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6G Backscatter-Enabled NOMA IoV Networks
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Abstract—The integration of Ambient Backscatter Communi-
cation (AmBC) with Non-Orthogonal Multiple Access (NOMA)
is expected to support connectivity of low-powered Internet-
of-Vehicle (IoV) in the upcoming Sixth-Generation (6G) trans-
portation system. This paper proposes an energy-efficient re-
source allocation framework for the AmBC-enabled NOMA IoV
network under imperfect Successive Interference Cancellation
(SIC) decoding. In particular, multiple Road-Side Units (RSUs)
transmit superimposed signals to their associated IoVs utilizing
downlink NOMA transmission. Meanwhile, the Backscatter Tags
(BackTags) also transmit data symbols towards nearby IoVs by
reflecting the superimposed signals of RSUs. Thus, the objective
is to maximize the total energy efficiency of the NOMA IoV
network subject to the minimum data rate of all IoVs. A
joint problem that simultaneously optimizes the total power
budget of each RSU, power allocation coefficient of IoVs and
reflection power of BackTags under imperfect SIC decoding is
formulated. A Dinkelbach approach is first adopted to transform
the optimization problem and then the transformed problem is
decoupled into two subproblems for optimal transmit power at
RSUs and efficient reflection power at BackTags, respectively.
To solve the problems efficiently, dual theory and Karush-
Kuhn-Tucker conditions are exploited, where the Lagrangian
dual variables are iteratively calculated using the subgradient
method. To check the performance of the proposed framework, a
benchmark optimization without backscattering is also provided.
Numerical results demonstrate the superiority of the proposed
AmBC-enabled NOMA IoV framework over the benchmark
conventional IoV framework.

Index Terms—6G, ambient backscatter communication
(AmBC), non-orthogonal multiple access (NOMA), imperfect
successive interference cancellation (SIC), Dinkelbach method.

I. INTRODUCTION

INTELLIGENT Transportation System (ITS) is a key com-
ponent of future smart cities [1]. Using robust wireless

communications and advanced sensors, future transportation
will be revolutionized in terms of safety and comfort [2]. Many
applications such as safety awareness, autonomous driving,
road traffic management, and infotainment are offered by
future ITS [3]. The future sixth-generation (6G) will be the
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core wireless technology used for future ITS that will provide
ubiquitous connectivity, secure data sharing, energy-efficient
transmissions, and rapid computation [4]. As compared to
fifth-generation (5G) enabled Internet of Vehicles (IoVs) that
focuses on autonomous driving, 6G will be driven by ensuring
reliability in the autonomous driving, sharing of more detailed
road traffic information, Augmented Reality (AR) and Virtual
Reality (VR) based traffic planning, and advanced multimedia
and gaming applications [5]. 6G enabled IoVs will provide
extremely high data rates of the order of Tera-bits per second.
It will also enhance the packet delivery ratio to 99.99999%
by and reduce latency to less than 1 ms, thus increasing
the reliability of wireless communications by many folds
[6]. Many new technologies such as reconfigurable intelli-
gent surfaces [7], terahertz communications [8], blockchain
technology [9], ambient backscatter communications (AmBC)
[10], Non-orthogonal Multiple Access (NOMA) [11], and
federated learning [12] will be the major enablers of reliable
communications offered by 6G.

The major challenges for connecting massive IoVs in
6G would be the limited energy reservoirs and spectrum
resources. In this regard, AmBC and NOMA are the two
promising candidate technologies [13], [14]. Utilizing the
existing Radio-frequency (RF) signal, AmBC will allow IoV
and roadside-unites (RSU) to operate with little battery power,
hence providing considerable energy savings and reducing
carbon footprints. The basic principle of AmBC is to allow
a backscatter tag (BackTag) to transmit data by reflecting and
modulating the existing RF signal. Moreover, NOMA will be
extensively used in the 6G enabled IoV network for radio
access due to its ability to accommodate multiple IoVs over the
same spectrum/time resources. NOMA first uses superposition
coding at the transmitter side to encode multiple signals over
the same spectrum using power multiplexing and then exploits
successive interference cancellation (SIC) at the receiver side
to decode these signals [15]. In the last several years, a lot
of works have been done on traditional NOMA networks
[16]–[19]. Recently, researchers have shown interest in the
integration of AmBC and NOMA with vehicular networks for
providing energy-efficient and reliable communications.

A. Related Works

Researches from industry and academia have studied var-
ious problems on NOMA vehicular networks. For instance,
Reference [20] has provided hyper-graph-based resource allo-
cation to maximize the total achievable capacity of NOMA
vehicular networks using device to device (D2D) commu-
nications. Abbasi et al. [21] have proposed the unmanned
aerial vehicle-based cooperative power allocation framework
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to maximize the sum rate of the system. In [22], Zheng et
al. have optimized resource allocation to improve the max-
min fairness of NOMA vehicular networks. The work of
[23] has designed a decentralized algorithm and derived a
closed-form solution to investigate the exact capacity of both
urban and crowded vehicular networks. Xiao et al. [24] have
proposed efficient vehicle clustering and optimal power control
to maximize the achievable rate of the system. The authors
of [25] have designed an efficient iterative distribution-based
algorithm to reduce the latency and improve the reliability
of NOMA vehicular networks. In a similar study, Guo et
al. [26] have optimized frequency and power allocation to
improve the reliability of the NOMA system. Khan et al.
[27] have proposed an efficient power management scheme
to investigate the trade-off between energy and spectrum
efficiency of NOMA vehicular networks. The work in [28] has
solved an energy efficiency optimization problem in NOMA
vehicular networks using the Dinkelbach approach. Do et
al. [29] computed the exact and closed-form solutions to
maximize the ergodic capacity of full-duplex NOMA vehicular
networks using D2D communications.

Recently, the integration of NOMA in AmBC has triggered
an overwhelming research interest due to energy and spectral
efficient communications. For example, the work in [30] has
derived the closed-form solution for the outage probability
and ergodic capacity of NOMA AmBC systems. The works
in [31], [32] have investigated the problems of physical layer
security to maximize the secrecy rate of AmBC under multiple
eavesdroppers. In [33], [34], Li et al. have calculated outage
and intercept probabilities to study the security and reliability
of AmBC under i) in-phase and quadrature-phase imbalance
and ii) imperfect SIC, channel state information (CSI), and
residual hardware impairment. By using the efficient selection
criterion of reflection coefficient, Guo et al. [35] have im-
proved the average successful decoding bit of AmBC systems.
The researchers in [36], [37] have explored the joint opti-
mization problems of transmit power and reflection coefficient
to maximize the sum capacity of NOMA AmBC networks
under perfect and imperfect SIC decoding. Liao et al. [38]
have jointly optimized the transmit power and subcarrier at
the access point, time allocation, and reflection coefficient at
BackTags to enhance the minimum throughput of the AmBC
systems. Similarly, the research work in [39] has optimized
the time allocation and reflection coefficient to maximize the
minimum throughput of the NOMA systems. Xu et al. [40]
have provided a joint optimization framework of transmit
power and reflection coefficient to maximize the energy ef-
ficiency of NOMA AmBC networks. Moreover, researchers
have also studied different problems in AmBC using artificial
intelligence techniques [41], [42]. The researches of [43] have
also proposed the optimization of reflection coefficient to
maximize the secrecy rate of NOMA AmBC networks. Of
late Khan et al. [44] have investigated spectral efficiency of
multi-cell NOMA AmBC vehicular networks.

B. Motivation and Contributions
The researches in [20]–[29] have only studied NOMA

and vehicular communications with perfect SIC assumptions.

Moreover, they do not consider AmBC in their system models.
Besides that, the authors of [30]–[44] have studied AmBC
but they do not consider vehicular communications. Although
the works in [34], [44] have considered imperfect SIC decod-
ing but their system models, objectives and approaches are
different. Also, most of the above literature considers single-
cell scenarios. To the best of our knowledge, the optimiza-
tion framework that simultaneously optimizes the total power
budget of each RSU, power allocation coefficient of IoVs,
and reflection coefficient of BackTags to maximize the total
achievable energy efficiency of multi-RSU NOMA AmBC
network has not yet been investigated. To fill this research
gap, we aim to propose a new optimization to maximize the
total energy efficiency of the system under imperfect SIC
decoding. We first employ the Dinkelbach method to transform
the objective function of the original problem into a subtractive
function. Since the optimization problem is coupled on differ-
ent variables and it makes it con-convex and difficult to solve.
Thus, we decouple it into two subproblems for transmit power
at RSU and reflection coefficient of BackTag in each cell.
Then, we exploit dual theory and KKT conditions to calculate
the closed-form solutions. The simulation results are compared
with the benchmark NOMA optimization framework without
AmBC which shows the superiority in terms of total achiev-
able energy efficiency.

The main contribution of our paper can be summarized as
follow:

• We consider a realistic 6G vehicular scenario where
multiple RSUs communicate with their associated IoVs
through downlink NOMA protocol. The BackTags also
transmit signals toward near IoVs by reflecting and mod-
ulating the RF signals of the RSUs.

• We optimize three variables including, the total power
budget of each RSUs, the power allocation coefficient of
IoVs for NOMA transmissions, and the reflection power
of BackTags. Thus, the objective is to maximize the total
energy efficiency of the AmBC network under imperfect
SIC decoding.

• We use the Dinkelbach method to transform the objective
function of the non-convex energy efficiency maximiza-
tion problem into a subtractive one. Then we decouple
the problem into two subproblems for transmit power
allocation and reflection power selection. Subsequently,
we adopt dual theory and KKT conditions to derive
closed-form solutions.

• Numerical results highlight the significance of the pro-
posed optimization framework as compared to the con-
ventional NOMA IoV network without AmBC. More-
over, the proposed optimization framework exhibits fast
convergence and low complexity.

The rest of our paper is structured as follows: System model
and problem formulation are provided in Section II. The
proposed resource allocation solution is discussed in Section
III. Numerical results and discussion are presented in Section
IV. Concluding remarks are provided in Section V.
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Fig. 1: System model

II. SYSTEM MODEL AND PROBLEM FORMULATION

As shown in Fig. 1, the AmBC-enabled vehicular network is
considered, where M RSUs communicate with Π/2 vehicle
pairs utilizing NOMA protocol. The term Π is the number
of vehicles such that Π = 2M . Each pair consists of two
IoVs, one with good channel conditions (stated as s IoV)
and another with weak channel conditions (denoted as w
IoV), respectively. The system also composes of K BackTags,
where they receive the superimposed signals of RSUs, harvest
the radio frequency energy to operate the circuits, modulate
information, and reflect it towards nearby IoVs. It is assumed
that: 1) RSUs, BackTags, and IoVs are equipped with om-
nidirectional antenna; 2) RSUs share the same spectrum at
the same time; 3) The channels are independent and identical
Rayleigh fading [45]; 4) Due to the error propagation in SIC
decoding, IoVs can not always perfectly decode their signals;
5) The channel state information are known in the system
because we do not consider the mobility of IoVs due to rapid
changes in their channel characteristics [46]. By considering
the mobility in IoVs, various admission control and IoVs
association policies would be required. A superimposed signal
of m ∈ M RSU for its associated IoVs pair is written
as xm =

√
Pm$s,mxs,m +

√
Pm$w,mxw,m, where Pm is

the allocated power of m RSU, $s,m and $w,m are the
power allocation coefficient of m RSU for s IoV and w IoV,
respectively. Furthermore, xs,m and xw,m denote the data
symbols of s IoV and w IoV. Meanwhile, k BackTag also
receives xm from m RSU, reflect it towards s IoV and w
IoV by modulating own symbol z(t) such as E[|z(t)|2] = 1,
where E[.] shows the expectation operation. The signals that
s IoV and w IoV receive from m RSU and k BackTag can be

expressed as

ys,m =
√
hs,mxm +

√
ψk,mgms,k(hk,mxm)z(t)

+

M∑
m′=1,m′ 6=m

√
Pm′hms,m′xm′ + ξs,m, (1)

yw,m =
√
hw,mxm +

√
ψk,mgmw,k(hmw,kxm)z(t)

+

M∑
m′=1,m′ 6=m

√
Pm′hmw,m′xm′ + ξw,m, (2)

where the first terms in both equations are the signals from m
RSU, the second terms are reflected signals from the k Backag,
the third terms denote the interference from the nearby RSUs,
and the last terms are white Gaussian noise having σ2 variance.
Besides, hs,m and hw,m represent the channel gains of s IoV
and w IoV from m RSU, hk,m is the channel gain of k
BackTag from the m RSU, and ψk,m denotes the reflection
power of k BackTag. Moreover, gms,k and gmw,k are the channel
gains from k BackTag to s IoV and w IoV, respectively. In
addition, Pm′ denotes the interference power from m′ RSU,
hms,m′ and hmw,m′ represent the interference channel gains from
m′ RSU to s IoV and w IoV. Based on the NOMA protocol, s
IoV can decode its signal from RSU and BackTag by applying
SIC decoding technique. However, w IoV cannot apply SIC
and decodes its signal by treating other signals as noise. As
discussed earlier, IoVs cannot always decode perfect signals.
The signal to interference plus noise ratio (SINR) of s IoV to
decode the signal of w IoV and its own and the SINR of w
IoV to decode its signal can be written as

γms→w =
Pm$w,m|hs,m|2 +Hs,w

Pm$s,m(|hs,m|2 +Hs,w) + Imw,m′ + σ2
, (3)
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γms→s =
Pm$s,m(|hs,m|2 +Gs,m)

Pm$w,m|hs,m|2Λ+ Ims,m′ + σ2
, (4)

γmw→w =
Pm$w,m(|hw,m|2 +Gw,m)

Pm$s,m(|hw,m|2 +Gw,m) + Imw,m′ + σ2
, (5)

Hs,w = ψk,m|hk,m|2|gms,k|2, Imw,m′ = |hmw,m′ |2
∑M
m′=1 Pm′ ,

Gs,m = ψk,m|hk,m|2|gms,k|2, Gw,m = ψk,m|hk,m|2|gmw,k|2,
and Λ is the imperfect SIC parameter which is given as
Λ = E[|zs,m − z̃s,m|2], where zs,m − z̃s,m denotes the
difference between the original signal and the estimated signal.
Based on the above SINR expressions, the data rate of s IoV
and w IoV can be written as Rs,m = log2(1 + γms→s) and
Rw,m = log2(1 + γmw→w), respectively.

In this work, we seek to maximize the total energy efficiency
of AmBC-enabled NOMA IoV network. The total energy
efficiency of IoV network can be defined as

ηEE($k, Pm, ψk,m) =

M∑
m=1

Rm($k, Pm, ψk,m)

Ptot($k, Pm, ψk,m)
, (6)

where $k = {$s,m, $w,m} is the power allocation coef-
ficient, Rm = Rs,m + Rw,m denotes the total achievable
data rate of m RSU, and Ptot = Pm(Λs,m + Λw,m) + Pc
its total power consumption, where Pc is the circuit power.
This can be achieved by jointly optimizing the power budget
of RSU, power allocation coefficient of IoVs, and reflection
power of BackTag in each RSU under imperfect SIC decoding.
Moreover, the minimum data rate of individual IoV is also
guaranteed. This problem which simultaneously optimizes all
the above variables can be formulated as

(P) maximize
($k,Pm,ψk,m)

ηEE($k, Pm, ψk,m) (7)

s.t. Pm$s,m

(
|hs,m|2 +Gs,m

)
≥
(
2Rmin − 1

)(
|hs,m|2Pm$w,mΛ+ Ims,m′ + σ2

)
,∀m, (7a)

PmΛw,m
(
|hw,m|2 +Gw,m

)
≥
(
2Rmin − 1

)(
Pm$s,m(|hw,m|2 +Gw,m

)
+ Imw,m′ + σ2),∀m, (7b)

Pm$s,m ≤ Pm$w,m,∀m, ∀s, w, (7c)
0 ≤ Pm ≤ Pmax,∀m, (7d)
$s,m +$w,m ≤ 1,∀m, (7e)
0 ≤ ψk,m ≤ 1,∀k, ∀m, (7f)

where the objective in (7) is to maximize the total energy
efficiency AmBC-enabled NOMA IoV network. Constraints
(7a) and (7b) satisfy the minimum rate of s IoV and w
IoV associated with m RSU. Constraint (7c) ensures the
power difference between s IoV and w IoV for efficient SIC
decoding. Constraint (7d) limits the transmit power of each
RSU while (7e) controls the allocation coefficients according
to the NOMA protocol. In addition, constraint (7f) keeps the
reflection power of BackTag between zero and one.

III. PROPOSED RESOURCE ALLOCATION SOLUTIONS

It can be observed that the above optimization problem in
(7) is coupled on two variables; i) Power budgets of RSUs
and power allocation coefficients of IoVs associated with

each RSU; ii) Reflection power of BackTag located in the
geographical area of each RSU. It makes the problem (P)
very hard to solve. Thus, we transform the original problem by
exploiting the Dinkelbach method. Then, for a given reflection
power of BackTags, we first calculate the efficient power allo-
cation coefficient of IoVs, and the power budget at each RSU.
Then, we substitute the optimal values of power allocation
coefficients and power budget into the original problem and
compute the efficient reflection power of BackTags. Utilizing
the Dinkelback method, we transform problem (7) as

(P1) maximize
($k,Pm,ψk,m)

M∑
m=1

Rm($k, Pm, ψk,m)

− β
M∑
m=1

Ptot($k, Pm, ψk,m),

s.t. (7a)− (7f), (8)

where β is the maximum energy efficiency which can be
achieved as

M∑
m=1

Rm($∗
k, P

∗
m, ψ

∗
k,m)−

β∗
M∑
m=1

Ptot($
∗
k, P

∗
m, ψ

∗
k,m) = 0. (9)

Next, we decouple the problem (8) into two subproblems for
transmit power at RSUs and reflection power at BackTags.

A. Efficient Transmit Power of RSUs

To compute the efficient power allocation coefficient and
transmit power budget at RSUs, we consider that the reflection
power is given at BackTags. The optimization problem in (8)
can be simplified as

(P2) maximize
($m,Pm)

M∑
m=1

Rm($m, Pm)

− β
M∑
m=1

Ptot($m, Pm),

s.t. (7a)− (7e), (10)

We can also write (4) and (5) as

γms→s =
Pm$s,mAs,m

Pm$w,mBs,m + Cs,m
, (11)

where As,m = |hs,m|2 + Gs,m , Bs,m = |hs,m|2Λ, Cs,m =
Ims,m′ + σ2, and

γmw→w =
Pm$w,mAw,m

Pm$s,mBw,m + Cw,m
, (12)

where Aw,m = |hw,m|2 + Gw,m , Bw,m = |hw,m|2 + Gw,m,
Cw,m = Imw,m′ + σ2. Next we prove that the Rs,m +Rw,m in
(P2) is concave with respect to power allocation coefficients.
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Proposition 1.

log2

(
1 +

Pm$s,mAs,m
Pm$w,mBs,m + Cs,m

)
+ log2

(
1 +

Pm$w,mAw,m
Pm$s,mBw,m + Cw,m

)
, (13)

is a concave function with respect to $m = {$s,m, $w,m}.

Proof. Please see Appendix A.

According to Proposition 1, the objective function of (P2)
is concave-convex, which can be easily solved by dual theory.
The dual problem associated with (P2) can be defined as

minimize
λm,µm,εm≥0

D(λm, µm, εm) (14)

where λm = {λs,m, λw,m}, µm, εm are the dual variables.
Now we define the dual function as

D(.) = maximize
$m,Pm,λm,µm,εm≥0

L($m, Pm,λm, µm, εm) (15)

where L(.) is the Lagrangian function which can be derived
as

L(.) =

M∑
m=1

{
log2

(
1 +

Pm$s,mAs,m
Pm$w,mBs,m + Cs,m

)
+ log2

(
1 +

Pm$w,mAw,m
Pm$s,mBw,m + Cw,m

)}
(16)

− β
M∑
m=1

Pm($s,m +$w,m) + Pc + λs,m(Pm$s,mAs,m

− (2Rmin − 1)Pm$w,mBs,m + Cs,m) + λw,m(Pm$w,m

Aw,m − (2Rmin − 1)(Pm$s,mBw,m + Cw,m)

+ µm(Pmax − Pm) + εm(1−$s,m −$w,m),

Next, we adopt KKT conditions, where the closed-form ex-
pressions of s IoV and w IoV can be expressed as

$∗s,m =

[
−Ψ±

√
Ψ2 − 4ΦΥ

2Φ

]+
(17)

$∗w,m = 1−$∗s,m (18)

where [.]+ = max[0, .] and the values of
Φ = P 2

m(−As,mAw,mBw,m(1 + λs,m)(Cs,m +
Bs,mPm) + As,mB2w,m(1 + λs,m)(Cs,m + Bs,mPm) +
As,mAw,mBs,m(1 + λw,m)(Cw,m + Bw,mPm) −
Aw,mB2s,m(1 + λw,m)(Cw,m + Bw,mPm)), Ψ =
Pm(Cs,m + Bs,mPm)(−As,mCw,m(−2Bw,m(1 + λs,m) +
Aw,m(2 + λw,m)) + As,mAw,mBw,m(λs,m − λw,m)Pm +
2Aw,mBs,m(1 + λw,m)(Cw,m + Bw,mPm)), Υ =
(Cs,m + Bs,mPm)(As,mC2w,m(1 + λs,m) + Aw,m(−Cs,m(1 +
λw,m)(Cw,m + Bw,mPm) + Pm(As,mCw,m(1 + λs,m) −
Bs,m(1 + λs,m)(Cw,m + Bw,mPm)))),

Proof. Please see Appendix B.

Next we find the optimal power budget of each RSU. It can
be obtained through differentiating (16) with respect to Pm as

ϕ+ χPm + ζP 2
m + θP 3

m + ϑP 4
m = 0, (19)

where the values of ϕ, χ, ζ, θ and ϑ are given in (20)-(24) on
the top of the next page. Note that, (19) is the polynomial of
order four, the solution of which can be found easily through
the conventional techniques or by using any polynomial solver.
Since we aim to maximize the total energy efficiency of IoV
network, thus, the value of P ∗m is given by the larger root of
(19). Substituting the optimal values of $∗s,m, $∗w,m and P ∗m
, the problem (15) can be written as

maximize
($∗

m,P∗m)

M∑
m=1

{
log2

(
1 +

P ∗m$
∗
s,mAs,m

P ∗m$
∗
w,mBs,m + Cs,m

)
+ log2

(
1 +

P ∗m$
∗
w,mAw,m

P ∗m$
∗
s,mBw,m + Cw,m

)}
− β

M∑
m=1

P ∗m($∗s,m +$∗w,m) + Pc, (25)

subject to: λm, µm, εm ≥ 0

Finally, the dual variables λs,m, λw,m, µm and εm are itera-
tively updated as

λs,m(t+ 1) = λs,m(t) + δ(t)(P ∗m$
∗
s,mAs,m

− (2Rmin − 1)P ∗m$
∗
s,mBs,m + Cs,m),∀m,

(26)
λw,m(t+ 1) = λw,m(t) + δ(t)(P ∗m$

∗
w,mAw,m

− (2Rmin − 1)(P ∗m$
∗
s,mBw,m + Cw,m),∀m,

(27)
εm(t+ 1) =εm(t) + δ(t)(1− ($∗s,m +$∗w,m)),∀m, (28)

µm(t+ 1) =µm(t) + δ(t)(Pmax − P ∗m),∀m, (29)

where t denotes the iteration index. The dual variables are
iteratively updated until the stability criterion is reached.

B. Efficient Reflection Power of BackTags

Now we calculate the efficient reflection power of Back-
Tags. For a given transmit power of RSUs, the optimization
problem (P1) can be reformulated as

(P3) maximize
(ψk,m)

M∑
m=1

Rm(ψk,m)

− β
M∑
m=1

Ptot(ψk,m), (30)

s.t. (7a), (7b), (7d), (7f),

Next we can rewrite (4) and (5) such as

γms→s = log2

(
1 +
Xs,m + Ys,m
Zs,m

)
, (31)

γmw→w = log2

(
1 +

Xw,m + Yw,m
Zw,m +Ww,m

)
, (32)

where Xs,m = Pm$
∗
s,m|hs,m|2, Ys,m = Pm$

∗
s,mGs,m,

Zs,m = Pm$
∗
w,m|hs,m|2Λ+ Iks,m′ + σ2, Xw,m =

Pm$
∗
w,m|hw,m|2, Yw,m = Pm$

∗
w,mGw,m, Zw,m =

Pm$
∗
s,m|hw,m|2 + Imw,m′ + σ2 and Ww,m = Pm$

∗
s,mGw,m.
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ψ = Cs,mCw,m(−Aw,mCs,m(−1 +$s,m))(1 + λw,m) + Cw,m(As,m$s,m(1 + λs,m)− Cs,m(µm + β)), (20)
χ = Cs,mCw,m(2(Bs,mCw,m(−1 +$s,m)− Bw,mCs,m$s,m)(µm + β) +Aw,m(−1 +$s,m)(2Bs,m(−1 +$s,m)(1 + λw,m)

−As,m$s,m(2 + λs,m + λw,m) + Cs,m(µm + β)) +As,m$s,m(2Bw,m$s,m(1 + λs,m)− Cw,m(µm + β))), (21)

ζ = −(B2s,mC2w,m(−1 +$s,m)2 − 4Bs,mBw,mCs,mCw,m(−1 +$s,m)$s,m + B2w,mC2s,m$2
s,m)(µm + β) +As,m$s,m(B2w,m

Cs,m$2
s,m(1 + λs,m) + Bs,mC2w,m(−1 +$s,m)(µm + β)− 2Bw,mCs,mCw,m$s,m(µm + β))−Aw,m(−1 +$s,m)

(B2s,mCw,m(−1 +$s,m)2(1 + λw,m)− Bs,mCw,m(−1 +$s,m)(As,m$s,m(1 + λw,m)− 2Cs,m(µm + β))− Cs,m
$s,m(Bw,mCs,m(µm + β) +As,m(−Bw,m$s,m(1 + λs,m) + Cw,m(µm + β)))), (22)

θ = (Bw,m$s,m(−2B2s,mCw,m(−1 +$s,m)2 + 2Bs,m(Bw,mCs,m +As,mCw,m)(−1 +$s,m)$s,m −As,mBw,m
Cs,m$2

s,m) +Aw,m(−1 +$s,m)(B2s,mCw,m(−1 +$s,m)2 − Bs,m(2Bw,mCs,m +As,mCw,m)

(−1 +$s,m)$s,m +As,mBw,mCs,m$2
s,m))(µm + β), (23)

ϑ = −Bs,mBw,m(−1 +$s,m)$s,m(Bs,m(−1 +$s,m)−As,m$s,m)(Aw,m −Aw,m$s,m + Bw,m$s,m)(µm + β). (24)

Now we prove that the sum rate in (P3) is a concave function
with respect to ψk,m.

Proposition 2.

log2

{(
1 +
Xs,m + Ys,m
Zs,m

)
+ log2

(
1 +

Xw,m + Yw,m
Zw,m +Ww,m

)}
, (33)

is a concave function with respect to Φf,k.

Proof. Please see Appendix C.

Based on Proposition 2, problem (P3) is concave-convex,
thus, we adopt KKT conditions for obtaining efficient reflec-
tion power at BackTags. After some straightforward steps, the
closed-form expression can be derived as

ψk,m =

[
(2Rmin − 1)−Xs,m
Pm$∗s,mGs,m

]
, (34)

Proof. Please see Appendix D.

Now we discuss the complexity of the proposed resource
allocation framework. It can be observed that the complexity
of our optimization framework depends on the number of
RSUs and their serving vehicles. Note that we calculate the
complexity in terms of iterations required for convergence of
different variables. Considering the number of RSUs is M and
the number of vehicles is Π. The complexity of the proposed
framework in one iteration is O(MΠ). We assume that the
total number of iterations is T . Thus, the overall complexity
of our optimization framework can be expressed as O(TMΠ).

IV. NUMERICAL RESULTS

To check the superiority of the proposed joint optimization
framework, this section provides extensive results which are
plotted over 104 Monte Carlo simulations. We compare the
proposed AmBC-enabled NOMA IoV framework with the
conventional NOMA IoV framework without backscattering.
Unless stated otherwise the network parameters are defined
as: the channel is independent and identical Rayleigh fading.
The power budget of each RSU is set as Pm = 18 dBm,
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Fig. 2: Number of iterations versus the total energy efficiency of IoV
network with different number of RSUs.

the variance of AWGN is σ2 = 0.1, the number of RSU is
M = 10, the number of IoVs is set as Π = 20, the imperfect
SIC parameter is Λ = 0.1 and 0.3, the circuit power is set as
Pc = 0.1 and 0.5.

The complexity in terms of iteration that requires for the
convergence of the proposed IoV framework with backscat-
tering is shown in Fig. 2. It can be seen that the total energy
efficiency of the proposed IoV framework with backscattering
converges after few iterations for different RSUs. We can also
observe that when the number of RSUs in the network is
increased, various optimization variables are also increased,
which results in requiring more iterations for convergence.
For example, the network with M = 5 RSUs converges in
five iterations, whereas the network having M = 10 RSUs
requires ten iterations for convergence. However, the proposed
NOMA IoV framework with backscattering converges within
a reasonable number of iterations.

To see the effect of RSU power budget and imperfect SIC
parameter, Fig. 3 plots the total energy efficiency of the IoV
network against the varying power of RSUs for different values
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Fig. 3: Transmit power of SAPs versus the total achievable EE of
SCNet for different values of imperfect SIC parameter.

of Λ. As the transmit power of RSUs increases, the total
energy efficiency of the NOMA IoV framework with backscat-
tering and without backscattering also increases. However,
after a certain point, when the available power budget of
RSUs further increases, the total energy efficiency of both
IoV framework with backscattering and without backscattering
remains unchanged. It is because at these points, the transmit
power of RSUs is optimal, and assigning more transmit power
would result in reducing the total energy efficiency of the
IoV network. Thus, when the available power budget of RSUs
further increases after these points, the transmit power of RSUs
remains unchanged. Further, we can also observe that when
Λ = 0.1, the total energy efficiency is larger than that when
Λ = 0.3. This is because when β has a small value, less
interference is faced by the IoVs. However, increasing the
value of Λ results in more decoding error of signal which
reduces the total energy efficiency. Overall, it is clear from the
figure that the IoV framework with backscattering significantly
outperforms the framework without backscattering for all
values of the RSUs available power budget.

The total energy efficiency of the IoV network also depends
on the number of RSUs in the system. Fig. 4 depicts the total
energy efficiency of the IoV network against the increasing
power budget of RSUs for different number of RSUs in
the system. For both M = 5 and 10, the total energy
efficiency of IoV framework with backscattering and without
backscattering increases when the available power budget of
RSUs increases. However, there is no further change in the
total energy efficiency after a certain point because of the
same reason as was discussed earlier. It is important to note
that the performance gap between two IoV frameworks (with
backscattering and without backscattering) increases when the
available power budget of RSUs increases. This is because the
high transmit power of RSUs also increases the data rate of
BackTags which results in more energy efficiency compared
to the IoV framework without backscattering. In addition, with
more RSUs in the network, the advantage of IoV framework
with backscattering becomes more clear compared to the one
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Fig. 4: Transmit power of SAPs versus the total achievable EE of
SCNet for different number SAPs.
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Fig. 5: QoS requirements versus the total achievable EE of SCNet
for different values of imperfect SIC parameter.

without backscattering.
The impact of the minimum data rate of each IoV (Rmin)

in the network on the total energy efficiency of NOMA IoV
network with backscattering and without backscattering is
shown in Fig. 5. We can see that the total energy efficiency of
the IoV network decreases as the minimum data rate of each
IoV increases. This is because to achieve the minimum data
rate of each IoV in the network, the transmit power of IoVs
having comparatively bad channel conditions is increased.
It results in the reduction of the total energy efficiency of
the NOMA IoV network. If the minimum data rate cannot
be achieved by changing the power allocation coefficient of
IoVs, the system increases the power budget of RSUs which
results in further reduction of the total energy efficiency of the
IoV network. More specifically, the data rate is a logarithmic
function of power, thus, when more transmit power is required
to achieve the minimum data rate of IoVs, the total energy
efficiency of the IoV network also reduces. This can be also
proved from the definition of energy efficiency in (6). It is also
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Fig. 6: QoS requirements versus the total achievable EE of SCNet
for different number of SAPs.

interesting to see that when the minimum data rate of each IoV
increases, the total energy efficiency of the IoV framework
without backscattering decreases more rapidly compared to
the IoV framework with backscattering. This is because when
the total transmit power to achieve the minimum data rate
is increased, the interference between different RSUs also
increases which results in the reduction of the total energy
efficiency of the IoV network. However, in the case of the
IoV network with backscattering, the increase in the transmit
power also increases the data rate of BackTags which further
improves the total energy efficiency.

Fig. 6 shows that the performance gap between two frame-
works increases as the number of total RSUs in the network
increases. The main reason for this is because each geographi-
cal area has independent RSU, IoVs, and BackTag. Thus, when
more number of RSUs and BackTags serve in the network, so
the benefits of the IoV network with backscattering becomes
more prominent. Another interesting thing to note is that
when the minimum data rate is increased, the total energy
efficiency of IoV network with backscattering and without
backscattering decreases more rapidly in the case of M = 10
RSUs compared to the system with M = 5. This is because the
IoVs in the network having more RSUs face more inter-RSU
interference. Thus, as the transmit power increase to achieve
the minimum data rate of IoVs, the total energy efficiency
decreases rapidly, i.e., in the system with M = 10, an IoV
of one RSU faces interference from the remaining 9 RSUs.
Again, for both M = 5 and 10, the proposed IoV framework
with backscattering significantly outperforms the benchmark
IoV framework without backscattering.

Finally, it is important to show the effect of the circuit
power on the total energy efficiency of both IoV frameworks
with backscattering and without backscattering. It can be seen
from Fig. 7 that the high value of circuit power decreases
the total energy efficiency of the IoV network. However, the
proposed IoV framework with backscattering achieves high
energy efficiency than without a backscattering framework.
One should be also noted from the figure that when the circuit
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Fig. 7: QoS requirements versus the total achievable EE of SCNet
for different number of SAPs.

power is Pc = 5, the optimal transmit power of RSUs is
achieved at comparatively larger values of the power budget.
Moreover, when the available power budget of RSUs increases,
the gap of total energy efficiency between both frameworks
also increases. This is because the proposed IoV framework
with backscattering is more efficient than the one without
backscattering.

V. CONCLUSIONS

This paper has provided a green optimization framework for
AmBC-enabled NOMA vehicular networks under imperfect
SIC decoding. In particular, the transmit power of RSUs and
reflection power of BackTags are simultaneously optimized to
maximize the total achievable energy efficiency of the network.
Dinkelbach method has been exploited first to transform the
objective function of the non-convex problem into subtractive
function. The transformed problem has then been decoupled
into two subproblems for transmitting power allocation at
RSUs and reflection power at BackTags. Closed-form solutions
have been explored through dual theory and KKT conditions.
Simulation results demonstrate that the proposed optimization
framework with backscattering outperforms the benchmark
optimization framework without backscattering.

This work can be extended in several ways. For example,
we can investigate the total energy efficiency of the same
system under the vehicle’s mobility and imperfect channel
state information. The same system can also be extended to
multi-carrier communication such that each RSU will accom-
modate multiple vehicles at one time. Besides that, we can also
consider multiple BackTags in each RSU. In such a scenario,
we can select a BackTag which provides a high data rate.
These interesting works will be explored in our future studies.

APPENDIX A: PROOF OF PROPOSITION 1

The concavity proof of the objective function of (P2) with
respect to $s,m and Λw,m is discussed here. It is important to
mention that a function should be concave if its Hessian matrix
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is negative definite. For instance, a matrix is negative definite
if its principal minors are alternate i sign. Based on the above
observations, we now define and derive the Hessian matrix
of (P2). Subsequently, we will prove it as negative definite.
Since the second part of the objective function of (P2), i.e.,

−β
M∑
m=1

Pm($s,m +$w,m) +Pc is a linear function of $s,m

and $w,m, its first part can be written as:

M∑
m=1

{
log2

(
1 +

Pm$s,mAs,m
Pm$w,mBs,m + Cs,m

)

+ log2

(
1 +

Pm$w,mAw,m
Pm$s,mBw,m + Cw,m

)}
, (A1)

Next, we derive the Hessian matrix of (A1) as:

H =

[
∂(A1)
∂2$s,m

∂(A1)
∂$s,m∂$w,m

∂(A1)
∂$w,m∂$s,m

∂(A1)
∂2$s,m

]
(A2)

∂(A1)
∂2$s,m

= Θ1,1 = −

A2
s,mV2

w,mT 2
w,m −Aw,mB2w,mT 2

s,m(2Vw,m +Aw,m$w,m)$w,m

ln(2)T 2
s,mT 2

w,mV2
w,m

(A3)

∂(A1)
∂$s,m∂$w,m

= Θ1,2

= −
As,mBs,mT 2

w,m −Aw,mBw,mT 2
s,m

ln(2)T 2
s,mT 2

w,m

(A4)

∂(A1)
∂2$w,m

= ϕ2,1 = −

A2
w,mV2

s,mT 2
s,m −As,mB2s,mT 2

w,m(2Vs,m +As,m$s,m)$s,m

ln(2)T 2
w,mT 2

s,mV2
s,m

(A5)

∂(A1)
∂$w,m∂$s,m

= Θ2,2

= −
As,mBs,mT 2

w,m −Aw,mBw,mT 2
s,m

ln(2)T 2
s,mT 2

w,m

(A6)

where, Ts,m = As,m$s,m + Vs,m, Tw,m = Aw,m$w,m +
Vw,m, Vs,m = Bs,m$w,m + Cs,m, and Vw,m = Bw,m$s,m +
Cw,m. The obtained Hessian matrix can be expressed as:

H =

[
Θ1,1 Θ1,2

Θ2,1 Θ2,2

]
(A7)

The first order principal minors of the obtained Hessian matrix
are Θ1,1 and Θ2,2 which are negative. The second-order
principal minor of the H is the determinant of the H.

detH = Θ1,1Θ2,2 −Θ1,2Θ2,1 > 0 (A8)

Hence, Proposition 1 is proved.

APPENDIX B: PROOF OF PROPOSITION 2

To prove the closed-form solution in (17), we calculate
partial derivation of (16) with respect to $s,m as

∂L($m,λm, µm, εm)

∂$s,m
=

As,m
ln(2)(As,m$s,m + Bs,m$w,m + Cs,m)

−D+ (B1)

Aw,mBw,m$w,m

ln(2)(Bw,m$s,m + Cw,m)(Aw,m−$w,m + Bw,m$s,m + Cw,m)

where D = βPm−λs,mAs,m +λw,m(2Rmin − 1)Bw,m + εm.
Now set $w,m = 1−$s,m in (B1), it can be stated as

As,m
ln(2)(Xs,m$s,m +Ws,m)

− γmw→wBw,m
ln(2)(Yw,m$s,m +Ww,m)

−D

(B2)

where Xs,m = As,m−Bs,m, Yw,m = Bw,m−Aw,m, Ws,m =
Bs,m+Cs,m andWw,m = Aw,m+Cw,m. After straightforward
calculation, it can be written as

As,m(Yw,m$s,m +Ww,m)− γmw→wBw,m(Xs,m$s,m +Ws,m)

− ln(2)D(Yw,m$s,m +Ww,m)(Xs,m$s,m +Ws,m) = 0
(B3)

By using quadratic formula ax2 + bx+ c, it can be expressed
as

(− ln(2)DXs,mYw,m)$2
s,m + (As,mYw,m − γmw→wBw,mXs,m

− ln(2)DXs,mWw,m − ln(2)DYw,mWs,m)$s,m+

(As,mWw,m − γmw→wBw,mWs,m − ln(2)DWs,mWw,m)
(B4)

Now solving for $s,m, it results as

$s,m =

[
−Ψ±

√
Ψ2 − 4ΦΥ

2Φ

]+
(B5)

Thus, Proposition 2 is proved.

APPENDIX C: PROOF OF PROPOSITION 3

Here, we prove the concavity of (33) with respect to ψk,m.
To do so, we calculate first and second-order derivatives of
(33) with respect to ψk,m. The first order derive can be
computed as

∂

∂ψk,m

[
log2

{(
1 +
Xs,m + Ys,m
Zs,m

)

+ log2

(
1 +

Xw,m + Yw,m
Zw,m +Ww,m

)}]
, (C1)

After calculating the partial derivative, it can be expressed as

Ys,m
ln(2)(As,m + Zs,m)

+
Cw,m

ln(2)(Bw,m2 + Bw,mAw,m)
(C2)

where As,m = (Xs,m + ψk,mYs,m), Aw,m = (Xw,m +
ψk,mYw,m), Bw,m = (Zw,m + ψk,mWw,m), and Cw,m =
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(Yw,mZw,m −Xw,mWw,m). Next we calculate its second
derivative as

∂2

∂ψ2
k,m

( Ys,m
ln(2)(As,m + Zs,m)

+
Cw,m

ln(2)(Bw,m2 + Bw,mAw,m)

)
(C3)

After deriving (C3), it can be stated as

−

(
Ys,m2

ln(2)(As,m + Zs,m)2

+
Cw,m(2Ww,mEw,m + C+w,m)

ln(2)B2w,m(Bw,m + Bw,mAw,m)2

)
< 0 (C4)

where Ew,m = Bw,m + Yw,mψk,m, and C+w,m =
(Yw,mZw,m + Xw,mWw,m).
It can be observed that the second order derivative of (33) is
less than zero, hence it is a concave and increasing function
of ψk,m.

APPENDIX D: PROOF OF PROPOSITION 4

To obtain the closed-form solution in (34), we adopt KKT
conditions. To do so, we first define the Lagrangian function
of problem (P3) such as

L(ψk,m, λs,m, λw,m, µm, ηk,m) = (D1)

log2

{(
1 +
Xs,m + Ys,m
Zs,m

)
+ log2

(
1 +
Xw,m + Yw,m
Zw,m +Ww,m

)}
− β

M∑
m=1

Pm($s,m +$w,m) + Pc + λs,m(Xs,m + Ys,m−

(2Rmin − 1)Zs,m) + λw,m(Xw,m + Yw,m − (2Rmin − 1)×
(Zw,m +Ww,m)) + µm(Pmax − Pm) + ηk,m(ψk,m − 1)

where λs,m, λw,m, µm and ηk,m are the Lagrangian mul-
tipliers. Next, we calculate the partial derivative of (D1) with
respect to ψk,m and set it equal to zero. By doing this, it
results as

Ys,m
ln(2)(As,m + Zs,m)

+
Cw,m

ln(2)(B2w,m + Bw,mAw,m)
+ λs,m

Ys,m + λw,m(Yw,m − (2Rmin − 1)Ww,m) + ηk,m = 0 (D2)

Ys,m
ln(2)(As,m + Zs,m)

+
Cw,m

ln(2)(B2w,m + Bw,mAw,m)
+ ηk,m

= (λw,m(2Rmin − 1)Ww,m − λw,mYw,m)− λs,mYs,m
(D3)

where Cw,m = Yw,mZw,m−Xw,mWw,m = Imw,m′+σ
2 > 0. It

can be observed that the left side of (D3) always gives positive
value, thus the right side value can stated as

(λw,m(2Rmin − 1)Ww,m − λw,mYw,m) > λs,mYs,m (D4)

where (λw,m(2Rmin − 1)Ww,m − λw,mYw,m) is always pos-
itive because (2Rmin − 1) is always positive and Ww,m >
Yw,m. Since λs,m ≥ 0, the λw,m is always positive. Thus,
slack complimentary condition of KKT method should be
satisfied. Moreover, constraints associated to λs,m and λw,m

are also active. Hence, both constraints are equal to zero. Fi-
nally, efficient ψk,m can be obtained through active inequality
constraint as provided in (34).
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