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Abstract

Credit risk assessment is a standard procedure for
financial institutions (Fls) when estimating their credit
risk exposure. It involves the gathering and processing
quantitative and qualitative datasets to estimate whether
an individual or entity will be able to make future
required payments. To ensure effective processing
of this data, Fls increasingly use machine learning
methods. Large Fls often have more powerful models
as they can access larger datasets. In this paper, we
present a Federated Learning prototype that allows
smaller Fls to compete by training in a cooperative
fashion a machine learning model which combines
key data derived from several smaller datasets. We
test our prototype on an historical mortgage dataset
and empirically demonstrate the benefits of Federated
Learning for smaller FIs. We conclude that smaller Fls
can expect a significant performance increase in their
credit risk assessment models by using collaborative
machine learning.

Keywords: federated learning, artificial intelligence,
credit risk assessment, financial collaboration

1. Introduction

Most  financial institutions  (FIs)  employ
comprehensive credit risk models to estimate their
exposure to credit risk.  These models typically
employ either traditional or advanced methods.
Traditional methods rely on induction principles to
make mathematical and statistical inferences from
curated data. They facilitate the creation of static
models that build on a range of assumptions, such
as linearity, independence, and normality. Advanced
methods, in turn, are more data-driven and less reliant
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on these assumptions (Chen et al., 2016; Galindo
& Tamayo, 2000). Like traditional methods, they
infer information from curated data but they enable the
creation of flexible models that adapt to the curated data.
As a result, credit risk models that employ advanced
methods typically perform better at to extracting
patterns from complex real-world datasets that are
replete with noise, nonlinearity, and idiosyncrasies.

Both methods depend strongly on data inputs
(Altman, 2002; Heitfield, 2009). Models trained with
more and better data can estimate real word situations
more accurately. In effect, data availability is crucial
for FIs and can translate into a competitive advantage
(Bansal et al., |1993; Walczak, 2001). Limited data, in
turn, can lead to less reliable predictions. For smaller FIs
with limited data access, this effectively means that ‘data
sharing’ with other FIs could have a material impact on
the performance of their credit risk models (Bansal et al.,
1993; Walczak, 2001). However, data sharing is often
challenging due to concerns about privacy, control and
legal recourse (Borgman, 2012; Ekbia et al.,[2015).

A more feasible alternative could be the use of
Federated Learning (FL) to create joint credit risk
models. FL is an ML technique that allows models to
train on a distributed basis without the need to move
raw data (McMahan et al., 2016). In other words,
financial institutions would not need to reveal their data
as they gain insights from its processing, allowing every
participating FI to benefit from use of each other’s
information.

In this paper, we thus ask the following two research
questions:

RQ1 How does FL based credit risk assessments
perform?

RQ2 Will FL help to reduce the disparities in risk
calculations between financial institutions?
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To answer these research questions, we developed
an FL-based credit risk assessment prototype. We
tested our prototype on Freddie Mac’s Single Family
Loan-Level Dataset (Freddie Mac, 2021b) to simulate
collaboration between FIs when assessing the credit
risk of mortgage portfolios. Mortgages are an
important financial instrument, but their typically long
time horizons complicate the task of making accurate
forecasts. Specifically, we compared the performance of
credit risk models under different scenarios to evaluate
and quantify the impact of information sharing. These
comparisons indicate that FL can offer significant
performance gains for smaller FIs with limited in-house
datasets. To the best of our knowledge, this paper is
the first to examine FL in assessing the credit risk of
mortgages with real-world FI divisions.

The research paper is structured as follows. Section
2 provides an overview of relevant literature on credit
risk assessment and federated learning. Moreover, it
presents previous research that studies the application
of FL in financial services. Section 3 describes the
implementation of our FL prototype. Section 4 details
the hypotheses, scenarios, and evaluation metrics we
used to examine the performance of our FL prototype.
Section 5 presents the results of our evaluation. Section
6 discusses the limitations of our study as well as
future research directions. Section 7 offers concluding
remarks.

2. Related Work

2.1. Credit Risk Assessment

Credit risk assessment methods have evolved over
time from traditional to advanced methods, but
essentially start and end in the same fashion. At the
start, data or information about the prospective mortgage
is gathered systematically. Subsequently, the newly
collected information is used to measure the likelihood
of the mortgage to experience credit risk events. The
likelihood of these events results in a score representing
the credit risk of the mortgage.

Performance of credit risk models is not only
dependent on the method used but also on data
inputs (Altman, 2002} Heitfield, 2009). Models trained
on larger datasets, for example, when sharing data, allow
for more real world data to be represented in the trained
model. As a result, changes to the quantity and quality
of data inputs have material impacts on the performance
of credit risk models.

Regulators and policymakers have called for
increased disclosure of credit risk related data
(on Banking Supervision, [2018) and developed

infrastructure to encourage voluntary sharing (Bank,
2010; Israél et al., 2017). However, concerns about
sharing data remain and are two-fold. Firstly, data
privacy laws, such as the EU’s General Data Protection,
prohibit data sharing without an appropriate legal basis.
Secondly, data typically offers a competitive advantage
to its holder (Kearns & Lederer, [2004; Redman, {1995}
Zuiderwijk et al., [2015). Therefore, companies are
often reluctant to share their data to avoid risking the
disclosure of valuable information.

2.2. Federated Learning

FL was introduced as a collaborative ML technique
in (McMahan et al., 2017; McMahan et al., 2016
and might help to mitigate privacy and competitiveness
concerns. In FL, data remains decentralized across
collaborating clients. These clients collaborate through
share information (or inferences) about the data rather
than the data itself. FL typically builds on one of
two algorithms: Federated Averaging (Fed-Avg) and
Federated Stochastic Gradient Descent (Fed-SGD). The
first algorithm shares model while the second model
gradients.

In FL (McMahan et al., 2017; McMahan et al.,
2016), there are typically two roles: clients and the
central server. The roles are the same for both Fed-Avg
and Fed-SGD. Clients host and locally compute ML
models locally using their own data. The central
server coordinates the sharing of the locally computed
information from clients by aggregating, averaging and
then distributing the averaged information back to the
collaborating clients.

There are four FL variants in standard practice,
with these based on the data structures and features
used to train the FL models: Horizontal, Vertical,
Transfer Learning, and Assisted Learning. Horizontal
FL requires that the data used to train each client
have the same data structure and features. Vertical
FL requires that each client has the same structure but
different data features. Transfer learning allows each
client to have different structures and features in their
data. Assisted Learning allows each client to train using
other clients’ errors.

The training of an ML model with FL follows an
iterative process as depicted in Figure [} The training
steps are as follows: initially, in (1), the central server
selects a list of collaborating clients and an ML model
to be run by each of the selected clients. Subsequently,
in (2), the central server communicates the selected
ML model to each randomly selected client. After
receiving the selected ML model, in (3), each client
simultaneously trains the selected ML model on their
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data and produces a newly trained model. In (4), each
client communicates to the central server the computed
results of their new ML models. Once the central

server has aggregated the information from all clients, in
(5), it will average the aggregated information. Lastly,
in (6) the aggregated information is relayed back to
each newly randomly selected subset of clients. This
collaborative training process continues repetitively
between steps (2) and (6) until a prescribed number of
rounds are complete, or a target goal is reached.

1§l

Figure 1. Diagram of Federated Learning process.

2.3. Federated Learning for Financial Services

FL is a relatively novel ML method that allows
disconnected entities to train ML models without
sharing their raw data. At the same time, there is
a burgeoning quantity of literature in various fields
which study the potential impact of FL on analytical
capabilities, such as medical imaging (Kaissis et al.,
2021), the Internet of Things (Aivodji et al., 2019),
and energy demand optimization (Saputra et al., 2019),
which study the potential impact of FL on analytical
capabilities.

FL is also gaining traction amongst financial services
businesses. For instance, Yang et al. (2019) proposes
a FL framework to train fraud detection models. They
use an anonymized real-world dataset of credit card
transactions from European cardholders provided by the
Université Libre de Bruxelles (ULB) ML Group. Their
framework demonstrates an increase in performance
of approximately 10% when implementing FL versus
conventional ML approaches. Zheng et al. (2020)
propose an FL framework to train meta-learning based
models. They test their proposed framework on four
publicly available credit card transaction datasets. These

tests demonstrate an increase in performance compared
to conventional meta-learning approaches.  Shingi
(2020) applies an FL model to predict loan defaults
using a modified learning algorithm for FL and a
Feed-Forward Network exhibiting a 3.88% increase in
performance. However, the current literature still lacks
real portfolio divisions of small, medium, and large
FI to create credit risk models that can consume large
datasets. Thus, we contribute to reducing this gap in our

paper.
3. Prototype

To evaluate empirically the effectiveness of FL in
assessing the credit risk of mortgages, we developed an
FL prototype. The developed FL prototype estimates
the probability of default of the underlying mortgages.
We use historical data of mortgage transactions and real
division of entities for our federated clients.

3.1. Data Source

The datasets used to train and test our FL
prototype are Freddie Mac’s Single-Family Loan-Level
(FMSFLL) (Freddie Mac, [2021b), Freddie Mac’s
House Price Index (FMHPI) (Freddie Mac, 2021al),
United States Bureau of Labor Statistics’ Local Area
Unemployment Statistics (LAUS) (United States Bureau
of Labor Statistics, [2021), and Federal Reserve
Economic Data (FRED) (Federal Reserve,2021). While
the FMSFLL dataset provides data directly related
directly to mortgage transactions, the FMHPI, LAUS,
and FRED datasets provide complementary data related
to economic and environmental factors.

The FMSFLL dataset holds historical records of
credit performance data on all mortgages that Freddie
Mac has purchased or guaranteed since 1999 and covers
approximately 45.5 million mortgages. The dataset has
two tables: origination and monthly. The origination
table has 35 variables and includes data relevant to
when the FI granted the mortgage to the applicant. The
monthly table concerns data relevant to the status of
the mortgage granted at monthly intervals. The Seller
Name” describes the originating financial institution that
initially funded the mortgage transaction at its inception.
It allowed us to isolate the mortgages that originated
from each FI as true portfolio holdings before Freddie
Mac acquired them.

We complemented the FMSFLL dataset with
the FMHPI, LAUS, and FRED datasets to include
relevant ’environmental’ factors for mortgage defaults.
Intuitively, the factors considered are general levels of
housing price, unemployment, delinquency, charge-off,
and interest rates. The FMHPI dataset holds historical
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housing price levels in the US by state. The LAUS
dataset holds historical unemployment levels in the US
by state. Lastly, the FRED dataset holds delinquency,
charge-off, and interest rate levels in the US at the
national level. As a result, the FL prototype considers
descriptive information about mortgages and relevant
’environmental’ factors for mortgage defaults.

3.2. Data Pre-processing

We pre-processed our combined dataset to make it
more accessible for our prototype. Firstly, due to the
large amount of variables, we reduced the number of
those we used to 31 (Table [T). Secondly, to reduce
the scope of our evaluation, we worked only with
data points from 2006 until 2009. We chose this
time frame because the US mortgage markets had a
high rate of defaults in those years, which provided
an ideal period to test our prototype. Thirdly, to
have a consistent terminating state, we only considered
mortgage records in the FMSFLL dataset which had
default and non-default “termination events” in the Zero
Balance Code variable. This only includes mortgage
records that experienced credit events such as “Third
Party Sale”, ”Short Sale or Charge Off”, “Repurchase
prior to Property Disposition”, and "REO disposition”.

After pre-processing, the combined dataset resulted
in 9.6M observations from 250k unique mortgages
previously held by 14 FIs.

3.3. Prototype Implementation

The combined dataset after pre-processing is
time-stamped at monthly intervals. As time-stamped
datasets allow for the consideration of temporal patterns,
we chose a Neural Network (NN) with four layers of
Long Short-Term Memory (Hochreiter & Schmidhuber,
1997) interspersed with dropout layers and two fully
connected layers.  Unlike fully connected layers,
LSTM layers have feedback connections with previous
neurons. These connections allow neurons to access
information about their former states so they can make
inferences about the future based on previous data.

In NN, the frequent use of dropout layers mitigates
overfitting (Srivastava et al.,[2014). During the training
phase, dropout will deactivate some neurons at random,
encouraging the network to find ways around previously
established patterns and preventing some neurons from
becoming a bottleneck in the architecture. As a result,
the selected architecture can find temporal patterns in
the development of the mortgage market (Sezer et al.,
2020).

We implemented the FL prototype using the
algorithm presented in (McMahan et al., 2017). In

Table 1. List of variables.
Variable Dataset Data-type
Channel FMSLL Discrete
Charge-Off Rate FRED Continuous
Combined Unemployment LAUS Continuous
Rate
Credit Score FMSLL Continuous
Cl..ll‘l‘e.nt Actual Unpaid FMSLL  Continuous
principal balance
Current Loan Delinquency FMSLL  Discrete
Status
Dc.ehnquency Due to FMSLL Discrete
Disaster
Delinquency Rate FRED Continuous
Estimated Loan-to-Value .
(ELTV) FMSLL Continuous
First Time Homebuyer Flag | FMSLL  Discrete
Fixed Rate Mortgage FRED Continuous
Average
House Price Index FMHPI  Continuous
Loan Age FMSLL  Continuous
Loan Purpose FMSLL Discrete
Loan Sequence Number FMSLL Discrete
Mortgage Insurance .
Percentage (MI %) FMSLL Continuous
Number of Borrowers FMSLL Continuous
Number of Units FMSLL Continuous
Occupancy Status FMSLL Discrete
Original Debt-to-Income .
(DTI) Ratio FMSLL Continuous
Original Interest Rate FMSLL Continuous
Original Loan Term FMSLL  Continuous
Original Loan-to-Value .
LTV) FMSLL  Continuous
Property State FMSLL Discrete
Property Type FMSLL Discrete
Property Valuation Method | FMSLL  Discrete
Remaining Months to .
Legal Maturity FMSLL  Continuous
Seller Name FMSLL Discrete
Super Conforming Flag FMSLL Discrete
Unemployment at FRED  Continuous
origination
Zero Balance Code FMSLL  Discrete

a first step, the central server initializes the baseline
model and distributes it to the FIs. In a second step,
the Fls start training the model sent by the central
server on their local data. In the training they conduct,
they use Stochastic Gradient Descend (SGD) (Robbins
& Monro, |[1951) as the model optimizer with the
parameters defined in Table[2] As we are implementing
Fed-Avg, the communication rounds happen after one
or more complete pass through the dataset, We found
10 internal rounds before averaging the optimal number
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of rounds. Once all the FIs have finished their training,
they share their models weights’ with the central server.
The central server averages the weights, creating a new
model. This model is then shared again with the Fls
until a pre-determined number of rounds is reached. In
our case, after 100 rounds, there was no improvement in
the performance metrics.

We simulated all the FIs and the communications
on the High-Performance Computing facilities of the
University of Luxembourg’s (Varrette et al.,[2014). The
hardware used was 256Gb of RAM and one 16Gb/32Gb
NVIDIA Tesla V100 depending on the allocation.
We implemented the FL architecture in TensorFlow
Federated “TensorFlow Federated” (2018)) while for the
Deep Learning modules we used Keras (Chollet et al.,
2015))

Table 2. Hyperparameters for FL models.

Parameter Value

Rounds before averaging 10

Baseline architecture 4x (LSTM + Dropout) +
2 Dense

Total number of FIs 14

Optimizer SGD

Optimizer Learning rate (L,.) 0.01
Optimizer Momentum (v¢y1) 0.9

Optimizer Decay (\) 1e-2/100
Batch size 128
Number of communication

100
rounds

4. Evaluation

To analyze the performance effects of the FL
prototype, we formulated a null and an alternative
hypothesis, defined metrics to measure performance,
and designed a series of scenarios to test the hypotheses.

4.1. Hypotheses

We formulated our null and alternative hypotheses
as follows: Given an FI's dataset F;: {F, Fy, ..., F,,}
and a global dataset D = {F; U F U ... U F,,} with
n being each individual FI, the null hypothesis (Hj) is
that the performance of models trained collaboratively
through FL on Fj is better than the performance of the
same model trained on F;. The alternative hypothesis
(H1), in turn, is that the performance of models trained
collaboratively through FL is worse than the same model
trained on Fj.

4.2. Evaluation Metrics

We used a range of standard metrics to measure the
performance levels of the models: Accuracy, Recall,
Precision, and F1. The performance of any classification
task could be summarized using four main indicators:
True positive (TP) representing the instances correctly
classified, similarly true Negatives (TP) where the
model correctly predicts the negative class. On the
other hand false positive (FP) represents the instances
incorrectly predicted as positive class. False negative
(FN) represents the instances incorrectly predicted as
negative class. Eq.[I] Accuracy describes the proportion
of correct predictions as opposed to the total number
of predictions. Eq. 2| Recall describes the proportion
of positive classifications that were correctly classified
over the all the positive instances Eq. [3] Precision
describes the proportion of positive classifications that
were correctly classified among all instances. Eq.f|F1 is
the equal weighted harmonic average of Eq.[2]and Eq.

y TP+ TN 0
ccuracy =
Y= TPYFP+TN + FN

TP
Recall = m (2)

TP
P Y an -
recision = PP 3)

2xTP

Fl1=
2+«TP+ FP+ FN

“4)

4.3. Evaluation Scenarios

We designed a series of five scenarios to test the null
hypothesis: 1) Local Model, 2) Central Model , 3a) FL,
3.b) FL without the biggest FI (n-1), and 3.c) FL without
the two biggest FIs (n-2). Each scenario represents a
hypothetical instance of credit risk assessment. Each
scenario uses data from the years 2006 to 2008 as
training data, and data from year 2009 as testing data.
We calculated the performance metrics for the five
scenarios in relation to the observed loan termination
status.

1. Local Model This scenario explores independent
FIs that only use the data at their immediate
disposal and without collaboration for credit risk
assessment. It denotes an ’imperfect information’
scenario in which FIs do not have access to each
other’s data. In this scenario, we trained one
model for each FI.
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Table 3. Scenario and the data they ingest.

Table 4. Performance comparison between scenarios.

Scenario Name Train data Tested data
1. Local Model Own Own
2. Central All All
3a. FL FL Local
3b. FL n-1 FL Local
3c. FL n-2 FL Local

2. Central This scenario represents a hypothetical
data lake in which all data is pooled together in
a singular or centralized data silo for credit risk
assessment. It represents a ’perfect information’
scenario in which all the data of every FI is
available. In this scenario, we trained one model
in a ’centralized’ manner.

3. (a) Federated Learning This scenario
represents collaboration using Horizontal
FL. Each FI stores their own data while
their data structure remains identical among
clients.

(b) Federated Learning without the biggest
bank This scenario explores collaboration
without Wells Fargo Bank, N.A. Wells Fargo
is the FI with the largest number of unique
mortgages in our dataset. It holds 40.21% of
the total number of unique mortgages.

(c) Federated Learning without the two
biggest FIs This scenario is similar to
the previous one and explores the impact
of removing the two biggest FIs. Wells
Fargo and Chase Home Finance are the
two FIs with the largest number of unique
mortgages. The two account for 52.59% of
the total number of unique mortgages.

To ensure that the results are robust and to normalize
the effects of NN’s random nature, we utilized a Monte
Carlo simulation (Kroese et al., 2014). The n in Table
presents the number of simulations for every particular
scenario. Additionally, we summarized the metrics by
the mean p and their standard deviation o. In the
Local Model scenario, we compute . and o across the
different FIs for each Monte Carlo simulation.

5. Results

Based on our simulations, we fail to reject the Hy
(the FLL model is better than the local model). The
hypothesis holds even for scenarios where the largest
and two largest FIs do not collaborate in training a
forecasting model to predict credit risk. To support our
rejection, we provide our simulation results in Table 4]

Scenario Accuracy  Recall Precision F1 score
1. Local Model | ;1 =95.04% 96.97% 89.76% 92.65%
n =10 o =0.0667 0.0249 0.1359 0.0879
2. Central 1w=9859% 99.8% 95.56% 97.49%
n =10 o =0.0263 0.0041 0.0845 0.0468
3a. FL ©=99.06% 98.81%  97.69% 98.25%
n =10 o =0.0002 0.0005 0.0008 0.0004
3b. FL n-1 ©=99.04% 98.74%  97.69% 98.21%
n =10 o =0.0002  0.0006 0.0011 0.0005
3c. FL n-2 10=99.04% 98.72%  96.82% 98.22%
n =10 o =0.0004  0.0007 0.0015 0.0007

We found that the local model results offer an
average performance worse than the other models.
Moreover, we found that the performance of the models
was proportional to the number of mortgages on which
they were trained. To quantify this effect, we fitted
a linear regression between the number of mortgage
records and the performance of the models. We found
that a 1% increase in the number of loans increased the
performance by an average of 0.06% with p = 0.02 <
0.05.

This relationship between data quantity and model
performance explains the variability in the evaluation
metrics. For example, the model for Metlife Home
Loans, a division of Metlife Bank, N.A., that holds
45340 mortgage observations (0.33% of the total
number of observations in our dataset), had 91.12%
recall, 75.97% accuracy, a F1 score of 69.44%, and
56.56% precision. Meanwhile, the Wells Fargo Bank
NA model with almost 4m mortgage observations
(40.20% of the total observations) had 98.97%, 97.95%,
97.35%, and 97.65% accuracy, precision, recall, and F1
score, respectively. In effect, we can conclude that the
higher the number of records per financial institution,
the higher their performance levels.

On the contrary, the central model created by all
FIs sharing their data in a silo outperforms the Local
Model scenario by a relatively average performance
increase of 4.27 percentage points (pp). However, the
difference is not significant between the central and FL
models. The difference is 0.57 pp in favor of the FL
model; this difference being negligible mainly due to the
stochasticity of the models.

Surprisingly, even when we excluded the FIs with
the most mortgage records (FL n-1 and FL n-2), the
performance levels still matched those of the Central
and FL scenario. Even without the 40.21% and
52.59% respectively of the total mortgage observations,
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performance did not drop significantly.

The standard deviation over our Monte Carlo
simulations (see Table]under o) indicates that there are
only minor variations across simulations, exemplifying
the robustness of the results. These findings demonstrate
that small-to-medium FIs could significantly improve
their credit risk assessments by joining forces with
others to create a collaborative FL model.

Overall, each FI holds different data. This
variation in data induces each FI to estimate credit
risk differently, sometimes creating overexposure and
other times underexposure. First, we explored how
these differences between models develop over time.
Thus, as an example, we considered two different loans,
F09Q10036282 and F09Q10037931, and explore how
different models estimate their risk throughout the life
cycle of the mortgage. We illustrate the results of
these two loans in Figure 2} where the former defaulted
(upper), whereas the latter did not (lower). For instance,
we can observe in the predictions for F09Q10036282
that even though all models correctly estimate its
default at the end, during the middle years, the default
estimations vary across FIs. Even in these two instances,
in Figure [2} the difference between the risk estimation
between Central and FL remains negligible.

Secondly, we measured these differences in risk
estimation over time. To do so, we calculated the
kernel density approximations (Rosenblatt, |1956) of
the differences in risk estimation. Individual FIs do
not have a complete view of the market and tend to
perform poorly in estimating risk distributions. As a
complementary step, we add Figure [3] which visualizes
how the Local Model estimates risk compared to both
Central and FL models. FIs deviate from both Central
and FL when calculating their risk. For example,
Metlife Home Loans, a Division of Metlife Bank, N.A.,
tends to underestimate risk (-25%). Another example
is Chase Home Finance LLC which overestimates by
around 7%.

Furthermore, Table 5] collects the simple average
of the default probability deviations and complements
Figure 3] In simple average terms, the Local Model
scenario underestimates the probability of default
compared to the Central Model and FL scenario at both
the initial (2.7% and 5.6%) and final month of mortgages
(6% and 4.3%). These results can be explained since
a single institution’s data has less variability than the
rest of the datasets combined. For instance, individual
FIs seem to better estimate risk at the beginning of
the mortgage but underestimate the default probability
at the end. These results are reasonable since an
accurate initial default estimation may be simpler to
make than analyzing the changing environmental and

—— FL == Gmac Mortgage, LLC
Central ——- Bank of America, N.A
- Wells Fargo Bank, N.A.
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Figure 2. Different models used to estimate default
probability.

macroeconomic conditions mortgages are subject to.
Hence, FIs could be failing to estimate the fat tails of the
market’s risk distribution (Taleb, |2020). In other words,
smaller FIs may not have access to a big-picture view of
the risk distribution.

Table 5. Simple average, standard deviation, min
and max values for Figure [3] For the local models,
the average is across mortgages and then across Fls.

Deviations Us o min max
Central at initial month -0.027 0.119 -0.579 0.639
Central at final Month -0.060 0.153 -0.980 0.929
FL at initial month -0.056 0.104 -0.710 0.465
FL at final Month -0.043  0.156 -0.968 0.971

FL to Central at initial | 0.028 0.061 -0.117 0.283
month
FL to Central at final | -0.017 0.048 -0.474 0.765
month

In essence, there are significant benefits to
collaboration through FL for smaller FIs. FIs whose
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—— AMTRUST BANK
—— BANK OF AMERICA, N.A.

—— BRANCH BANKING & TRUST COMPANY

CHASE HOME FINANCE LLC
CITIMORTGAGE, INC.
FIFTH THIRD BANK

Bank Name
GMAC MORTGAGE, LLC

METLIFE HOME LOANS, A DIVISION OF METLIFE BANK, N.A.

PROVIDENT FUNDING ASSOCIATES, L.P.
SUNTRUST MORTGAGE, INC.
—-—= TAYLOR, BEAN & WHITAKER MORTGAGE CORP.
--= U.S. BANK N.A.
—— WELLS FARGO BANK, N.A.

FLAGSTAR BANK, FSB
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Figure 3. Relative deviation by the local models compared with central and FL scenarios. On the right, the
comparison is between FL and Central.

datasets are large enough to approximate the overall
variability in the market, in turn, do not significantly
benefit from collaboration. Finally, we observe different
estimations of default probability by each FIs. These
differences vary during a mortgage. Therefore, each FI
should individually assess the benefits of applying FL to
the credit risk assessment of mortgages.

6. Limitations and Future Research

Our study is subject to two limitations: 1) in that we
used only a subset of our dataset; 2) in that we only used
the FMSFLL holding division; and 3) in that we worked
only with mortgages with final status.

While the full FMSFLL dataset contains
approximately 45 million unique mortgages spanning
from 1999 to 2022, we used only those 250k that where
active from 2006 to 2009. We focused on these years
as they had a high number of defaults (Murphy, |2008)).
Time frames with less defaults, in turn, might lead to
different results for the five scenarios. Further research
should thus extend our study also to such other time
frames.

Moreover, the FMSFLL dataset only includes
mortgages that Freddie Mac has bought. In reality,

the US FIs” mortage portfolio holdings contains more
mortgages than just the ones Freddie Mac bought. We
used the FMSFLL dataset because Freddie Mac is one of
the major players in the US residential mortgage market.
Furthermore, the portfolio holding divisions by each US
FI in the sample subset are not arbitrary or random but
based on true values and reflect mortgages that each US
FI originated or had once held. However, the study could
improve by including a hypothetical yet more realistic
representation of each FI’s mortgage portfolio holdings.

In addition, due to the high volume of loans
originated over these years, we limited the number of
mortgages by filtering out those with a final status so
that the ML models could accurately predict them. The
study could improve by modifying the models to handle
a higher number of loans.

7. Conclusions

In this research paper, we present an FL prototype
for the credit risk assessment of mortgages. We evaluate
this prototype with an empirical dataset and a scenario
analysis consisting of five scenarios. We find that
smaller financial institutions could benefit significantly
from collaboration with others through FL. On average,
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our FL prototype improved accuracy, recall, precision,
and F1 scores by 4.02, 1.84, 7.93, and 5.59 percentage
points respectively.

The work presented in this paper contributes to the
existing literature on the use of FL in financial services.
In particular, our study contributes the following:

1. We present a prototype that uses FL for credit risk
assessment of mortgages;

2. We demonstrate empirically the potential benefit
of using FL for the credit risk assessment of
mortgages.
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