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Quantum speed limits (QSLs) identify
fundamental time scales of physical pro-
cesses by providing lower bounds on the
rate of change of a quantum state or the
expectation value of an observable. We in-
troduce a generalization of QSL for uni-
tary operator flows, which are ubiquitous
in physics and relevant for applications in
both the quantum and classical domains.
We derive two types of QSLs and assess
the existence of a crossover between them,
that we illustrate with a qubit and a ran-
dom matrix Hamiltonian, as canonical ex-
amples. We further apply our results to
the time evolution of autocorrelation func-
tions, obtaining computable constraints on
the linear dynamical response of quan-
tum systems out of equilibrium and the
quantum Fisher information governing the
precision in quantum parameter estima-
tion.

1 Introduction

Unraveling the fundamental time scale of a phys-
ical process is crucial in many theoretical and
experimental scenarios. Quantum speed limits
(QSLs) constitute a set of fundamental results in
quantum physics that bound the minimum time
for a physical process to happen. Although their
initial formulation [1, 2] was restricted to uni-
tary evolution between two pure quantum states,
by now they have been generalized to the case
of arbitrary mixed states [3, 4], driven Hamil-
tonians [5, 3, 6, 7], open quantum dynamics
[8, 9, 10, 11], continuous quantum measurements
[12], and classical processes [13, 14, 15]. Their ap-
plications are thus manifold and range over vari-
ous branches of physics [16]. Their use is promi-

nent in quantum technologies, including quan-
tum computation [17, 18] and quantum metrol-
ogy [19, 20]. QSL are known to limit the per-
formance of quantum control algorithms [21, 22],
and play a key role in shortcuts to adiabaticity by
counterdiabatic driving both in isolated [23, 24]
and open quantum systems [25, 26]. They have
also been applied to many-body physics, in which
care is needed given the orthogonality catastro-
phe [27, 28, 29, 30, 31]. In addition, some for-
mulations of QSLs have transcended the notion
of quantum state distinguishability and focused
on the rate of change of other quantities such as
quantum coherence [32, 33, 34], and more gener-
ally, quantum resources [35].

Bounds to the pace of evolution naturally have
important implications in nonequilibrium ther-
modynamics. In this context, the connection
between QSLs and thermodynamic uncertainty
relations (TURs) [36, 37] has been explored in
[38, 39], identifying QSL-inspired constraints on
non-equilibrium fluctuations. Recently, a closely
related work [40], following the initial spirit of [1],
established a generalized QSL on the evolution
of observables, in particular, of their expectation
values, under arbitrary dynamics. The notion of
the speed of an observable expectation value was
also considered in [30, 31, 41].

A natural question then arises: is it possible
to formulate QSLs directly on the operator flow,
rather than on the time-dependent expectation
value of an observable? An operator flow de-
scribes the evolution of an operator under some
given dynamics. In the unitary case, the evo-
lution of the operator results from its conjuga-
tion by a unitary. Unitary operator flows are
ubiquitous in physics, ranging from the quan-
tum evolution of an observable in the Heisen-
berg picture to the Lax pair flow in classical in-
tegrable systems [42] and continuous renormal-
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ization group flows, such as the one proposed by
Wegner [43]. Preceding efforts in this direction
have focused on the preparation of unitary [44]
and non-unitary [45] quantum operations in the
context of quantum control. Moreover, a Liou-
ville space formulation of the QSL on the evolu-
tion of density matrices was introduced in [46].
However, a framework to describe general oper-
ator flows, for general operators, is still lacking.
Constraining the speed of these flows would nat-
urally prove useful also in characterizing operator
growth [47, 48, 49, 50, 51], which has attracted
increasing attention as a powerful approach to
describe the buildup of complexity in quantum
systems, in parallel to the earlier notion of quan-
tum state complexity [52], that is also subject to
QSLs [53, 54, 55, 56]. In this context, a QSL-like
uncertainty bound has recently been introduced
[57] on the growth of a particular notion of op-
erator complexity, known as Krylov complexity
[58, 59, 60, 61].

In this manuscript, we introduce two notions of
QSL for operator flows. Although we focus on the
unitary time evolution in the Heisenberg picture,
our results can be applied to a wider class of uni-
tary flows, including some examples of inhomo-
geneous flows. Moreover, they do not require the
flowing operator to be Hermitian. In addition, we
introduce QSLs for the two-point autocorrelation
functions, which play a key role in many-body
physics, determine the linear response [62] and
transport properties of a quantum system, and
characterize the operator growth in Krylov space.
The exact computation of correlation functions is
generally a challenging task, requiring solving the
dynamics, while our bounds are easy to compute
provided that the Hamiltonian and the initial op-
erator are known. Our results show the presence
of a universal crossover between an initial regime
in which the dynamics follows a Mandelstam-
Tamm (MT) [1] type of QSL and a second one
in which a Margolus-Levitin (ML) [2] type of
QSL yields a more accurate description. We il-
lustrate this crossover, analogous to that recently
observed experimentally for quantum state evolu-
tion [63], in the case of a two-level system and of
a random matrix Hamiltonian. Furthermore, our
results provide easily computable constraints on
the non-equilibrium dynamical response of arbi-
trary systems to an external perturbation within
linear response theory. Finally, exploiting the re-

lation between the dynamical susceptibility and
the quantum Fisher information [64], we upper
bound this quantity with an easily computable
correlation function.

2 Quantum speed limits for operators
The paradigmatic example of operator flow in
quantum mechanics is the unitary flow Ȯt =
i
~ [H,Ot], describing the time evolution of an ini-
tial operator O0 generated by the Liouvillian
L[·] = 1

~ [H, ·]. The unitary character of the flow
is manifest in the formal solution Ot = U †tO0Ut =
exp(itL)O0, where Ut = exp(−itH/~) is the uni-
tary time-evolution operator associated with a
time-independent Hamiltonian H. It is conve-
nient to visualize this flow upon vectorizing op-
erators in Liouville space [46], as it allows a di-
rect analogy between operator flow and quantum
state evolution. Therefore, let us represent a gen-
eral bounded operator A =

∑
i,j Aij |i〉 〈j|, where

{|i〉} can be any basis of the Hilbert space, as a
normalized vector

|A〉 = 1
‖A‖

∑
i,j

Aij |i〉 ⊗ |j〉 , (1)

where ‖A‖ =
√
〈A,A〉 is the Hilbert-Schmidt

norm associated with the Hilbert-Schmidt inner
product 〈A,B〉 = Tr[A†B]. In Liouville space,
the latter is proportional to the standard scalar
product over Cd

2 , being 〈A,B〉 = ‖A‖‖B‖ 〈A|B〉.
In the isomorphic real vector space R2d2 , the real
part Re 〈A,B〉 defines the standard Euclidean in-
ner product. Let us stress that, despite the for-
mal similarity, vectorized operators and physi-
cal states are fundamentally different. A quan-
tum state |ψ〉, being a ray in the projective
Hilbert space, is defined up to a global phase,
i.e., exp(iθ)|ψ〉 with θ ∈ R is equivalent to |ψ〉.
By contrast, vectorized operators differing by a
global phase are not equivalent. We further re-
mark that when the operator is Hermitian, its
evolution in Liouville space is equivalent to the
quantum evolution of the corresponding physical
observable in the Heisenberg picture.

Let us now consider the Heisenberg evolution of
an operator O0 generated by a time-independent
Hamiltonian H. For the moment, we do not re-
strict ourselves to observables, meaning that O0
can also be non-Hermitian. In Liouville space, we
can rewrite the Heisenberg equation as ∂t |Ot〉 =
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iL |Ot〉, where the Liouvillian, which, with a slight
abuse of notation, we shall continue to indicate as
L, takes the form

L = 1
~

(H ⊗ 1− 1⊗HT ). (2)

A particularly useful object to quantify the dis-
placement of the operator along the flow is the
operator overlap

〈O0|Ot〉 = Tr(O†0Ot)
‖O‖2

, (3)

which can be complex in general and becomes
real when Hermitian operators are considered.
A key observation is that the operator overlap
is proportional to the infinite temperature auto-
correlation function: we shall see how this fea-
ture will allow us to extend our result to finite-
temperature autocorrelations functions as well.
Note that 〈O0|Ot〉 is closely related to the notion
of operator fidelity introduced in the context of
Loschmidt echoes and quantum phase transitions
[65]. Similarly to the fidelity of quantum states,
the operator overlap (3) is potentially affected by
the orthogonality catastrophe in many-body sys-
tems [27, 28, 29, 30, 31], which would render it
asymptotically small for large system sizes. Nev-
ertheless, as shown in the random matrix example
below, we can provide non-trivial bounds on the
correlation functions.

To measure how “far” the operator Ot has
flowed, we define the operator angle Lt between
the vector |Ot〉 and the inital one |O0〉:

Lt ≡ arccos Re 〈O0|Ot〉. (4)

This quantity defines a distance over the uni-
tary flow Ot = U †tO0Ut. Being the vectorized
operator normalized as in Eq. (1), the unitary
flow in Liouville space lies on the unit sphere.
Since Re 〈O0|Ot〉 is the Euclidean inner product,
Eq. (4) reduces to the angle between the corre-
sponding real vectors in R2d2 and is, therefore,
a distance. We also note that Lt resembles the
notion of Bures angle ` = arccos | 〈ψ0|ψt〉 |, but
it does not reduce to it when the initial operator
is chosen to be the projector over the pure state
|ψ0〉, O0 = |ψ0〉 〈ψ0|. Moreover, let us stress that
arccos | 〈O0|Ot〉 | would not be a good notion of
distance between operators, as it would vanish
every time they differ only by a phase. While
physical states are defined up to an irrelevant

global phase, the same is not true for operators,
as global phases between observable are physical.
Said differently, the fact that Liouville space is a
Hilbert space but not a projective Hilbert space
favors the use of the distance (4) over the conven-
tional Bures angle.

Now, let {|i〉} be the energy eigenbasis, such
that H |i〉 = Ei |i〉, and let the initial operator be
O0 =

∑
ij Oij |i〉 〈j| in such basis. The Liouvillian

is diagonal in the vectorized basis |i〉⊗|j〉 and has
the energy gaps ∆ij ≡ Ei−Ej as diagonal entries.
The operator overlap takes the form

〈O0|Ot〉 = 1
‖O‖2

∑
j,k

ei∆jkt/~|Ojk|2. (5)

Using trigonometric inequalities, we can derive
two QSLs in terms of the operator overlap, which,
as we will argue below, can be regarded as
the generalization of the Margolus-Levitin (ML)
[2] and Mandelstam-Tamm (MT) [1] QSLs for
Schrödinger evolution. Indeed, by using that
cosx ≥ 1− α|x|, where the parameter α ≈ 0.724
is chosen such that 1− αx is tangent to cosx for
x > 0 [66], we can bound the real part of the
overlap from below,

Re 〈O0|Ot〉 ≥ 1− αt

~‖O‖2
∑
j,k

|∆jk||Ojk|2

= 1− α 〈|L|〉 t,
(6)

where, for an arbitrary operator A, we define
|A| =

√
A†A and the brackets in the right-hand

side stand for the expectation value over the vec-
torized operator: 〈·〉 = 〈O0| · |O0〉. Further, its
time derivative Re 〈O0|Ȯt〉 can be upper bounded
by making use of the inequality −x2 ≤ x sin x ≤
x2, valid ∀x:

|Re 〈O0|Ȯt〉 | ≤
t

~2‖O‖2
∑
j,k

∆2
jk|Ojk|2 = 〈L2〉 t.

(7)
The derivative of the operator overlap is related
to that of the operator angle Lt by

Re 〈O0|Ȯt〉 = − sin (Lt) L̇t, (8)

which, after time integration, when combined
with Eq. (7), yields

1− cosLt ≤
〈L2〉

2 t2. (9)
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Therefore, from Eqs. (6) and (9) we obtain the
two following QSLs, formulated in terms either
of the operator overlap or the operator angle:

t ≥ 1− Re 〈O0|Ot〉
α 〈|L|〉

= 1− cosLt
α 〈|L|〉

, (10)

t ≥
√

2(1− Re 〈O0|Ot〉)
〈L2〉

=
√

2(1− cosLt)
〈L2〉

.

(11)

These results identify 〈|L|〉 and
√
〈L2〉 as up-

per bounds on the speeds of the operator flow.
We stress that the quantities 〈|L|〉 and 〈L2〉 are
time-independent under unitary dynamics when
the evolution is generated by a time-independent
Hamiltonian. Moreover, we note that ifO0 is Her-
mitian, the operator overlap is real at any time
and 〈L〉 = 0 by parity so that 〈L2〉 = (∆L)2 is the
variance of the Liouvillian. The analogy with ML
and MT bounds, at least for flows of observables,
is already evident. Both for state and operator
evolution, the relevant time scale is given in terms
of the mean and the variance of the generator of
evolution, for ML and MT bounds, respectively.
In the case of states, the generator is the Hamil-
tonian H, while in Liouville space the dynamics
of operator flows is generated by the Liouvillian
L. We observe that, in the case of operator evo-
lution, the ML bound (10) is given in terms of
〈|L|〉 rather than the mean of the generator 〈L〉,
as this one vanishes for Hermitian operators. Let
us further note that, by using other trigonometric
inequalities, one can derive analogous QSLs that
are proportional to Eqs. (10)-(11) through a nu-
merical constant smaller than one, thus yielding
a weaker result, see App. A.

It is instructive to identify which operators
maximize the upper bounds 〈|L|〉 and

√
〈L2〉 on

the speed of the flow for a given Hamiltonian, as
these will undergo the fastest operator growth.
By looking at Eqs. (7) and (6), and noting that
(|Oij |/‖O‖)2 ≤ 1 defines a proper probability dis-
tribution over the energy states pairs, it is clear
that the operators Omax flowing at the maximal
speed are the ones whose non-zero elements are
only between energy eigenstates with the max-
imum gap |∆max| = Emax − E0, where Emax
and E0 are the highest and the lowest energy
eigenvalues, respectively. This maximal speed
for operators is the analog of the one identi-
fied by the dual ML bound, recently introduced
for state evolution [67]. If these levels are non-

degenerate, the fastest operator will be of the
form Omax = µ |Emax〉 〈E0| + ν |E0〉 〈Emax| for
some complex constant µ and ν (µ = ν∗ for ob-
servables). This is analogous to the well-known
result for states [68].

Remarkably, the above QSLs identify a univer-
sal crossover between two different time regimes.
At early times t ≤ τc, being τc = 2α 〈|L|〉 / 〈L2〉
the crossover time, the decay of the operator over-
lap is governed by a quadratic MT bound

Re 〈O0|Ot〉 ≥ 1− 〈L
2〉

2 t2, (12)

while for times t ≥ τc the linear ML bound

Re 〈O0|Ot〉 ≥ 1− α 〈|L|〉 t (13)

becomes tighter. A similar crossover was experi-
mentally observed for the state fidelity of a single
atom in an optical trap [63].

Furthermore, let us note that the QSLs (10)
and (11) can be recast in terms of the Hamilto-
nian H, which generates the time evolution in the
Hilbert space, rather than the Liouvillian, i.e., the
generator of evolution in Liouville space. This re-
formulation will prove advantageous in express-
ing the relevant timescales as thermal expecta-
tion values. Indeed,

√
〈L2〉 is proportional to the

norm of the operator velocity√
〈L2〉 = 1

~
‖[H,Ot]‖
‖O‖

= ‖∂tO‖
‖O‖

, (14)

which, as emphasized, is time-independent under
unitary dynamics. Regarding the ML QSL, by
using that |∆jk| ≤ Ej +Ek − 2E0 in terms of the
ground state energy E0, we find

〈|L|〉 ≤ 1
~

Tr(O†0{H − E0, O0})
‖O‖2

. (15)

Therefore, the ML QSL can be recast as

t ≥ ~
‖O‖2

α

1− Re 〈O0|Ot〉
Tr(O†0{H − E0, O0})

, (16)

which is generally weaker than the original Liou-
villian bound (10). We shall make use of these
results in the next section, to bound the rate of
change of autocorrelation functions.

Finally, if we choose O0 = |ψ0〉 〈ψ0| and let it
evolve backward in time, thus recovering the cor-
responding forward time evolution of the state
|ψ0〉 in the Schrödinger picture, we find that the
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bounds (10) and (11) become proportional to the
standard ML and MT QSLs in the case of or-
thogonal state evolution, thus justifying the given
interpretation, see App. B. We note that the pro-
portionality constant is smaller than one, mean-
ing that our bounds are not violated. However,
they cannot be tight for state evolution. Further-
more, the result (80) can be extended to driven
dynamics, under the assumption that the energy
eigenvectors are stationary, see App. C.

The general results derived in this section can
be applied in a variety of theoretical settings. In
particular, as shown below, the QSLs on opera-
tor flows bound the decay of autocorrelation func-
tions, thus providing constraints to the dynamical
susceptibility in linear response theory and the
quantum Fisher information in quantum metrol-
ogy.

3 QSL on autocorrelation functions
Solving the dynamics of an arbitrary many-body
quantum system is generally a demanding task.
In many-body physics, the central objects that
characterize the dynamics, determining for ex-
ample the linear response [62], are the two-point
time-correlation functions, whose explicit form is
generally unknown. In particular, the so-called
autocorrelation function

CO(t) = Tr(O†tO0ρ) (17)

determines the operator growth of O0 in Krylov
space and therefore accounts for the build-up of
the corresponding notion of operator complexity
[58, 59, 60, 61, 69].

Our QSLs on operators provide easily com-
putable lower bounds to these quantities. In the
following, we take O0 to be Hermitian, ρ to be
a stationary state, [ρ,H] = 0, and the Hamil-
tonian H to be time independent. In practical
applications, ρ is often chosen to be the Gibbs
state e−βH/Z at inverse temperature β, with
Z = Tr e−βH , but this assumption is not neces-
sary for the derivation of the results below. Now,
let us note that this autocorrelation function can
be rewritten as the Hilbert-Schmidt inner prod-
uct

CO(t) = 〈Õt, Õ0〉 (18)
between a non-Hermitian operator Õ0 and its
time-evolved operator Õt, defined as follows:

Õ0 ≡ O0
√
ρ, Õt = U †Õ0U = Ot

√
ρ. (19)

By making the commutator explicit and using
that [ρ,H] = 0, we obtain ‖[H, Õ0]‖2 = ~2〈Ȯ2

t 〉0,
where the brackets 〈·〉0 stand for the expecta-
tion value with respect to ρ. We note that
the characteristic velocity 〈Ȯ2

t 〉0 of the operator
flow is time independent and thus does not re-
quire solving for Ot. Being ‖Õ0‖2 = CO(0) the
norm of Õt, the autocorrelation function becomes
CO(t) = CO(0) 〈Õt|Õ0〉. Substituting this expres-
sion into Eqs. (11) and (14), we can recast our
MT QSL as a lower bound on the symmetrized
autocorrelation function

ReCO(t) = 1
2 〈{Ot, O0}〉0 ≥ CO(0)− 1

2〈Ȯ
2
t 〉0t

2,

(20)
which, as also occurs for the decay of the state fi-
delity, corresponds to a short-time Taylor expan-
sion up to the second order. This early timescale
was also identified in [70] and found to be propor-
tional to the equilibration timescale at late times.
While the MT QSL accounts for the short-time
quadratic decay of the autocorrelation function,
the ML QSL (16) yields a linear decay instead,

ReCO(t) ≥ CO(0)− α

~
〈O0{H − E0, O0}〉0t,

(21)
which identifies a new timescale. Again, as for
the evolution of the operator overlap, we observe
a crossover between the MT and the ML regimes,
occurring at the time

τc = 2α
~
〈O0{H − E0, O0}〉0

〈Ȯ2
t 〉0

, (22)

which is illustrated explicitly in Figs. 1 and 3 for
a two-level system and a random matrix Hamil-
tonian, respectively.

Furthermore, as the operator dynamics is gov-
erned by the full autocorrelation function (17),
one wishes to have a bound also on the anti-
symmetrized, imaginary autocorrelation function
〈[Ot, O0]〉0. This quantity determines the linear
response of the operator when the Hamiltonian is
perturbed with an external, time-dependent driv-
ing [62]. Let us then discuss an ML-type upper
bound on the imaginary part of the autocorre-
lation function. This can be achieved by noting
that the imaginary part of the operator overlap
(5) is upper bounded by the averaged Liouvillian
〈|L|〉,

| Im 〈O0|Ot〉 | ≤ 〈|L|〉 t, (23)
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as one can see by using that −|x| ≤ sin x ≤ |x|
∀x. Now, being ImCO(t) = −CO(0) Im 〈Õ0|Õt〉,
we derive

| ImCO(t)| ≤ 〈O0{H − E0, O0}〉0
t

~
. (24)

This result will be used below to derive analogous
bounds on the linear response under an external
perturbation and the thermal quantum Fisher in-
formation associated with an arbitrary observable
O.

3.1 The two-level system
Before considering further applications of our re-
sults, let us analyze a simple model for which we
can compute both the bounds (20)-(22) and the
actual autocorrelation function CO(t), thus illus-
trating explicitly the existence of the aforemen-
tioned crossover.

Let us consider a two-level Hamiltonian

H = k1 +−→r · −→σ , (25)

where −→σ = (σx, σy, σz) is the Pauli matrix vector
and −→r = (a, b, c). Let us choose O0 = σx as the
initial operator and ρ = e−βH/Z as the state of
the system. Then, using natural units ~ = 1, the
symmetric autocorrelation function is given by

ReCO(t) = a2 + (b2 + c2) cos 2rt
r2 , (26)

where r ≡ |−→r | =
√
a2 + b2 + c2, the temperature

dependence being contained only in the antisym-
metric part

ImCO(t) = b2 + c2

r2 tanh βr sin 2rt. (27)

Moreover, the MT and ML time scales have the
following expressions respectively,

〈Ȯ2
t 〉0 = 4(b2 + c2) (28)

and

〈O0{H − E0, O0}〉0 = 2
r

(
2a2

1 + e2βr + b2 + c2
)
.

(29)
These can be inserted into Eqs. (20) and (21) to
compute lower bounds on ReCO(t) and ImCO(t),
as shown in Fig. 1. The symmetric, real part is
the only nonvanishing term at the initial time and
undergoes a decay in parallel with the onset of

Figure 1: Comparison of the real (a) and imaginary (b)
parts of the correlation function with the MT and ML
QSLs given by Eqs. (20), (21) and (24) for a two-level
system. The parameters are chosen as a = 10, c = b =
1, and the inverse temperature is β = 10. The identity
in the Hamiltonian (25) plays no role so that we can fix
k = 0 without loss of generality. (a) The initial decay of
the symmetric correlation function undergoes a crossover
from a regime dominated by the MT QSL to a regime
in which the ML QSL becomes tighter. The vertical line
corresponds to the crossover time τc. (b) The onset of
the antisymmetric contribution is characterized by the
ML QSL at short times.

the antisymmetric, imaginary contribution. This
decay is initially captured by the MT QSL, as
expected from Taylor expansion, while after the
crossover time τc, the ML QSL becomes tighter.

Finally, let us note that, for the parameters
chosen (a = 10, c = b = 1 and β = 10),
the two ML QSLs, formulated in terms either of
the Hamiltonian (16) or the Liouvillian (10), are
equivalent, as shown in Fig. 2. Indeed, in the
latter case, the velocity is given by

CO(0) 〈Õ| |L| |Õ〉 = 2
r

(b2 + c2), (30)

so that the difference between the two ML veloc-
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Figure 2: The Liouvillian (10) and Hamiltonian (16) for-
mulations of the ML bound for a two-level system are
shown to be equivalent in the time window of interest.
The parameters are chosen as a = 10, c = b = 1 and
the inverse temperature is β = 10.

ities is
4a2

r

α

1 + e2βr � 1. (31)

However, if one increases the temperature suffi-
ciently the Liouvillian bound gives a tighter re-
sult.

3.2 Random matrix example

As already stressed, the above scenario consist-
ing of an early quadratic decay governed by MT
(20), a crossover, and a subsequent time window
in which ML (21) becomes tighter, proves to be
a general feature of autocorrelations in isolated
quantum systems. We further illustrate this sce-
nario in the following generic setting. First, we
sample the HamiltonianH from the Gaussian Or-
thogonal Ensemble (GOE), with standard devia-
tion σ = 1 and dimension d = 200; we subse-
quently diagonalize H and thus fix as a reference
basis the energy eigenbasis. We then construct
the initial operator, using this basis, by sampling
it from the same GOE as the Hamiltonian. Al-
ternatively, we could sample the operator and the
Hamiltonian using the same computational ba-
sis. The comparison between the autocorrelation
function and the speed limits is shown in Fig. 3.

While the tangent character of the ML QSL
to the real curve after the crossover is a feature
specific to the qubit case (see Fig. 1), we observe
that the divergence of the bound does not keep
increasing when considering an increasing Hilbert
space dimension. ML-type bounds were recently
found to lose tightness for higher dimensions than

Figure 3: Comparison of the real (a) and imaginary (b)
parts of the (normalized) correlation function with the
MT and ML QSLs given by Eqs. (20), (21) and (24),
for H, O0 ∈ GOE with standard deviation σ = 1 and
dimension d = 200. The QSLs have been normalized
by dividing by C0(0). (a) The initial decay of the sym-
metric correlation function undergoes a crossover from a
regime dominated by the MT QSL to a regime in which
the ML QSL becomes tighter. The vertical line corre-
sponds to the crossover time τc. (b) The onset of the
antisymmetric contribution is characterized by the ML
QSL at short times.

a qubit also in [67].

4 Dynamical susceptibilities
Thermal correlation functions determine the non-
equilibrium response of an observable at the first
order in the perturbation [62, 71]. Therefore, the
results illustrated in the previous section allow us
to bound the linear response and, in particular,
the dynamical susceptibility, which is the quan-
tity that characterizes the response of a system
to an external perturbation.

Let us then consider the situation in which a
time-independent Hamiltonian H0 is perturbed

Accepted in Quantum 2022-12-13, click title to verify. Published under CC-BY 4.0. 7



by an external, time-dependent driving,

H(t) = H0 + λV f(t), (32)

where the perturbation operator V does not de-
pend explicitly on time, λ is a real positive con-
stant that quantifies the strength of the pertur-
bation and the driving force f(t), which can be
taken to be |f | ≤ 1, is assumed to vanish for t ≤ 0.
Let the initial state of the system be the ther-
mal Gibbs state ρ0, relative to the unperturbed
Hamiltonian H0, at inverse temperature β. We
are interested in determining the linear response
of an observable A, namely the shift of its expec-
tation value at time t from the initial equilibrium
value, 〈A〉t − 〈A〉0, where

〈A〉0 = Tr (Aρ0), 〈A〉t = Tr [ρI(t)AI(t)]. (33)

Here, the operators are evaluated in the interac-
tion picture

AI(t) = U †0(t)AU0(t), ρI(t) = UV (t)ρ0U
†
V (t),

(34)
with

U0(t) = e−iH0
t
~ , UV (t) = T e−i

λ
~

∫ t
0 VI(s)f(s)ds.

(35)
To the first order in λ, the linear response is given
by the celebrated Kubo formula [62]

〈A〉t − 〈A〉0 '
λ

i~

∫ t

0
〈[AI(t− s), VI(0)]〉0 f(s)ds.

(36)
Thus, the non-equilibrium response, at the linear
order, is determined by an equilibrium correla-
tion function. As already stressed above, com-
puting correlation functions at all times is gener-
ally a challenging task, equivalent to solving the
dynamics. Therefore, having universal, model-
independent bounds on these quantities is ex-
tremely useful. We next present several ways
in which one can bound the right-hand side of
Eq. (36).

The linear response (36) can be rewritten in
terms of the so-called dynamical susceptibility

χAV (t) = −i1
~
θ(t) 〈[AI(t), VI(0)]〉0 , (37)

where θ(t) is the Heaviside function, as

〈A〉t − 〈A〉0 = λ

∫ ∞
−∞

χAV (t− s)f(s)ds. (38)

The dynamical susceptibility χAV (t), which van-
ishes for a negative argument (i.e., before the
external perturbation is applied), expresses the
causal linear response of the system and is a
real quantity. Its absolute value can be upper
bounded using the Heisenberg uncertainty rela-
tion | 〈[A, V ]〉 | ≤ 2∆A∆V , which yields the con-
stant bound

|χAV (t)| ≤ 2
~
θ(t)∆0A∆0V, (39)

where ∆2
0A is the variance with respect to ρ0. As

the latter is time-independent in the interaction
picture, we drop the subscript I. Alternatively,
one can apply the Bogoliubov inequality [72]

| 〈[A, V ]〉0 |
2 ≤ 〈A

2〉0 〈[V, [H0, V ]]〉0
kBT

. (40)

This yields a different upper bound with an ex-
plicit dependence on the temperature T

|χAV (t)| ≤ 2θ(t)
~

√
T

TB
∆0V∆0A, (41)

where we have defined the characteristic temper-
ature

TB ≡
〈A2〉0 〈[V, [H0, V ]]〉0

4kB(∆0A∆0V )2 . (42)

Both (39) and (41) upper bound the modulus of
the dynamical susceptibility in terms of the equi-
librium fluctuations of the perturbation operator
V and the observable A in which the response is
studied. We see that at low temperature T ≤ TB
the Bogoliubov bound (41) is tighter than the
Heisenberg bound (39), while the contrary holds
at higher temperatures.

In certain experimental settings, one may be in-
terested in quantifying the response of the pertur-
bation operator V itself. For example, this is the
case of the magnetic susceptibility in magnetic
resonance experiments, where both V and the ob-
servable of interest A are given by the magnetiza-
tion [73]. In such case, being A = V , the dynam-
ical susceptibility χV V (t) becomes proportional
to the anti-symmetrized autocorrelation function
〈[VI(t), VI(0)]〉0 = 2i ImCV (t), and therefore one
can make use of the techniques that we have illus-
trated above to bound autocorrelations functions
utilizing QSLs for operators. The ML QSL (22)
yields the following upper bound on the dynami-
cal susceptibility

|χV V (t)| ≤ t

τ3
QSL

2θ(t)~, (43)
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where we have introduced a new time scale
τQSL = ~ 〈V {H0 − E0, V }〉−1/3

0 , E0 being the
ground state energy of the unperturbed Hamil-
tonian H0. Unlike the previous bounds (39) and
(41), Eq. (43) contains an explicit linear depen-
dence on time. This implies that the QSL ap-
proach is the most efficient at early enough times.
However, as we let the system evolve in time, the
QSL bound (43) no longer governs the dynamics,
and one needs to consider different approaches.
In particular, at lower temperature T ≤ TB, the
QSL bound (43) ceases to be the tightest one at
the time

τB =
(∆0V

~

)2
√
T

TB
τ3
QSL (44)

and for t ≥ τB the Bogoliubov bound (41) gives
the better description. By contrast, at high tem-
peratures T ≥ TB, the crossover is between the
QSL bound and the Heisenberg bound (39), and
it occurs at the time

τH =
(∆0V

~

)2
τ3
QSL. (45)

The bounds (39),(41) and (43) find applications
in many experimentally relevant settings [73], of
which we give two concrete examples below.

4.1 Examples
The situation in which a system is subject to an
external perturbation is widespread in physics.
A paradigmatic example is that of a system com-
posed of N charged particles and perturbed with
a uniform, time-dependent electric field

−→
E (t) [73].

In this case, the preferred observable to character-
ize the response of the system is the current flow−→
J and the corresponding dynamical susceptibil-
ity is the electrical conductivity. The perturbed
Hamiltonian takes the form

H(t) = H0 −
−→
R ·
−→
E (t), (46)

where
−→
R is the electric dipole moment in the ori-

gin
−→
R ≡

N∑
n

qn
−→r n, (47)

with qn and −→r n being the charge and the position
of the n-th particle. The net current vanishes at
equilibrium, 〈

−→
J 〉0 = 0, and the perturbed expec-

tation value of the i-th spatial component Ji at

time t ≥ 0 is expressed, at the linear order, as
[73]

〈Ji〉t =
∑
j

∫ ∞
−∞

σij(t− s)Ej(s) ds, (48)

where σij ≡ χJiRj is the electrical conductivity
tensor. By using the bounds (39) and (41) we are
able to derive the following constraints on σij :

|σij(t)| ≤
2
~
θ(t)∆0Ji∆0Rj , (49)

|σij(t)| ≤
θ(t)
~

√
〈J2
i 〉0 〈[Rj , [H0, Rj ]]〉0

kBT
, (50)

where, in the first equation, we note that that the
net current vanishes at equilibrium, i.e., ∆0Ji =√
〈J2
i 〉0. Thus, the application of the Heisenberg

bound (39) yields an experimentally testable up-
per bound to the modulus of each component of
the electrical conductivity tensor |σij(t)| in terms
of the equilibrium fluctuations of the current flow−→
J along i-th axis and the j-th component of the
electric operator

−→
R to which the applied external

field
−→
E (t) is coupled. Provided that the unper-

turbed Hamiltonian H0 depends on the momenta
−→p n through the usual kinetic term

∑
n

−→p 2
n

2m , where
we have taken the particles to have equal masses
m, we can evaluate the double commutator ap-
pearing in the Bogoliubov bound (50). Thus,
by using the canonical commutation relations, we
obtain

|σij(t)| ≤ θ(t)∆0Ji

√∑
n q

2
n

mkBT
, (51)

where we note that temperature dependence is
also contained in the current fluctuations ∆0Ji.

Another experimental application in which the
theory of linear response provides a useful ap-
proach is given by magnetic resonance experi-
ments [74]. In this case, the central quantity
is the magnetic susceptibility. Consider a para-
magnetic system, initially aligned along a con-
stant magnetic field

−→
B and subsequently per-

turbed with a weak time-dependent field
−→
h (t) so

that the total Hamiltonian reads

H(t) = −−→M · (−→B +
−→
h (t)). (52)

The magnetization of the system is perturbed
from its initial equilibrium value 〈

−→
M〉0 = χ0

−→
B ,

where χ0 is the static susceptibility, and the linear
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response of its i-th component can be expressed
using the Kubo formula

〈Mi〉t − 〈Mi〉0 =
∑
j

∫ ∞
−∞

χM,ij(t− s)hj(s) ds,

(53)
where χM,ij(t) ≡ χMiMj (t) is the magnetic sus-
ceptibility tensor. The bounds (39) and (41) now
yield

|χM,ij(t)| ≤
2
~
θ(t)∆0Mi∆0Mj , (54)

|χM,ij(t)| ≤
θ(t)
~

√
〈M2

i 〉0 〈[Mj , [H0,Mj ]]〉0
kBT

.

(55)

As in the previous example, the absolute value
of each component of the magnetic susceptibility
|χM,ij(t)| is upper bounded in terms of the equi-
librium fluctuations of the response Mi and the
perturbation operator, which in this case is given
by the magnetization itself, along the j-th axis.
Let us consider as a simple example the case of
N decoupled spins, subject to the external mag-
netic field

−→
B . Then Mi = γ

∑
n σ

(n)
i , where the

proportionality constant γ has the dimension of
a magnetic dipole moment, and the unperturbed
ground state energy is E0 = −Nγ|−→B |. By using
the commutation relations for the Pauli matrices
σi, we evaluate the Bogoliubov bound (55) on the
dynamical response as

|χM,ij(t)| ≤
2γθ(t)

~

√√√√χ0 〈M2
i 〉0 (|−→B |2 −B2

j )
kBT

.

(56)
We note that this bound is consistent with the
fact that χM,ij vanishes whenever the static mag-
netic field is along the j-th axis, which follows
from the vanishing of the averages 〈Mi〉0 along di-
rections orthogonal to

−→
B . Moreover, the diagonal

magnetic susceptibilities can be upper bounded
through the QSL approach (43) to find

|χM,ii(t)| ≤
2
~2 θ(t) 〈Mi{H0 − E0,Mi}〉0 t. (57)

5 Bounds on the Quantum Fisher In-
formation
We next turn our attention to the application of
QSL on operator flows in quantum metrology. In
this context, the quantum Fisher information FQ

associated with a Hermitian operator O quanti-
fies the maximal precision with which we can esti-
mate the phase θ that parameterizes the unitary
flow, of a given quantum state ρ, generated by
the operator O. In other words, FQ measures the
distinguishability of the “initial” state ρ0 from the
one transformed by the unitary flow

ρθ = e−iθOρ0e
iθO. (58)

Let us note the change in the perspective: in-
stead of looking at the time unitary flow that
the observable O of interest undergoes under the
action of the Hamiltonian that generates the dy-
namics, we are now considering the unitary flow
(in a different parameter θ) of a given quantum
state ρ under the action of O, that generates
the state transformation. Remarkably, these two
approaches are closely related, as the dynamical
susceptibility χOO obtained using the first frame-
work can be related to the quantum Fisher infor-
mation FQ [64, 75].

More precisely, for a thermal state ρ at tem-
perature T , the following result on the quan-
tum Fisher information has been shown by Hauke
et. al in [64]

FQ(T ) = − 4
π

∫ ∞
0

dω tanh
( ~ω
2kBT

)
Im χ̃OO(ω, T ),

(59)
where χ̃OO(ω, T ) is the Fourier-transformed dy-
namical susceptibility, defined as

χ̃OO(ω, T ) =
∫ ∞

0
eiωtχOO(t, T ) dt, (60)

with χOO(t, T ) being defined in Eq. (37) for A =
V = O.

Now, the upper bound (24) we have derived
above on the anti-symmetrized autocorrelation
function ImCO, together with the result (59),
provides an upper bound on the quantum Fisher
information FQ. To this end, let us reverse the
order of the integrals in Eq. (59) and perform
first the one in ω. Computing the inverse Fourier
transform of tanh(ω/2T ) and using the fact that
χOO(t, T ) = 2θ(t) ImCO(t, T ) yields

FQ(T ) = −16kBT
~

∫ ∞
0

dt csch
(
πkBT

t

~
) ImCO.

(61)
Therefore, using that

∫∞
0 dxx csch(πqx) =

(8q2)−1 ∀q > 0, from our previous result (24)
we derive the following upper bound on the
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temperature-dependent quantum Fisher informa-
tion

|FQ(T )| ≤ 4
kBT

〈O{H − E0, O}〉 , (62)

where O is the operator that generates the trans-
formation whose parameter is to be estimated, H
is the Hamiltonian of the system, and the expec-
tation value is taken with respect to the corre-
sponding thermal state at temperature T .

Let us finally note that, in this framework,
the standard bounds (39) and (41) given by the
Heisenberg and Bogoliubov inequalities are di-
vergent, due to the divergence of csch(x) for
x → 0. Conversely, the time-linear dependence
introduced by the QSL approach guarantees the
convergence of the integral, yielding a finite up-
per bound on the quantum Fisher information.
Making use of the celebrated Cramer-Rao bound
(∆θ)2 ≥ (MFQ)−1, Eq. (62) results in a lower
bound on the variance of the parameter θ for M
independent measurements

(∆θ)2 ≥ kBT

4
1

〈O{H − E0, O}〉
, (63)

which suggests that a better precision may be
achieved at lower temperatures.

6 Discussion
Conventional QSLs identify the minimum time
scale in which a process can unfold by exploiting
the notion of quantum state distinguishability.
Yet, many applications in theoretical and experi-
mental physics are naturally formulated in terms
of operator flows. We have generalized the notion
of QSL to this setting, providing bounds to the
rate of unitary flows described by the conjugation
of an observable by a one-parameter unitary.

Making use of Liouville space, we have derived
analogs of the MT and ML QSLs, in which the
minimum shift of the parameter required to dis-
tinguish the evolving operator from the initial one
is lower bounded in terms of the mean and vari-
ance of the Liouvillian. These bounds generally
exhibit a crossover, that we have characterized,
and that is analogous to that observed in recent
experiments for conventional QSLs.

We have also shown that QSLs for operator
flows constrain the time dependence of autocor-
relation functions and thus the dynamic suscep-
tibilities introduced in linear response theory to

describe transport coefficients. In the context of
quantum parameter estimation, we have shown
that QSLs for operator flows yield bounds on the
quantum Fisher information that restricts the es-
timation error through the Cramer-Rao bound.
This last application makes explicit the fact that
the flow under consideration need not be on time,
but can describe shifts of an arbitrary parameter
through a continuous symmetry. The situation
is thus analogous to the generalization of uncer-
tainty relations for quantum states [76].

Our results should find broad applications in
nonequilibrium physics and, in particular, quan-
tum technologies, including quantum metrology,
quantum thermodynamics, and quantum compu-
tation. As we have demonstrated by several ex-
amples, our results are also of relevance in con-
densed matter physics to bound response func-
tions and transport coefficients. We expect fur-
ther applications of our results in other scenarios
where operator flows naturally arise, such as the
formulation of integrable systems in terms of Lax
pairs and the Wegner renormalization group.
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A Deriving QSLs through a trigono-
metric approach
In this appendix, we show an alternative deriva-
tion that results in two weaker QSLs on the op-
erator overlap, proportional to the tighter QSLs
(10) and (11) derived in the main text. Making
use of the trigonometric inequality

cosx ≥ 1− 2
π
x− 2

π
sin x, (64)

valid for x > 0, we obtain

Re 〈O0|Ot〉 =
∑
j>k

cos(∆jkt

~
)(|Ojk|2 + |Okj |2)

‖O‖2
≥

∑
j>k

(
1− 2

π

∆jkt

~
− 2
π

sin ∆jkt

~
)(|Ojk|2 + |Okj |2)

‖O‖2
.

Therefore, being sin x ≤ x for x ≥ 0, we find

Re 〈O0|Ot〉 ≥ 1− 4
π
〈|L|〉 t, (65)
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that is,

t ≥ π

4
1− Re 〈O0|Ot〉

〈|L|〉
= π

4
1− cosLt
〈|L|〉

, (66)

which is proportional to the ML QSL (10) derived
in the main text through a constant smaller than
one. Next, let us make use of the trigonometric
inequality

cosx ≥ 1− 4
π2x sin x− 2

π2x
2, (67)

which holds again ∀x. Combining it with the
bound (7) on Re 〈O0|Ȯt〉, we obtain

Re 〈O0|Ot〉 ≥
∑
j,k

|Ojk|2

‖O‖2
[1− 4

π2
∆jkt

~
sin ∆jkt

~
−

2
π2 (∆jkt

~
)2] = 1 + 4

π2 Re 〈O0|Ȯt〉 t−
2
π2 (∆L)2t2

≥ 1− 6
π2 (∆L)2t2,

that is,

t ≥ π√
6

√
1− Re 〈O0|Ot〉

∆L
= π√

6

√
1− cosLt

∆L
.

(68)
As for the case of ML, this bound is proportional
to our MT QSL (11) for operators through a con-
stant smaller than one, thus yielding a weaker
result.

B QSLs in the Schrödinger picture
In this appendix, we reformulate our results on
operator flows in the context of the standard
time-evolution of quantum states and compare
them with the well-known MT [1] and ML [2]
bounds. In this way, we provide a further jus-
tification for the bounds (11) and (10) to be
regarded as generalizations of the MT and ML
quantum speed limits to operator flows, respec-
tively. To this end, let us choose the initial op-
erator O0 to be the projector onto the pure state
|ψ0〉, O0 = |ψ0〉 〈ψ0|, and let the expansion of |ψ0〉
in the energy eigenbasis be

|ψ0〉 =
∑
j

cj |j〉 , (69)

where H |j〉 = Ej |j〉 and
∑
j |cj |2 = 1. Then,

the vectorization of O0 is |O0〉 =
∑
jk c
∗
jck |j〉 |k〉,

with ‖O0‖ = 1. Since |ψt〉 = Ut |ψ0〉, where Ut =

e−iHt/~, in order to reproduce the forward time-
evolution of the quantum state we need to evolve
the operator backward in time:

O−t = U †−tO0U−t = Ut |ψ0〉 〈ψ0|U †t = |ψt〉 〈ψt| .
(70)

The operator overlap then reduces to the square
modulus of the state overlap, that is, to the
Uhlmann fidelity

〈O0|O−t〉 = Tr
(
O†0O−t

)
= | 〈ψ0|ψt〉 |2. (71)

Moreover, being the Bures angle between states
defined as

`t = arccos | 〈ψ0|ψt〉 |, (72)

we have that 1− 〈O0|O−t〉 = sin2 `t. We observe
that the operator angle Lt defined in Eq. (4) does
not reduce to the standard Bures angle between
states, being L−t = arccos | 〈ψ0|ψt〉 |2 when O0 =
|ψ0〉 〈ψ0|.

The typical maximal speeds of the flow, given
by the ML (10) and MT (11) QSLs respectively,
can be written as

〈|L|〉 = 1
~
∑
jk

|∆jk||cj |2|ck|2,

(∆L)2 = 1
~2

∑
jk

∆2
jk|cj |2|ck|2.

(73)

From the second equation, being also

(∆H)2 =
∑
j

E2
j |cj |2 −

∑
jk

EjEk|cj |2|ck|2, (74)

we derive a proportionality relation between the
Hamiltonian and Liouvillian variances (over |ψ0〉
and |O0〉, respectively):

(∆L)2 = 2(∆H)2

~2 . (75)

Therefore, the MT bound (11) derived in the
main text for operators reduces to the following
QSL for states, given in terms of the energy vari-
ance:

t ≥ ~
∆H sin `t. (76)

In the case of orthogonal evolution 〈ψ0|ψτ 〉 = 0,
we have sin `τ = 1 and therefore we obtain a
bound proportional to (though weaker than) the
standard Mandelstam-Tamm QSL [1],

τ ≥ τMT = π~
2∆H >

~
∆H , (77)
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thus justifying the interpretation of Eq. (11) as
an MT-type of QSL for operators.

On the other hand, the mean energy can be
rewritten as

〈H〉 =
∑
j

Ej |cj |2 = 1
2
∑
jk

(Ej + Ek)|cj |2|ck|2,

(78)
which, by using that |∆jk| = |Ej − Ek| ≤ Ej +
Ek − 2E0, implies

〈|L|〉 ≤ 2〈H〉 − E0
~

. (79)

Therefore, we can recast the bound (10) as

t ≥ ~
2α

sin2 `t
〈H〉 − E0

, (80)

which represents a generalization of the ML QSL
[2] to the case of an arbitrary angle between the
initial and final states. A similar generalization
was also claimed in reference [6], though their
bound is not given in terms of 〈H〉 − E0, but
rather in terms of the quantity | 〈H〉 |. To our
knowledge, the generalization of the ML bound
to arbitrary angles between initial and final states
was only proven numerically [77, 78, 16]. Let us
note that, by considering again the orthogonal-
ization time t = τ , our QSL becomes

τ ≥ τML >
~

2α(〈H〉 − E0) ≈ 0.44 τML, (81)

where τML = π~/2(〈H〉 − E0) is the well known
ML QSL [2] for orthogonal evolution.

In conclusion, our bounds (10) and (11) on op-
erator flows turn out to be proportional to the
standard MT and ML QSLs for state evolution,
justifying the given interpretation. The constant
of proportionality is smaller than one, meaning
that our bounds are not violated, though they
are not tight for quantum state evolution.

Finally, let us perform a numerical test of our
ML QSL for states (80), which can be recast as a
lower bound on the state overlap

| 〈ψ0|ψt〉 |2 ≥ 1− 2α(〈H〉 − E0)t/~. (82)

In Fig. 4, we test the bound (82) for a single
realization of a random matrix Hamiltonian H
of dimension d = 50, generated from the Gaus-
sian Orthogonal Ensemble (GOE) with variance

Figure 4: The coherent Gibbs state overlap undergoes
an initial decay which is qualitatively captured by the
ML QSL for states (82). The parameters chosen for the
simulation are σ = 1, d = 50, and inverse temperature
β = 10.

σ = 1. The initial state is chosen to be the co-
herent Gibbs state at inverse temperature β

|ψ0〉 = 1√
Z

d∑
n=1

e−β
En
2 |n〉 , (83)

where Z =
∑
n e
−βEn is the partition func-

tion. In this setting, the quantum state over-
lap can be conveniently rewritten in terms of the
analytically-continued partition function as fol-
lows [79, 80]

〈ψ0|ψt〉 = Z(β + it)
Z(β) . (84)

After the initial decay shown in Fig. 4, the fi-
delity undergoes an oscillatory behavior that is
no longer captured by the QSL (82). Deviations
from the bound appear far after the characteristic
timescale τ = (σ

√
8d)−1, where σ

√
8d correspond

to the width of the eigenvalue distribution (i.e., to
the diameter of the Wigner semicircle law), that
is to the largest frequency involved in the evolu-
tion.

C Margolous-Levitin QSL on operator
flows with driven Hamiltonians
Finally, we partially extend our results to the case
in which the Hamiltonian generating the unitary
flow Ot = U †tO0Ut is time-dependent, that is

Ut = T exp− i
~

∫ t

0
H(s) ds. (85)
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We focus on the case in which O0 is an observ-
able, i.e., a Hermitian operator. Moreover, let us
assume that the Hamiltonians at different times
commute so that we can drop the time-ordering
operator T in front of the exponential. In addi-
tion, if we make the strongest assumption that
Ht remains diagonal in the initial eigenbasis,

Ht =
∑
j

Ej(t) |j〉 〈j| , (86)

where only the eigenvalues Ej(t) depend on time,
then we can write the action of Ut over the energy
eigenvector |j〉 as

Ut |j〉 = e−
i
~

∫ t
0 Ej(s)ds |j〉 . (87)

Under this assumption, the operator overlap can
be expanded as

〈O0|Ot〉 = 1
‖O‖2

∑
j,k

ei
∆jk(t)

~ t|Ojk|2, (88)

so that, making use of the inequality cosx ≥
1 − α|x| [66] as in the main text, we derive an
ML bound on operator flows in the case of driven
dynamics,

t ≥ 1− Re 〈O0|Ot〉
α〈|L|〉

= 1− cosLt
α〈|L|〉

, (89)

where f(t) = 1
t

∫ t
0 f(u)du is the time average at

time t. As a consequence, by choosing O0 =
|ψ0〉 〈ψ0|, we obtain a generalization of the ML
QSL for state evolution under driven Hamiltoni-
ans and arbitrary angles:

t ≥ ~
2α

sin2 `t

〈H〉 − E0
, (90)

valid when the energy eigenvectors are stationary.
A related result was also claimed in reference [10],
but their derivation was later shown to generalize
the MT QSL rather than the ML one, as pointed
out in [81].
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