Understanding the flow of hard metal powders and pastes

M. Just^{1,2,a}, A. Medina Peschiutta^{1,2,b}, J. Baller¹, R. Useldinger²

¹Department of Physics & Materials Science, University of Luxembourg, 1511 Luxembourg, Luxembourg. ²CERATIZIT Luxembourg S.à r.I., Route de Holzem, 101, L-8232, Luxembourg

UNIVERSITÉ DU LUXEMBOURG

Luxembourg National Research Fund

HM - Paste

Capillary rheometer

Objective

Develop constitutive physical models which describe the flow of hard metal pastes and to find the relevant boundary conditions (e.g. slippage at extruder walls)

Mixing

Corrections for the paste flow in a capillary rheometer

- Bagley correction (pressure drop at the entry of the capillary)
- Mooney correction (effect of slipping at the capillary wall)
 Weissenberg-Rabinowitsch correction (velocity profile of the paste inside the capillary)

Experimental approach

- Differential scanning calorimetry (DSC)
- Capillary rheometry
- Dynamic mechanical analysis (DMA)

Paste rheology

- Chemical composition
- External factors (temperature, shear stress)

Parameter influencing the filling process

- Technical setup of press (e.g. filling shoe speed, geometry)
- Granules properties (e.g. roughness, granules distribution)
- Environment (ambient temperature, humidity)

Requirements for the filling process

- **Repetitive filling of the cavity**
- Homogeneous granular density in the cavity
- High flowability leading to short filling times

Objective Empirical model used to predict the

Critical points for initial Beverloo law

• Restricted to flat bottomed orifices

Granular size matters!

flowability of HM-granules (based on the Beverloo law)

and cylindrical containers

- Low precision for small orifices
- Polydisperse system represented by calculated diameter d
- Uncertain physical meanings of fitting parameters C and k

Experimental approach

Sieving of granular materials

- Angle of repose (friction coefficient)
- Mass flow rate
- Rheological measurements

For granules with identical chemical composition

