
Journal of Parallel and Distributed Computing 167 (2022) 18–30

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

Reducing response latency of composite functions-as-a-service through

scheduling

Pawel Zuk ∗, Krzysztof Rzadca

Institute of Informatics, Banacha 2, 02-097, Warsaw, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 February 2021
Received in revised form 11 February 2022
Accepted 9 April 2022
Available online 19 April 2022

Keywords:
Scheduling
Workflow
DAG
Setup times
Serverless

In Function-as-a-Service (FaaS) clouds, customers deploy to cloud individual functions, in contrast to
complete virtual machines (IaaS) or Linux containers (PaaS). FaaS offerings are available in the largest
public clouds (Amazon Lambda, Google Cloud Functions, Azure Serverless); there are also popular open-
source implementations (Apache OpenWhisk) with commercial offerings (Adobe I/O Runtime, IBM Cloud
Functions). A recent addition to FaaS is the ability to compose functions: a function may call another
functions, which, in turn, may call yet another function — forming a directed acyclic graph (DAG) of
invocations. From the perspective of the infrastructure, a composed function is less opaque than a virtual
machine or a container. We show that this additional information about the internal structure of the
function enables the infrastructure provider to reduce the response latency. In particular, knowing the
successors of a function in a DAG, the infrastructure can schedule these future invocations along with
necessary preparation of environments.
We model resource management in FaaS as a scheduling problem combining (1) sequencing of
invocations; (2) deploying execution environments on machines; and (3) allocating invocations to
deployed environments. For each aspect, we propose heuristics that employ FaaS-specific features. We
explore their performance by simulation on a range of synthetic workloads and on workloads inspired by
trace from existing system. Our results show that if the setup times are long compared to invocation
times, algorithms that use information about the composition of functions consistently outperform
greedy, myopic algorithms, leading to significant decrease in response latency.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Serverless computing allows a cloud customer to run their code
in production without configuring and allocating the software and
the infrastructure stack [8]. A cloud customer can thus focus on
their application, rather than on managing the production envi-
ronment. Major cloud providers offer serverless products (Amazon
Lambda, Google Cloud Functions, Microsoft Azure Serverless). We
focus on a variant of serverless computing called Function as a Ser-
vice (FaaS) [12]. In FaaS, a cloud customer uploads the source code
of a (stateless) function to the provider. When an end-user issues
a request, this code is executed on the infrastructure provided and
managed by the FaaS system. The FaaS system isolates requests by

* Corresponding author.
E-mail addresses: p.zuk@mimuw.edu.pl (P. Zuk), krzadca@mimuw.edu.pl

(K. Rzadca).
https://doi.org/10.1016/j.jpdc.2022.04.011
0743-7315/© 2022 Elsevier Inc. All rights reserved.
providing for each invocation a prepared execution environment —
usually a Linux container.1

While FaaS is gaining wide adoption, a recent new element is
still relatively unexplored — the composition of functions [4]. Dur-
ing an invocation of a composed FaaS initiated by a single incom-
ing event (e.g., an HTTP request), a function calls another function,
that, in turn, may call yet another function and so on. If these in-
vocations are all synchronous, the call structure is a chain; if some
are asynchronous, it is a DAG. In this paper, we focus on DAGs (our
conference paper [40] studied chains — in this paper we extend
our algorithms to DAGs and we also compare how the additional
complexity of DAGs influence the results).

The existing open-source FaaS systems (OpenWhisk, Fission
Workflows) do not use the information about the structure of

1 This is an extended and updated version of our conference paper: Pawel Zuk
and Krzysztof Rzadca, Scheduling Methods to Reduce Response Latency of Func-
tion as a Service, IEEE 32nd International Symposium on Computer Architecture
and High Performance Computing, Porto, Portugal, 2020.

https://doi.org/10.1016/j.jpdc.2022.04.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.04.011&domain=pdf
mailto:p.zuk@mimuw.edu.pl
mailto:krzadca@mimuw.edu.pl
https://doi.org/10.1016/j.jpdc.2022.04.011

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30
the function compositions. Each invocation in a composition (in
a chain or a DAG) is treated independently. However, once the first
function is invoked, the scheduler knows that the functions that
follow in a DAG will be eventually called too — thus, the scheduler
can prepare their execution environments in advance. Moreover,
information about current system state can be used to perform
optimizations by changing order of execution of incoming invoca-
tions.

The contributions of this paper are as follows:

• We model scheduling in FaaS as a combination of the multi-
ple knapsack problem, scheduling with dependencies and with
setup times (Section 2).

• We propose a number of heuristics for each aspect (Section 3).
These heuristics derive from classic approaches, but we adjust
them to the FaaS specificity.

• By simulations, we show that heuristics examining the com-
position structure lead to lower response latencies (Section 4).

2. Modeling FaaS resource management

2.1. Resource management in OpenWhisk

In this section, we describe from the resource management
perspective a representative implementation of a serverless cloud
platform, the open-source Apache OpenWhisk [3]. OpenWhisk
is mature, actively-developed software also offered commercially
(IBM Cloud Functions, Adobe I/O Runtime). OpenWhisk alterna-
tives include OpenLambda [17] and Fission [20]. OpenLambda uses
containers to provide runtime environment for functions. Fission
is designed for Kubernetes [21]; it can be deployed on existing
cluster among other applications, which makes its adoption signif-
icantly easier. This section forms a background for our scheduling
model that follows in Section 2.2.

OpenWhisk allows a cloud customer to upload functions (essen-
tially, code snippets). A function is executed when end-users issue
requests. A function executes in an environment — an initialized
Linux container. Different container images are used for each of
supported languages; a customer can also provide a custom im-
age (with, e.g., additional libraries). Before the first execution of a
function, the container must be initialized (e.g., setting up the con-
tainer or compiling a Go function code). This initialization can take
a considerable amount of time (called later the setup time) — [25]
reports at least 500 ms. An environment is specific to a function
— an environment is not reused by different functions. However,
subsequent invocations may reuse the same environment with-
out the need to re-initialize it, thus, without the increased latency
caused by the setup time. By default, in OpenWhisk each environ-
ment executes at most a single invocation at any given moment
(there is no parallelism inside an environment). However, multiple
independent invocations can be processed in parallel by multiple
environments.

OpenWhisk also allows to compose several functions into a
chain (a sequence). After one function finishes, its result are passed
to the next function; the last function responds to the end-user.
While sequences are natively supported, in order to spawn two
or more functions in parallel (resulting in a DAG), the developer
may use an additional OpenWhisk Composer module or call the
OpenWhisk API from the function code. These composed functions
are now relatively uncommon. To the best of our knowledge, there
is no publicly available FaaS trace with function composition and
setup times. However, we argue that their introduction follows the
standard trend in software engineering of refactoring large func-
tions into a series of smaller ones; or from monolith applications
to meshes of microservices. FaaS is still a new paradigm and we
assume that soon this trend will follow.
19
Fig. 1. Core architecture of OpenWhisk.

Architecture of OpenWhisk is complex. Fig. 1 presents a high-
level overview of OpenWhisk internal modules. From our perspec-
tive the key components are the controller and the invoker. The
controller communicates with the invokers by message passing
(via Apache Kafka).

The invoker is an agent running on a worker node. The invoker
is responsible for executing actions scheduled on a particular node.
Each invoker has a unique identifier; it announces itself to the con-
troller while starting.

The controller acts as a scheduler handling incoming events and
routing each function invocation to a concrete invoker. The con-
troller monitors the status of workers and the currently executing
invocations.

The controller attempts to balance load across nodes. The de-
fault algorithm selects for each function the initial worker node
based on a hash of the workspace name and the function name.
Similarly, the algorithm picks for each function another number,
called the step size (a number co-prime with the count of worker
nodes). Each time a function is invoked, the controller attempts to
schedule the invocation on its initial worker. If a worker doesn’t
have sufficient resources immediately available, the controller tries
to schedule the invocation on the next node (increased by the step
size). If the invocation cannot be immediately scheduled on any
node, it is queued on a randomly chosen node.

2.2. A scheduling model for FaaS

In this section we define the optimization model for the FaaS
resource management problem. The aim of this model is to have
the simplest possible (yet still realistic) approximation of a FaaS
system that enables us to show that explicitly considering FaaS
compositions allows optimizations. We thus deliberately do not
take into account some factors that we argue are orthogonal for
this work.

We use the standard notation from [6]. A single end-user re-
quest corresponds to a job J i . A job is composed of one or more
tasks O i,k , each corresponding to a single FaaS invocation. The re-
quest is responded to (the job completes) at time Ci when the
last task completes, Ci = maxk Ci,k (where Ci,k denotes the com-
pletion time of task O i,k). Tasks have dependencies resulting from,
e.g., before-after relationships in the code. We denote set of task
O i,k dependencies (predecessors) by Pi,k , i.e., task O i,k may start
(at time σi,k) only after all its predecessors ∀ j∈P i,k O i, j complete,
σi,k ≥ max j∈Pi,k Ci, j .

We assume that individual functions are repeatedly executed
(modeling similar requests from many end-users but also shared
modules like authorization). We model such grouping by mapping
each task O i,k to exactly one task family f (O i,k) (obviously, two

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30
tasks O i,k and O i,l from a job J i might belong to different fami-
lies). All tasks from a family f require the same environment E f ,
have the same execution time (duration) p f and require the same
amount of resources q f .

A task O i,k from a family f (O i,k) is executed on exactly one
machine in an environment (OS container) E f . E f requires set-
up time s f (initialization of the environment) before executing
the first task. Subsequent tasks executed in this environment do
not require set-up times. Typically, s f is non-negligible and much
longer than the task’s duration, s f > p f but we don’t assume this
in our optimization model, i.e. there is no restriction on the rela-
tion between s f and p f .

A machine commonly hosts many environments, thus support-
ing parallel execution of tasks. Our machine corresponds to a sin-
gle OpenWhisk worker node, thus it may be a VM running on
a IaaS cloud or a bare-metal node. Since the moment the envi-
ronment’s preparation starts — and until it is removed — each
environment E f uses q f of the machine’s resources (e.g., bytes of
memory) whether a task executes or not. The number of simulta-
neously hosted environments is limited by the capacity of the ma-
chine Q (e.g. total amount of available memory;

∑
q f ≤ Q). We

consider only a single dimension of the resource requests as Open-
Whisk, as well as Google Cloud Functions and AWS Lambda, allow
customers to specify only the memory requirement — the amount
of CPU power is determined by memory limit. However, it should
be relatively easy to extend our model to (multi-dimensional) vec-
tor packing [9].

We do not consider the cost of the communication between
tasks as the dependent functions exchange negligible amount of
data, compared to a high-throughput, low-latency network of a
modern datacenter. We assume that the machines are homoge-
neous (machine resources Q and execution times p f are the
same). If a FaaS system is deployed on VMs rented from an IaaS
cloud, it is natural to use a Managed Instance Group (MIG) that re-
quires all VMs to have the same instance type. If FaaS is deployed
on a bare-metal data-center, the amount of machines having the
same hardware configuration should be higher that other scalabil-
ity limits (e.g. in a Google data-center, 98% of machines from a
10,000-machine cluster belong to one of just 4 hardware configu-
rations [33]).

We assume that jobs have no release times, i.e., the first tasks of
all the jobs are ready to be scheduled at time 0. This assumption
approximates a system under peak load, when we observe tem-
porary, rapid growth of incoming requests — there is a queue of
pending requests to be scheduled at approximately the same time.
Note that in contrast to jobs, individual tasks (in particular, the
tasks that follow the first task of a job) do have non-zero release
times, resulting from inter-task dependencies.

Our model is clairvoyant. A FaaS system repeatedly (thousands
of times) executes individual functions. Thus, once a particular
family is known for some time, q f , p f and the function struc-
ture should be easy to estimate using standard statistical methods
— and before that, the system can use conservative upper bounds
(e.g., defaults used by OpenWhisk). [23] shows that even sim-
ple methods estimate precisely memory and CPU requirements for
long-running containers, which, in principle, is harder than esti-
mating for FaaS systems, as functions in FaaS systems are shorter,
thus repeated much more frequently.

The system optimizes the average response latency. As all N
jobs are ready at time 0, this metric corresponds to 1

N

∑N
i=1 Ci .

To summarize, the scheduling problem consists of finding for
each task O i,k a machine and a start time σi,k so that:

1. at σi,k , there is a prepared environment for f (O i,k) on
that machine that does not execute any other task during
[σi,k, σi,k + p f) (a scheduling constraint);
20
Algorithm 1 Framework scheduling algorithm.
function schedulingStep(t, queue, wait, policy)

� policy ∈ {def ault, start}, wait ∈ {true, f alse}
for task ∈ finishedTasks(t) do

if policy == def ault then
queueDependentTasks(task, t)

for task ∈ order(queue) do
e ← FindUnusedEnvironment(task)

if e is nil and wait then
e ← FindEnvironmentToWait(task)

if e is nil then
e ← PlaceNewEnvironment(task)

if e is nil then
e ← RemoveAndPlaceEnvironment(task)

if e is not nil then
assignTask(c, task, releaseTime(task))

removeFromQueue(task)

if policy == start then
p ← duration(task)

queueDependentTasks(task, t + p)

2. O i,k starts after all its predecessors complete: σi,k ≥ Ci, j, ∀ j ∈
Pi,k (a dependency constraint);

3. at any time, for each machine, the sum of requirements of the
installed environments is smaller than the machine capacity (a
knapsack-like constraint).

This problem is NP-hard, as generalizing several NP-hard problems
(bin-packing [14], P 2|D AG| ∑ Ci [6]). A bin-packing instance can
be encoded as an instance of our problem with items to pack cor-
responding to 1-task jobs (each from a distinct family, and the task
size q f equal to the size of the item to pack). With all the process-
ing times p f = 1, if the instance can be scheduled on m machines
so that all tasks finish at time 1, this corresponds to packing items
on m bins. Similarly P 2|D AG| ∑ Ci can be encoded by setting q f
all to 1; capacity of both (m = 2) machines to 1 (Q = q f) (so that a
machine always executes at most one task); and having each tasks
in a separate family, with processing times p f equal to processing
times of tasks in the P 2|D AG| ∑ Ci instance.

3. Algorithms

In this section we describe heuristics to schedule FaaS invo-
cations. We decompose the FaaS scheduling problem into three
aspects: sequencing of invocations; deployment of execution envi-
ronments on machines; and allocation of invocations to deployed
environments. We start with a framework algorithm (Algorithm 1)
to show how these aspects are combined to build a schedule; we
then describe for each of the aspects several specific heuristics. Se-
quencing corresponds to the ordering policy (Section 3.1) and the
awareness of task dependencies (Section 3.4). Deployment corre-
sponds to the removal policy (Section 3.2). Allocation corresponds
to the waiting/non-waiting variants (Section 3.3).

The framework algorithm is a standard scheduling loop execut-
ing schedulingStep at time t when at least one task completes. The
algorithm maintains a queue of tasks [O i,k] to schedule and pro-
ceeds as follows:

1. Queue the successors of tasks completed at t ({O i,k : σi,k +
p f = t}) if all their dependencies are already scheduled, along
with their release time (queueDependentTasks). We maintain in-
formation about task’s release time during scheduling process
to ensure that dependency constraints are met (in particular
the task may wait for completion of its dependencies after be-
ing assigned to the environment — we describe this case later).

2. Apply a scheduling policy to the queued tasks (Order). We de-
scribe policies for this step in Section 3.1.

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30
3. Try to find an environment e for each queued task. Our goal is
to avoid unnecessary setup of environments, therefore we take
the following steps:
(a) Try to claim an initialized environment of the required

type (FindUnusedEnvironment, and — if wait — FindEnviron-
mentToWait). In this step we iterate over all machines and
take the first matching unused environment. Section 3.3
describes action taken in the wait variant.

(b) If (a) fails, try to create a new environment without re-
moving any existing one (PlaceNewEnvironment). As above,
we use the first machine that fits.

(c) If (b) fails, try to find a machine with sufficient capacity
for e that is currently claimed by environments that do
not execute any task; remove these idle environments, and
install e (RemoveAndPlaceEnvironment).

(d) If (c) fails, the task remains in the queue.
4. If an environment e is found, assign the task (AssignTask); oth-

erwise (3.a-c all fail) the task remains in the queue.

After each iteration of the main loop, the time t is shifted to the
lowest completion time of the running tasks (in an implementa-
tion in a runtime system, the loop would block until the next task
completes). AssignTask starts a task on an environment as follows.
Each environment has a queue of assigned tasks. Immediately af-
ter creating an environment, it is initialized (which takes time s f).
Then, the environment starts to execute tasks sequentially from its
queue. If the head task is not ready (waiting for dependencies), the
environment waits (no backfilling). This may happen in the start
policy (see Section 3.4).

In the following, we propose concrete variants for these func-
tions. We denote the full scheduling policy by a tuple (A, B, C, D)

where A denotes the tasks’ ordering policy, B denotes the en-
vironments’ removal policy, C indicates if variant is waiting
and D describes whether the variant is dependency-aware, e.g.,
(F I F O , LRU , wait, start).

3.1. Ordering policy (Order)

We compare the baseline FIFO and SJF policies with four poli-
cies taking into account the compositions and setup times:

• FIFO (First Come First Served): use the order in which the tasks
were added.

• SJF (Shortest Jobs First): order by increasing tasks’ durations p f ;
• EF (Existing First): partition the tasks into two groups: (1) there

is at least one idle, initialized environment e of matching type
E f (O i,k); (2) the rest. Schedule the first group before the sec-
ond group. The relative order of the tasks in both groups re-
mains stable (FIFO). For example, if queue contains five tasks
[O i1,k1 , O i2,k2 , O i3,k3 , O i4,k4 , O i5,k5], there is only one environ-
ment e that is idle and only tasks O i1,k1 , O i3,k3 , O i4,k4 re-
quire environment with type matching e, the resulting order
is [O i1,k1 , O i3,k3 , O i4,k4 , O i2,k2 , O i5,k5].• SW (Smallest Work): order by increasing remaining sum of work
of the task and its successors. This extends the SJF principle by
taking into account the whole remaining work to be processed
for the job, rather than just the ready task.

• SP (Smallest Work on Critical Path): order by increasing remain-
ing sum of work of the task and its successors on critical path
(the longest path between the current state of each job and
its completion). This extends the SW principle by taking into
account the structure of the job: jobs with higher degree of
parallelism will be favored.

• RT (Release Time): order by the time the task’s predecessors are
completed.
21
3.2. Removal policy

When choosing an idle environment to remove, RemoveAnd-
PlaceEnvironment removes environments according to either a
baseline LRU policy, or one of policies considering either initial-
ization time s f or environment popularity:

• LRU: remove the least recently used (LRU) environment(s)
from the first fitting machine (i.e. having enough space to be
freed).

• min time removal: remove the environment(s) with the small-
est setup time s f (if more than one, select a single machine
having environments with the smallest total s f).

• min family removal: remove the idle environment(s) from the
family with the highest number of currently initialized envi-
ronments. As it may be needed to remove more than one envi-
ronment, choose a machine to minimize the resulting number
of families without any environment.

3.3. Greedy environment creation

If there is no unused environment of the required type E f ,
a greedy algorithm just attempts to create a new one. However,
when setup times s f are longer than task’s duration p f , it might
be faster just to wait until one of currently initialized environ-
ments completes its assigned task. We implement this policy by
setting wait to true in Algorithm 1. When no idle environment is
available, function FindEnvironmentToWait computes for each ini-
tialized environment e of type E f the time Ce the last task cur-
rently assigned to this environment completes. If an environment
e∗ is available sooner than the time needed to set up a new envi-
ronment (min Ce ≤ t + s f), the task is assigned to e∗ . This variant
use the (limited) clairvoyance of the scheduler by taking into ac-
count the knowledge of tasks’ durations and setup times of their
execution environments.

The waiting variant is analogous to scheduling tasks in Hetero-
geneous Earliest Finish Time (HEFT [5,39]) that places a task on a
processor that will finish the task as the earliest.

3.4. Awareness of task dependencies

A myopic (default) scheduler queues just the tasks that are cur-
rently ready to execute: O i,0 (the first tasks in the jobs), or the
tasks for which the predecessors completed {O i,k : ∀ j∈Pi,k Ci, j ≤ t}.
However, when a task’s O i,k predecessors complete, it might hap-
pen that there is no idle environment e f (O i,k) , and thus O i,k must
still wait s f until a new environment is initialized.

We propose two policies, start and start with break (stbr), that
use the structure of the job to prepare environments in advance.
Assume O i,l is the currently-scheduled task. These policies queue
successors of O i,l when all predecessors completion time can be
estimated. Of course, these successors are not yet ready to be ex-
ecuted (as their predecessors have not yet completed). We thus
introduce the notion of the release time for each successor. These
release times can be easily computed: as for each task we know its
processing time p f , the release time for each of the task’s succes-
sors can be computed by the maximum completion time among
its predecessors.

Note that start and stbr may result in an environment that is
(temporarily) blocked: e.g., if an empty system schedules a chain
of two tasks, the second task from the chain is added to the queue
immediately after scheduling the first task; this second task will
be assigned to its environment, but cannot be started until the
first task is completed. In start variant, after schedulingStep com-
pletes and new tasks were added to queue, scheduler tries placing

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30
them following the same procedure. Compared with start, stbr im-
mediately after adding O i,k successor reorders tasks in the queue
according to the scheduling policy and restarts the placement (for
clarity, stbr is not presented in Algorithm 1).

4. Evaluation

We evaluate our algorithms with a calibrated simulator. We use
a simulator rather than modify the OpenWhisk scheduler for the
following reasons. First, a discrete-time simulator enables us to
execute much more test scenarios and on a considerably larger
scale (we simulate 1440 test instances each on 15 machine en-
vironments; Section 4.1 gives details on how we generate them).
Second, as our results will show, to schedule tasks more efficiently,
the OpenWhisk controller (the central scheduler) should take over
some of the decisions currently made by the invokers (agents re-
siding on worker machines). For example, min family removal needs
to know which family has the highest number of installed environ-
ments in the whole cluster — thus, the state of the whole cluster
(note that this policy can be implemented in a distributed way: the
cluster state can be broadcasted to the invokers). To ensure that
our simulator’s results can be generalized to an OpenWhisk instal-
lation, in Section 4.2 we compare the performance of an actual
OpenWhisk system with its simulation. We observe high Pearson
correlation coefficient and a high coefficient of determination, con-
firming the realism of our simulation.

4.1. Method

We tested the performance of our algorithms on two kinds
of test instances. First, we use synthetic test instances with a
wide range of parameter values to test the general trends. Second,
in Section 4.10, we adopt a recently-published Microsoft Azure
Trace [26] to our model: there, we generate randomly only the
data missing in the trace (such as the setup times).

Many parameters of test instances have a relative, rather than
absolute, effect on the result. For example, multiplying by a con-
stant both Q , the machine capacity, and q f , the size of the
task, results in an test instance that has very similar scheduling
properties. There is a similar relationship between setup times
s f and durations p f ; and between the total number of tasks n
and the number of tasks in a job l. We thus fix one parame-
ter from each pair to a constant (or a small range); and vary the
other.

In each simulation we use m machines of capacity Q . We have
n = 1000 tasks assigned to n f families. p f is generated by the
uniform distribution over integers p f ∼ U [1, 10]; similarly q f ∼
U [1, 10]. The remaining parameters have ranges:

• family count n f : 10, 20, 50, 100, 200, 500;
• setup times s f : [0, 0], [10, 20], [100, 200], [1000, 2000];
• number of tasks in a job (size of a job) l: [2, 10], [10, 20],

[50, 100];
• machine count m: 2, 5, 10, 20, 50;
• machine capacities Q : 10, 20, 50.

For each combination of the parameters (or ranges) n f , s f , l, we
generate 20 random test instances, resulting in 1440 test instances.
We evaluate each test instance on each of the 15 possible machine
environments.

These ranges of parameters are wide. As we experiment on syn-
thetic data, one of our goals is to explore trends — characterize test
instances for which our proposed method works better (or worse)
than the current baseline. In particular, jobs larger than 10 (l > 10)
may have longer critical path than what we suspect is the current
FaaS usage. On the other hand, it is not a lot compared with a call
22
graph depth in any non-trivial software. At this point of FaaS evo-
lution it is difficult to foresee the degree of compartmentalization
future FaaS software will have — and DAGs larger than 10 invoca-
tions represent fine-grained decomposition (similar to the modern
non-FaaS software).

We consider two sets of test instances: DAGs and chains. While
DAGs fully express function compositions, we consider chains as
an important case as they are directly supported by OpenWhisk
platform — therefore results of our research can be applied to a
real system. Moreover, chains enable us to validate our simulator
against OpenWhisk (Section 4.2).

In FaaS system a single function is able to spawn an arbitrary
number of other functions by connecting directly to the platform
API. In general, executing DAGs by appending to each function code
invoking successors using the platform’s API hides the structure of
the DAG from the scheduler. While spawning a new function using
the API is straightforward, defining function that has more than
one predecessor without direct platform support is more sophis-
ticated, as it requires e.g. to store information about which of the
predecessors completed their execution. In our analysis we assume
that scheduler has information about defined DAGs and we ana-
lyze platform supporting function compositions that all forms of
DAGs.

We generate a chain test instance as follows. Given n f , [smin,

smax], [lmin, lmax], for each of n f , we set s f ∼ U [smin, smax] and
p f ∼ U [1, 10]. For each of n = 1000 tasks, we set its family f to
U [1, n f]. We then chain tasks to jobs. Until all tasks are assigned,
we are creating jobs by, first, setting the number of tasks in a job
to l ∼ U [lmin, lmax] (the last created job could be smaller, taking
the remaining tasks); and then choosing l unassigned tasks and
putting them in a random sequence.

We generate DAGs similarly, but we change the algorithm to
determine the dependencies. Given l tasks for a job, we first ran-
domly permute them; then, for each k-th task in the permutation
(except the first task), we generate the number of its predecessors
χ from the uniform distribution, χ = |Pi,k| = U [1, k − 1]; and then
select these χ predecessors as a random subset of size χ of the
set {O i,1, . . . , O i,k−1}.

For each experiment, our simulator computes the average re-
sponse latency, (1/n)

∑
Ci . Due to space constraints, we omit re-

sults on tail, 95%-ile latency — the 95%-ile results also support our
conclusions (unsurprisingly, the ranges are larger than for the av-
erages).

In addition to testing variants of Algorithm 1, we simulate the
current, round-robin behavior of the OpenWhisk scheduler (Sec-
tion 2.1) with an algorithm OW. OW randomly selects for each
family f the initial machine m f and the step size k f , an integer co-
prime with the number of machines m. When scheduling a task
O i,k in family f , OW checks machines m f , m f + k f , m f + 2k f ,
. . . (all additions modulo m), stopping at the first machine that has
either the environment E f ready to process, or q f free resources
(including unused environments that could be removed) to install
a new environment E f . If there is no such machine, O i,k is queued
on a randomly-chosen machine.

4.2. Validation of the simulator against OpenWhisk

To compare the results of our simulator with OpenWhisk, we
developed a customized OpenWhisk execution environment that
emulates a function with a certain setup time s f , execution time
p f and resource requirement q f . We chose 10 ms as the time
unit to reduce impact of possible fluctuations of VM or network
parameters in the datacenter (we performed some early experi-
ments with 1 ms and this noise was significant; and with a longer
time unit tests take unreasonable time). This environment em-

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30

Fig. 2. Average latency on OpenWhisk system (Y axis) and simulated OW policy (X axis) with linear regression model fit. 1 unit is 10 ms. Each point corresponds to a single
test instance executed on both OpenWhisk and simulator. Translucent bands indicate the 95% confidence interval.
Table 1
The 5th percentiles, medians and 95th percentiles of R2 across obtained 1000 scores
to verify the quality of the linear regression fit in Fig. 2.

Group 5th percentile Median 95th percentile

Fig. 2(a) 0.86 0.93 0.97
Fig. 2(b) 0.29 0.67 0.84
Fig. 2(c) 0.997 0.998 0.9995

ulates initialization by sleeping for s f ∗ 10 ms; and it emulates
execution by sleeping for p f ∗ 10 ms. While sleeping does not
use the requested memory (q f ∗ 128 MB), the memory is blocked
(through Linux cgroup limits) and therefore cannot be simulta-
neously used by other environments. We emulate a single test
instance from our simulator by creating, for each job J i , an equiv-
alent sequence of invocations in OpenWhisk. To avoid caching of
results in OpenWhisk, we ensure that each invocation is executed
with a distinct set of parameters. We deployed an OpenWhisk
cluster (1 controller and m = 10 invokers) on 11 VMs in Google
Cloud Engine (GCE) in the us-central-1a zone. All machines have
2 vCPU and 16 GB RAM, and were running Ubuntu 18.04 LTS.
We further restrict the memory OpenWhisk can use on machines
to 1280 MB (equivalent to Q = 10). In order to reduce impact
of cloud storage on system performance, we used a ramdisk to
store OpenWhisk accounting database. We also extended limits
(maximum duration and sequence length) and changed the de-
fault log level to WARN. To reduce the impact of brief performance
changes, we executed each test instance thrice and reported the
median.

In Fig. 2 we compare the average response latency in Open-
Whisk and in our simulator varying chain lengths, the number of
families and the ranges of setup times. For consistency, OpenWhisk
results are rescaled to the simulator time unit (divided by 10). We
use standard Pearson correlation coefficient [34] to validate correla-
tion between results obtained from simulator and OpenWhisk. In
particular, we compute the coefficient between X, the vector of av-
erage latencies as computed by our simulator for the OW policy,
and Y, the vector of average latencies measured on OpenWhisk (a
single element of these vectors corresponds with the measurement
for a single instance). The Pearson correlation coefficient between
OpenWhisk and simulator is very high (between 0.86 when vary-
ing family count, Fig. 2.b, and 0.999 when varying the setup time,
Fig. 2.c). To further test our claim, we compute the coefficients of
determination (R2) scores [18] to verify the quality of the linear
regression fit. We use the standard 5-fold cross-validation and re-
peat cross-validation 200 times (randomly permuting the data for
each repetition). The 5th percentiles, medians and 95th percentiles
of R2 across obtained 1000 results are presented in Table 1. Thus,
the R2 scores are approximately equal to the squares of the Pear-
son correlation coefficients.

There is, however, an additive factor in OpenWhisk noticeable
especially in smaller test instances in Fig. 2.(a) and Fig. 2.(b): the
23
range of OpenWhisk results in [5000, 9000], while the range of
simulated results is in [550, 1600]; on larger test instances, as in
Fig. 2.(c), this constant factor is less noticeable. This additive fac-
tor is caused by an additional system overhead added to every
function execution: each invocation stores data in a database and
requires internal communication. We conclude that the high corre-
lation between the simulator and the OpenWhisk results validates
our simulator — that the differences between algorithms observed
in the simulator are transferable to the results in OpenWhisk. In
the remaining sections we analyze results obtained from the sim-
ulator.

4.3. Relative performance of policies

We first analyze the impact of each policy by analyzing their
relative performance. For each variant (A, B, C, D), on each test
instance, we compute the relative performance of the policy we
measure by finding the minimal average latency across all variants
of the measured policy while keeping the rest of the variants the
same. For example, when measuring the effect of the scheduling
policy (A), on an test instance, we find the minimum average la-
tency from the 5 variants of the scheduling policy: (EF, b, c, d),
(FIFO, b, c, d), (RT, b, c, d), (SJF, b, c, d), (SW, b, c, d), (SP, b, c,
d) (keeping b, c, d the same); and then we divide all 5 by this
value. The goal of this analysis is to narrow down our focus to
the aspects of the problem that are crucial for the performance.
Using this method, we show that, e.g., all removal policies re-
sult in very similar outcomes. Fig. 3 shows the results. Each box
corresponds to a statistics over experiments with all the removal
policies (both in waiting non-waiting variant) and all dependency-
awareness variants (def, start, stbr), performed on all test instances
and all possible machine environments (over 300k individual data
points).

Ordering: EF policy dominates other ordering policies, confirming
that it is better to avoid environment setup by reusing existing
environments. Its median is similar to RT (and lower than other
algorithms), and the range of values (including the third quartile)
is the lowest.

Removal: Unlike scheduling policies, all the removal policies result
in virtually the same schedule length: the range of Y axis is 1.035;
thus outliers are only 3.5% worse than the minimal schedule found
in the alternative methods.

Dependency awareness: Both start and stbr result in similar per-
formance. We confirmed this result by looking at individual test
instances: the performance of start and stbr were similar.

To improve the readability in the remainder, given that the re-
moval policies have little effect on the schedule length (Fig. 3), we
show only the results for LRU. Similarly, we skip results for SJF
and RT orderings: RT is close to FIFO and SJF is clearly dominated
by other variants. SW and SP give similar results, thus we show

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30

Fig. 3. Comparison of resulting average latency under: different scheduling policies (a), removal policies (b) and variants of dependency-awareness (c). For (b) and (c) results
are normalized as in (a), but for different removal policies (b) and for different dependency-aware variants (c), rather than scheduling policies. Here and in all following box
plots, the box height indicates the first and the third quartile, the line inside the box indicates the median, and the whiskers extend to the most extreme data point within
1.5 × IQR.

Fig. 4. Influence of the number of tasks in a job. For all test instances n f = 50, m = 20, Q = 10 with setup times 10–20.
only SP. Finally, as the difference between start and stbr variants is
small, we show results only for start.

4.4. Impact of the number of tasks in a job

In the rest of the experimental section, we analyze the sen-
sitivity of the policies to various parameters of the test instance,
starting with the number of tasks in a job. While we explore wide
range of parameters, presenting all resulting figures would be im-
practical. Our goal is to present trends, thus in the rest of the
experimental section we present figures with representative case
and conclusions from all the experiments.

In Fig. 4, in all test instances n f = 50, s f ∈ [10, 20], m = 20,
Q = 10 — we carried out experiments for all sets of parameters,
but as the trends are similar, for practical reasons we show only
results for these. All scheduling algorithms using EF as the order-
ing policy significantly reduce latency compared to the baseline
OW (1.06–2.65x), with larger reductions for smaller jobs. The start
dependency-aware variant further reduces latency, especially for
jobs with more tasks ([50 − 100]), and also for other scheduling
methods (FIFO). Therefore, for deployments with large (50 tasks
and above) jobs, at least 100 families, setup times 100 (and larger)
with at least 20 machines of capacity 10 (or more), implement-
ing dependency-aware scheduler can provide measurable bene-
fits.

4.5. Impact of the number of families

Fig. 5 compares results as a function of the number of task
families in the system. When the number of task families is small
(up to 20), variants without dependency awareness (def) and with
wait can give better results than dependency-aware variants. In
such cases, variants using EF method are slightly better than their
equivalents using FIFO. The same applies to the removal method:
wait variants give better results than their equivalents using plain
LRU. The higher the number of families, the higher the probability
that the required type of environment is missing. With at least
n f = 100 families (Fig. 5.c, similar results for s f ≥ 100, l ≥ 50,
24
m ≥ 20, Q ≥ 10 omitted to improve overall readability), depen-
dency awareness plays a crucial role — variants using start outper-
forms def regardless of the used scheduling algorithm and removal
policy. Thus, in case of high variability of functions (i.e. requiring
different environments), taking into account tasks’ dependencies
can significantly reduce the serving latency.

4.6. Impact of the setup time

Fig. 6 compares results as a function of different setup time
ranges. In the edge case with no setup times, s f = 0, we see
no difference between the waiting and the non-waiting variants,
as there is no additional penalty for inefficient environment re-
creation. Similarly, there are no differences between EF and FIFO.
For non-zero setup times, dependency awareness (start) reduces
the latency. However, with no setup time, start latencies are longer.
This behavior is caused by adding tasks with future release time to
the queue (see Section 3.4). Consider two jobs each of two tasks:

1. a long job with task A (duration 10) followed by task B (dura-
tion 1);

2. a short job with task C (duration 1), followed by task B (dura-
tion 1).

EF and FIFO using start variants may assign the second task from
the long job to the environment of type B immediately after as-
signing the first task. This might block the second task from the
short job until t = 11; while the optimal schedule starts this task
at t = 1. For the same reason, start has worse results when there
are more jobs (i.e. smaller jobs) and the systems are smaller (less
machines, smaller capacities).

We further investigate for which test instance parameters the
dependency-aware start dominates the myopic def, assuming non-
negligible setup times s f ≥ 100. We aggregate results by all sim-
ulation parameters (count of families n f , machines m, machine
capacities Q , range of job sizes l, range of setup times s f and
used algorithm variant) and compute the median average latency
among 20 test instances. Then we analyze in how many of result-
ing cases changing def to start improves performance. For large

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30

Fig. 5. Influence of the different number of families. To show general trend, we present results for 10, 50 and 200 families. For all test instances m = 20, Q = 10, s f ∈
[100, 200], l ∈ [50, 100].

Fig. 6. Influence of the setup time. For all test instances n f = 50, m = 10, Q = 10, l ∈ [50,100].
jobs (l ≥ 50), many task families (nF > 100), and many machines
(m ≥ 10), changing the default (def) variant to dependency-aware
one improves performance in all cases.

4.7. Impact of machine capacity

Fig. 7 compares results as a function of the number of ma-
chines and their capacity. For all test instances n f = 50, l ∈ [10, 20],
s f ∈ [10, 20]. To show general trend and ensure clarity, out of
15 considered machine configurations we present results only for
test instances with (m, Q) ∈ {(5, 20), (20, 20), (50, 10), (50, 50)}.
For cases up to (m, Q) = (5, 20), the only non-negligible differ-
ences between the plain and dependency-aware variants are for
SW and SP scheduling policies. Due to large number of jobs (job
sizes are in range 10–20), when dependent tasks are added to
the queue earlier, environments may get blocked as described in
Section 4.6, therefore there is no additional benefit of dependency-
awareness. For capacities up to (m, Q) = (50, 10), using wait vari-
ants outperform the default (def) variants using the same schedul-
ing algorithm and with the same setting of dependency-awareness.
In all presented cases, for FIFO and EF scheduling policies, variants
using wait with start have one of the lowest average latency. The
improvement on overall system performance is most visible in the
25
case of highly-overloaded machines. Therefore, our methods could
be used to improve handling of situation when datacenter has to
handle rapid increase (peak) of requests.

4.8. Summary of experiments

We conclude the experiments over DAGs by presenting av-
erages improvements of (·, ·, wait, start) variants over OW base-
lines (Table 2). For each test instance on each particular machine
configuration, we simulate each variant (·, ·, wait, start), compute
the resulting average latency

∑
Ci ; and then divide it by the

latency of the OW baseline. We then average these relative im-
provements across all variants and all test instances (including all
possible machine configurations): this gives us the average impact
of (·, ·, wait, start), regardless of the sequencing method. Thus, a
number in Table 2 is an average over 12960 simulations: 3 (num-
ber of tasks in a job) times 6 (family count) times 2 (starting times
settings) times 20 (repetitions) times 6 (ordering policies) times 3
(removal policies).

For non-negligible setup times (i.e. at least 100) in all machine
configurations when the scheduler is dependency- and startup-
times aware (·, ·, wait, start) the average response latencies are
reduced at least by the factor of two.

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30

Fig. 7. Influence of the machine environment. For all test instances fn = 50, l ∈ [10,20], s f ∈ [10,20].

Table 2
Average relative improvement in the average response latency of (·, ·, wait, start) over the OW baseline.

m Q

10 20 50

2 2.96 2.92 3.89
5 3.46 4.10 3.73
10 4.44 4.12 3.52
20 4.41 3.89 3.18
50 4.15 3.61 3.12

(a) s f ≥ 100

m Q

10 20 50

2 1.40 1.30 1.23
5 1.33 1.23 1.24
10 1.27 1.22 1.26
20 1.26 1.28 1.30
50 1.33 1.35 1.36

(b) s f < 100
4.9. Differences between DAGs and chains

In [40] we performed analysis analogous to Section 4.6, Sec-
tion 4.4 and Section 4.7, but for chains, instead of DAGs.

In general, obtained results are similar: if we compare behavior
for different setup times (Fig. 5 in [40] and Fig. 6), we can observe
that for non-zero setup times our algorithms perform better than
baseline (OW). In both DAGs (Fig. 7) and chains (Fig. 6 in [40])
only for the largest processing capacity (50 machines of capacity
50) there is observable fundamental improvement of dependency-
aware (start) variants over def. Moreover, for all machine configu-
rations except the largest one (50 machines of capacity 50), wait
variants performed better than the default (non-waiting) variants
using the same scheduling method and with the same setting of
dependency-awareness.

Nevertheless, there are observable differences. Increasing l, the
number of tasks in a job, increases average latency more signif-
icantly for chains (Fig. 3 in [40]) than for DAGs (Fig. 4). For the
same number of tasks in a job, a chain has less available con-
currency than a DAG (i.e. longer critical path). This also impacts
differences observed in comparison of dataset with different setup
times (and constant job size) — for chains (Fig. 5 in [40]) we ob-
serve higher difference between variants without (def) and with
dependency awareness (start) than for DAGs (Fig. 9). For similar
reasons, for datasets with more families, our algorithms for DAGs
(Fig. 5) — as well as for chains (Fig. 4 in [40]) — provide lower av-
erage latencies than OW, but difference between the best schedule
and the baseline for DAGs is noticeably smaller.
26
Overall, the results are similar, proving the robustness of our
proposed algorithms. In all analyzed cases with non-zero setup
times, our proposed algorithms — the EF scheduling policy with
LRU replacement and waiting environment creation — outperform
the OW baseline.

4.10. Experiments with a FaaS trace

To the best of our knowledge, there is no publicly available FaaS
trace containing information about tasks with dependencies, setup
times and tasks families (types or applications). However, based
on an existing trace, we can generate a dataset making some ra-
tional assumptions about missing data. Thus, we can verify how
such dataset-like workload would behave if executed in the ana-
lyzed model.

The recently-published Microsoft Azure Trace [26] contains in-
formation about sizes, durations and invocations patterns in Azure
Functions. Memory usage is provided only for first 12 days of the
trace, thus we limit our analysis to this range (as we will use mem-
ory data to generate q f , the size of the environment).

Functions in trace are organized in groups called apps which
share common execution environment. As our model requires sep-
arate environments per function, we further narrow down our
analysis to apps containing only one function. We map each app
to a function family.

We set the environment size q f to the maximum allocated
memory (100th percentile of the average allocated memory column of
Azure trace) as the environment should be large enough to han-

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30

Fig. 8. Comparison of different job sizes. In each case dataset contains 50 families generated from Azure trace. Setup times 100–200 times larger than average duration
observed over all families, 10 machines of capacity 20.

Fig. 9. Comparison of impact of setup times. In each case, setup times are obtained by multiplying average duration across all families by random value from given range. All
datasets contains 50 families and 1000 tasks in jobs of 50–100 tasks generated from Azure trace. Experiments were run on 10 machines of capacity 20.
dle all the invocations. We then normalize q f to range {1, . . . , 10}
to have similar range of values as our synthetic test instances. We
set the execution time p f to the average execution time (Average
column in the trace).

Similarly to synthetic datasets described in Section 4.1, we gen-
erate datasets for a wide range of remaining parameters: the num-
ber of families in the system n f and setup times s f . Setup time
of a family is, in principle, independent of this family’s execution
time; yet, we need to control the relation of the mean setup time
to the mean execution time (this relation is a parameter of our ex-
periment). We thus compute the mean execution time p f across
n f families in the test instance; and then generate setup times s f

from p f U [Smin, Smax].
For each configuration, we generate a test instance containing

n = 1000 tasks. For each test instance, we select n f families gener-
ated from app data which have the largest invocation count within
the considered 12-day period. We use information about app invo-
cation counts to reflect invocation pattern within our sample: for
each invocation we select its family randomly, but with weights
proportional to the total number of invocation in the original trace.
Then we generate DAGs (jobs) following the same procedure as in
Section 4.1.
27
Fig. 8 shows the impact of different job sizes. All datasets have
50 families and setup times are 100–200 times larger than aver-
age family duration. In all cases enabling waiting improves per-
formance. However for small jobs (lower than 50 tasks), the start
variant gives no additional benefit.

Fig. 9 shows the impact of different setup times. Similarly
to synthetic test instances, for configurations with negligible
setup time, enabling dependency-awareness decreases perfor-
mance. With considerable setup times (at least 100 times larger
than the average duration), EF and FIFO with waiting and depen-
dency-awareness (start) have one of the lowest average latencies.

In Fig. 10 shows the impact of the number of families. Vari-
ants with waiting and enabled dependency-awareness give better
results than their non-waiting or not dependency aware equiva-
lents. Moreover, when there are many families (200), dependency-
awareness plays a crucial role — start variants overtake their def
equivalents.

While generated samples have higher value of average latency
than our synthetic datasets (as we don’t normalize durations),
we observe in all cases that enabling waiting reduces the la-
tency. Analogously to results obtained for synthetic datasets, for
non-negligible setup times, FIFO and EF variants with waiting and

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30

Fig. 10. Comparison of different count of families generated from Azure trace. In all cases setup times are in range 100–200x average duration across all families. We present
results for 10 machines of capacity 20, jobs containing 50–100 tasks (note: except last generated one).
enable dependency-awareness (start) give significant improvement
over baseline (OW).

5. Related work

Our model of FaaS resource management combines scheduling
(with setup times and dependencies) [2] with bin packing (when
environments of different sizes must fit into machines). Our sim-
ulation results show that all these aspects have to be taken into
account by the scheduler (the baseline OW is consistently domi-
nated by our policies). Individually, these are classic problems in
combinatorial optimization. Allahverdi [2] performs a comprehen-
sive review of about 500 papers on scheduling with setup times.
Brucker [6] reviews scheduling results. We start by describing the
closest related combinatorial optimization approaches (these ap-
proaches are mostly theoretical or based on simulation). We then
follow by a discussion on other systems-based approaches to opti-
mization in FaaS.

Quadratic programming: We proposed heuristics, rather than generic
solvers or metaheuristics. Initially, we considered encoding our
problem as an (integer) quadratic programming. Nevertheless,
Gurobi [16] was unable to find an optimal schedule in 15 minutes
(on a reasonable desktop machine) even for a small test instance
with N = 20 jobs each of nl = 20 tasks. Schedulers in production
systems need to respond in seconds, thus an approach based on a
generic solver is probably not sufficient.

Bin packing with setup times: With no dependencies, our prob-
lem reduces to bin packing with sequence independent setup
times. Weng et al. [36] study similar problem of minimizing mean
weighted completion time for tasks with sequence dependent
setup times. [35] presents dynamic algorithms addressing schedul-
ing with setup times with objective of minimal weighted flow
time.

Workflow scheduling: With no setup times (s f = 0) and task sizes
equal to machine capacities q f = Q , our problem reduces to work-
flow scheduling. [37] surveys workflow scheduling in the cloud.
[19] measures how inaccurate runtime estimates influence the
schedules which complements our study, as we assumed that es-
timates are known. [27] analyzes possible performance benefits
of resource interleaving across the parallel stages. [24] proposes
Balanced Minimum Completion Time, an algorithm for scheduling
tasks with dependencies (and without setup times) on heteroge-
neous systems. [13] schedules workflows with setup times using
branch-and-bound. The evaluation in that paper considered small
instances (up to N ∗ nl = 100 task and m = 4 machines); their
method required 100 s time limit for execution. Such long running
times makes this method unusable in data-center schedulers. [1]
analyzes scheduling tasks with sequence-dependent setup times,
precedence constraints, release dates on unrelated machines with
resource constraints and machine eligibility. Two algorithms are
28
analyzed: based on genetic algorithm and based on an artificial im-
mune system. Their largest instances had 60 tasks and 8 machines
and needed 25 minutes (on the average) to solve, again rendering
these methods unusable for FaaS.

Systems approaches in Serverless Computing: Serverless is currently
rapidly evolving with multiple ongoing efforts to analyze and ex-
tend it. In our work we explore possible performance improve-
ments by considering the composition of functions. [7,15] also
consider composed functions. [15] analyzes function chains and
attempts to reduce the number of used containers while keeping
response time below a predefined limit. Their implementations use
Brigade running on top of Kubernetes. [7] analyzes function DAGs
and possible benefits of storing intermediate results inside execu-
tors.

Our simulation results show that the scheduling matters es-
pecially when setup times of new environments are high. Reduc-
ing setup times has received considerable attention. [29] proposes
checkpointing and then restoring environments. Catalyzer [10]
reuses the environment state. Particle [32] identifies environment
network configuration as an important contributor to the setup
time in container-based platforms, including OpenWhisk; and pro-
poses how to decouple that from environment creation.

Another key parameter is the size of the environment (q f): the
smaller the environments are, the more can run currently on a
machine, thus packing and evictions become less crucial. The fol-
lowing approaches reduce the memory footprint of environments.
[28] proposes new isolation abstraction reducing memory require-
ments. Photons [11] reduces overall memory consumption by run-
ning multiple concurrent invocations within a single environment
(without impacting reliability). ENSURE [31] improves resource ef-
ficiency by adapting the resource usage of environments running
on a single invoker and concentrating workloads to minimize num-
ber of concurrently running environments.

An orthogonal approach to reduction of the serving latency is to
directly reduce p f , the function’s processing time. As in the clas-
sic FaaS model, the functions are stateless, getting the state from
external storage takes time. Cloudburst [30] demonstrates and
analyzes usability of stateful serverless computing. [38] presents
framework for building stateful and fault-tolerant serverless-based
applications, running on top of existing platforms. [22] shows an-
other, orthogonal approach: they change scheduling of invocations
on an individual node.

6. Conclusions

In the FaaS model, the time needed to create an environ-
ment for an incoming function invocation in most cases cannot
be neglected. We predict that the growing popularity of FaaS sys-
tems will result in more complex applications being created in
this model. As we show in this paper, the cloud provider can
significantly optimize FaaS performance knowing the structure of

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30
the compositions used in the workload. Our framework algorithm
could be implemented in FaaS systems, however some changes in
the architecture might be required, e.g. the Apache OpenWhisk
controller would need to assign invocations directly to containers
running on invoker nodes and also to directly create and evict the
environments.

In our experiments, we identified the three policies in our
framework algorithm that lead to largest improvements. Taken to-
gether, they consider the structure of the functions and thus they
can install environments in advance. The start variant adds succes-
sors of each task to the queue so that the scheduler then knows
what environments should be prepared in advance. The waiting
variant, rather than greedily creating an environment for each task,
binds a task to the existing, currently busy environment if such
environment will be available to process the task earlier than a
newly-created one. Finally, the EF ordering prioritizes tasks that
can be started using already prepared environments.

Our simulation results clearly show that the performance of
FaaS can be improved by these methods. For non-negligible setup
times (i.e. at least 100 or at least 20 times longer than the average
task duration) in all machine configurations when the scheduler is
dependency- and startup-times aware (·, ·, wait, start) the average
improvement of the response latency is at least by the factor of
two. We summarize the observed improvements in Table 2.

Thus, our results indicate that dependency- and startup-times
aware scheduling is more efficient when the load of the system
is high. Our methods can be used to mitigate the impact of the
increased demand in the short term. If the demand increase is
longer-term, the underlying infrastructure will be eventually scaled
out by, e.g., adding new VMs. However, such scale-out takes con-
siderably longer time (minutes); meanwhile, the load has to be
handled.

Although our experiments were offline, the waiting variant
and the start variant can be easily implemented in the existing
FaaS schedulers (controllers). Our results show that waiting and
start variants are beneficial even with the standard FIFO order-
ing. Changing the invocation order (as in SJF and EF variants) is
less straightforward, as when new jobs arrive on-line, existing jobs
might be starved: these policies would additionally need to con-
sider fairness.

Finally, while FaaS is the main motivation of this work, these
ideas can be applied also in other systems executing workflows on
shared machines (a machine executing multiple tasks in parallel),
such as Apache Beam.

CRediT authorship contribution statement

Pawel Zuk: Data curation, Formal analysis, Investigation, Method-
ology, Software, Validation, Visualization, Writing – original draft,
Writing – review & editing. Krzysztof Rzadca: Conceptualization,
Formal analysis, Funding acquisition, Investigation, Methodology,
Project administration, Resources, Supervision, Writing – original
draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research is supported by a Polish National Science Center
grant Opus (UMO-2017/25/B/ST6/00116).
29
References

[1] M. Afzalirad, J. Rezaeian, Resource-constrained unrelated parallel machine
scheduling problem with sequence dependent setup times, precedence con-
straints and machine eligibility restrictions, Comput. Ind. Eng. 98 (2016).

[2] A. Allahverdi, The third comprehensive survey on scheduling problems with
setup times/costs, Eur. J. Oper. Res. 246 (2) (2015).

[3] Apache OpenWhisk, https://openwhisk.apache .org, 2020.
[4] I. Baldini, P. Cheng, S.J. Fink, N. Mitchell, V. Muthusamy, R. Rabbah, P. Suter, O.

Tardieu, The serverless trilemma: function composition for serverless comput-
ing, in: SIGPLAN, Proc., ACM, 2017.

[5] L.F. Bittencourt, R. Sakellariou, E.R. Madeira, DAG scheduling using a lookahead
variant of the heterogeneous earliest finish time algorithm, in: PDP, Proc., IEEE,
2010.

[6] P. Brucker, Scheduling Algorithms, Springer, 2007.
[7] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, Y. Cheng, Wukong: a scalable and

locality-enhanced framework for serverless parallel computing, in: SoCC, Proc.,
SoCC ’20, ACM, 2020, pp. 1–15.

[8] P. Castro, V. Ishakian, V. Muthusamy, A. Slominski, The rise of serverless com-
puting, Commun. ACM 62 (12) (2019) 44–54.

[9] C. Chekuri, S. Khanna, On multi-dimensional packing problems, in: SODA, Proc.,
1999.

[10] D. Du, T. Yu, Y. Xia, B. Zang, G. Yan, C. Qin, Q. Wu, H. Chen, Catalyzer: sub-
millisecond startup for serverless computing with initialization-less booting,
in: ASPLOS, Proc., ASPLOS ’20, ACM, 2020, pp. 467–481.

[11] V. Dukic, R. Bruno, A. Singla, G. Alonso, Photons: lambdas on a diet, in: SoCC,
Proc., SoCC ’20, ACM, 2020, pp. 45–59.

[12] G.C. Fox, V. Ishakian, V. Muthusamy, A. Slominski, Status of serverless com-
puting and function-as-a-service (FaaS) in industry and research, preprint,
arXiv:1708 .08028.

[13] B. Gacias, C. Artigues, P. Lopez, Parallel machine scheduling with precedence
constraints and setup times, Comput. Oper. Res. 37 (12) (2010).

[14] M.R. Garey, D.S. Johnson, Computers and Intractability, vol. 174, 1979.
[15] J.R. Gunasekaran, P. Thinakaran, N.C. Nachiappan, M.T. Kandemir, C.R. Das, Fifer:

tackling resource underutilization in the serverless era, in: Middleware, Proc.,
Middleware ’20, ACM, 2020, pp. 280–295.

[16] Gurobi optimizer reference manual, http://www.gurobi .com, 2019.
[17] S. Hendrickson, S. Sturdevant, T. Harter, V. Venkataramani, A.C. Arpaci-Dusseau,

R.H. Arpaci-Dusseau, Serverless computation with openlambda, in: HotCloud,
Proc., USENIX Association, 2016.

[18] A. Hughes, D. Grawoig, Statistics: A Foundation for Analysis, 1971.
[19] A. Ilyushkin, D. Epema, The impact of task runtime estimate accuracy on

scheduling workloads of workflows, in: CCGRID, Proc., 2018.
[20] K. Kritikos, P. Skrzypek, A review of serverless frameworks, in: UCC, Proc., 2018,

pp. 161–168.
[21] Kubernetes, https://kubernetes .io.
[22] B. Przybylski, P. Zuk, K. Rzadca, Data-driven scheduling in serverless computing

to reduce response time, in: CCGrid, Proc., IEEE, 2021.
[23] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek, P. Nowak,

B. Strack, P. Witusowski, S. Hand, et al., Autopilot: workload autoscaling at
Google, in: Euro-Sys, Proc., 2020.

[24] R. Sakellariou, H. Zhao, A hybrid heuristic for dag scheduling on heterogeneous
systems, in: IPDPS, Proc., IEEE, 2004.

[25] M. Shahrad, J. Balkind, D. Wentzlaff, Architectural implications of function-as-
a-service computing, in: ISM, Proc., MICRO ’52, ACM, 2019, pp. 1063–1075.

[26] M. Shahrad, R. Fonseca, Í. Goiri, G. Chaudhry, P. Batum, J. Cooke, E. Laureano,
C. Tresness, M. Russinovich, R. Bianchini, Serverless in the wild: characteriz-
ing and optimizing the serverless workload at a large cloud provider, preprint,
arXiv:2003 .03423.

[27] W. Shao, F. Xu, L. Chen, H. Zheng, F. Liu, Stage delay scheduling: speeding up
dag-style data analytics jobs with resource interleaving, in: ICPP, Proc., 2019.

[28] S. Shillaker, P. Pietzuch, Faasm: lightweight isolation for efficient state-
ful serverless computing, in: USENIX ATC, Proc., USENIX Association, 2020,
pp. 419–433.

[29] P. Silva, D. Fireman, T.E. Pereira, Prebaking functions to warm the serverless
cold start, in: Middleware, Proc., Middleware ’20, ACM, 2020, pp. 1–13.

[30] V. Sreekanti, C. Wu, X.C. Lin, J. Schleier-Smith, J.M. Faleiro, J.E. Gonzalez, J.M.
Hellerstein, A. Tumanov, Cloudburst: stateful functions-as-a-service, preprint,
arXiv:2001.04592.

[31] A. Suresh, G. Somashekar, A. Varadarajan, V.R. Kakarla, H. Upadhyay, A. Gandhi,
Ensure: efficient scheduling and autonomous resource management in server-
less environments, in: ACSOS, Proc., IEEE, 2020, pp. 1–10.

[32] S. Thomas, L. Ao, G.M. Voelker, G. Porter, Particle: ephemeral endpoints for
serverless networking, in: SoCC, Proc., SoCC ’20, ACM, 2020, pp. 16–29.

[33] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, J. Wilkes, Large-
scale cluster management at Google with Borg, in: EuroSys, Proc., ACM, 2015.

[34] L. Wasserman, All of Statistics: A Concise Course in Statistical Inference, vol.
26, Springer, 2004.

[35] S. Webster, M. Azizoglu, Dynamic programming algorithms for scheduling par-
allel machines with family setup times, Comput. Oper. Res. 28 (2) (2001).

http://refhub.elsevier.com/S0743-7315(22)00090-9/bibA91405DE27514EEC58C8AA51FF5FCAAFs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibA91405DE27514EEC58C8AA51FF5FCAAFs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibA91405DE27514EEC58C8AA51FF5FCAAFs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibA1D015F06E8833436EED83FD98E78FBEs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibA1D015F06E8833436EED83FD98E78FBEs1
https://openwhisk.apache.org
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib1899AB2F6363DEC98C58BE053F0211DEs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib1899AB2F6363DEC98C58BE053F0211DEs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib1899AB2F6363DEC98C58BE053F0211DEs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibE99D4A12DDD3101199D5A53298F29F7Fs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibE99D4A12DDD3101199D5A53298F29F7Fs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibE99D4A12DDD3101199D5A53298F29F7Fs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib6A251F03FF49211BF71A90382A2F6D21s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib36792855B53DB675DAEFB64DC4FB5B28s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib36792855B53DB675DAEFB64DC4FB5B28s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib36792855B53DB675DAEFB64DC4FB5B28s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibD0B9A6A8A64AAFD058F89DF849240B7Cs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibD0B9A6A8A64AAFD058F89DF849240B7Cs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibB71E89065C672D53893ED9C02B6CC96As1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibB71E89065C672D53893ED9C02B6CC96As1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib9A4D02DF62C3B0E9F395696DCF669D33s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib9A4D02DF62C3B0E9F395696DCF669D33s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib9A4D02DF62C3B0E9F395696DCF669D33s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib33BDAEC670EB49BEF3BA0C3944DA353Ds1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib33BDAEC670EB49BEF3BA0C3944DA353Ds1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib68DA6D5EB9401BFFE94182B0F78FB809s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib68DA6D5EB9401BFFE94182B0F78FB809s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib68DA6D5EB9401BFFE94182B0F78FB809s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib2DF10A884A8E5A9EE52A75B60724C03Fs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib2DF10A884A8E5A9EE52A75B60724C03Fs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib18A1D1D903E22CDD560536EE8DB2E409s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib778A83A4E9529816170823546489DA3As1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib778A83A4E9529816170823546489DA3As1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib778A83A4E9529816170823546489DA3As1
http://www.gurobi.com
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib1D8C7D05808F908BA043195A89A5F817s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib1D8C7D05808F908BA043195A89A5F817s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib1D8C7D05808F908BA043195A89A5F817s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib6545ECBFECB7DF8EE76329C5B59A060Ds1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib0345425C7962FB941DF40CF71B576872s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib0345425C7962FB941DF40CF71B576872s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib6B4B4AB421292D4DF89666FB2B19ED12s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib6B4B4AB421292D4DF89666FB2B19ED12s1
https://kubernetes.io
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib84CAEED730A5EC940B638766D94A79CFs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib84CAEED730A5EC940B638766D94A79CFs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib8D8DDAFF56499652FB306776A4A5EF6Cs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib8D8DDAFF56499652FB306776A4A5EF6Cs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib8D8DDAFF56499652FB306776A4A5EF6Cs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibCCFBAFF3C6349B8D16F860153C08A0C2s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibCCFBAFF3C6349B8D16F860153C08A0C2s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib4EF815B36E93F8DB53D0094852732861s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib4EF815B36E93F8DB53D0094852732861s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibBA10ED0CF6819D381443EF42D6DFF668s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibBA10ED0CF6819D381443EF42D6DFF668s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibBA10ED0CF6819D381443EF42D6DFF668s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibBA10ED0CF6819D381443EF42D6DFF668s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibB039A721398FF0EA47079AB79D76F5B8s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibB039A721398FF0EA47079AB79D76F5B8s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib82824DD13B89A7C559D04FEB6B6EFD20s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib82824DD13B89A7C559D04FEB6B6EFD20s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib82824DD13B89A7C559D04FEB6B6EFD20s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib1DDE15152574FC00D4C16819A0117AFBs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib1DDE15152574FC00D4C16819A0117AFBs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibCEFA353B700547AD93E3A33330A55A2Ds1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibCEFA353B700547AD93E3A33330A55A2Ds1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibCEFA353B700547AD93E3A33330A55A2Ds1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibEBA8015F6701943297CDE9993B0E3876s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibEBA8015F6701943297CDE9993B0E3876s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibEBA8015F6701943297CDE9993B0E3876s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibEE4988B88F8118DE70FAD39D3359F17Fs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibEE4988B88F8118DE70FAD39D3359F17Fs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib73C16A857B000FA87113CCCD8E261AB2s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib73C16A857B000FA87113CCCD8E261AB2s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib8C5A07096CF67797075D97E9B8F4362Bs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib8C5A07096CF67797075D97E9B8F4362Bs1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib2E5DE562C8251503D8AE6589E686EB82s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib2E5DE562C8251503D8AE6589E686EB82s1

P. Zuk and K. Rzadca Journal of Parallel and Distributed Computing 167 (2022) 18–30
[36] M.X. Weng, J. Lu, H. Ren, Unrelated parallel machine scheduling with setup
consideration and a total weighted completion time objective, Int. J. Prod. Econ.
70 (3) (2001).

[37] F. Wu, Q. Wu, Y. Tan, Workflow scheduling in cloud: a survey, J. Supercomput.
71 (9) (2015).

[38] H. Zhang, A. Cardoza, P.B. Chen, S. Angel, V. Liu, Fault-tolerant and transac-
tional stateful serverless workflows, in: OSDI, Proc., USENIX Association, 2020,
pp. 1187–1204.

[39] H. Zhao, R. Sakellariou, An experimental investigation into the rank func-
tion of the heterogeneous earliest finish time scheduling algorithm, in: H.
Kosch, L. Böszörményi, H. Hellwagner (Eds.), Euro-Par, Proc., Springer, 2003,
pp. 189–194.

[40] P. Zuk, K. Rzadca, Scheduling methods to reduce response latency of function
as a service, in: SBAC-PAD, Proc., IEEE, 2020, pp. 132–140.

Pawel Zuk is a PhD student in Computer Science
at the Institute of Informatics, University of Warsaw,
under supervision of Krzysztof Rzadca.

He earned his undergraduate and Master’s degree
in Computer Science within Inter-faculty Studies in
Mathematics and Natural Sciences at University of
Warsaw.

His research interests lie in scheduling and cloud
computing.
30
Krzysztof Rzadca is an associate professor in the
Institute of Informatics, University of Warsaw, Poland
and a data science lead at Google. He graduated with
an MSc in software engineering from Warsaw Uni-
versity of Technology, Poland in 2004, and a PhD in
computer science in 2008 jointly from Institut Na-
tional Polytechnique de Grenoble (INPG), France and
from Polish-Japanese Institute of Information Technol-
ogy, Poland. He was French government fellowship re-

cipient during his PhD studies. Between 2008 and 2010, he worked as a
research fellow in Nanyang Technological University (NTU), Singapore. He
was awarded grants from the Polish National Science Center, the Foun-
dation for Polish Science and a faculty research award from Google. His
research focuses on resource management and scheduling in large-scale
distributed systems, such as supercomputers and clouds.

http://refhub.elsevier.com/S0743-7315(22)00090-9/bib40FF4430D0DBBA735D907C17203B035Es1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib40FF4430D0DBBA735D907C17203B035Es1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib40FF4430D0DBBA735D907C17203B035Es1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib680F9F14EEFC49AD6D443753203BFD30s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib680F9F14EEFC49AD6D443753203BFD30s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibB70967D0EDCAA70EFA80363666274662s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibB70967D0EDCAA70EFA80363666274662s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bibB70967D0EDCAA70EFA80363666274662s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib812922BA6E02421DF9DB885A9779B483s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib812922BA6E02421DF9DB885A9779B483s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib812922BA6E02421DF9DB885A9779B483s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib812922BA6E02421DF9DB885A9779B483s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib48E03FA59C4F25EFDE86378871D7B7C5s1
http://refhub.elsevier.com/S0743-7315(22)00090-9/bib48E03FA59C4F25EFDE86378871D7B7C5s1

	Reducing response latency of composite functions-as-a-service through scheduling
	1 Introduction
	2 Modeling FaaS resource management
	2.1 Resource management in OpenWhisk
	2.2 A scheduling model for FaaS

	3 Algorithms
	3.1 Ordering policy (Order)
	3.2 Removal policy
	3.3 Greedy environment creation
	3.4 Awareness of task dependencies

	4 Evaluation
	4.1 Method
	4.2 Validation of the simulator against OpenWhisk
	4.3 Relative performance of policies
	4.4 Impact of the number of tasks in a job
	4.5 Impact of the number of families
	4.6 Impact of the setup time
	4.7 Impact of machine capacity
	4.8 Summary of experiments
	4.9 Differences between DAGs and chains
	4.10 Experiments with a FaaS trace

	5 Related work
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

