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Simple Summary: Cancer-associated fibroblasts (CAFs) represent an important stromal cell popula-
tion of pancreatic cancer in which multiple CAF subtypes have been identified. CAFs engage in a
bidirectional crosstalk with cancer cells, continuously adapting their metabolism to external factors,
such as chemotherapy. In this review, we summarize recently identified CAF subtypes in pancreatic
cancer and discuss how CAFs shape cancer cell metabolism through several mechanisms, notably
metabolite exchange, paracrine signaling, desmoplasia/hypoxia and acidosis.

Abstract: Despite extensive research, the 5-year survival rate of pancreatic cancer (PDAC) patients
remains at only 9%. Patients often show poor treatment response, due partly to a highly complex
tumor microenvironment (TME). Cancer-associated fibroblast (CAF) heterogeneity is characteristic of
the pancreatic TME, where several CAF subpopulations have been identified, such as myofibroblastic
CAFs (myCAFs), inflammatory CAFs (iCAFs), and antigen presenting CAFs (apCAFs). In PDAC,
cancer cells continuously adapt their metabolism (metabolic switch) to environmental changes in pH,
oxygenation, and nutrient availability. Recent advances show that these environmental alterations
are all heavily driven by stromal CAFs. CAFs and cancer cells exchange cytokines and metabolites,
engaging in a tight bidirectional crosstalk, which promotes tumor aggressiveness and allows constant
adaptation to external stress, such as chemotherapy. In this review, we summarize CAF diversity and
CAF-mediated metabolic rewiring, in a PDAC-specific context. First, we recapitulate the most recently
identified CAF subtypes, focusing on the cell of origin, activation mechanism, species-dependent
markers, and functions. Next, we describe in detail the metabolic crosstalk between CAFs and tumor
cells. Additionally, we elucidate how CAF-driven paracrine signaling, desmoplasia, and acidosis
orchestrate cancer cell metabolism. Finally, we highlight how the CAF/cancer cell crosstalk could
pave the way for new therapeutic strategies.

Keywords: pancreatic cancer; PDAC; cancer-associated fibroblast; CAF; metabolism; paracrine
signaling; desmoplasia; hypoxia; acidosis

1. Introduction

Among the multiple hallmarks of pancreatic ductal adenocarcinoma (PDAC), its
extensive desmoplastic tumor microenvironment (TME) is regarded by many as crucial
for PDAC aggressiveness and prognosis as the PDAC stroma is highly heterogeneous
and comprises more than 90% of the tumor volume [1]. The pancreatic TME is constantly
changing in composition and adapting to disease progression and external stimuli [2]. On
the one hand, PDAC stroma consists of cellular components, including pancreatic stellate
cells, fibroblasts, endothelial cells, and immune cells [3]. On the other hand, acellular
components are abundantly present, such as collagens, glycoproteins, proteoglycans, and
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secreted factors [4]. Understanding the composition of the stromal compartment and
deciphering the crosstalk between stromal and tumor cells in PDAC has evolved into an
important axis of cancer research and drug development. In this review, we first summarize
cancer-associated fibroblast (CAF) heterogeneity in pancreatic cancer, focusing on cells of
origin, activator signaling, markers, and function. In the second part, we assess how CAFs
orchestrate cancer cell metabolism, either directly via metabolite exchange or indirectly
via paracrine signaling, extracellular matrix (ECM) production and acidosis. Finally, we
discuss the clinical relevance of targeting CAFs by recapitulating how recently proposed
drug candidates aim to disrupt CAF/cancer cell crosstalk.

2. CAF Heterogeneity in Pancreatic Cancer

Within pancreatic cancer stroma, cancer-associated fibroblasts (CAFs) are regarded
as substantial actors, and thus significant progress has been made towards CAF subtype
characterization in the last decade. CAFs are generally considered as non-neoplastic, due
to the absence of mutations in oncogenic driver genes [5]. However, the stromal expansion
of CAFs has been associated with KRAS mutations in pancreatic cancer cells [6]. The
cellular origin of CAFs in PDAC still requires elucidation, since several cell types have been
shown to differentiate into CAFs, including pancreatic stellate cells (PSCs) [7–9], resident
fibroblasts [10], and adipose-derived mesenchymal stem cells (AD-MSCs) [11]. However,
due to the lack of fibroblast-specific markers, tracing the origin of CAFs using genetically
engineered mouse models (GEMMs) is challenging, and results must be interpreted cau-
tiously [12]. Accordingly, one such attempt to link different cells of origin, such as PSCs,
to distinct CAF subpopulations using PDAC mouse models generated surprising results,
whereby PSCs only evolved into a minority of differentiated CAFs [9]. In another study,
healthy fibroblasts were discriminated, based on GLI1 and HOXB6 expression and upon lin-
eage tracing; both populations only partially contributed to the PDAC CAF landscape [13].
Altogether, these studies highlight the possibility that different stromal cell types could
acquire a defined CAF state in response to a common activating stimulus. Thus, when
compared to the initial stromal type, the activator signaling of cancer cells towards stromal
cells could, to a greater extent, determine CAF differentiation.

Different models, such as in vitro culture/coculture, patient-derived xenografts (PDX),
and GEMMs, are currently used to study CAF heterogeneity in pancreatic cancer. Although
in vitro models clearly benefit from their simplicity, they do not always recapitulate every
aspect of the TME, whereas GEMMs offer a more representative option for studying the
human TME. Some CAF subtypes require paracrine signaling from cancer cells [14], the
presence of precise inflammatory stimuli [15] or mechanical ECM properties [16] for their
differentiation, which can be hard to recapitulate in vitro. PDX could be considered as a
better choice than in vitro culture to investigate the TME. However, when compared to
GEMMs, PDX bear drawbacks, such as the partial lack of an immune environment and the
progressive replacement of human stroma by murine counterparts [17]. Due to the potential
discrepancies across findings generated in vitro, in GEMMs, or on human biopsies, we
highlighted the respective model used for CAF subtype characterization in the following
sections, especially regarding marker expression.

2.1. Myofibroblastic CAFs

Myofibroblasts were first described in a physiological context during wound healing.
Upon acute injury, resident fibroblasts are activated through transforming growth factor
beta (TGFß) signaling and evolve into myofibroblasts, expressing high levels of alpha
smooth muscle actin (alpha-SMA) [18]. Myofibroblasts then synthesize constituents of the
ECM and basement membranes to restore tissue homeostasis [19]. Furthermore, myofibrob-
lasts acquire contractile abilities via the accumulation of alpha-SMA bundles and myosin
fibers, engaging in the mechano-remodeling of ECM to promote wound closure and scar
formation [20]. Once the site of injury is healed, myofibroblasts undergo apoptosis or
restore a resting phenotype [18,21]. If the injury persists, a continuous repair response can
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lead to a chronic wound healing syndrome, known as tissue fibrosis. During tissue fibrosis,
epigenetic modifications in myofibroblasts enhance anti-apoptotic signaling, resulting in a
hyper-activated state that is associated with increased ECM production [22,23]. A continu-
ous tissue repair response is also typical in genetic injuries, such as cancer. Tissue injury, as
a result of constant cancer cell accumulation, initiates a chronic wound healing response,
better known as tumor fibrosis or desmoplastic reaction. With desmoplasia, fibroblasts are
continuously stimulated by cancer cells and evolve into CAFs [24]. In the context of cancer,
the difference between myofibroblasts and CAFs is still not entirely defined, as a naming
convention is yet to be decided. Myofibroblasts might be the early definition of a CAF,
which would later be further divided into different subpopulations, as described below.

The major CAF subpopulation responsible for desmoplasia are myofibroblastic CAFs
(myCAFs) (Figure 1A). In human PDAC, myCAFs are in close proximity to the tumor cells
and represent 50% of all CAFs, and are thus the most abundant CAF subpopulation within
the PDAC stroma [15,25].

The markers commonly used for general CAF identification include alpha-SMA, fi-
broblast activation protein (FAP), podoplanin (PDPN), and neuron-glial antigen 2 (NG2).
However, these markers lack specificity and must be combined with negative markers to
eliminate false positives (e.g., endothelial cells or immune cells) [26]. Moreover, due to
increasing CAF heterogeneity, underlined by the presence of multiple CAF subpopula-
tions, general CAF markers alone are not sufficient to distinguish between distinct CAF
subpopulations. Lately, single cell RNA sequencing approaches have been increasingly
used to identify CAF subtypes. These studies came to the consensus that myCAFs are
characterized by high alpha-SMA expression, highlighting their functional similarity to
physiological myofibroblasts [27]. However, the expression of alpha-SMA should not be
regarded as an individual myCAF marker, especially since healthy fibroblasts in colorectal
cancers have been shown to bear comparable alpha-SMA levels to CAFs [28].

To increase relevance and certainty when identifying myCAFs in pancreatic cancer,
different model-dependent expression signatures have been associated with myCAFs.
In 2017, Öhlund and colleagues [29] compared the transcriptome of human myCAFs to
quiescent PSCs in vitro and showed an upregulation of ACTA2 (alpha-SMA), CCN2 (CTGF),
and COL1A1. Additionally, a gene list recapitulating the top 25 myCAF markers was
included, and acted as a useful tool for gene set enrichment analysis [29]. Importantly,
two follow-up studies by other groups confirmed these markers in KIC mice (Ptf1aCre/+;
KrasLSL-G12D/+; Ink4afl/fl) and human tumors [30,31]. Two years later, using single cell
RNA sequencing on human PDAC samples, Elyada et al. [15] characterized myCAFs
by increased expression of ACTA2, TAGLN, MMP11, MYL9, HOPX, POSTN, TPM1, and
TPM2 [15]. In 2020, Dominguez et al. [25] explored the CAF landscape of pancreatic tumors
in KPP mice (Pdx1cre/+; LSL-KrasG12D/+; Ink4a/Arf flox/flox) and human biopsies, identifying
a LRRC15-positive CAFs subtype that overlaps with myCAFs, as they also show increased
expression of ACTA2, TAGLN, and MMP11 [25]. LRRC15-positive CAFs were shown to
have repressive effects on CD8+ T cells, and are thus an example of myCAFs playing a role
in immunosuppression [32].

An increasing number of CAF markers may be more detrimental than beneficial to our
understanding of CAFs. Finding a common characteristic marker among all distinct studies
should be a major priority of present research. Even though a recent consensus agreed that
a definitive nomenclature is premature, the principal aspect for CAF categorization should
be based on the functional phenotypes rather than on the expression of markers [12].
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Figure 1. Cancer-associated fibroblast (CAF) heterogeneity in PDAC, with focus on cell of origin, 
activator signals, species-dependent markers, and functions. (A) Myofibroblastic CAFs with high 
alpha-SMA expression. (B) Inflammatory CAFs showing abundant IL1 receptors. (C) Antigen-
presenting CAFs that express MHC-II. (D) Metabolic CAFs bearing increased glycolysis. (E) Meflin+ 
CAFs with tumor-restraining properties. 

Figure 1. Cancer-associated fibroblast (CAF) heterogeneity in PDAC, with focus on cell of origin,
activator signals, species-dependent markers, and functions. (A) Myofibroblastic CAFs with high
alpha-SMA expression. (B) Inflammatory CAFs showing abundant IL1 receptors. (C) Antigen-
presenting CAFs that express MHC-II. (D) Metabolic CAFs bearing increased glycolysis. (E) Meflin+

CAFs with tumor-restraining properties.
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Mechanisms of CAF activation have been thoroughly studied over the recent decades,
where multiple cytokines have been shown to activate PSCs (e.g., PDGF, TGFß, IL1) [33].
TGFß is a well-known fibrosis-inducing factor that has been previously well studied in
CAF activation [34,35]. TGFß family ligands bind to type 2 TGFß receptor (TGFBR2), which
then recruits and phosphorylates TGFBR1 (also known as ALK5) [36]. The resulting het-
erotetrameric receptor complex then initiates downstream signaling. Canonical signaling is
mediated by SMAD2/3 phosphorylation and SMAD4 recruitment. The phosphorylated
SMAD complex can translocate to the nucleus and induce target gene expression, due
to the presence of SMAD binding elements in promotor regions [37,38]. Non-canonical
TGFß signaling, on the other hand, can be independent of SMADs and involves PI3K,
ERK, JNK, and RHOA pathways [39]. In PDAC, TGFß signaling has been associated with
CAF activation, as TGFß induces alpha-SMA expression and collagen deposition, most
probably through a combination of canonical and non-canonical pathways [8,40]. Multiple
studies, using GEMMs and human biopsies, link myCAF differentiation and activity to
TGFß signaling [15,25,29,32], suggesting that TGFß signaling is crucial for the myCAF
subtype. However, it is important to note that several other stimuli have been shown to
induce myCAF differentiation in PDAC.

Hedgehog (HH) ligands, such as sonic hedgehog protein (SHH), are known to be
abnormally expressed in PDAC [41]. HH ligands have been shown to activate CAFs
through interaction with the canonical receptor patched (PTCH1), leading to intracellular
signaling via smoothened (SMO) and GLI proteins [42,43]. HH-mediated CAF activation
in PDAC leads to stromal expansion and desmoplasia [14,44]. Additionally, HH signaling
has also recently been associated with myCAF differentiation [45].

The modifications of mechanical properties of the ECM (e.g., stiffness) have also
been shown to stimulate ECM secretion by CAFs. Intriguingly, when CAFs reside in a
physiological soft matrix they tend to produce physiological amounts of ECM. However,
when CAFs are cultured in a pathological stiff matrix, they are stimulated to produce
altered ECM [46]. Accordingly, myCAF-mediated desmoplasia (altered ECM) might act as
a positive feed-forward loop on myCAF activity.

The myCAFs have been shown to arise as early as low-grade intraductal papillary
mucinous neoplasms (IPMNs), the most common cystic neoplasm and a precursor to
PDAC, highlighting the potential importance of myCAF presence during preneoplastic
progression [47].

2.2. Inflammatory CAFs

Whereas myCAFs are generally characterized by high alpha-SMA expression, low
alpha-SMA expressing CAFs have also been identified in PDAC. These low alpha-SMA
expressing CAFs are generally referred to as inflammatory CAFs (iCAFs) [29] (Figure 1B).
Whereas myCAFs are responsible for ECM production, iCAFs are characterized by im-
munoregulatory and inflammatory functions, notably via the expression of immunosup-
pressive ligands (e.g., CXCL12) [12,29,48]. CXCL12 is known for its repulsive effect on
T cells recruitment in the TME [49,50] and has been proposed as a target for immunother-
apy [51]. Additionally, CXCL12 can act on tumor cells via CXCR4, promoting tumor
cell proliferation and dissemination [52]. The iCAFs also show increased expression of
IL6 [15,25,29,30]. Previous studies have extensively demonstrated the tumor-promoting
effects of IL6-mediated STAT3 signaling. Accordingly, CAF-derived IL6 increases tumor cell
proliferation, epithelial–mesenchymal transition (EMT) and metastasis in PDAC [53,54]. An
in vitro coculture model involving pancreatic tumor organoids and PSCs, has shown that
iCAFs are present at further distance from tumor cells than myCAFs, which reside proxi-
mally to tumor cells [29]. This spatial discrimination between myCAF- and iCAF-like CAF
subtypes, along with additional clusters, was recently confirmed by spatial transcriptomics
of pancreatic tumors. Furthermore, the spatial distribution between CAF subpopulations in
pancreatic tumors seemed to be much more complex and nuanced than initially suggested
by in vitro coculture [55].
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The presence of iCAFs in pancreatic cancer has now been confirmed by several groups,
where different signatures (in addition to low alpha-SMA expression) have been identi-
fied; all indicating an inflammatory phenotype. During transwell coculture with tumor
organoids, iCAFs were characterized by the expression of IL6, IL11, and LIF. A gene list
of the top 25 upregulated genes in iCAFs during transwell coculture was published [29].
Similarly, another group described an FB1 fibroblast population in KIC mice, accumu-
lating only at late stages of the disease, which was characterized by the expression of
Il6, Cxcl12, and Ptn. This FB1 fibroblast subtype significantly overlaps with iCAFs [30].
Single cell RNA sequencing studies on GEMMs have described larger signatures and also
validated previously proposed iCAF signature genes, namely Il6 and Cxcl12 [15,25]. Impor-
tantly, the expression of IL6, CCL2, and LIF has also been associated with iCAFs in human
biopsies [25].

The iCAF differentiation is driven by IL1-induced LIF expression. LIF acts in an au-
tocrine manner to induce STAT3 phosphorylation via the GP130 signaling complex [56,57].
The discrimination between myCAFs and iCAFs in vivo has been explained by a TGFß-
mediated downregulation of an IL1 receptor (IL1R) [58]. Fibroblasts located in proximity to
tumor cells are thought to evolve into myCAFs, due to the fact that TGFß induces myCAF
differentiation and downregulates IL1R, impairing potential iCAF formation. Fibroblasts
that are located at a distance from tumor cells are under less influence of TGFß and have
been shown to differentiate into iCAFs via IL1 signaling [56]. Recently, increased TP63
expression was shown to be correlated with high IL1 secretion in squamous subtype pan-
creatic cancer cells, favoring iCAF differentiation [48]. Additionally, IL1ß—a member of
the IL1 family—is thought to be an important regulator of iCAFs. Indeed, while IL1ß
was undetectable in PDAC organoids and cell lines in vitro [59,60], it was abundantly
present in inflammasome-positive human and mouse tumor cell compartments in vivo.
Further investigation found that CAFs are indeed dependent on tumor-derived IL1ß for
the production and secretion of immunosuppressive cytokines [61].

The exact timing of iCAFs appearance during tumor initiation and progression remains
controversial and seems to be species and context dependent. Whereas studies on human
samples show that iCAFs are undetectable during preneoplastic disease stages (i.e., IPMN)
and arise only at late disease stages [25,47], other studies on GEMMs clearly reveal the
presence of distinct fibroblast populations throughout disease progression and even in a
healthy pancreas [25,30].

In general, CAF subtypes should not be considered as fixed. Distinct CAF subpop-
ulations are thought to interconvert and bear important plasticity. Although knowledge
in this field is still emerging, preliminary data showed that murine CAFs can interconvert
between myCAFs and iCAFs through the alteration of TGFß and IL1 signaling [56]. CAF
plasticity is an important PDAC feature to investigate, as it allows constant remodeling
and adaptation of the tumor stroma to therapeutic agents.

2.3. Other CAF Subtypes

Although myCAFs and iCAFs represent the main CAF subpopulations in the PDAC
stroma, other minor subtypes have emerged over the last years.

Antigen-presenting CAFs (apCAFs) are characterized by the expression of CD74, MHC-
II, and their ability to present antigens to CD4+ T cells (Figure 1C). Since apCAFs seem to
lack molecules needed for the stimulation of T cell proliferation, authors hypothesize that
apCAFs could act as bait to deactivate CD4+ T cells, and thus apCAFs may contribute to
immune suppression in PDAC [15]. Mechanistically, apCAFs are thought to be activated
via IFN gamma and STAT1 [15]. Although myCAFs and iCAFs have both been shown
to arise from PSCs (among others), apCAFs seem to be different. In a KPP mouse model,
apCAFs are clustered with mesothelial cells (MCs) from a healthy pancreas, suggesting
that instead of PSCs, apCAFs likely originate from MCs [25].

In 2021, metabolic CAFs (meCAFs) were described for the first time in human PDAC
(Figure 1D). The meCAFs are specific to patients with loose ECM (low desmoplasia), where
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meCAFs are suggested to be the most abundant CAF subtype. The meCAFs show high
glycolytic activity and are characterized by the expression of PLA2G2A, while their differ-
entiation is potentially CREB3L1-dependent. Intriguingly, meCAF abundance negatively
correlates with survival but has a positive impact on PD-1-targeted immunotherapy re-
sponse in PDAC patients. Increased response to immunotherapy in patients with abundant
meCAFs potentially arises from the fact that these patients are characterized by loose ECM,
thus favoring immune cell infiltration. Additionally, authors suggest a direct crosstalk
between meCAFs and T cells [16].

Another recently described CAF subpopulation are meflin+ CAFs (Figure 1E). Meflin
is a vitamin D-responsive cell surface protein first described as a mesenchymal stromal
cell (MSC) marker [62]. Meflin+ CAFs bear low alpha-SMA expression and correlate with
favorable prognosis in PDAC patients and mouse models. Meflin+ CAFs show tumor-
restraining properties by inhibiting structural remodeling and crosslinking of collagens,
thus favoring a less aggressive TME [63]. Meflin+ CAFs underline the importance of
defining CAF subpopulations, as not all CAFs should be regarded as tumor promoting.

2.4. Stromal Heterogeneity and CAF Subtypes in Pancreatic Cancer

Intertumoral heterogeneity is a well-known hallmark of pancreatic cancer and is
regarded as an ongoing burden for therapy development [1]. Tumor microdissection in
combination with transcriptomic analysis allowed the classification of PDAC patients based
on tumor cell expression data. As an example, Collisson et al. [64] proposed “classical”,
“quasi-mesenchymal”, and “exocrine-like” subtypes, whereas Bailey et al. [65] divided
PDAC patients into “squamous”, “pancreatic progenitor”, “immunogenic”, and “ADEX”
subtypes. Although these studies only consider the tumor cell compartment, it is also
important to elucidate a stromal heterogeneity between PDAC patients and the potential
repercussions on CAF subtypes.

Moffitt et al. [66] classified the PDAC stroma into two subtypes, “normal” and “ac-
tivated”. Patients from the “activated” subtype showed a significantly worse median
survival when compared to patients belonging to the “normal” subtype. The “normal”
stroma was characterized by high ACTA2 expression, suggesting a potential enrichment in
myCAFs, whereas the “activated” stroma showed increased chemokine expression (CCL13,
CCL18), suggesting an inflammatory response and a potential enrichment in iCAFs [66].

In 2021, another study proposed three distinct stromal transcriptional subtypes (S1–S3)
for pancreatic cancer, based on gene expression data of microdissected human tumors.
S1 subtype, enriched in genes related to development and differentiation, was associated
with better prognosis compared to S2 and S3 subtypes, which were enriched in antigen-
presenting and macromolecule-modifying related genes, respectively [67]. When applying
gene expression signatures from Elyada et al. [15], apCAFs correlated significantly with
the S3 subtype. Although statistically non-significant, iCAFs trended towards a correlation
with S1, whereas myCAFs seemed to correlate with S2 [67]. In conclusion, the stromal
classification of PDAC patients could give valuable indications on the CAF subtypes that
populate the TME and guide therapy decisions towards the most effective option.

3. CAFs and Tumor Metabolism

During tumor progression, cancer cells are in continuous need for energetic fuel and
building blocks to support their superior proliferation rate. Metabolic rewiring describes
the mechanisms of how cancer cells adapt their metabolism to meet their bioenergetic
demands [68]. The concept that cancer cells have a distinct metabolism from healthy
cells was first described by Otto Warburg. In 1920, Warburg published a landmark paper,
reporting that cancer cells in aerobic conditions take up excessive amounts of glucose, from
which a majority is catabolized into lactate [69]. This observation marked the beginning of
what is referred to today as the ‘Warburg effect’, also known as aerobic glycolysis.

However, cancer cell metabolism is far more complex than what Warburg initially
described. Aerobic glycolysis not only supplies cancer cells with ATP, it also generates
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glycolytic intermediates that fuel anabolic pathways necessary to supply cancer cells with
non-essential amino acids and nucleotides [70]. Additionally, glucose and glutamine
fuel the tricarboxylic acid (TCA) cycle and mitochondrial respiration in cancer cells [71].
Both have been shown to be crucial for pancreatic cancer progression and metastasis
formation [70,72–74].

It is important to highlight that the metabolic goal of proliferating cancer cells is
dramatically different from healthy cells. Whereas non-cancerous cells use glucose and
amino acids to fuel their TCA cycle for ATP production, proliferating cancer cells exploit
these same pathways, not only to produce ATP but also to generate increased amounts
of biosynthetic precursors to meet their high demand in anabolic processes [75]. Excel-
lent reviews deciphering the metabolism in pancreatic cancer cells have been previously
published [76,77].

The metabolic rewiring of cancer cells is partly dependent on mutations in oncogenic
driver genes, such as MYC and KRAS [78,79]. However, in a tumor, cancer cells are engaged
in a tight crosstalk with the TME, exposing cancer cell metabolism to constant extracellular
stimuli. Here, we describe how CAFs shape cancer cell metabolism in PDAC, either
directly via metabolite exchange or indirectly via paracrine signaling, ECM production,
and acidosis.

3.1. Direct Effects of CAFs on Cancer Cell Metabolism via Metabolite Exchange

Within the pancreatic TME, CAFs can promote tumor progression by sustaining the
metabolic demand of cancer cells via metabolite exchange (Figure 2). In comparison to
healthy fibroblasts, CAFs show increased expression of the lactate transporter MCT4, but
do not rely on MCT4 for their survival. In fact, CAFs bear increased glycolytic activity and
lactate secretion due to elevated HIF1A expression. Authors hypothesize that excessive lac-
tate fuels cancer cells and promotes tumor progression [80]. Moreover, tumor-cell-derived
TGFß increases aerobic glycolysis in CAFs while impairing oxidative phosphorylation by
downregulating IDH3A, resulting in high lactate production [81]. Such metabolic crosstalk
between CAFs and cancer cells was initially described as a ‘reverse Warburg effect’, dur-
ing which CAFs show high rates of aerobic glycolysis, fueling adjacent cancer cells with
energy-rich metabolites, such as lactate and pyruvate [82].

Exosomes secreted by CAFs can significantly reprogram cancer cell metabolism. In
fact, CAF-derived exosomes carry amino acids, TCA cycle intermediates, and lipids. Once
taken up by cancer cells, they have been shown to inhibit mitochondrial respiration while
promoting proliferation via increased glycolysis and glutamine-dependent reductive car-
boxylation [83]. The reductive carboxylation of glutamine describes the conversion of
glutamine into alpha-ketoglutarate; alpha-ketoglutarate is then further metabolized into
isocitrate, which finally generates acetyl-CoA. Increased reductive carboxylation has been
associated with cancer cell proliferation in multiple cancer types [84–86]. Intriguingly, in
contrast to macropinocytosis, exosomal delivery of metabolites to cancer cells is indepen-
dent of KRAS mutations [83]. The macropinocytosis of extracellular proteins was described
previously in PDAC as an endocytic process, exploited by KRAS mutant cancer cells to fuel
their central carbon metabolism with amino acids [87].

Other than through exosomes, CAFs can stimulate branched-chain amino acid (BCAA)
metabolism in cancer cells by upregulating branched-chain alpha-ketoacid (BCKA) produc-
tion. CAFs secrete BCKA, which is taken up by cancer cells and further oxidized to fuel
the TCA cycle. Intriguingly, cancer cell-derived TGFß stimulates BCKA synthesis in CAFs
by inducing ECM internalization and BCAT1 expression. BCAT1 is a known catalyzer of
BCAAs transamination into BCKA [88].

Alanine, a non-essential amino acid, can outcompete glucose and glutamine to fuel
the TCA cycle of cancer cells. Autophagy in PSCs can be stimulated by cancer cells via
soluble factors. Increased autophagic flux in PCSs generates excessive amounts of alanine,
an alternative carbon source delivered to cancer cells [89].
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Figure 2. Direct effects of cancer-associated fibroblasts on cancer cell metabolism via metabolite
exchange in PDAC. CAFs influence cancer cell metabolism by secreting lactate (reverse Warburg
effect), amino acids, lipids, and exosomes. Cancer cells shift towards amino acid metabolism, TCA
cycle, and pentose phosphate pathways to support anabolic processes and growth.

A CAF subtype specific to PDAC patients with loose ECM, known as meCAFs, are
thought to produce metabolic intermediates that fuel oxidative metabolism in cancer cells,
promoting PDAC progression [16]. Precise metabolites secreted by meCAFs still need to be
identified, although the increased glycolytic activity evident in meCAFs suggests pyruvate
and lactate are likely players.

Although most of the metabolite trafficking between CAFs and cancer cells in PDAC
seems to be related to amino acid metabolism, lipid-derived metabolites can also be ex-
changed. For example, PSC-derived CAFs secrete important amounts of lysophosphatidyl-
cholines (LPCs) compared to their healthy counterparts. The extracellular enzyme au-
totaxin, secreted by cancer cells and CAFs, then converts LPCs into the wound-healing
mediator lysophosphatidic acid (LPA). LPA promotes proliferation, migration, and AKT
activation in pancreatic cancer cells [90].
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3.2. Indirect Effects of CAFs on Cancer Cell Metabolism
3.2.1. Paracrine Signaling

In addition to metabolite exchange, CAFs can modulate cancer cell metabolism via
paracrine signaling, notably by growth factor and cytokine release (Figure 3A).
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Figure 3. Indirect effects of cancer-associated fibroblasts on cancer cell metabolism in PDAC.
(A) CAFs secrete cytokines and growth factors to orchestrate cancer cell metabolism. (B) CAFs
produce ECM (desmoplasia), leading to hypovascularization and hypoxia. Desmoplasia and hy-
poxia stabilize HIF1A, shifting cancer cell metabolism towards glycolysis and promoting drug efflux.
(C) CAFs favor acidic pHe (tumor acidosis) via increased H+ secretion. Acidosis promotes cancer cell
invasion, glycolysis, and metabolic waste trafficking in PDAC.
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A hallmark of PDAC, is the presence of KRAS activation mutations in over 90% of
tumors [91]. Paracrine mediators, secreted by CAFs or PSCs, were described to modulate
the cancer cell metabolome in a KRAS-like manner. In response to stromal cues, cancer
cells underwent important epigenetic changes (i.e., increased histone acetylation), leading
to MYC activation. Subsequently, cancer cells showed increased glucose consumption
and lactate production. Since these metabolic changes overlap with oncogenic KRAS
effects, authors considered Ras-inducing factors, such as CTGF or HGF, as key actors [92].
It was indeed confirmed later that PSCs can stimulate glycolysis in pancreatic cancer
cells via HGF. PSC-derived HGF binds to its receptor c-MET on PDAC cells, leading to
nuclear translocation of YAP and HIF1A stabilization. HIF1A signaling increases the
expression of stemness markers and hexokinase 2, resulting in increased glycolysis and
lactate production [93].

Interestingly, KRAS mutant cancer cells hijack CAFs to enhance oncogenic KRAS
signaling and adapt their own metabolism in a reciprocal manner. KRAS mutations in
tumor cells increases the pool of cytokines secreted (GM-CSF, G-CSF, SHH), and, therefore,
are exposed to CAFs in the TME. Canonical HH signaling in CAFs upregulates ECM
production, as well as the secretion of IGF1 and GAS6. IGF1 and GAS6 can then recip-
rocally affect tumor cells, via the IGF1R/AXL-AKT axis. Since KRAS mutations can lead
to impaired mitochondrial respiration [72], this sophisticated reciprocal signaling node
restores mitochondrial respiration in KRAS mutant tumor cells via SHH, IGF1R/AXL, and
AKT [94].

Focal adhesion kinase (FAK) activity in CAFs can also regulate tumor cell metabolism
in a paracrine manner. In fact, FAK depletion was shown to increase CAF-derived CCL6
and CCL12 secretion. Subsequently, CCL6 and CCL12 enhance glycolysis in tumor cells via
CCR1/CCR2-mediated protein kinase A (PKA) activation [95].

3.2.2. ECM Production and Hypoxia

During tumorigenesis and tumor progression, CAFs proliferate and generate excessive
amounts of ECM (Figure 3B). This process is also called tumor fibrosis, or desmoplasia, and
is considered a hallmark of pancreatic cancer [1]. The matrisome is defined as the ensemble
of proteins that are part of, or associated with, the ECM. Matrisome composition is tissue
dependent and can undergo important modifications during tumorigenesis [96]. In PDAC,
the matrisome is highly fibrotic, consisting predominantly of fibrillar collagens (COL1A1,
COL1A2, COL3A1, COL6A3) and glycoproteins (fibrillin-1, fibronectin, fibrinogens, pe-
riostin). Secreted factors, such as S100 family members, only make up a small proportion
of the PDAC matrisome [97]. Excessive ECM production and matrix contraction are both
mediated by myCAFs and have been shown to increase interstitial fluid pressure (IFP).
Increased IFP is observed in many solid tumors and has been associated with inefficient
drug uptake [98]. Another result of excessive ECM production is the establishment of a
hypoxic TME. In line with extensive desmoplasia, a highly hypoxic TME is indeed evident
in PDAC tumors [99]. ECM production and desmoplasia are known to have multiple
effects on tumor progression, such as facilitating invasion and metastasis formation [100].
In this review, we focus mainly on the effects of ECM production on cancer cell metabolism,
which is predominantly driven by ECM-induced hypovascularization and hypoxia.

The direct cause for hypoxia is insufficient vasculature, being unable to supply all
tissue areas with oxygen. Accordingly, in a patient study, a majority of pancreatic tumor
samples were hypovascularized [101]. Whereas desmoplasia is a major cause for hypo-
vascularization [102], the presence of antiangiogenic factors within the PDAC stroma also
contributes to impaired vasculature, thereby favoring hypoxia [103]. Additionally, hypoxia
acts as positive feedback loop on PSC activation, as hypoxia increases ECM production
by PSCs [104]. Although PSCs were shown to stimulate endothelial cell proliferation
via VEGF secretion in vitro, it was shown in tumors that PSCs significantly contribute
to hypoxia by stimulating cancer cells to produce endostatin, a potent anti-angiogenic
molecule, through an MMP-dependent cleavage mechanism [105]. Moreover, hypoxia
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leads to the increased secretion of SHH by cancer cells, which, in turn, stimulates myCAF
differentiation [106]. Thereby, PSCs participate in a vicious cycle, during which activated
PSCs favor hypovascularization via increased desmoplasia, which, in turn, differentiates
PSCs into myCAFs and promotes ECM production. Additionally, hypoxia can influence the
secretion of specific ECM components. Lumican, a proteoglycan, is secreted by PSCs and
was previously associated with reduced tumor growth and extended survival in PDAC
patients [107]. Interestingly, hypoxia induces autophagic degradation of lumican in PSCs
via HIF1A. Reduced lumican secretion, in turn, leads to increased cancer cell proliferation
and aggressiveness [108].

Hypoxia has multiple other effects on tumor biology, such as increased metastasis
formation [109] and the establishment of an immunosuppressive TME [110]. Cancer cells
that reside in hypoxic areas of the tumor undergo an important metabolic rewiring. The
master regulator for metabolic adaptation to hypoxia is the transcription factor hypoxia-
induced factor 1 alpha (HIF1A). When oxygen is available, HIF hydroxylases (e.g., PHDs)
hydroxylate HIF1A on proline residues, subsequently leading to proteasomal degradation
by the von Hippel Lindau (pVHL) ubiquitin ligase complex. Since PHD activity is depen-
dent on oxygen, HIF1A hydroxylation decreases when oxygen levels drop during hypoxia.
Hypoxia, therefore, leads to HIF1A stabilization, and upon dimerization with HIF1-ß family
members, HIF1A translocates into the nucleus to initiate target gene transcription [111].
Cancer cells exposed to hypoxia, therefore, show high HIF1A activity. Additionally, HIF1A
is overexpressed in PDAC patients and is associated with poor prognosis [112].

HIF1A rewires cancer cell metabolism in hypoxic PDAC, not only to sustain ATP
levels but also, predominantly, to limit reactive oxygen species (ROS) production, since
mitochondria under hypoxia were shown to produce excessive amounts of ROS [113,114].
Accordingly, HIF1A orchestrates the switch from mitochondrial oxidative metabolism
to glycolysis and lactate production, notably via increased expression of PDK1, LDHA,
and PKM2 [115,116]. Moreover, HIF1A was shown to increase autophagy in pancreatic
cancer cells, enhancing their migratory capacity [117]. Finally, cancer cell adaptations
mediated by HIF1A, can also confer gemcitabine resistance. HIF1A upregulates ABCG2
in an ERK1/2-dependent manner, increasing gemcitabine resistance via drug efflux in
PDAC [118].

Cancer cells were also shown to adapt their metabolism under desmoplastic conditions,
independent of oxygen levels and HIF1A. In fact, nutrient-deprived PDAC cells were shown
to take up collagen I and IV in order to supply the cancer cell with proline via PRODH1-
mediated collagen breakdown. Thus, upon the conversion of proline into glutamate,
collagen-derived proline acts as an efficient fuel for TCA cycle metabolism, promoting
PDAC growth [119].

3.2.3. Tumor Acidosis

The extracellular pH (pHe) within a tumor can undergo dramatic changes upon tumor
progression. Low pHe, generally referred to as tumor acidosis, is often associated with
hypoxia [120]. CAFs contribute to decreased pHe via multiple mechanisms (Figure 3C).
First, as described above, CAFs favor glycolysis and lactate secretion via increased MCT4
expression and PDAC cell-derived TGFß signaling [80,81]. Lactate secretion plays an
important role in pHe regulation, since MCT4 is a lactate/H+ symporter [121], generating
an important H+ efflux from CAFs and leading to acidic pHe.

Pancreatic CAFs were shown to have important amino acid metabolism and TCA cycle
activity in order to supply cancer cells with metabolic intermediates [83,122]. Importantly,
the reductive carboxylation of glutamine and TCA cycle dehydrogenases are significant
sources of CO2, which subsequently generate HCO3

- and H+ ions. The hydration of CO2
into HCO3

−/H+ is mediated by carbonic anhydrases (CAs) [123], which are overexpressed
in pancreatic cancer cells and CAFs [124]. Additionally, hypoxia directly contributes to pHe
acidification via increased CA activity [125]. Therefore, increased amino acid metabolism
and TCA cycle activity in pancreatic CAFs significantly contribute to tumor acidosis.
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The impact of tumor acidosis on cancer cell metabolism has been extensively studied
in previous pieces of work and is well documented [120]. However, PDAC-specific findings
are limited, and further research is still needed.

It was recently suggested that acidosis-adapted PDAC cells upregulate YAP signaling
and undergo a metabolic shift towards the pentose phosphate pathway. Additionally, this
metabolic adaptation in cancer cells was associated with increased invasion [126].

Also, glycolytic tumor cells in low pHe conditions preferably discharge metabolic
waste, such as lactate, to adjacent cells via connexin-43 channels. Connexin-43 chan-
nels reveal a novel metabolic exchange route, whereby low proliferating PDAC cells in
acidic/hypoxic conditions transfer lactate through a cytoplasm syncytium towards high
proliferative PDAC cells in normoxic regions [127].

4. Clinical Strategies to Target CAF/Cancer Cell Metabolic Crosstalk in PDAC

There is a desperate need for new therapeutic strategies in PDAC, since most pa-
tients develop resistance towards current chemotherapeutic agents, such as FOLFIRINOX,
gemcitabine, and nab-paclitaxel [128]. Targeting the tumor stroma or interfering with the
crosstalk between cancer cells, immune cells, and CAFs has been recently identified as a
novel therapeutic approach. Accordingly, multiple CAF-targeting molecules have been
developed in recent years [129–131].

Targeting ECM deposition to impair tumor metabolism is the first potential strat-
egy. Losartan and PEGPH20 both target collagen deposition by myCAFs and improve
drug delivery in pre-clinical models [132,133]. Although combining PEGPH20 with nab-
paclitaxel/gemcitabine did not improve overall survival in metastatic patients [134], losar-
tan in combination with FOLFIRINOX showed promising results in locally advanced
PDAC [135]. Other than improving drug delivery, ECM-targeting drugs subsequently
re-oxygenize the tumor and increase extracellular pH in the TME, which most likely affects
tumor metabolism.

In an opposite approach, other molecules can benefit from tumor hypoxia and acidosis
enhancing their effect. For example, gold nanorods are transformed into cell-penetrating
particles under low pHe. The intravenous administration of nanorods significantly im-
proved radiosensitivity of pancreatic tumors in vivo [136].

As discussed above, TGFß is an important factor in CAF/cancer cell crosstalk. TGFß
signaling drives myCAF differentiation and rewires CAF metabolism towards glycolysis,
which helps to supply cancer cells with metabolic intermediates [29,81,83]. Galunisertib, a
potent antagonist of TGFBR1, in combination with gemcitabine, showed promising results
in patients with unresectable PDAC [137]. The therapeutic efficacy of galunisertib is likely
a consequence of TGFß-dependent myCAF suppression.

HH signaling also represents an interesting target due to its significant implication
in CAF differentiation and metabolic crosstalk with cancer cells. Whereas initial studies
showed promising results in a PDAC mouse model [138], follow-up studies were dis-
appointing and clinical trials using two distinct HH inhibitors, IPI-926 and Vismodegib,
were prematurely terminated due to the lack of benefits for overall survival [130,139,140].
Importantly, targeting HH in PDAC reduced myCAF abundance but also increased the
proportion of iCAFs, favoring an immunosuppressive TME and promoting tumor aggres-
siveness [45]. In another PDAC study, the depletion of alpha-SMA positive CAFs in a
GEMM increased metastasis and reduced survival while promoting an immunosuppressive
microenvironment [141].

These studies underline that interfering with individual CAF subtypes can lead to
a disproportionate amount of CAF subpopulations in the TME, for example, the balance
between myCAF and iCAFs. Although targeting myCAFs (e.g., via HH inhibition) re-
duces desmoplasia, it also increases tumor aggressiveness [142], potentially by altering
the proportion of iCAFs, and thus promoting immunosuppression. CAF plasticity can
also contribute to the disproportion of CAF subtypes, as myCAFs and iCAFs have been
shown to interconvert [56]. Moving forward, interfering with CAF activity, without affect-
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ing the proportions of distinct populations or even targeting different CAF populations
simultaneously, might represent the most promising CAF-targeting therapeutic strategies.

5. Conclusions

Metabolic crosstalk between CAFs and cancer cells in PDAC represents multiple poten-
tial therapeutic targets that are yet to be completely addressed. Moreover, previous clinical
trials have highlighted the importance of deciphering CAF heterogeneity and demonstrated
the complexity of tumor biology. Combining therapies to simultaneously target distinct
tumor compartments represents a therapeutic approach with increasing potential.
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