 10]. For each of n = 1000 tasks, we set its family f to 
U [1, n f ]. We then chain tasks to jobs. Until all tasks are assigned, 
we are creating jobs by, first, setting the number of tasks in a job 
to l ∼ U [lmin, lmax] (the last created job could be smaller, taking 
the remaining tasks); and then choosing l unassigned tasks and 
putting them in a random sequence.

We generate DAGs similarly, but we change the algorithm to 
determine the dependencies. Given l tasks for a job, we first ran-
domly permute them; then, for each k-th task in the permutation 
(except the first task), we generate the number of its predecessors 
χ from the uniform distribution, χ = |Pi,k| = U [1, k − 1]; and then 
select these χ predecessors as a random subset of size χ of the 
set {O i,1, . . . , O i,k−1}.

For each experiment, our simulator computes the average re-
sponse latency, (1/n) 

∑
Ci . Due to space constraints, we omit re-

sults on tail, 95%-ile latency — the 95%-ile results also support our 
conclusions (unsurprisingly, the ranges are larger than for the av-
erages).

In addition to testing variants of Algorithm 1, we simulate the 
current, round-robin behavior of the OpenWhisk scheduler (Sec-
tion 2.1) with an algorithm OW. OW randomly selects for each 
family f the initial machine m f and the step size k f , an integer co-
prime with the number of machines m. When scheduling a task 
O i,k in family f , OW checks machines m f , m f + k f , m f + 2k f , 
. . . (all additions modulo m), stopping at the first machine that has 
either the environment E f ready to process, or q f free resources 
(including unused environments that could be removed) to install 
a new environment E f . If there is no such machine, O i,k is queued 
on a randomly-chosen machine.

4.2. Validation of the simulator against OpenWhisk

To compare the results of our simulator with OpenWhisk, we 
developed a customized OpenWhisk execution environment that 
emulates a function with a certain setup time s f , execution time 
p f and resource requirement q f . We chose 10 ms as the time 
unit to reduce impact of possible fluctuations of VM or network 
parameters in the datacenter (we performed some early experi-
ments with 1 ms and this noise was significant; and with a longer 
time unit tests take unreasonable time). This environment em-
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Fig. 2. Average latency on OpenWhisk system (Y axis) and simulated OW policy (X axis) with linear regression model fit. 1 unit is 10 ms. Each point corresponds to a single 
test instance executed on both OpenWhisk and simulator. Translucent bands indicate the 95% confidence interval.
Table 1
The 5th percentiles, medians and 95th percentiles of R2 across obtained 1000 scores 
to verify the quality of the linear regression fit in Fig. 2.

Group 5th percentile Median 95th percentile

Fig. 2(a) 0.86 0.93 0.97
Fig. 2(b) 0.29 0.67 0.84
Fig. 2(c) 0.997 0.998 0.9995

ulates initialization by sleeping for s f ∗ 10 ms; and it emulates 
execution by sleeping for p f ∗ 10 ms. While sleeping does not 
use the requested memory (q f ∗ 128 MB), the memory is blocked 
(through Linux cgroup limits) and therefore cannot be simulta-
neously used by other environments. We emulate a single test 
instance from our simulator by creating, for each job J i , an equiv-
alent sequence of invocations in OpenWhisk. To avoid caching of 
results in OpenWhisk, we ensure that each invocation is executed 
with a distinct set of parameters. We deployed an OpenWhisk 
cluster (1 controller and m = 10 invokers) on 11 VMs in Google 
Cloud Engine (GCE) in the us-central-1a zone. All machines have 
2 vCPU and 16 GB RAM, and were running Ubuntu 18.04 LTS. 
We further restrict the memory OpenWhisk can use on machines 
to 1280 MB (equivalent to Q = 10). In order to reduce impact 
of cloud storage on system performance, we used a ramdisk to 
store OpenWhisk accounting database. We also extended limits 
(maximum duration and sequence length) and changed the de-
fault log level to WARN. To reduce the impact of brief performance 
changes, we executed each test instance thrice and reported the 
median.

In Fig. 2 we compare the average response latency in Open-
Whisk and in our simulator varying chain lengths, the number of 
families and the ranges of setup times. For consistency, OpenWhisk 
results are rescaled to the simulator time unit (divided by 10). We 
use standard Pearson correlation coefficient [34] to validate correla-
tion between results obtained from simulator and OpenWhisk. In 
particular, we compute the coefficient between X, the vector of av-
erage latencies as computed by our simulator for the OW policy, 
and Y, the vector of average latencies measured on OpenWhisk (a 
single element of these vectors corresponds with the measurement 
for a single instance). The Pearson correlation coefficient between 
OpenWhisk and simulator is very high (between 0.86 when vary-
ing family count, Fig. 2.b, and 0.999 when varying the setup time, 
Fig. 2.c). To further test our claim, we compute the coefficients of 
determination (R2) scores [18] to verify the quality of the linear 
regression fit. We use the standard 5-fold cross-validation and re-
peat cross-validation 200 times (randomly permuting the data for 
each repetition). The 5th percentiles, medians and 95th percentiles 
of R2 across obtained 1000 results are presented in Table 1. Thus, 
the R2 scores are approximately equal to the squares of the Pear-
son correlation coefficients.

There is, however, an additive factor in OpenWhisk noticeable 
especially in smaller test instances in Fig. 2.(a) and Fig. 2.(b): the 
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range of OpenWhisk results in [5000, 9000], while the range of 
simulated results is in [550, 1600]; on larger test instances, as in 
Fig. 2.(c), this constant factor is less noticeable. This additive fac-
tor is caused by an additional system overhead added to every 
function execution: each invocation stores data in a database and 
requires internal communication. We conclude that the high corre-
lation between the simulator and the OpenWhisk results validates 
our simulator — that the differences between algorithms observed 
in the simulator are transferable to the results in OpenWhisk. In 
the remaining sections we analyze results obtained from the sim-
ulator.

4.3. Relative performance of policies

We first analyze the impact of each policy by analyzing their 
relative performance. For each variant (A, B, C, D), on each test 
instance, we compute the relative performance of the policy we 
measure by finding the minimal average latency across all variants 
of the measured policy while keeping the rest of the variants the 
same. For example, when measuring the effect of the scheduling 
policy (A), on an test instance, we find the minimum average la-
tency from the 5 variants of the scheduling policy: (EF, b, c, d), 
(FIFO, b, c, d), (RT, b, c, d), (SJF, b, c, d), (SW, b, c, d), (SP, b, c, 
d) (keeping b, c, d the same); and then we divide all 5 by this 
value. The goal of this analysis is to narrow down our focus to 
the aspects of the problem that are crucial for the performance. 
Using this method, we show that, e.g., all removal policies re-
sult in very similar outcomes. Fig. 3 shows the results. Each box 
corresponds to a statistics over experiments with all the removal 
policies (both in waiting non-waiting variant) and all dependency-
awareness variants (def, start, stbr), performed on all test instances 
and all possible machine environments (over 300k individual data 
points).

Ordering: EF policy dominates other ordering policies, confirming 
that it is better to avoid environment setup by reusing existing 
environments. Its median is similar to RT (and lower than other 
algorithms), and the range of values (including the third quartile) 
is the lowest.

Removal: Unlike scheduling policies, all the removal policies result 
in virtually the same schedule length: the range of Y axis is 1.035; 
thus outliers are only 3.5% worse than the minimal schedule found 
in the alternative methods.

Dependency awareness: Both start and stbr result in similar per-
formance. We confirmed this result by looking at individual test 
instances: the performance of start and stbr were similar.

To improve the readability in the remainder, given that the re-
moval policies have little effect on the schedule length (Fig. 3), we 
show only the results for LRU. Similarly, we skip results for SJF 
and RT orderings: RT is close to FIFO and SJF is clearly dominated 
by other variants. SW and SP give similar results, thus we show 
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Fig. 3. Comparison of resulting average latency under: different scheduling policies (a), removal policies (b) and variants of dependency-awareness (c). For (b) and (c) results 
are normalized as in (a), but for different removal policies (b) and for different dependency-aware variants (c), rather than scheduling policies. Here and in all following box 
plots, the box height indicates the first and the third quartile, the line inside the box indicates the median, and the whiskers extend to the most extreme data point within 
1.5 × IQR.

Fig. 4. Influence of the number of tasks in a job. For all test instances n f = 50, m = 20, Q = 10 with setup times 10–20.
only SP. Finally, as the difference between start and stbr variants is 
small, we show results only for start.

4.4. Impact of the number of tasks in a job

In the rest of the experimental section, we analyze the sen-
sitivity of the policies to various parameters of the test instance, 
starting with the number of tasks in a job. While we explore wide 
range of parameters, presenting all resulting figures would be im-
practical. Our goal is to present trends, thus in the rest of the 
experimental section we present figures with representative case 
and conclusions from all the experiments.

In Fig. 4, in all test instances n f = 50, s f ∈ [10, 20], m = 20, 
Q = 10 — we carried out experiments for all sets of parameters, 
but as the trends are similar, for practical reasons we show only 
results for these. All scheduling algorithms using EF as the order-
ing policy significantly reduce latency compared to the baseline 
OW (1.06–2.65x), with larger reductions for smaller jobs. The start
dependency-aware variant further reduces latency, especially for 
jobs with more tasks ([50 − 100]), and also for other scheduling 
methods (FIFO). Therefore, for deployments with large (50 tasks 
and above) jobs, at least 100 families, setup times 100 (and larger) 
with at least 20 machines of capacity 10 (or more), implement-
ing dependency-aware scheduler can provide measurable bene-
fits.

4.5. Impact of the number of families

Fig. 5 compares results as a function of the number of task 
families in the system. When the number of task families is small 
(up to 20), variants without dependency awareness (def ) and with 
wait can give better results than dependency-aware variants. In 
such cases, variants using EF method are slightly better than their 
equivalents using FIFO. The same applies to the removal method: 
wait variants give better results than their equivalents using plain 
LRU. The higher the number of families, the higher the probability 
that the required type of environment is missing. With at least 
n f = 100 families (Fig. 5.c, similar results for s f ≥ 100, l ≥ 50, 
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m ≥ 20, Q ≥ 10 omitted to improve overall readability), depen-
dency awareness plays a crucial role — variants using start outper-
forms def regardless of the used scheduling algorithm and removal 
policy. Thus, in case of high variability of functions (i.e. requiring 
different environments), taking into account tasks’ dependencies 
can significantly reduce the serving latency.

4.6. Impact of the setup time

Fig. 6 compares results as a function of different setup time 
ranges. In the edge case with no setup times, s f = 0, we see 
no difference between the waiting and the non-waiting variants, 
as there is no additional penalty for inefficient environment re-
creation. Similarly, there are no differences between EF and FIFO. 
For non-zero setup times, dependency awareness (start) reduces 
the latency. However, with no setup time, start latencies are longer. 
This behavior is caused by adding tasks with future release time to 
the queue (see Section 3.4). Consider two jobs each of two tasks:

1. a long job with task A (duration 10) followed by task B (dura-
tion 1);

2. a short job with task C (duration 1), followed by task B (dura-
tion 1).

EF and FIFO using start variants may assign the second task from 
the long job to the environment of type B immediately after as-
signing the first task. This might block the second task from the 
short job until t = 11; while the optimal schedule starts this task 
at t = 1. For the same reason, start has worse results when there 
are more jobs (i.e. smaller jobs) and the systems are smaller (less 
machines, smaller capacities).

We further investigate for which test instance parameters the 
dependency-aware start dominates the myopic def, assuming non-
negligible setup times s f ≥ 100. We aggregate results by all sim-
ulation parameters (count of families n f , machines m, machine 
capacities Q , range of job sizes l, range of setup times s f and 
used algorithm variant) and compute the median average latency 
among 20 test instances. Then we analyze in how many of result-
ing cases changing def to start improves performance. For large 
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Fig. 5. Influence of the different number of families. To show general trend, we present results for 10, 50 and 200 families. For all test instances m = 20, Q = 10, s f ∈
[100, 200], l ∈ [50, 100].

Fig. 6. Influence of the setup time. For all test instances n f = 50, m = 10, Q = 10, l ∈ [50,100].
jobs (l ≥ 50), many task families (nF > 100), and many machines 
(m ≥ 10), changing the default (def ) variant to dependency-aware 
one improves performance in all cases.

4.7. Impact of machine capacity

Fig. 7 compares results as a function of the number of ma-
chines and their capacity. For all test instances n f = 50, l ∈ [10, 20], 
s f ∈ [10, 20]. To show general trend and ensure clarity, out of 
15 considered machine configurations we present results only for 
test instances with (m, Q ) ∈ {(5, 20), (20, 20), (50, 10), (50, 50)}. 
For cases up to (m, Q ) = (5, 20), the only non-negligible differ-
ences between the plain and dependency-aware variants are for 
SW and SP scheduling policies. Due to large number of jobs (job 
sizes are in range 10–20), when dependent tasks are added to 
the queue earlier, environments may get blocked as described in 
Section 4.6, therefore there is no additional benefit of dependency-
awareness. For capacities up to (m, Q ) = (50, 10), using wait vari-
ants outperform the default (def) variants using the same schedul-
ing algorithm and with the same setting of dependency-awareness. 
In all presented cases, for FIFO and EF scheduling policies, variants 
using wait with start have one of the lowest average latency. The 
improvement on overall system performance is most visible in the 
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case of highly-overloaded machines. Therefore, our methods could 
be used to improve handling of situation when datacenter has to 
handle rapid increase (peak) of requests.

4.8. Summary of experiments

We conclude the experiments over DAGs by presenting av-
erages improvements of (·, ·, wait, start) variants over OW base-
lines (Table 2). For each test instance on each particular machine 
configuration, we simulate each variant (·, ·, wait, start), compute 
the resulting average latency 

∑
Ci ; and then divide it by the 

latency of the OW baseline. We then average these relative im-
provements across all variants and all test instances (including all 
possible machine configurations): this gives us the average impact 
of (·, ·, wait, start), regardless of the sequencing method. Thus, a 
number in Table 2 is an average over 12960 simulations: 3 (num-
ber of tasks in a job) times 6 (family count) times 2 (starting times 
settings) times 20 (repetitions) times 6 (ordering policies) times 3 
(removal policies).

For non-negligible setup times (i.e. at least 100) in all machine 
configurations when the scheduler is dependency- and startup-
times aware (·, ·, wait, start) the average response latencies are 
reduced at least by the factor of two.
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Fig. 7. Influence of the machine environment. For all test instances fn = 50, l ∈ [10,20], s f ∈ [10,20].

Table 2
Average relative improvement in the average response latency of (·, ·, wait, start) over the OW baseline.

m Q

10 20 50

2 2.96 2.92 3.89
5 3.46 4.10 3.73
10 4.44 4.12 3.52
20 4.41 3.89 3.18
50 4.15 3.61 3.12

(a) s f ≥ 100

m Q

10 20 50

2 1.40 1.30 1.23
5 1.33 1.23 1.24
10 1.27 1.22 1.26
20 1.26 1.28 1.30
50 1.33 1.35 1.36

(b) s f < 100
4.9. Differences between DAGs and chains

In [40] we performed analysis analogous to Section 4.6, Sec-
tion 4.4 and Section 4.7, but for chains, instead of DAGs.

In general, obtained results are similar: if we compare behavior 
for different setup times (Fig. 5 in [40] and Fig. 6), we can observe 
that for non-zero setup times our algorithms perform better than 
baseline (OW). In both DAGs (Fig. 7) and chains (Fig. 6 in [40]) 
only for the largest processing capacity (50 machines of capacity 
50) there is observable fundamental improvement of dependency-
aware (start) variants over def. Moreover, for all machine configu-
rations except the largest one (50 machines of capacity 50), wait
variants performed better than the default (non-waiting) variants 
using the same scheduling method and with the same setting of 
dependency-awareness.

Nevertheless, there are observable differences. Increasing l, the 
number of tasks in a job, increases average latency more signif-
icantly for chains (Fig. 3 in [40]) than for DAGs (Fig. 4). For the 
same number of tasks in a job, a chain has less available con-
currency than a DAG (i.e. longer critical path). This also impacts 
differences observed in comparison of dataset with different setup 
times (and constant job size) — for chains (Fig. 5 in [40]) we ob-
serve higher difference between variants without (def ) and with 
dependency awareness (start) than for DAGs (Fig. 9). For similar 
reasons, for datasets with more families, our algorithms for DAGs 
(Fig. 5) — as well as for chains (Fig. 4 in [40]) — provide lower av-
erage latencies than OW, but difference between the best schedule 
and the baseline for DAGs is noticeably smaller.
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Overall, the results are similar, proving the robustness of our 
proposed algorithms. In all analyzed cases with non-zero setup 
times, our proposed algorithms — the EF scheduling policy with 
LRU replacement and waiting environment creation — outperform 
the OW baseline.

4.10. Experiments with a FaaS trace

To the best of our knowledge, there is no publicly available FaaS 
trace containing information about tasks with dependencies, setup 
times and tasks families (types or applications). However, based 
on an existing trace, we can generate a dataset making some ra-
tional assumptions about missing data. Thus, we can verify how 
such dataset-like workload would behave if executed in the ana-
lyzed model.

The recently-published Microsoft Azure Trace [26] contains in-
formation about sizes, durations and invocations patterns in Azure 
Functions. Memory usage is provided only for first 12 days of the 
trace, thus we limit our analysis to this range (as we will use mem-
ory data to generate q f , the size of the environment).

Functions in trace are organized in groups called apps which 
share common execution environment. As our model requires sep-
arate environments per function, we further narrow down our 
analysis to apps containing only one function. We map each app
to a function family.

We set the environment size q f to the maximum allocated 
memory (100th percentile of the average allocated memory column of 
Azure trace) as the environment should be large enough to han-
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Fig. 8. Comparison of different job sizes. In each case dataset contains 50 families generated from Azure trace. Setup times 100–200 times larger than average duration 
observed over all families, 10 machines of capacity 20.

Fig. 9. Comparison of impact of setup times. In each case, setup times are obtained by multiplying average duration across all families by random value from given range. All 
datasets contains 50 families and 1000 tasks in jobs of 50–100 tasks generated from Azure trace. Experiments were run on 10 machines of capacity 20.
dle all the invocations. We then normalize q f to range {1, . . . , 10}
to have similar range of values as our synthetic test instances. We 
set the execution time p f to the average execution time (Average
column in the trace).

Similarly to synthetic datasets described in Section 4.1, we gen-
erate datasets for a wide range of remaining parameters: the num-
ber of families in the system n f and setup times s f . Setup time 
of a family is, in principle, independent of this family’s execution 
time; yet, we need to control the relation of the mean setup time 
to the mean execution time (this relation is a parameter of our ex-
periment). We thus compute the mean execution time p f across 
n f families in the test instance; and then generate setup times s f

from p f U [Smin, Smax].
For each configuration, we generate a test instance containing 

n = 1000 tasks. For each test instance, we select n f families gener-
ated from app data which have the largest invocation count within 
the considered 12-day period. We use information about app invo-
cation counts to reflect invocation pattern within our sample: for 
each invocation we select its family randomly, but with weights 
proportional to the total number of invocation in the original trace. 
Then we generate DAGs (jobs) following the same procedure as in 
Section 4.1.
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Fig. 8 shows the impact of different job sizes. All datasets have 
50 families and setup times are 100–200 times larger than aver-
age family duration. In all cases enabling waiting improves per-
formance. However for small jobs (lower than 50 tasks), the start
variant gives no additional benefit.

Fig. 9 shows the impact of different setup times. Similarly 
to synthetic test instances, for configurations with negligible 
setup time, enabling dependency-awareness decreases perfor-
mance. With considerable setup times (at least 100 times larger 
than the average duration), EF and FIFO with waiting and depen-
dency-awareness (start) have one of the lowest average latencies.

In Fig. 10 shows the impact of the number of families. Vari-
ants with waiting and enabled dependency-awareness give better 
results than their non-waiting or not dependency aware equiva-
lents. Moreover, when there are many families (200), dependency-
awareness plays a crucial role — start variants overtake their def
equivalents.

While generated samples have higher value of average latency 
than our synthetic datasets (as we don’t normalize durations), 
we observe in all cases that enabling waiting reduces the la-
tency. Analogously to results obtained for synthetic datasets, for 
non-negligible setup times, FIFO and EF variants with waiting and 
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Fig. 10. Comparison of different count of families generated from Azure trace. In all cases setup times are in range 100–200x average duration across all families. We present 
results for 10 machines of capacity 20, jobs containing 50–100 tasks (note: except last generated one).
enable dependency-awareness (start) give significant improvement 
over baseline (OW).

5. Related work

Our model of FaaS resource management combines scheduling 
(with setup times and dependencies) [2] with bin packing (when 
environments of different sizes must fit into machines). Our sim-
ulation results show that all these aspects have to be taken into 
account by the scheduler (the baseline OW is consistently domi-
nated by our policies). Individually, these are classic problems in 
combinatorial optimization. Allahverdi [2] performs a comprehen-
sive review of about 500 papers on scheduling with setup times. 
Brucker [6] reviews scheduling results. We start by describing the 
closest related combinatorial optimization approaches (these ap-
proaches are mostly theoretical or based on simulation). We then 
follow by a discussion on other systems-based approaches to opti-
mization in FaaS.

Quadratic programming: We proposed heuristics, rather than generic 
solvers or metaheuristics. Initially, we considered encoding our 
problem as an (integer) quadratic programming. Nevertheless, 
Gurobi [16] was unable to find an optimal schedule in 15 minutes 
(on a reasonable desktop machine) even for a small test instance 
with N = 20 jobs each of nl = 20 tasks. Schedulers in production 
systems need to respond in seconds, thus an approach based on a 
generic solver is probably not sufficient.

Bin packing with setup times: With no dependencies, our prob-
lem reduces to bin packing with sequence independent setup 
times. Weng et al. [36] study similar problem of minimizing mean 
weighted completion time for tasks with sequence dependent 
setup times. [35] presents dynamic algorithms addressing schedul-
ing with setup times with objective of minimal weighted flow 
time.

Workflow scheduling: With no setup times (s f = 0) and task sizes 
equal to machine capacities q f = Q , our problem reduces to work-
flow scheduling. [37] surveys workflow scheduling in the cloud. 
[19] measures how inaccurate runtime estimates influence the 
schedules which complements our study, as we assumed that es-
timates are known. [27] analyzes possible performance benefits 
of resource interleaving across the parallel stages. [24] proposes 
Balanced Minimum Completion Time, an algorithm for scheduling 
tasks with dependencies (and without setup times) on heteroge-
neous systems. [13] schedules workflows with setup times using 
branch-and-bound. The evaluation in that paper considered small 
instances (up to N ∗ nl = 100 task and m = 4 machines); their 
method required 100 s time limit for execution. Such long running 
times makes this method unusable in data-center schedulers. [1]
analyzes scheduling tasks with sequence-dependent setup times, 
precedence constraints, release dates on unrelated machines with 
resource constraints and machine eligibility. Two algorithms are 
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analyzed: based on genetic algorithm and based on an artificial im-
mune system. Their largest instances had 60 tasks and 8 machines 
and needed 25 minutes (on the average) to solve, again rendering 
these methods unusable for FaaS.

Systems approaches in Serverless Computing: Serverless is currently 
rapidly evolving with multiple ongoing efforts to analyze and ex-
tend it. In our work we explore possible performance improve-
ments by considering the composition of functions. [7,15] also 
consider composed functions. [15] analyzes function chains and 
attempts to reduce the number of used containers while keeping 
response time below a predefined limit. Their implementations use 
Brigade running on top of Kubernetes. [7] analyzes function DAGs 
and possible benefits of storing intermediate results inside execu-
tors.

Our simulation results show that the scheduling matters es-
pecially when setup times of new environments are high. Reduc-
ing setup times has received considerable attention. [29] proposes 
checkpointing and then restoring environments. Catalyzer [10]
reuses the environment state. Particle [32] identifies environment 
network configuration as an important contributor to the setup 
time in container-based platforms, including OpenWhisk; and pro-
poses how to decouple that from environment creation.

Another key parameter is the size of the environment (q f ): the 
smaller the environments are, the more can run currently on a 
machine, thus packing and evictions become less crucial. The fol-
lowing approaches reduce the memory footprint of environments. 
[28] proposes new isolation abstraction reducing memory require-
ments. Photons [11] reduces overall memory consumption by run-
ning multiple concurrent invocations within a single environment 
(without impacting reliability). ENSURE [31] improves resource ef-
ficiency by adapting the resource usage of environments running 
on a single invoker and concentrating workloads to minimize num-
ber of concurrently running environments.

An orthogonal approach to reduction of the serving latency is to 
directly reduce p f , the function’s processing time. As in the clas-
sic FaaS model, the functions are stateless, getting the state from 
external storage takes time. Cloudburst [30] demonstrates and 
analyzes usability of stateful serverless computing. [38] presents 
framework for building stateful and fault-tolerant serverless-based 
applications, running on top of existing platforms. [22] shows an-
other, orthogonal approach: they change scheduling of invocations 
on an individual node.

6. Conclusions

In the FaaS model, the time needed to create an environ-
ment for an incoming function invocation in most cases cannot 
be neglected. We predict that the growing popularity of FaaS sys-
tems will result in more complex applications being created in 
this model. As we show in this paper, the cloud provider can 
significantly optimize FaaS performance knowing the structure of 
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the compositions used in the workload. Our framework algorithm 
could be implemented in FaaS systems, however some changes in 
the architecture might be required, e.g. the Apache OpenWhisk 
controller would need to assign invocations directly to containers 
running on invoker nodes and also to directly create and evict the 
environments.

In our experiments, we identified the three policies in our 
framework algorithm that lead to largest improvements. Taken to-
gether, they consider the structure of the functions and thus they 
can install environments in advance. The start variant adds succes-
sors of each task to the queue so that the scheduler then knows 
what environments should be prepared in advance. The waiting
variant, rather than greedily creating an environment for each task, 
binds a task to the existing, currently busy environment if such 
environment will be available to process the task earlier than a 
newly-created one. Finally, the EF ordering prioritizes tasks that 
can be started using already prepared environments.

Our simulation results clearly show that the performance of 
FaaS can be improved by these methods. For non-negligible setup 
times (i.e. at least 100 or at least 20 times longer than the average 
task duration) in all machine configurations when the scheduler is 
dependency- and startup-times aware (·, ·, wait, start) the average 
improvement of the response latency is at least by the factor of 
two. We summarize the observed improvements in Table 2.

Thus, our results indicate that dependency- and startup-times 
aware scheduling is more efficient when the load of the system 
is high. Our methods can be used to mitigate the impact of the 
increased demand in the short term. If the demand increase is 
longer-term, the underlying infrastructure will be eventually scaled 
out by, e.g., adding new VMs. However, such scale-out takes con-
siderably longer time (minutes); meanwhile, the load has to be 
handled.

Although our experiments were offline, the waiting variant 
and the start variant can be easily implemented in the existing 
FaaS schedulers (controllers). Our results show that waiting and 
start variants are beneficial even with the standard FIFO order-
ing. Changing the invocation order (as in SJF and EF variants) is 
less straightforward, as when new jobs arrive on-line, existing jobs 
might be starved: these policies would additionally need to con-
sider fairness.

Finally, while FaaS is the main motivation of this work, these 
ideas can be applied also in other systems executing workflows on 
shared machines (a machine executing multiple tasks in parallel), 
such as Apache Beam.
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