
1

Trace Diagnostics for Signal-based Temporal
Properties

Chaima Boufaied, Claudio Menghi, Member, IEEE, Domenico Bianculli, Member, IEEE,
and Lionel C. Briand, Fellow, IEEE

Abstract—
Trace checking is a verification technique widely used in Cyber-physical system (CPS) development, to verify whether execution traces
satisfy or violate properties expressing system requirements. Often these properties characterize complex signal behaviors and are
defined using domain-specific languages, such as SB-TemPsy-DSL, a pattern-based specification language for signal-based temporal
properties. Most of the trace-checking tools only yield a Boolean verdict. However, when a property is violated by a trace, engineers
usually inspect the trace to understand the cause of the violation; such manual diagnostic is time-consuming and error-prone. Existing
approaches that complement trace-checking tools with diagnostic capabilities either produce low-level explanations that are hardly
comprehensible by engineers or do not support complex signal-based temporal properties.
In this paper, we propose TD-SB-TemPsy , a trace-diagnostic approach for properties expressed using SB-TemPsy-DSL. Given a
property and a trace that violates the property, TD-SB-TemPsy determines the root cause of the property violation. TD-SB-TemPsy
relies on the concepts of violation cause, which characterizes one of the behaviors of the system that may lead to a property violation,
and diagnoses, which are associated with violation causes and provide additional information to help engineers understand the
violation cause. As part of TD-SB-TemPsy , we propose a language-agnostic methodology to define violation causes and diagnoses. In
our context, its application resulted in a catalog of 34 violation causes, each associated with one diagnosis, tailored to properties
expressed in SB-TemPsy-DSL.
We assessed the applicability of TD-SB-TemPsy on two datasets, including one based on a complex industrial case study. The results
show that TD-SB-TemPsy could finish within a timeout of 1min for ≈ 83.66% of the trace-property combinations in the industrial
dataset, yielding a diagnosis in ≈ 99.84% of these cases; moreover, it also yielded a diagnosis for all the trace-property combinations
in the other dataset. These results suggest that our tool is applicable and efficient in most cases.

Index Terms—Diagnostics, Trace checking, Run-time verification, Temporal properties, Specification patterns, Cyber-physical
systems, Signals

✦

1 INTRODUCTION

C YBER-PHYSICAL system (CPS) development requires
engineers to verify whether the system meets its re-

quirements. In industrial contexts, verification is often per-
formed through trace-checking tools (e.g., [1, 2, 3, 4, 5, 6]).
Engineers collect traces, sequences of records representing
the behavior of the system, and use trace-checking tools
to check whether the traces satisfy or violate properties
expressing the system requirements. If properties are vio-
lated, the system has faults that need to be identified and
corrected.

• C. Boufaied is with the school of EECS, University of Ottawa, Ottawa,
ON K1N 6N5, Canada (e-mail:chaima.boufaied@uottawa.ca). Part of this
work was done when she was affiliated with the Interdisciplinary Centre
for Security, Reliability, and Trust (SnT) of the University of Luxembourg.

• C. Menghi is with University of Bergamo, Bergamo, Italy and McMaster
University, Hamilton, Canada (e-mail: claudio.menghi@unibg.it). Part
of this work was done when he was affiliated with the Interdisciplinary
Centre for Security, Reliability, and Trust (SnT) of the University of
Luxembourg.

• D. Bianculli is with the Interdisciplinary Centre for Security, Reliability,
and Trust (SnT) of the University of Luxembourg, Luxembourg (e-mail:
domenico.bianculli@uni.lu).

• L. Briand holds shared appointments with the Interdisciplinary Centre for
Security, Reliability, and Trust (SnT) of the University of Luxembourg,
Luxembourg and the school of EECS, University of Ottawa, Ottawa, ON
K1N 6N5, Canada (e-mail: lionel.briand@uni.lu).

In the case of pattern-based trace-checking tools, proper-
ties are expressed using pattern-based languages. Pattern-
based languages contain domain-specific constructs to ex-
press complex requirements [7] that increase their usability
in industrial contexts [8, 7]. In this work, we consider
requirements expressed in SB-TemPsy-DSL [1], a pattern-
based language that can express complex signal behaviors
based on a recent taxonomy [9]. This language enables
engineers to write properties describing important types of
requirements for industrial CPSs, through constructs that
express complex signal behaviors, such as spikes and oscil-
lations.

When a property is checked on a trace, trace-checking
tools usually provide a Boolean verdict: true if the trace
satisfies the property, false otherwise. When the property is
violated by a trace, engineers usually inspect the trace to
understand the cause of the violation, leading to the analysis
of a high number of records. For example, in our industrial
case study in the satellite domain, the average number of
records included in 361 traces is 438224. Inspecting a large
number of records, and checking the causes of property
violations, requires in general significant time. Additionally,
this activity is error-prone and engineers may fail to identify
the actual cause of the property violation. Therefore, they
need automated tools that can explain the reasons leading
to the violation of the properties. These tools should provide

2

diagnostic information enabling engineers to understand
the cause of violations.

Two complementary strategies were proposed in the
literature to help engineers in these activities: (i) isolat-
ing slices of traces that explain the property violation; and
(ii) checking whether traces show common behaviors that lead
to the property violation. These two complementary strategies
are discussed in the following.

Approaches that isolate slices of the trace that explain
the property violation (e.g., [10, 11, 12, 13]) usually assume
that the properties are specified using a logical formula. To
explain the property violation, these approaches iteratively
analyze the sub-formulae of the logical formula and identify
minimal slices of the trace that explain the satisfaction or
violation of each sub-formula. Using this approach, the
size of the explanation increases with the number of sub-
formulae of the logical formula expressing the property. For
properties expressed using pattern-based languages, which
provide domain-specific constructs encoding complex log-
ical formulae, using such an approach is likely to produce
large explanations that are hardly comprehensible by engi-
neers. Besides, none of these approaches was implemented
and evaluated on realistic case studies.

Approaches that check for the presence of common
behaviors leading to the property violation (e.g., [14, 15, 16]),
assume that such behaviors correspond to common causes
of such violation. Each cause therefore encodes one of the
behaviors, observed in the trace, that may lead to a property
violation and help explain it. However, existing approaches
do not support complex signal-based temporal properties
of CPS, such as the one expressed using SB-TemPsy-DSL.
Besides, it is unclear how to extend these approaches to
support signal-based temporal properties, since such ap-
proaches do not come with a precise methodology that de-
scribes how to add new causes that support more complex
properties.

In this work, we propose TD-SB-TemPsy, a trace-
diagnostic approach for signal-based temporal properties.
TD-SB-TemPsy takes as input a trace and a property ex-
pressed using SB-TemPsy-DSL and violated by the trace; it
provides as output an explanation that describes why the
property is violated on that trace.

To detect the source of the property violation, we define
the notions of violation cause and diagnosis. A violation cause
characterizes one of the behaviors of the system that may
lead to a property violation. For example, for a property
requiring a signal to show a spike with an amplitude and
a width lower than specific thresholds, the absence of any
spike behavior in a signal is a violation cause. Diagnoses
are associated with violation causes and provide additional
information to help engineers understand such causes. For
example, a diagnosis for the previous violation cause, for the
case in which the value of the signal is increasing over time,
contains two records (timestamps and signal values) where
the signal shows its minimum and maximum values, while
increasing. These values allow engineers to understand the
range of values taken by the signal while it exhibits an
increasing behavior.

We propose a novel methodology to define violation causes
and diagnoses (Section 5). Our methodology provides for-
mal guarantees of the soundness of the proposed violation

causes: if a violation cause holds on a trace, the correspond-
ing property is violated. Though we applied our methodol-
ogy to define violation causes for properties expressed using
SB-TemPsy-DSL, our methodology is language-agnostic and
can therefore be applied to other pattern-based specification
languages such as TemPsy [17] and FRETISH [18]. To fur-
ther support this claim, we also sketch how to apply our
methodology to one construct supported by the latter.

We present a catalog of 34 violation causes, each associ-
ated with one diagnosis, for signal-based temporal properties
expressed in SB-TemPsy-DSL (Section 6). These violation
causes are not complete as they do not encode all the
possible reasons that may lead to a property violation,
but are the results of applying our methodology in the
context of our industrial case study. Indeed, such a catalogue
of violation causes and diagnoses has been defined (and
validated) together with a group of system and software
engineers of our industrial partner, with the goal of maxi-
mizing the usefulness of a diagnosis for a certain violation
cause. However, following the same methodology, users can
add new violation causes depending on their specific needs
or on the requirements of particular domains.

We implemented TD-SB-TemPsy as a plugin for SB-
TemPsy-Check [1], a trace-checking tool for SB-TemPsy-
DSL. We assessed the applicability of TD-SB-TemPsy on
a large, proprietary industrial dataset from the satellite
domain (PROP-SAT), as well as a smaller dataset (AFC)
generated from a benchmark model used in the ARCH com-
petition [19]. TD-SB-TemPsy could finish within a timeout of
1min for ≈ 83.66% of the trace-property combinations in
the PROP-SAT dataset, yielding a diagnosis in ≈ 99.84% of
these cases; moreover, it also yielded a diagnosis for all the
trace-property combinations in the AFC dataset.

Significance. Since diagnoses were provided in ≈ 99.84%
of the cases for which no timeout occurred in the PROP-SAT
dataset, and in the totality of the trace-property combina-
tions in the AFC one, TD-SB-TemPsy was deemed widely ap-
plicable across trace-property combinations in both datasets.
Given the high expressiveness of SB-TemPsy-DSL, the many
violation causes and related diagnoses we have defined
in TD-SB-TemPsy, and the run-time performance of our
tool, we expect significant impact for this technology across
many CPS domains. Moreover, the methodology for defin-
ing violation causes and diagnoses can be adopted by other
researchers working on the problem of trace diagnostics in
the context of run-time verification.

To summarize, the main contributions of this paper are:
• TD-SB-TemPsy, a trace-diagnostic approach for signal-

based temporal properties expressed in SB-TemPsy-
DSL, based on the concepts of violation cause and di-
agnosis;

• a language-agnostic methodology for defining violation
causes and diagnoses, with formal guarantees of the
soundness of the proposed violation causes, and its
application to SB-TemPsy-DSL;

• a catalog of 34 violation causes, each associated with
one diagnosis, for signal-based temporal properties ex-
pressed in SB-TemPsy-DSL;

• a comprehensive evaluation of the applicability of TD-
SB-TemPsy on two datasets, including one based on a
complex industrial case study.

3

β 2.0 153.5 55.0 0.5 80.0 203.5 20.0 0.5

ρ 1.0 52.5 125.0 125.5 25.0 75.5 35.0 200.5

timestamp0.0 0.2 0.9 1.8 3.0 4.9 5.7 6.0

Record r3

Figure 1. A fragment of a trace from our case study.

Paper structure. This paper is organized as follows. Sec-
tion 2 introduces our case study from the satellite domain
and identifies concrete motivations for our work. Section 3
illustrates the syntax and semantics of SB-TemPsy-DSL.
Section 4 presents TD-SB-TemPsy, our pattern-based trace-
diagnostic approach. Section 5 describes our methodology
to define violation causes and diagnoses. Section 6 presents
the violation causes and diagnoses proposed in this work.
Section 8 reports on the evaluation of the applicability
of TD-SB-TemPsy on two datasets. Section 9 discusses the
practical implications of our approach. Section 10 surveys
related work. Section 11 concludes the paper, providing
directions for future work.

2 CASE STUDY AND MOTIVATIONS

Our case study is a satellite developed by our industrial
partner. This is a representative CPS as it contains many
complex software components that interact with actuators
and sensors of the satellite.

During the satellite development, and after its deploy-
ment, engineers collect traces that describe the behavior of
the satellite. A fragment of one of these traces is depicted
in Figure 1 and plotted in Figure 2. A trace is a sequence of
records that describe how the values of some signals change
over time. For example, the fragment of the trace in Figure 1
contains eight records. Each record contains a timestamp,
identifying the time at which the record was collected, and
the values assumed by some variables, each recording the
values of one of the monitored signals at that time. In
the example, the variables β and ρ record respectively the
signals representing the beta angle [20] and the pointing
error [21] of the satellite. For example, for record r3 the
timestamp is 0.9, and the values of the variables β and ρ
are respectively 55.0◦ and 125.0◦. The recording interval
of a trace is the difference between the maximum and the
minimum timestamps. For example, the recording interval
of the trace in Figure 1 is 6 s.

After the traces are collected, engineers analyze whether
the behaviors recorded in the traces satisfy the CPS require-
ments. An example of a requirement (inspired by the ones
from the case study) is the following:

R1: “Within the trace, the beta angle shall contain at least one
spike with an amplitude lower than 90◦ and a width less than

0.5 s”.

The beta angle is the angle between the orbital plane of the
satellite and the vector of the Sun (i.e., the direction from
which the Sun is shining). After deployment, the satellite
aligns its orbital plane. Therefore, β shall contain a spike
with an amplitude lower than 90◦. The trace shown in
Figure 1 violates the requirement R1. As we will discuss

0 1 2 3 4 5 6

0

50

100

150

200

250

Time (s)

V
al

ue
(◦

)

β ρ

Figure 2. Graphical representation of the trace in Figure 1.

Property ϕ ::= ϕ1 or ϕ2 | δ

Clause δ ::= δ1 and δ2 | α

Atom α ::= not sc | sc

Scope sc ::= globally p | before t p | after t p | at t p |
before p1 p | after p1 p |
between t1 and t2 p | between p1 and p2 p

Pattern p ::= assert c | s becomes ∼ v |
if p1 then [within ▷◁ t] p2 |
exists spike in s

[with [width ∼1 v1] |[amplitude ∼2 v2]] |
exist oscillation in s

[with [p2pAmp ∼1 v1][period ∼2 v2]] |
s rises [monotonically] reaching v |
s falls [monotonically] reaching v |
s overshoots [monotonically] v1 by v2 |
s undershoots [monotonically] v1 by v2

▷◁ ::= exactly | at most | at least

Condition c ::= c1 and c2 | c1 or c2 | s ∼ v

t, t1, t2 ∈ R; v, v1, v2 ∈ R; ∼∈ {<,>,=, <>,<=, >=};
s is a signal or a mathematical expression over the signals S defined in
property ϕ.

Figure 3. SB-TemPsy-DSL syntax.

in the next section, automated trace-checking tools, such as
SB-TemPsy-Check [1] (see section 3), can verify whether a
trace satisfies or violates a requirement. However, they do
not provide any additional information to help engineers
understand the cause of the violation. This means that en-
gineers have to manually inspect the values of the variables
recorded in the trace records and check why these values
led to the violation of the requirement. In our example,
looking at the plot in Figure 2, one can see that the two
spikes (i.e., spike1 and spike2 defined over the time intervals
[0, 1.8] and [1.8, 6.0]) of signal β have an amplitude value
(A1 = 153.5◦ and A2 = 203.5◦) greater than 90◦ and show
a width (w1 = 1.8 s and w2 = 4.2 s) greater than 0.5 s. Our
pattern-based diagnostic approach (see section 4) aims to
automatically detect the causes of requirement violation.

3 BACKGROUND: SB-TEMPSY-DSL
SB-TemPsy-DSL [1] is a domain-specific language for ex-
pressing requirements that concern signal-based temporal
properties. The syntax of SB-TemPsy-DSL is shown in Fig-
ure 3; optional items are enclosed in square brackets; the

4

λ |= ϕ1 or ϕ2 iff (λ |= ϕ1) ∨ (λ |= ϕ2); λ |= δ1 and δ2 iff (λ |= δ1) ∧ (λ |= δ2) ; λ |= not sc iff (λ ̸|= sc)

λ |= before t p iff ti < t ≤ te ∧ λ, [ti, t] |= p ; λ |= between n and m p iff ti ≤ n < m ≤ te ∧ λ, [n,m] |= p
λ |= globally p iff λ, [ti, te] |= p ; λ |= at t p iff ti ≤ t ≤ te ∧ λ, [t, t] |= p ; λ |= after t p iff ti ≤ t < te ∧ λ, [t, te] |= p
λ |= before p1 p iff ∀t1, t2, ((ti < t1 < t2 ≤ te ∧ λ, [t1, t2] |= p1) ⇒ ∃t3, t4, (ti ≤ t3 < t4 < t1 ∧ λ, [t3, t4] |= p))
λ |= after p1 p iff ∀t1, t2, ((ti ≤ t1 < t2 < te ∧ λ, [t1, t2] |= p1) ⇒ ∃t3, t4, (t2 < t3 < t4 ≤ te ∧ λ, [t3, t4] |= p))
λ |= between p1 and p2 p iff ∀t1, t2, t3, t4, ((ti ≤ t1 < t2 < t3 < t4 ≤ te ∧ λ, [t1, t2] |= p1 ∧ λ, [t3, t4] |= p2) ⇒ λ, [t2, t3] |= p)

λ, [tl, tu] |= assert c iff ∀t ∈ [tl, tu], (λ, t |= c). For every time instant t within [tl, tu], condition c holds.
λ, [tl, tu] |= s becomes ∼ v iff ∃t ∈ (tl, tu], (s(t) ∼ v ∧ ∀t1 ∈ [tl, t), (s(t1) ̸∼ v)). Formula s(t) ∼ v is true for some t, and for any time instant t1
before t, s(t) ∼ v is false.
λ, [tl, tu] |= exists spike in s [with [width ∼1 v1]β [amplitude ∼2 v2]γ]α iff ∃t1, t2, t3, t4, t5 ∈ [tl, tu], (t1 < t2 < t2 < t3 < t4 < t5 ∧
uni_m_max(s, t2, [t1, t3])∧uni_sm_min(s, t3, [t2, t4])∧uni_m_max(s, t4, [t3, t5])[[∧(t3−t1) ∼1 v1]β [∧max((s(t2)−s(t3)), (s(t4)−s(t3))) ∼2

v2]γ]α). Signal s has a strict maximum within two (non strict) minima. The values v1 and v2 constrain the width and the amplitude of the spike.∗
λ, [tl, tu] |= exist oscillation in s [with [period ∼1 v1]ζ [p2pAmp ∼2 v2]ϵ]δ iff ∃t1, t2, t3, t4, t5 ∈ [tl, tu], (t1 < t2 < t2 < t3 < t4 <
t5 ∧ uni_sm_max(s, t2, [t1, t3]) ∧ uni_sm_min(s, t3, [t2, t4]) ∧ uni_sm_max(s, t4, [t3, t5])[[∧(t4 − t2) ∼1 v1]ζ [∧(s(t2)− s(t3)) ∼2 v2 ∧ (s(t4)−
s(t3)) ∼2 v2]ϵ]δ). Signal s shows a strict maximum within two strict minima. The values v1 and v2 constrain the period and the amplitude of the
oscillation.∗
λ, [tl, tu] |= s rises [monotonically]α reaching v iff ∃t ∈ (tl, tu], (s(t) ≥ v ∧ ∀t1 ∈ [tl, t), (s(t1) < v)[∧monot(s, tl, t)]α). There exists a
time instant t where s(t) ≥ v, and for any time instant t1 before t, s(t1) < v. The character α labels the formula indicating that the signal shall
rise monotonically.
λ, [tl, tu] |= s overshoots [monotonically]α v1 by v2 iff ∃t ∈ (tl, tu], (s(t) ≥ v1 ∧ ∀t1 ∈ [t, tu], (s(t1) ≤ v1 + v2) ∧ ∀t2 ∈ [tl, t)(s(t2) <
v1)[∧monot(s, tl, t)]α). Signal s is initially lower than v1. It then exceeds v1 at time instant t by remaining below v1 + v2. The character α labels
the formula indicating that the signal shall overshoot monotonically.
λ, [tl, tu] |= if p1 then [within ▷◁ d]α p2 iff ∀t1, t2 ∈ [tl, tu), ((t1 < t2 ∧ λ, [t1, t2] |= p1) ⇒ ∃t3, t4 ∈ [t2, tu], (t3 < t4 ∧ λ, [t3, t4] |=
p2[∧(t3 − t2)J▷◁Kd]α)) where J▷◁K is such that JexactlyK ≡ ‘=’, Jat mostK ≡ ‘<=’, Jat leastK ≡ ‘>=’. If pattern p1 holds in an interval [t1, t2],
then pattern p2 holds in a subsequent interval [t3, t4].

λ, t |= c1 and c2 iff (λ, t |= c1) ∧ (λ, t |= c2) ; λ, t |= c1 or c2 iff (λ, t |= c1) ∨ (λ, t |= c2) ; λ, t |= s ∼ v iff s(t) ∼ v

t, t1, t2 ∈ R; v, v1, v2 ∈ R; ∼∈ {<,>,=, ̸=,≤,≥}; s is a signal in S or a mathematical expression over the signals in S.
monot(s, t1, t2) ::= ∀t3 ∈ [t1, t2),∀t4 ∈ (t3, 2], (s(t3) < s(t4)).
uni_m_max(s, t, [ta, tb]) ::= s(t) = x and ∀t1 ∈ [ta, tb], s(t1) < x and ∀t1, t2 ∈ [ta, t], if t1 < t2 then s(t1) ≤ s(t2) and ∀t1, t2 ∈ [ta, t], if t1 <

t2 then s(t1) ≥ s(t2)
uni_sm_max(s, t, [ta, tb]) ::= s(t) = x and ∀t1 ∈ [ta, tb], s(t1) < x and ∀t1, t2 ∈ [ta, t], if t1 < t2 then s(t1) < s(t2) and ∀t1, t2 ∈ [ta, t], if t1 <

t2 then s(t1) > s(t2)
∗ We present the case where a (strict) minimum is followed by a strict maximum followed by a (strict) minimum. The dual case can be derived
from our formulation. Similarly, we present the predicates that characterize a local (strict) maximum (uni_m_max and uni_sm_max). Their dual
case, i.e., the predicates that characterize a local (strict) minimum (uni_m_min and uni_sm_min) can be derived from the above formulations.

Figure 4. SB-TemPsy-DSL formal semantics (based on [1])

symbol ‘|’ separates alternatives.1 A property is a disjunction
of clauses. A clause is a conjunction of atoms. An atom is
defined in terms of a scope (non-terminal sc) or the negation
operator (not) applied to constructs of type scope (sc).
A scope operator constrains a pattern (non-terminal p) to
hold within a given time interval. There are two types of
scope operators: absolute scopes and event scopes. Absolute
scopes are delimited by absolute time instants (e.g., before
t p). Event scopes are delimited by other patterns (e.g.,
before p1 p). A pattern (e.g., exists spike in s [...])
specifies a constraint on the behavior of one or more signals.
A condition, which is used within the assert c pattern, is a
comparison (s ∼ v) between the value of a signal s and the
value v, or a combination of two conditions with the and
and or logical operators.

SB-TemPsy-DSL supports the following patterns:
• assert indicates an event-based data assertion. It

specifies a constraint on the value of a signal. A re-
quirement with the assert construct is as follows:
R2: The beta angle shall vary between 90◦ and −90◦.
The corresponding SB-TemPsy-DSL specification of the
pattern is: p2 ≡ assert β <= 90 and β >=− 90

1. The grammar of SB-TemPsy-DSL considered in this paper is
slightly different from the original one [1]. Any SB-TemPsy-DSL prop-
erty can be rewritten following this grammar by using standard rewrit-
ing rules [22].

• becomes represents a state-based data assertion. It
specifies a state of the signal, within a specific time in-
terval, that satisfies a condition, which was not satisfied
before that interval. A requirement with the becomes
construct is as follows:
R3: the value of signal RWS_command shall become
greater than 0. The corresponding SB-TemPsy-DSL
specification of the pattern is:
p3 ≡ RWS_command becomes > 0

• rises indicates a constraint on the transient behavior
of a signal, while it reaches, possibly monotonically, a
target value. Its dual behavior is called falls.
A requirement with the rises construct is as follows:
R4: The X_cur signal of the sun sensor shall rise
monotonically reaching the value of 3650µA. The cor-
responding SB-TemPsy-DSL specification of the pattern
is:
p4 ≡ X _cur rises monotonically reaching 3650

• overshoots specifies a maximum value (i.e.,
above the target value) that a signal can reach
when overshooting (i.e., when it exceeds the target
value). The pattern can possibly be defined with a
monotonicity constraint that requires a monotonic
increase of the signal prior to reaching its target value.
The dual behavior of this pattern is called undershoot
and is expressed with the keyword undershoots.

5

A requirement with the overshoots construct is as
follows:
R5: The X_cur signal of the sun sensor shall
monotonically overshoot the value of 3650µA by
at most 50µA. The corresponding SB-TemPsy-DSL
specification of the pattern is:
p5 ≡ X _cur overshoots monotonically 3650 by 50.

• spike specifies a large increase (or decrease) of the
value of a signal. A spike is characterized by three
extrema (one strict maximum surrounded by two local
minima if it represents an increase of the signal, or one
strict minimum surrounded by two local maxima if it
represents a decrease of the signal). A requirement with
the spike construct is as follows:
R6: The beta_angle signal shall show a spike with an am-
plitude less than 90◦. The corresponding SB-TemPsy-
DSL specification of the pattern is:
p6 ≡ exists spike in beta_angle
with amplitude < 90.

• oscillation specifies a repeated variation, over time,
of the signal value. During an oscillatory behavior,
the signal value swings from one extremum to the
adjacent extremum of the same type (i.e., maximum or
minimum) by traversing an extremum of the other type.
A requirement with the oscillation construct is as
follows:
R7: The velocity of the satellite along the X_axis signal
shall oscillate with a maximum amplitude of 8000 km
per hour and a maximum period of 180min. The cor-
responding SB-TemPsy-DSL specification of the pattern
is:
p7 ≡ exist oscillation in X _axis
with p2pAmp <= 8000
with period <= 180.

• if-then represents a constraint on a response behavior
of one or two signals, where a pattern (i.e., effect pat-
tern) shall hold some time after a trigger pattern (i.e.,
cause pattern) has held in the past. A requirement with
the if-then construct is as follows:
R8: If the value of signal not_Eclipse is equal to 0, then
the value of signal sun_currents should eventually be
equal to 0. The corresponding SB-TemPsy-DSL specifi-
cation is:
p8 ≡ if not_Eclipse = 0 then sun_currents = 0

The syntax of SB-TemPsy-DSL enables engineers to de-
fine the property ϕ1 expressing requirement R1 (see Sec-
tion 2) as: ϕ1 ≡ globally exists spike in β with
width <0.5 amplitude < 90. Note that this property is
made by a single atom (represented by the globally scope
construct, which is applied to a pattern p).

The semantics of each construct η of SB-TemPsy-DSL is
shown in Figure 4, which is divided into four parts. The
first part contains the semantics of properties, clauses, and
atoms. The other three parts address the semantics of scopes,
patterns, and conditions. The semantics of a construct η is
the formula ζ(η) (in first-order logic) written on the right
side of the iff (if and only if) sign.

Recall from section 2 that a trace λ is a sequence of
records that describe how the values of one or more signals
in the set S = {s1, s2, . . . , sn} change over time. More
precisely, each record contains a timestamp, identifying the

time at which the record was collected, and the values
assumed by some variables, each recording the values of
one of the monitored signals in S at that time. For prop-
erties, the semantics specifies the conditions that make a
property ϕ satisfied by the trace λ, i.e., λ |= ϕ. For example,
the semantics of ϕ1 or ϕ2 requires at least one of them
to hold on trace λ. For scopes, the semantics specifies the
conditions that make a scope sc satisfied on the trace λ,
i.e., λ |= sc. For example, the semantics of the globally
scope indicates that a pattern p scoped by the globally
operator holds on the trace λ if the pattern p holds on the
interval of the trace λ delimited by the timestamps ti and
te. The timestamps ti and te indicate the initial and the last
timestamps of the trace. For patterns, the semantics specifies
the conditions that make a pattern p satisfied on the interval
of the trace λ delimited by the timestamps tl and tu defined
by a given scope, i.e., λ, [tl, tu] |= p. Figure 4 also includes
an informal description of the pattern semantics, after the
formal definition. For example, the semantics of pattern
“exists spike in s with width ∼1 v1 amplitude ∼2

v2” specifies that signal s shows a spike behavior with
a width satisfying the constraint “∼1 v1” and an ampli-
tude satisfying the constraint “∼2 v2”. A spike informally
denotes a temporary (large) increase (or decrease) of the
value of a signal. It occurs when the signal has a strict
maximum surrounded by two minima (or a strict minimum
surrounded by two maxima). This behavior can be subjected
to additional constraints on the width (i.e., the difference
between the time instants at which the two minima — or the
two maxima occur) and on the amplitude (i.e., the difference
between the maximum and minimum values of the signal).
Finally, the semantics of conditions specifies how to satisfy
a condition c for a trace λ at time instant t, i.e., λ, t |= c. For
example, the semantics of c1 and c2 requires both c1 and c2
to hold on the trace λ at timestamp t.

SB-TemPsy-DSL is supported by SB-TemPsy-Check [1],
an automated, model-driven trace-checking tool that veri-
fies whether a property is satisfied or violated by a given
trace. SB-TemPsy-Check yields a Boolean verdict: true if the
property is satisfied, false otherwise. For example, when
property ϕ1 is checked on the trace shown in Figure 1,
SB-TemPsy-Check returns the false verdict. However, SB-
TemPsy-Check does not provide any additional information
to help engineers understand the cause of the violation. Our
trace diagnostic approach aims to solve this problem.

4 PATTERN-BASED TRACE DIAGNOSTIC

This section describes TD-SB-TemPsy, our trace-diagnostic
approach. At the core of the approach, there is the com-
putation of violation causes and diagnoses. A violation cause
characterizes one of the possible behaviors of the system
that may lead to the property violation. An example of
violation cause for property ϕ1 and the trace in Figure 2
is that all the spikes have an amplitude greater than or
equal to 90◦. A diagnosis provides additional information
to explain the violation cause. For example, a diagnosis for
the previous violation cause is the amplitude A1 = 150◦

and the time interval [0 s, 1.8 s] of spike spike1, that is the
closest (among those contained in the trace) to satisfy the
amplitude constraint of property ϕ1.

6

Algorithm 1 TD-SB-TemPsy
Inputs. λ: trace

ϕ: violated property
Outputs. diags: set of diagnoses instances

1: function TD-SB-TEMPSY(λ, ϕ)
2: diags={};
3: PropertyAtoms=GETATOMS(ϕ);
4: for α in PropertyAtoms do
5: if CHECKATOMONTRACE(λ,α)==false then
6: diags.add(TD-ATOM(λ,α))
7: return diags;

Algorithm 2 TD-SB-TemPsy - Atoms
Inputs. λ: trace

α: violated atom
Outputs. diag: diagnosis for α (if available)

1: function TD-ATOM(λ,α)
2: vcs=GETVIOLATIONCAUSES(α);
3: for i=0; i<vcs.size(); i++ do
4: if CHECKVIOLATIONCAUSE(λ,vcs[i])==true then
5: return GETDIAGNOSIS(λ,vcs[i]);
6: return null;

Algorithm 1 shows the main steps of TD-SB-TemPsy.
The inputs of TD-SB-TemPsy are a trace λ and a property
ϕ violated by λ. Trace λ is a set of consecutive records
that contain the values of the variables at different time
instants, such as the trace depicted in Figure 1. Property ϕ is
a specification of a requirement in SB-TemPsy-DSL defined
according to the grammar presented in Figure 3.

The algorithm relies on the following intuition. Based on
the SB-TemPsy-DSL grammar shown in Figure 3, property ϕ
is specified as a disjunction of clauses. Since the property is
violated, the disjunction evaluates to false; this means that
all its clauses must be violated. To be violated, each clause
must contain one or more violated atoms (since a clause is
a conjunction of atoms). Therefore, to explain the violation
of property ϕ, we return the diagnoses (if available2) for all
the violated atoms of ϕ. Each diagnosis explains why the
corresponding atom is violated.

Algorithm 1 works as follows. After initializing a set
of diagnoses instances to be returned (line 2), it extracts
all the atoms from property ϕ by analyzing its abstract
syntax tree (line 3). Then, it iteratively analyzes each atom
(line 4). It first checks, by calling a trace checker for SB-
TemPsy-DSL like SB-TemPsy-Check [1], if the atom is vio-
lated by the trace (line 5). If it is the case, the algorithm
computes (through algorithm TD-ATOM described below)
the diagnosis (if available) that explains why the atom is
violated (line 6). Finally, the algorithm returns the set of
the computed diagnoses instances (line 7). TD-SB-TemPsy
returns a diagnosis if the set of the computed diagnoses
instances is not empty.

Computing the diagnosis. Algorithm 2 describes how to
compute the diagnosis for an atom of an SB-TemPsy-DSL
property. The inputs of TD-ATOM are a trace λ and an atom
α violated by λ.

To compute the diagnosis for atom α, Algorithm 2 ex-
tracts the violation causes associated with the atom (line 2)
by calling the auxiliary function GETVIOLATIONCAUSES,

2. As we will discuss later on, it is possible for a violated atom not to
have any diagnosis.

which relies on a predefined mapping associating each type
of atom of SB-TemPsy-DSL with one or more violation
causes (see section 6). A violation cause encodes a behavior
that may lead to the violation of an atom. For example,
a violation cause for the atom of property ϕ1 defined in
Section 2 is the following:

c_spike1: all the spikes in signal β violate the amplitude
constraint.

If the behavior captured by this violation cause holds, the
atom of formula ϕ1 is violated. The violation of an atom can
be caused by a violation of the scope used in the atom (or
its negation), a violation of the pattern constrained by the
scope, or both. Function GETVIOLATIONCAUSES returns a
list of violation causes, sorted such that violation causes of
the scope precede the violation causes of the pattern3. Then,
the algorithm loops through this list of violation causes
(line 3). The loop body includes a check that determines
whether the violation cause holds on the trace (line 4);
this is achieved through the call of the auxiliary func-
tion CHECKVIOLATIONCAUSE. If the violation cause holds,
the algorithm stops, returning the corresponding diagnosis
(line 5) using the auxiliary function GETDIAGNOSIS, which
relies on a predefined mapping of diagnoses for each type
of violation cause (see section 6). A diagnosis is relevant
information that enables engineers to understand why a
violation cause holds on a trace. For example, the diagnosis
for the violation cause c_spike1 is the following

d_spike1: the amplitude a and the time interval [t1, t2] of the
spike that is the closest to satisfy the amplitude constraint.

The amplitude value of the spike that is the closest to satisfy
the amplitude constraint enables engineers to determine
how close is the atom to be satisfied. The time interval
[t1, t2] enables engineers to isolate the portion of the trace
containing that spike and to inspect the values assumed by
the variables within the records included in this portion of
the trace. The amplitude A1 = 150◦ and the time interval
[0, 1.8] of spike1 in Figure 2 is an instance of the d_spike1
diagnosis for our case study. Diagnoses like d_spike1 help
engineers understand why an atom is violated by a trace. If
all the violation causes are checked and none of them led
to the computation of diagnoses, a null value is returned
(line 6).

In the following, we present our methodology to define
violation causes and diagnoses.

5 METHODOLOGY FOR DEFINING VIOLATION
CAUSES AND DIAGNOSES

This section describes our methodology to define violation
causes and diagnoses by using SB-TemPsy-DSL as an ex-
ample. Our methodology considers each construct η used to
define an atom α of SB-TemPsy-DSL and follows three steps:
behavior analysis, definition of violation causes, and definition of
diagnoses.

3. The priority of the different violation causes is application-specific.
Our current implementation is based on the feedback received by the
engineers of our industrial partners

7

5.1 Behavior Analysis
It identifies traces capturing relevant behaviors that violate
the semantics of construct η as follows.

1) It considers an instance of construct η obtained by
selecting some values for its parameters. This instance
is a concrete example utilized to identify the relevant
behaviors that violate η. For example, for the spike
construct of SB-TemPsy-DSL (see Figure 3), we consid-
ered the instance “exists spike in β with width
< 0.5 amplitude < 90 ”, which sets the parameters s,
∼1, v1, ∼2, and v2 to the values β, “<”, 0.5, “<”, and 90
respectively.

2) It considers the logical formula ζ(η) describing the se-
mantics of the construct η. For example, for the spike
construct the logical formula describing its semantics
is reported in Figure 4 (on the right side of the iff
operator).

3) It identifies traces capturing relevant behaviors that
violate the instance of construct η (i.e., that make for-
mula ζ(η) evaluate to false).
For example, Figure 5 shows a trace with four signals
(β1, β2, β3, and β4) that violate the instance we con-
sidered for the spike construct; for instance, signal β4

does not contain a strict maximum.

0 1 2 3 4 5 6
0

50

100

150

200

250

Timestamp

V
a
l
u
e

β1 β2 β3 β4

Figure 5. A trace with signals violating the expression “exists spike
in β with width < 0.5 amplitude < 90”.

5.2 Definition of Violation Causes
It characterizes each of the traces identified by the behavior
analysis step through a violation cause. Each violation cause
vc is defined by writing a logical formula ζ(vc) that specifies
its semantics; the formula ζ(vc) is true when trace λ satisfies
violation cause vc.

For example, the shape of signal β3 can be defined, with
respect to a trace λ delimited by timestamps ti and te,
through the logical formula:

c_spike4 ≡ ∀t1 ∈ [tl, tu), (∀t2 ∈ (t1, tu], (s(t1) ≥ s(t2))).

This formula characterizes the behavior for which a signal
s decreases. More precisely, c_spike4 holds on a trace λ
if, for any timestamp t1 within tl and tu, the value s(t1) of
signal s at timestamp t1 is greater than or equal to the value
s(t2) of signal s for any timestamp t2 that follows t1.

Violation causes for SB-TemPsy-DSL are illustrated in
section 6 (and summarized in Figure 7). The formula ζ(vc)

characterizing the semantics of each violation cause is re-
ported on the right side of the iff operator.

Since violation causes should encode root causes leading
to property violations, a violation cause vc for a construct η
should satisfy the following relation:

if ζ(vc) = true, then ζ(η) = false

Intuitively, if violation cause vc holds on trace λ, i.e., for-
mula ζ(vc) is true, the trace λ should violate construct η,
i.e., formula ζ(η) should be false. To check the satisfaction
of this relation, we automatically verified that the formula

Ψ ≡ ζ(vc) ⇒ ¬ζ(η)

holds. Formula Ψ holds if, whenever the violation cause
holds (ζ(vc) is true), the construct η does not hold (ζ(η)
is false). To check if formula Ψ holds, we verified whether
the formula ¬Ψ is unsatisfiable. If the formula ¬Ψ is unsat-
isfiable, Ψ always holds. We used Microsoft Z3 [23] — an
industry-strength tool — to check if ¬Ψ is unsatisfiable. For
example, Z3 confirmed that the formula ¬Ψ obtained by
considering the c_spike4 violation cause and the spike
construct is unsatisfiable. Therefore, whenever violation
cause c_spike4 holds, the spike construct is violated.

5.3 Definition of diagnoses

It defines a diagnosis for each of the violation causes. To
define each diagnosis, we (i) analyzed the semantics of the
corresponding violation cause, and (ii) identified minimum
relevant information that enables engineers to understand
why a violation cause holds on a trace.

For example, the diagnosis for violation cause
c_spike4, denoted by d_spike4, includes the lowest and
the highest values of signal s within the trace. These val-
ues allow engineers to understand the range of values of
signal s while it exhibits a decreasing behavior. For exam-
ple, for signal β3 in Figure 5, the diagnosis for violation
cause c_spike4 is ⟨⟨0, 200⟩, ⟨6, 55⟩⟩ showing that signal
β3 reaches its maximum value (200) at timestamp 0 and
its minimum value (55) at timestamp 6. In this particular
case, when the signal does not show any spike, this is some
information required for the engineers to understand why
this particular violation was caused.

The diagnoses associated with the violation causes
shown in Figure 7 are illustrated in section 6 (and summa-
rized in Figures 8–9).

5.4 Properties of the methodology

Our methodology provides formal guarantees of the sound-
ness of the proposed violation causes: if a violation cause
holds on a trace, the corresponding property is violated.

We remark that the methodology relies mostly on man-
ual steps (except for proving, using a solver like Z3, that the
proposed violation causes can lead to unsatisfiable prop-
erties). Moreover, the methodology cannot guarantee the
completeness of the set of violation causes resulting from
step “Definition of violation causes”.

Though we applied our methodology to define violation
causes for properties expressed using SB-TemPsy-DSL, our
methodology is language-agnostic, in the sense that it can

8

be applied to other pattern-based languages like TemPsy [17],
FRETISH [18] and, more in general, languages based on
specification pattern catalogues (such as those for robotic
missions [7]). More specifically, this claim is supported by
the fact that, in the definition of the methodology, we
only refer to generic syntactic constructs of the specifica-
tion language and generic logical formulae capturing their
semantics (which we assume to be available in formal
syntax and semantics definitions), as well as generic logical
formulae of violation causes (which have to be defined from
scratch). The restriction to pattern-based languages is due
to the fact that we assume the existence of some pattern-
based structure in the syntax of the specification language.
We also remark that the methodology would not work for
specification languages in which the Boolean and temporal
operators are less constrained (e.g., STL).

For the sake of illustration, in the rest of this subsection,
we show how to apply the methodology to one construct
supported by FRETISH.

Behavior Analysis
Let us consider the FRETISH scope construct only in
mode [24]; it informally indicates that a requirement shall
only hold within the time interval delimited by the scope
boundaries (also called endpoints). More specifically, it re-
stricts the satisfaction of that requirement to only the time
interval delimited by the scope boundaries. In other words,
this implies that the requirement shall be violated within the
remaining time interval(s) outside the interval determined
by the scope boundaries. Let us consider the following
requirement

RF: “Only in mode M, signal s shall be less than or equal to 3”.

The corresponding FRETISH specification is the following:

ϕf ≡ only inM mode s shall satisfy s < 3

0 1 2 3 4 5 6 7
0

1

2

3

4

5

Timestamp

V
a
l
u
e

β1 β2

Figure 6. A trace with signals violating the expression “only in M
mode s shall satisfy s < 3".

The logical formula describing the formal semantics of
a property with the only in mode construct is defined as
follows:
λ |= only in M mode s(t) ∼ v iff ∀t1 ∈ [ftp,fim), s(t) ̸∼
v ∧ ∀t2 ∈ (lim, ltp], s(t) ̸∼ v. Informally, given a trace length
delimited by the ftp and ltp time points where ftp < ltp, and
a time interval [fim, lim] in which mode M holds, where

fim ≥ ftp and lim ≤ ltp, the definition of the semantics
of the only in mode construct indicates that the property
condition (s ∼ v) shall not be satisfied outside of the scope
interval [fim, lim].

We identify two possible relevant behaviors that violate
an instance of the only in mode construct (i.e., that make
formula ϕf evaluate to false).

As depicted in Figure 6, let us consider a trace defined
within the time horizon delimited by the first time point ftp
and the last time point ltp (0 and 7 in the figure, respec-
tively). M holds within the time interval [2, 4] (delimited
by the dashed green lines in the figure) where timestamp
2 is referred to as fim (first in mode) and timestamp 4
represents the last timestamp in mode M (lim), such that
ftp ≤ fim < lim ≤ ltp. For property ϕf to be violated,
s < 3 shall be satisfied outside the interval [fim, lim];
this means that s < 3 is satisfied either within the time
interval [ftp,fim) or within the time interval (lim, ltp]). For
instance, signal β1 in the figure satisfies the condition, since
its value is less than 3 (i.e., ranging between 1 and 1.5) in
the time interval [0, 1] before mode M holds (i.e., in the time
interval [2, 4]). Similarly, signal β2 in the figure satisfies the
condition, since its value ranges between 0.7 and 2 (1.5, 2
and 0.7) in the time interval [5, 7], which is an interval in
which mode M does not hold.

Definition of Violation Causes

In the following, we define and formalize two violation
causes that, when satisfied, lead to the violation of property
ϕf .

• c_only_in_mode1: Some time before mode M starts
holding, the signal satisfies the property condition.
However, the signal does not satisfy the constraint after
mode M stops holding. Formally, the violation cause is
defined through the following logical formula:
λ |= c_only_in_mode1 iff ∃t1 ∈ [ftp,fim), s(t) ∼
v ∧ ∀t2 ∈ (lim, ltp], s(t) ̸∼ v.
For instance, signal β1 in the figure takes values ranging
between 1 and 1.5 in the time interval [0, 1] before mode
M started holding. However, β1 violates the constraint
(i.e., β1 ≥ 3) by taking values ranging between 3.8 and
4.8 (4.8, 4.5 and 3.8) within the time interval [5, 7], after
mode M stopped holding.

• c_only_in_mode2: Some time after mode M stops
holding, the signal satisfies the property condition.
However, the signal does not satisfy the constraint
before mode M starts holding. Formally, the violation
cause is defined through the following logical formula:
λ |= c_only_in_mode2 iff ∃t2 ∈ (lim, ltp], s(t) ∼
v ∧ ∀t1 ∈ [ftp,fim), s(t) ̸∼ v. For instance, signal β2 in
the figure takes values ranging between 0.7 and 2 (1.5, 2
and 0.7) in the time interval [5, 7]. However, β2 violates
the constraint (i.e., β2 ≥ 3) within the time interval [0, 1]
(showing values 4.5 and 4), right before mode M starts
holding.

Similar to what we did before with SB-TemPsy-DSL vio-
lation causes, we used Z3 to confirm that the formulae ¬Ψ
obtained from the two violation causes c_only_in_mode1
and c_only_in_mode2 were unsatisfiable.

9

Definition of diagnoses

We propose the following diagnoses related to the sat-
isfaction of the violation causes c_only_in_mode1 and
c_only_in_mode2:

• d_only_in_mode1 includes the first record (times-
tamp and the corresponding signal value) in which
the signal satisfies the property condition, right before
mode M starts holding. The choice of this diagnosis is
motivated by the fact that we are interested in reporting
the root cause of the property violation. More formally,
we have:
d_only_in_mode1 = ⟨t, s(t)⟩ | t ∈ [ftp,fim), s(t) ∼
v ∧ ∀t1 ∈ (lim, ltp], s(t1) ̸∼ v ∧ ∀t2 ∈ [ftp, t), s(t2) ̸∼ v,
where t represents the first timestamp in which the
signal satisfies the property condition (i.e., s(t) ∼ v)
before mode M starts holding and s(t) denotes the
corresponding signal value.
For instance, for signal β1 in the figure, the diagnosis for
violation cause d_only_in_mode1 is ⟨(0, 1)⟩, showing
that the signal first satisfies the property condition out-
side the time interval in which mode M holds (i.e., the
signal takes value 1, which is less than 3, at timestamp
0).

• d_only_in_mode2 includes the first record in which
the signal satisfies the property condition, right after
mode M stops holding. Formally, the diagnosis is de-
fined as follows: d_only_in_mode2 = ⟨t, s(t)⟩ | t ∈
(lim, ltp], s(t) ∼ v ∧ ∀t1 ∈ [ftp,fim), s(t1) ̸∼ v ∧ ∀t2 ∈
(lim, t), s(t2) ̸∼ v where t represents the first timestamp
in which the signal satisfies the property condition (i.e.,
s(t) ∼ v) after mode M stops holding and s(t) denotes
the corresponding signal value.
For instance, for signal β2 in the figure, the diagnosis for
violation cause d_only_in_mode2 is ⟨(5, 1.5)⟩, show-
ing that the signal first satisfies the property condition
(i.e., the signal value is less than 3) at timestamp 5,
taking value 1.5.

6 VIOLATION CAUSES AND DIAGNOSES FOR SB-
TEMPSY-DSL
In this section, we describe the violation causes and the
corresponding diagnoses for each construct supported by
SB-TemPsy-DSL. We first provide a high-level overview
through Figure 7 (for violation causes) and Figures 8–9 (for
diagnoses); the remaining subsections discuss in detail the
violation causes and diagnoses for each main construct of
SB-TemPsy-DSL.

We remark that the violation causes and correspond-
ing diagnoses for SB-TemPsy-DSL have been defined (and
validated) together with a group of system and software
engineers of our industrial partner, with the goal of maxi-
mizing the usefulness of a diagnosis for a certain violation
cause. Overall, we spent 20 hours (over three business days)
to define the catalogue of violation causes and diagnoses,
following the methodology described in section 5.

Figure 7 presents the violation causes for the constructs
of SB-TemPsy-DSL that can be used in the definition of
an atom α. It is divided into three parts that respectively
contain the violation causes for the SB-TemPsy-DSL atoms,

scopes, and patterns. Each violation cause has a name that
identifies the construct of SB-TemPsy-DSL the violation
cause refers to, and an incremental index that distinguishes
violation causes that refer to the same construct; for exam-
ple, c_becomes1, c_becomes2, and c_becomes3 are the
three violation causes that refer to the becomes construct
of SB-TemPsy-DSL. Each violation cause is parameterized
with the same parameters as the corresponding construct.
For example, the parameters of the c_becomes1 violation
cause (∼ and v) are the same as those of the becomes
construct in Figure 3. For conciseness, in Figure 7, we omit
the parameters of the violation causes.

The semantics of each violation cause is the (first-order
logic) formula ζ(vc) on the right side of the iff operator;
it is followed by an informal description of the semantics
in English. The semantics of the violation causes specifies
the conditions that make the violation causes satisfied by
trace λ. For example, the semantics of the violation cause
c_becomes1 specifies that, for every timestamp t, the value
s(t) does not satisfy s(t) ∼ v. Note that the parameters of
the SB-TemPsy-DSL constructs associated with the violation
causes, e.g., the value of v, are used to define the semantics
of the corresponding violation cause.

Figures 8–9 present the diagnoses for the violation causes
in Figure 7. Figure 8 contains the diagnoses related to
the violation causes for SB-TemPsy-DSL atoms and scopes,
while Figure 9 contains the diagnoses related to violation
causes for patterns.

The name of the diagnosis is obtained by replacing the
string “c_” with “d_” from the name of the corresponding
violation cause. For example, diagnosis d_becomes1 refers
to violation cause c_becomes1.

The formal definition of the diagnosis is reported on
the right side of the symbol “=”. For example, the defi-
nition of the diagnosis d_becomes1 is the tuple contain-
ing the maximum and the minimum values (as well as
their timestamps) of signal4 s. Violation causes sharing
the same diagnosis are separated by the symbol “/”. For
example, d_a_at1/d_a_bef1/ d_a_aft1 is the diagnosis
associated with violation causes c_a_at1, c_a_bef1, and
c_a_aft1. The informal definition provides a high-level de-
scription of the diagnosis.

Implementation

We implemented TD-SB-TemPsy as an OCL [25] plugin for
SB-TemPsy-Check [1]. The plugin contains the definitions
of OCL constraints that encode the violation causes (see
Figure 7) as well as OCL functions that compute the diag-
noses (see Figures 8–9) associated with the violation causes.
The full OCL encoding is available at https://github.com/
SNTSVV/TD-SB-TemPsy.

6.1 Patterns
6.1.1 assert: Event-based Data Assertion

Violation cause: This pattern is violated if there
exists at least one record in the trace that violates the
condition used in the assertion. Recall that a record is used

4. To minimize cluttering, hereafter we omit to indicate that each
signal value is associated with a signal name.

https://github.com/SNTSVV/TD-SB-TemPsy
https://github.com/SNTSVV/TD-SB-TemPsy

10

λ |= c_not1 sc iff λ |= sc. The atom sc is satisfied.

λ |= c_a_at1 iff t < ti ∨ te < t. The value of t is not within the time interval [ti, te].
λ |= c_a_bef1 iff t ≤ ti ∨ te < t. The value of t is not within the time interval [ti, te].
λ |= c_a_aft1 iff t < ti ∨ te ≤ t. The value of t is not within the time interval [ti, te]
λ |= c_a_bet1 iff n < ti ∨ te < m ∨m ≤ n. Either the value of n or m is not within [ti, te], or the value of n is not smaller than m.
λ |= c_e_bef1 iff ∃t1, t2, (ti < t1 < t2 ≤ te ∧ λ, [t1, t2] |= p1 ∧ ∀t3, t4, (ti ≤ t3 < t4 < t1 ⇒ λ, [t3, t4] ̸|= p)). Pattern p1 holds within [t1, t2].
Pattern p is violated before p1.
λ |= c_e_aft1 iff ∃t1, t2, (ti ≤ t1 < t2 < te ∧ λ, [t1, t2] |= p1 ∧ ∀t3, t4, (t2 < t3 < t4 ≤ te ⇒ λ, [t3, t4] ̸|= p)). Pattern p1 holds within [t1, t2].
Pattern p is violated after p1.
λ |= c_e_bet1 iff ∃t1, t2, t3, t4, (ti ≤ t1 < t2 < t3 < t4 ≤ te ∧ λ, [t1, t2] |= p1 ∧ λ, [t3, t4] |= p2 ∧ λ, [t2, t3] ̸|= p). Pattern p1 holds within [t1, t2]
and pattern p2 holds within [t3, t4], but pattern p does not hold between p1 and p2.

λ, [tl, tu] |= c_assert1 iff ∃t ∈ [tl, tu], (λ, t ̸|= c). There exists a timestamp t within [tl, tu] in which condition c is violated
λ, [tl, tu] |= c_becomes1 iff ∀t ∈ (tl, tu],

(
s(t) ̸∼ v) .The signal values violate the pattern constraint ∼ v throughout the time interval, delimited

by tl and tu, over which the pattern is evaluated.
λ, [tl, tu] |= c_becomes2 iff ∀t ∈ (tl, tu],

(
∃t1 ∈ [tl, t), (s(t1) ∼ v)

)
. All the signal values observed within the time interval [tl, tu] satisfy the

pattern constraint ∼ v.
λ, [tl, tu] |= c_becomes3 iff ∃t ∈ (tl, tu), (∀t1 ∈ [tl, t), (s(t1) ∼ v) ∧ ∀t2 ∈ (t, tu], (s(t2) ̸∼ v)). The signal satisfies the semantics of the pattern
instance in which the constraint ∼ v is negated (i.e., λ, [tl, tu] |= s becomes ̸∼ v holds).
λ, [tl, tu] |= c_spike1 iff ∀t1, t2, t3, t4, t5 ∈ [tl, tu], ((t1 < t2 < t3 < t4 < t5 ∧ uni_m_min(s, t2, [t1, t3]) ∧ uni_sm_max(s, t3, [t2, t4]) ∧
uni_m_min(s, t4, [t3, t5])) ⇒ ¬(amp(s, t1, t2, t3) ∼2 v2)). All the spike instances violate the amplitude constraint∗.
λ, [tl, tu] |= c_spike2 iff ∀t1, t2, t3, t4, t5 ∈ [tl, tu], ((t1 < t2 < t3 < t4 < t5 ∧ uni_m_min(s, t2, [t1, t3]) ∧ uni_sm_max(s, t3, [t2, t4]) ∧
uni_m_min(s, t4, [t3, t5])) ⇒ ¬(width(t2, t4) ∼1 v1)). All the spike instances violate the width constraint∗.
λ, [tl, tu] |= c_spike3 iff ∀t ∈ [tl, tu], (s(t) = s(tl)). The signal s is constant.
λ, [tl, tu] |= c_spike4 iff ∀t1 ∈ [tl, tu), (∀t2 ∈ (t1, tu], (s(t1) ≥ s(t2))). The signal s decreases.
λ, [tl, tu] |= c_spike5 iff ∀t1 ∈ [tl, tu), (∀t2 ∈ (t1, tu], (s(t1) ≤ s(t2))). The signal s increases.
λ, [tl, tu] |= c_oscillation1 iff ∀t1, t2, t3, t4, t5 ∈ [tl, tu], ((t1 < t2 < t3 < t4 < t5∧uni_sm_min(s, t2, [t1, t3])∧uni_sm_max(s, t3, [t2, t4])∧
uni_sm_min(s, t4, [t3, t5])) ⇒ ¬(p2p(s, t2, t3) ∼2 v2) ∧ ¬(p2p(s, t3, t4) ∼2 v2)). All the oscillation instances violate the amplitude constraint.
λ, [tl, tu] |= c_oscillation2 iff ∀t1, t2, t3, t4, t5 ∈ [tl, tu], ((t1 < t2 < t3 < t4 < t5∧uni_sm_min(s, t2, [t1, t3])∧uni_sm_max(s, t3, [t2, t4])∧
uni_sm_min(s, t4, [t3, t5])) ⇒ ¬(width(t2, t4) ∼1 v1)). All the oscillation instances violate the period constraint.
λ, [tl, tu] |= c_oscillation3 iff ∃t1, t2, t3 ∈ [tl, tu], (t1 < t2 < t3 ∧ ext(s, t2, [t1, t3]) ∧ ∀t4, t5, t6 ∈ [tl, tu], ((t5 ̸= t2 ∧ t4 < t5 < t6) ⇒
¬ext(s, t5, [t4, t6]))). The signal s contains only one strict local extremum (minimum or maximum).
λ, [tl, tu] |= c_oscillation4 iff ∃t1, t2, t3 ∈ [tl, tu], (t1 < t2 < t3 ∧ ext(s, t2, [t1, t3]) ∧ ∃t4, t5, t6 ∈ [tl, tu], (t5 ̸= t2 ∧ t4 < t5 < t6 ∧
ext(s, t5, [t4, t6]) ∧ ∀t7, t8, t9 ∈ [tl, tu], (t2 ̸= t8 ̸= t5 ∧ t7 < t8 < t9 ∧ ¬ext(s, t8, [t7, t9])))). The signal s shows only two local extrema.
λ, [tl, tu] |= c_oscillation5 iff ∀t ∈ [tl, tu], (s(t) = s(tl)). The signal s is constant.
λ, [tl, tu] |= c_oscillation6 iff ∀t1 ∈ [tl, tu), (∀t2 ∈ (t1, tu], (s(t1) ≥ s(t2))). The signal s decreases.
λ, [tl, tu] |= c_oscillation7 iff ∀t1 ∈ [tl, tu), (∀t2 ∈ (t1, tu], (s(t1) ≤ s(t2)). The signal s increases.
λ, [tl, tu] |= c_rises1 iff ∀t ∈ [tl, tu], (s(t) < v). The signal value is always below v.
λ, [tl, tu] |= c_rises2 iff ∀t ∈ [tl, tu], (s(t) ≥ v). The signal value is always greater than or equal to v.
λ, [tl, tu] |= c_rises3 iff ∃t ∈ (tl, tu], (s(t) ≥ v ∧ ∀t1 ∈ [tl, t), (s(t1) < v) ∧ ¬(mon(s, tl, t)))). The signal rises at timestamp t, reaching value v.
However, it violates the monotonicity constraint defined in the pattern.
λ, [tl, tu] |= c_rises4 iff ∃t ∈ (tl, tu), (∀t1 ∈ [tl, t), (s(t1) ≥ v)∧∀t2 ∈ [t, tu], (s(t2) < v)). The value of the signal is initially above the threshold
value v. The signal then drops and remains below that value.
λ, [tl, tu] |= c_overshoots1 iff ∀t ∈ [tl, tu], (s(t) < v1). The signal s is always below v1.
λ, [tl, tu] |= c_overshoots2 iff ∃t ∈ [tl, tu], (s(t) > v1 + v2 ∧ ∀t1 ∈ (t, tu], (s(t1) > v1 + v2)). The signal s exceeds (and remains above) the
value v1 + v2.
λ, [tl, tu] |= c_overshoots3 iff ∃t ∈ (tl, tu], (s(t) ≥ v1 ∧ s(t) ≤ v1 + v2 ∧ ∀t2 ∈ [tl, t), (s(t2) ≤ v1) ∧ ∀t1 ∈ (t, tu], (s(t1) ≤ v1 + v2) ∧
¬(mon(s, tl, t)))). The signal overshoots value v1, without exceeding the maximum threshold set to v1+ v2, but it violates the monotonicity
constraint.
λ, [tl, tu] |= c_overshoots4 iff ∃t ∈ (tl, tu], (∀t1 ∈ [tl, t], (s(t1) ≥ v1 ∧ s(t1) ≤ v1 + v2) ∧ ∀t2 ∈ (t, tu], (s(t2) < v1))). The signal undershoots,
going below v1 after timestamp t, and remains below that value instead of overshooting.
λ, [tl, tu] |= c_if-then1 iff ∃t1, t2 ∈ [tl, tu), (λ, [t1, t2] |= p1 ∧ (∀t3, t4 ∈ [t2, tu], (λ, [t3, t4] ̸|= p2))). Pattern p1 holds within the time interval
[t1, t2]. Pattern p2 never holds after the satisfaction of pattern p1, until the end of the time interval, right-bounded by value tu.
λ, [tl, tu] |= c_if-then2 iff ∃t1, t2 ∈ [tl, tu), (λ, [t1, t2] |= p1 ∧ ∀t3, t4 ∈ [t2, tu], (λ, [t3, t4] |= p2 ⇒ ¬((t3 − t2) J▷◁K d))) where J▷◁K is such
that JexactlyK ≡ ‘=’, Jat mostK ≡ ‘<=’, Jat leastK ≡ ‘>=’. Pattern p1 is satisfied within the time interval [t1, t2]. Any time interval [t3, t4]
satisfying pattern p2 violates the time distance constraint on the size of t3 − t2.
∗ We present the case where a (strict) minimum is followed by a strict maximum followed by a (strict) minimum. The dual case can be
derived from our formulation.
ext(s, t2, [t1, t3]) = (uni_sm_max(s, t2, [t1, t3]) ∨ uni_sm_min(s, t2, [t1, t3])); p2p(s, t1, t2) = |s(t1)− s(t2))|;
amp(s, t1, t2, t3) = max (|s(t2)− s(t1)|, |s(t2)− s(t3)|); width(t1, t2) = (|t2 − t1|)

Figure 7. Violation causes for the constructs of SB-TemPsy-DSL

11

d_not_assert=⟨t, s1(t), s2(t), . . . , sn(t)⟩ | (λ, t |= c). One timestamp and all the corresponding signal values where condition c is satisfied.
d_not_becomes=⟨t, s(t)⟩ | t ∈ (tl, tu], (s(t) ∼ v ∧ ∀t1 ∈ [tl, t), (s(t1) ̸∼ v)). The first record that satisfies s(t) ∼ v, such that s(t1) ̸∼ v for any
time t1 before t.
d_not_spike = ⟨(t1, s(t1)), (t5, s(t5)) | ∃t2, t3, t4 ∈ [tl, tu], (tl < t1 < t2 < t3 < t4 < t5 ∧ uni_m_max(s, t2, [t1, t3]) ∧
uni_sm_min(s, t3, [t2, t4])∧uni_m_max(s, t4, [t3, t5])[[∧(t3− t1) ∼1 v1]β [∧max((s(t2)−s(t3)), (s(t4)−s(t3))) ∼2 v2]γ]α). The first ⟨t1, s(t1)⟩
and the last ⟨t5, s(t5)⟩ records that show an occurrence of a spike∗.
d_not_oscillation = ⟨(t1, s(t1)), (t5, s(t5)) | ∃t2, t3, t4 ∈ [tl, tu], (t1 < t2 < t2 < t3 < t4 < t5 ∧ uni_sm_max(s, t2, [t1, t3]) ∧
uni_sm_min(s, t3, [t2, t4]) ∧ uni_sm_max(s, t4, [t3, t5])[[∧(t4 − t2) ∼1 v1]ζ [∧(s(t2) − s(t3)) ∼2 v2 ∧ (s(t4) − s(t3)) ∼2 v2]ϵ]δ). The first
⟨t1, s(t1)⟩ and the last ⟨t5, s(t5)⟩ records that show an occurrence of oscillations∗.
d_not_rises = ⟨t, s(t)⟩ | t ∈ (tl, tu], (s(t) ≥ v ∧ ∀t1 ∈ [tl, t), (s(t1) < v)[∧mon(s, tl, t)]α). The first record ⟨t, s(t)⟩ at which the signal becomes
greater than or equal to v, where the optional monotonicity constraint is satisfied, if defined in the property.
d_not_overshoots = ⟨t, s(t)⟩ | t ∈ (tl, tu], (s(t) ≥ v1 ∧ ∀t1 ∈ [t, tu], (s(t1) ≤ v1 + v2) ∧ ∀t2 ∈ [tl, t), (s(t2) < v1)[∧mon(s, tl, t)]α). The first
record at which signal s reaches value v1. The signal never goes above the maximum allowed amplitude of v1 + v2 and satisfies the monotonicity
constraint, if defined in the property.
d_not_if-then = ⟨[t1, t2], [t3, t4]⟩ | (tl < t1 < t2 < t3 < t4 < tu ∧ λ, [t1, t2] |= p1 ∧ λ, [t3, t4] |= p2[∧(t3 − t2)J▷◁Kd]α). An interval [t1, t2]
where pattern p1 holds and a subsequent interval [t3, t4] where pattern p2 holds.

d_a_at1/d_a_bef1/d_a_aft1 = ⟨[ti, te], t⟩. The time interval [ti, te] and the absolute boundary t, that is not within that interval.
d_a_bet1 = ⟨[ti, te], n,m⟩. Values n and m and the interval [ti, te].
d_e_bef1 = ⟨[t1, t2]⟩ | (tl < t1 < t2 ≤ tu ∧ λ, [t1, t2] |= p1 ∧ ∀t3, t4, (tl ≤ t3 < t4 < t1 ⇒ λ, [t3, t4] ̸|= p)). The interval [t1, t2] where p1 holds,
and before which the property pattern p failed to hold.
d_e_aft1 = ⟨[t1, t2]⟩ | (tl ≤ t1 < t2 < tu ∧ λ, [t1, t2] |= p1 ∧ ∀t3, t4, (t2 < t3 < t4 ≤ tu ⇒ λ, [t3, t4] ̸|= p)). The interval [t1, t2], where p1 holds
and after which the property pattern p failed to hold.
d_e_bet1 = ⟨[t2, t3]⟩ | (∃t1 ∈ [tl, tu), tl ≤ t1 < t2 < t3 < tu ∧ λ, [t1, t2] |= p1 ∧ ∃t4 ∈ (t3, tu], t3 < t4 ≤ tu ∧ λ, [t3, t4] |= p2 ∧ λ, [t2, t3] ̸|= p).
The time interval [t2, t3], where t2 is the last timestamp in which pattern p1 held and t3 is the first timestamp in which pattern p2 held.

Figure 8. Diagnoses associated with the violation causes of atoms and scopes in Figure 7.

to represent a timestamp and a signal value observed in that
timestamp. Therefore, the corresponding violation cause
c_assert1 checks for the presence of a timestamp in which
the assertion condition c is violated.

For example, the trace shown in Figure 10 violates the
expression “assert β1 < 4” because signal β1 shows a
value equal to 5 at timestamp 4, satisfying the violation
cause c_assert1 on the interval [0, 7].

Diagnoses: The diagnosis d_assert1 associated
with violation cause c_assert1 includes the first times-
tamp t at which one or more signals (s1, s2, . . . , sn) violate
the assertion condition c, as well as the values taken by
these signals at t. This diagnosis allows engineers to identify
the root cause of the violation of the assertion condition by
looking at the first timestamp in which this violation was
observed.

For instance, in the case of the trace shown in Figure 10,
the diagnosis is the tuple containing timestamp 4 and the
value of β1(4) = 5 taken by signal β1.

6.1.2 becomes: State-based Data Assertion
Violation causes: This pattern can be violated in at

least three ways, as illustrated with different signal behav-
iors in Figure 11 using the expression “β becomes > 3”:

• c_becomes1: The signal value violates the pattern con-
straint ∼ v throughout the time interval over which the
pattern is evaluated. For instance, signal β1 in the figure
is never greater than 3.

• c_becomes2: The signal value satisfies the pattern
constraint ∼ v throughout the time interval over which
the pattern is evaluated. This violation cause is the dual
of the previous case. For instance, signal β2 in the figure
is always greater than value 3.

• c_becomes3: The signal violates the semantics of the
pattern by satisfying the negation of the pattern con-
straint (i.e., λ, [tl, tu] |= s becomes ̸∼ v holds).
For instance, signal β3 in the figure becomes less than
or equal to 3 (instead of becoming greater than 3). More

precisely, it goes below value 3 at timestamps 4, and
remains below that value until the end of the time
interval, delimited by timestamp 7.

Diagnoses: The diagnoses associated with the three
violation causes above are the following:

• d_becomes1 and d_becomes2 include two records
from the signal showing a minimum and a maximum
value. In this way, we show the range of values over
which the signal changes. In the example shown in
Figure 11, we report records ⟨(7, 2.8), (4, 0.5)⟩ for signal
β1 and records ⟨(0.5, 5), (5, 3.3)⟩ for signal β2.

• d_becomes3 includes the last-seen record at which the
signal value satisfies the constraint ∼ v, followed by
the next-seen record at which the signal value satis-
fies ̸∼ v. Through this diagnosis, we want to capture
the exact time interval, delimited by two consecutive
timestamps, within [tl, tu], in which the signal exhibits a
behavior compatible with the negation of the constraint
specified in the becomes expression. For instance, for
signal β3 in Figure 11, the diagnosis is ⟨(3, 4.3), (4, 0.8)⟩.

6.1.3 Spike
Violation causes: This pattern can be violated in at

least five ways, as illustrated with different signal behaviors
in Figure 5 using the expression “exists spike in β
with amplitude < 90 width < 0.5”. These alternatives
are the following:

• c_spike1: All spike instances in the signal violate the
amplitude constraint. For instance, signal β1 in the
figure shows two spike amplitude values greater than
90 (150 and 200, respectively).

• c_spike2: All spike instances in the signal violate
the width constraint. For example, signal β1 shows
two spike width values greater than 0.5 (1.8 and 4.2,
respectively).

• c_spike3: The signal is constant throughout the time
interval over which the pattern is evaluated. For exam-

12

d_assert1 = ⟨t, s1(t), s2(t), . . . , sn(t)⟩ | (λ, t ̸|= c) ∧ ∀t1 ∈ [tl, t), (λ, t1 |= c). The first timestamp t and the values, taken in correspondence of
t, of the signals that lead to the violation of condition c.
d_becomes1/d_becomes2 = ⟨(t1, s(t1)) , (t2, s(t2))⟩ | ∀t ∈ [tl, tu], (s(t) ≤ s(t1) ∧ s(t) ≥ s(t2)). The maximum and the minimum values (and
the corresponding timestamps) of signal s.
d_becomes3 = ⟨(t1, s(t1)) , (t2, s(t2))⟩ | tl ≤ t1 < t2 ≤ tu ∧ s(t1) ∼ v ∧ s(t2) ̸∼ v ∧ ¬∃t3 ∈ [tl, tu], (t1 < t3 < t2). The last time instant
t1 (and the corresponding value) at which the signal s satisfies the predicate s(t1) ∼ v, exactly followed by the next time instant t2 (and the
corresponding value) at which the signal value satisfies the predicate s(t2) ̸∼ v.
d_spike1 = ⟨[t1, t2], a⟩ | (∃t3, t4, t5 ∈ [tl, tu], (spk(s, t3, t1, t4, t2, t5) ∧ ¬(amp(s, t1, t4, t2) ∼2 v2) ∧ a = amp(s, t1, t4, t2) ∧ ∀t6, t7, t8, t9, t10 ∈
[tl, tu], ((t7 ̸= t1 ∧ t8 ̸= t4 ∧ t9 ̸= t2 ∧ spk(s, t6, t7, t8, t9, t10)) ⇒ |a− v2| < ampv(s, t7, t8, t9, v2)))). The amplitude a and the interval [t1, t2] of
the spike that is the closest to satisfy the amplitude constraint.
d_spike2 = ⟨[t1, t2], w⟩ | (∃t3, t4, t5 ∈ [tl, tu], (spk(s, t3, t1, t4, t2, t5) ∧ ¬(width(t1, t2) ∼1 v1) ∧ w = width(t1, t2) ∧ ∀t6, t7, t8, t9, t10 ∈
[tl, tu], ((t7 ̸= t1 ∧ t8 ̸= t4 ∧ t9 ̸= t2 ∧ spk(s, t6, t7, t8, t9, t10)) ⇒ |w − v1| < widthv(t7, t9, v1)))). The width w and the time interval [t1, t2] of
the spike that is the closest to satisfy the width constraint.
d_spike3 = ⟨[tl, tu], s(tl)⟩. The first and the last timestamps (tl and tu) delimiting the interval throughout which signal s is constant, and the
signal value.
d_spike4/d_spike5 = ⟨(t1, s(t1)), (t2, s(t2))⟩ | ∀t ∈ [tl, tu], (s(t) ≤ s(t1) ∧ s(t) ≥ s(t2)). The maximum and the minimum values (and their
timestamps) taken by signal s.
d_oscillation1 = ⟨[t1, t5], a⟩ | (∃t2, t3, t4 ∈ [tl, tu], (osc(s, t1, t2, t3, t4, t5) ∧ ¬(p2p(s, t2, t3) ∼2 v2 ∨ p2p(s, t3, t4) ∼2 v2) ∧ a =
max(p2p(s, t2, t3), p2p(s, t3, t4)) ∧ ∀t6, t7, t8, t9, t10 ∈ [tl, tu], ((t8 ̸= t2 ∧ t9 ̸= t3 ∧ t10 ̸= t4 ∧ osc(s, t6, t8, t9, t10, t7)) ⇒ (|a − v2| ≤
p2pv(s, t8, t9, v2) ∧ |a − v2| ≤ p2pv(s, t9, t10, v2))))). The amplitude a and the time interval [t1, t5] of the closest oscillation instance to satisfy
the amplitude constraint.
d_oscillation2 = ⟨[t1, t5], w⟩ | (∃t2, t3, t4 ∈ [tl, tu], (osc(s, t1, t2, t3, t4, t5)∧¬(width(t2, t4) ∼1 v1)∧w = width(t2, t4)∧∀t6, t7, t8, t9, t10 ∈
[tl, tu], ((t8 ̸= t2 ∧ t9 ̸= t3 ∧ t10 ̸= t4 ∧ osc(s, t6, t8, t9, t10, t7)) ⇒ (|w − v1| < widthv(t8, t10, v1))))). The period w and the interval [t1, t2] of
the closest oscillations instance to satisfy the period constraint.
d_oscillation3 = ⟨t1, s(t1)⟩ | ∃t2, t3 ∈ [tl, tu], tl ≤ t2 < t1 ∧ t1 < t3 ≤ tu ∧ (uni_sm_min(s, t1, [t2, t3])∨ uni_sm_max(s, t1, [t2, t3])). The
record at which the only seen strict extremum occurs in the signal, within the time interval [tl, tu].
d_oscillation4 = ⟨(t1, s(t1)), (t4, s(t4))⟩ | ∃t2, t3 ∈ [tl, tu], tl ≤ t2 < t1 ∧ t1 < t4 ∧ t4 < t3 ≤ tu ∧ (uni_sm_min(s, t1, [t2, t4]) ∨
uni_sm_max(s, t1, [t2, t4]))∧ (uni_sm_min(s, t4, [t1, t3])∨ uni_sm_max(s, t4, [t1, t3]))∧ t4 ̸= t1. The two records at which the strict maximum
and the strict minimum occur in the signal, within the time interval [tl, tu].
d_oscillation5 = ⟨[tl, tu], s(tl)⟩. The first and the last timestamps (tl and tu) delimiting the interval throughout which signal s is constant,
and the signal value.
d_oscillation6/d_oscillation7 = ⟨(t1, s(t1)), (t2, s(t2))⟩ | ∀t ∈ [tl, tu], (s(t) ≤ s(t1) ∧ s(t) ≥ s(t2)). The maximum and the minimum
values (and their timestamps) taken by the signal s.
d_rises1/d_rises2 = ⟨(t1, s(t1)), (t2, s(t2))⟩ | ∀t ∈ [tl, tu], (s(t) ≤ s(t1) ∧ s(t) ≥ s(t2)). The maximum and the minimum values (and their
timestamps) of signal s.
d_rises3 = ⟨(t1, s(t1)), (t2, s(t2))⟩ | ¬(∃t ∈ [tl, tu], (t1 < t < t2)) ∧ ∃t ∈ (tl, tu], (s(t) ≥ v ∧ ∀t3 ∈ [tl, t), (s(t3) < v) ∧ t1 < t2 < t ∧ s(t1) >
s(t2)). Two signal values that violate the monotonicity constraint and the corresponding consecutive timestamps t1 and t2.
d_rises4 = ⟨(t1, s(t1)), (t2, s(t2))⟩ | tl ≤ t1 < t2 ≤ tu ∧ s(t1) ≥ v ∧ s(t2) < v ∧ ¬∃t ∈ [tl, tu], (t1 < t < t2). The record at which the signal s is
greater than or equal to value v, followed by the record at which the signal falls, going below v.
d_overshoots1/d_overshoots2 = ⟨(t1, s(t1)), (t2, s(t2⟩)) | ∀t ∈ [tl, tu], (s(t) ≤ s(t1) ∧ s(t) ≥ s(t2)). The maximum and the minimum
values (and timestamps) of signal s.
d_overshoots3 = ⟨t1, s(t1), t2, s(t2)⟩ | ¬(∃t ∈ [tl, tu], (t1 < t < t2))∧∃t ∈ (tl, tu], (s(t) ≥ v1∧∀t4 ∈ [tl, t), (s(t4) ≤ v1)∧∀t5 ∈ [t, tu], (s(t5) ≤
v1+v2)∧(tl < t1 < t2 < t)∧s(t1) ≥ s(t2)). Two consecutive records of a signal that overshoots, but does not satisfy the monotonicity constraint.
d_overshoots4 = ⟨(t1, s(t1)), (t2, s(t2)⟩ | tl ≤ t1 < t2 ≤ tu ∧ s(t1) ≥ v1 ∧ s(t1) ≤ v1 + v2 ∧ s(t2) < v1 ∧ ¬∃t ∈ [tl, tu], (t1 < t < t2).
The record at which the signal s is greater than or equal to value v1 and less than or equal to v1+v2, followed by the record at which the signal
undershoots, going below v1.
d_if-then1 = ⟨[t2, tu]⟩ | (∃t1 ∈ [tl, t2), λ, [t1, t2] |= p1 ∧ ∀t3, t4 ∈ (t2, tu], (λ, [t3, t4] ̸|= p2)). The time interval delimited by t2 (the last time
instant of the last occurrence of pattern p1) up to the last time instant (tu) of the trace.
d_if-then2 = ⟨[t2, t3], t3 − t2⟩ | (∃t1 ∈ [tl, t2), λ, [t1, t2] |= p1 ∧ ∃t4 ∈ (t3, tu], (λ, [t3, t4] |= p2 ⇒ ¬((t3 − t2) J▷◁K d) ∧ ∀t5, t6 ∈
(t2, t3), (λ, [t5, t6] ̸|= p2))). The time interval [t2, t3] representing the time distance between patterns p1 and p2 hold, and the exact value of
that violated time distance (t3 − t2).
∗ spk(s, t1, t2, t3, t4, t5) = uni_m_min(s, t2, [t1, t3]) ∧ uni_sm_max(s, t3, [t2, t4]) ∧ uni_m_min(s, t4, [t3, t5])
∗ osc(s, t1, t2, t3, t4, t5) = uni_sm_min(s, t2, [t1, t3]) ∧ uni_sm_max(s, t3, [t2, t4]) ∧ uni_sm_min(s, t4, [t3, t5])
ampv(s, t1, t2, t3, v) = |amp(s, t1, t2, t3)− v|; p2pv(s, t1, t2, v) = |p2p(s, t1, t2)− v|; widthv(t1, t2, v) = |width(t1, t2)− v|

Figure 9. Diagnoses associated with the violation causes of patterns in Figure 7.

ple, the constant signal β2 in the figure always takes the
value 100 within the time interval [0, 6].

• c_spike4: The signal decreases,within the time in-
terval over which the pattern is evaluated, without
showing any spike behavior. For example, signal β3 in
the figure decreases within the time interval [0, 6], going
from value 190 to 30.

• c_spike5: The signal increases within the time interval
over which the pattern is evaluated, without showing
any spike behavior. For instance, signal β4 increases
within the time interval [0, 6], going from value 30 to
190.

Diagnoses: The diagnoses associated with the five
violation causes above are the following:

• d_spike1 includes the time interval in which the spike
with the closest amplitude to satisfy the amplitude
constraint occurs, as well as the amplitude value of that
spike instance (see page 6 for a detailed explanation).
The intuition behind this diagnosis is that when a
spike property with an amplitude constraint is violated,
the engineers are interested in knowing the amplitude
value of the spike that is the closest to satisfy the
amplitude constraint, to assess how close the signal
behavior was to satisfy the property . For instance, for
signal β1 in Figure 5, the diagnosis is ⟨[0, 1.8], 150⟩.

• d_spike2 is defined in a similar way, but with respect
to the width constraint. It includes the time interval in
which the spike with the closest width to satisfy the

13

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Timestamp

V
a
l
u
e

β1

Figure 10. A trace violating the expression “assert β < 4”.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Timestamp

V
a
l
u
e

β1 β2 β3

Figure 11. A trace with signals violating the expression “β becomes >
3”.

width constraint occurs, as well as the width value of
that spike instance. Similar to d_spike1, the choice of
this specific width value enables engineers to determine
the closest value of a spike width to the satisfaction
of the width constraint defined in the pattern. For
instance, for signal β1 in Figure 5, the diagnosis is
⟨[0, 1.8], 1.8⟩.

• d_spike3 includes the time interval [tl, tu] over which
the property pattern is evaluated, as well as the value
taken by the constant signal throughout that interval.
This diagnosis shows that the signal is constant (i.e.,
it shows a single value) throughout the full time in-
terval [tl, tu], over which the pattern is evaluated. For
instance, for signal β2 in Figure 5, the diagnosis is
⟨[0, 6], 100⟩.

• d_spike4 and d_spike5 include two records from
the signal corresponding to its minimum and maxi-
mum values (and the timestamps at which these val-
ues occur). In this way, we show the range of values
over which the signal changes (decreasing or increas-
ing). In the example shown in Figure 5, we report
records ⟨(0, 200), (6, 55)⟩ for the decreasing signal β3

and records ⟨(0, 30), (6, 190)⟩ for the increasing signal
β4.

6.1.4 Oscillation

Violation causes: This pattern can be violated in
at least seven ways, as illustrated with different sig-
nal behaviors in Figure 12 using the expression “exist

oscillation in β with p2pAmp < 90 period < 0.5”.
These alternatives are the following:

• c_oscillation1: All oscillation instances in the sig-
nal violate the amplitude constraint. For instance, signal
β1 in the figure shows two oscillation instances, both
having an amplitude value greater than 90 (125 and
200, respectively).

• c_oscillation2: All oscillation instances in the sig-
nal violate the period constraint. For instance, signal β1

shows two oscillation instances whose period value is
greater than 0.5: the first oscillation has a period of 0.8
(i.e., the time difference between timestamps 0.2 and 1),
while the second oscillation has a period of 1 (i.e., the
time difference between timestamps 3.5 and 4.5).

• c_oscillation3: The signal does not show any oscil-
lation; instead, it shows only one strict local extremum
(a maximum or a minimum). This is the case, for
instance, of signal β2 in the figure, that exhibits a strict
local maximum (reaching the value of 150 at timestamp
1.5).

• c_oscillation4: The signal does not show any oscil-
lation; instead, it shows only two strict local extrema.
For instance, signal β3 in the figure exhibits a strict
local minimum (taking value 80 at timestamp 1.5),
followed by a strict local maximum (taking value 150
at timestamp 2).

• c_oscillation5: The signal is constant throughout
the time interval [tl, tu] (see, for example, signal β4 in
the figure).

• c_oscillation6: The signal decreases without show-
ing any oscillatory behavior. For instance, signal β5 in
the figure decreases, going from value 180 at timestamp
0.1 to value 20 at timestamp 5.8.

• c_oscillation7: The signal increases without show-
ing any oscillatory behavior. For example, signal β6 in
the figure increases, going from value 40 at timestamp
0.2 to value 150 at timestamp 5.8.

0 1 2 3 4 5 6
0

50

100

150

200

250

Timestamp

V
a
l
u
e

β1 β2 β3 β4 β5 β6

Figure 12. A trace with signals violating the expression “exist
oscillation in β with p2pAmp < 90 period < 0.5 ”.

Diagnoses: The diagnoses associated with the seven
violation causes above are the following:

• d_oscillation1 includes the time interval in which
the oscillation with the closest amplitude to satisfy the
amplitude constraint occurs, as well as the amplitude
value of that oscillation instance. The choice of this
diagnosis enables engineers to determine the oscillation

14

instance with the closest amplitude to the satisfaction
of the amplitude constraint defined in the pattern. For
instance, for signal β1 in Figure 12, the diagnosis is
⟨[0, 1.9], 125⟩.

• d_oscillation2 includes the time interval in which
the oscillation with the closest period to satisfy the
period constraint occurs, as well as the period of
that oscillation instance. For instance, for signal β1

in Figure 12, the diagnosis is ⟨[0, 1.9], 0.8⟩. Similar to
d_oscillation1, we allow engineers to identify the
oscillation instance that shows the closest period value
to the satisfaction of the period constraint defined in the
pattern.

• d_oscillation3 includes the timestamp (and the cor-
responding signal value) in which the signal exhibits
a strict extremum. The reported diagnosis allows en-
gineers to identify the first time in which the signal
exhibited a considerable deviation, leading to a change
of the sign of its derivative. For instance, for signal β2

in Figure 12, the diagnosis is ⟨1.5, 150⟩.
• d_oscillation4 includes the two records from the

signal in which the strict maximum and the strict min-
imum occur. By considering this diagnosis, engineers
are able to see a considerable change of the signal shape,
showing two different consecutive strict extrema. For
instance, for signal β3 in Figure 12, the diagnosis is
⟨(1.5, 80), (2, 150)⟩.

• d_oscillation5 includes the time interval [tl, tu]
throughout which the signal s is constant, as well as
the value taken by that signal. Similar to d_spike3, this
diagnosis shows that the signal is constant throughout
the full time interval [tl, tu] over which the pattern is
evaluated. For instance, for signal β4 in Figure 12, the
diagnosis is ⟨[0, 6], 180⟩.

• d_oscillation6 and d_oscillation7 include the
records in which the maximum and the minimum
values of the signal were observed. In this way, we
show the range of values over which the signal changes
(i.e., decreases or increases). In the example shown in
Figure 12, we report records ⟨(0.1, 180), (5.8, 20)⟩ for
signal β5 and records ⟨(0.2, 40), (5.8, 150)⟩ for signal
β6.

6.1.5 Rise time

Violation causes: This pattern can be violated in
at least four ways, as illustrated with different signal
behaviors in Figure 13 using the expression “β rises
monotonically reaching 3".

• c_rises1: The signal is always below the threshold
value v defined in the pattern constraint. For instance,
signal β1 is always below the value of 3, showing values
ranging between 0.8 and 2.5.

• c_rises2: The signal is always greater than or equal to
the threshold value v. For instance, signal β2 is always
above the value 3, showing values ranging between 4
and 6.

• c_rises3: The signal shows a rising behavior, but vio-
lates the monotonicity constraint defined in the pattern.
For instance, signal β3 rises reaching the target value
(showing a value of 4 at timestamp 4), but it violates the

monotonicity constraint since its value decreases from
2 (at timestamp 2) to 0.5 (at timestamp 3).

• c_rises4: The signal is initially above the threshold
value v. It then falls (and remains) below that value,
instead of rising. For instance, signal β4 falls (and
remains) below the target value of 3 (starting from
timestamp 4, up to timestamp 7, showing values rang-
ing within the interval [0.5, 2]) instead of rising.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Timestamp

V
a
l
u
e

β1 β2 β3 β4

Figure 13. A trace with signals violating the expression “β rises
monotonically reaching 3”.

Diagnoses: The diagnoses associated with the four
violation causes above are the following:

• d_rises1 and d_rises2 include the records in which
the signal shows a maximum and a minimum value. In
this way, we show the range of values the signal takes.
For instance, for signal β1 in Figure 13, the diagnosis is
⟨(5, 0.8), (6.7, 2.5)⟩. Similarly, diagnosis for signal β2 is
⟨(0.5, 4), (7, 6)⟩.

• d_rises3 includes two consecutive records where the
monotonicity constraint is violated. In this way, we
show the exact interval over which the signal deviated
from the last time it exhibited an increasing behavior,
showing a negative derivative. For instance, for signal
β3 in Figure 13, the diagnosis is ⟨(2, 2), (3, 0.5)⟩.

• d_rises4 includes two consecutive records in which
the signal shows a dual behavior (i.e., it falls instead
of rising). More precisely, the signal value in the first
record is above the threshold value v. The signal
value in the second reported record is, however, below
that value. This diagnosis determines the interval over
which the signal shows a dual behavior, within the
time interval [tl, tu] over which the pattern is evaluated.
For instance, the diagnosis of signal β4 in Figure 13 is
⟨(3, 3.1), (4, 0.5)⟩ .

6.1.6 Overshoot
Violation causes: This pattern can be violated

in at least four ways, as illustrated with different
signal behaviors in Figure 14 using the expression
“β overshoots monotonically 3 by 1”:

• c_overshoots1: The signal violates the pattern con-
straint, by always showing values below the threshold
value v1. For example, signal β1 is always below the
value of 3.

• c_overshoots2: The signal goes beyond the maxi-
mum allowed value, which consists of the sum of the

15

target value v1 and the maximum threshold value v2
(v1 + v2), and remains above that value. For instance,
signal β2 exceeds 4 (showing a value of 4.5 at times-
tamp 2) and remains above the value of 4, ranging over
[4.1, 4.9].

• c_overshoots3: The signal overshoots the threshold
value v1, without going beyond the maximum allowed
value (delimited by v1 + v2 defined in the pattern).
However, it violates the monotonicity constraint. For
instance, signal β3 overshoots, reaching the value of 3.8
at timestamp 4, without going beyond the value of 4
after then. It violates the monotonicity constraint within
the time interval [2, 3], since its value goes from 2 down
to 0.5.

• c_overshoots4: The signal shows a dual behavior: it
undershoots, going below the value v1, and remains
below that value instead of overshooting. For instance,
signal β4 goes (and remains) below the value of 3. It
reaches value 2 at timestamp 3 and takes, right after
then, values ranging over [0.5, 2].

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Timestamp

V
a
l
u
e

β1 β2 β3 β4

Figure 14. A trace with signals violating the expression “β overshoots
monotonically 3 by 1”.

Diagnoses: The diagnoses associated with the four
violation causes above are the following:

• d_overshoots1 and d_overshoots2 include the
records in which the signal shows a maximum and
a minimum value. The reported diagnosis allows en-
gineers to understand the range of values taken by
the signal. For instance, for signal β1 in Figure14, the
diagnosis is ⟨(5, 0.8), (6.7, 2.5)⟩.

• d_overshoots3 includes two consecutive records
from a signal that overshoots, but violates the mono-
tonicity constraint. This diagnosis shows the time in-
terval over which the signal violated the monotonicity
constraint within [tl, tu]. For instance, for signal β3 in
Figure14, the diagnosis is ⟨(2, 2), (3, 0.5)⟩.

• d_overshoots4 includes two consecutive records in
which the signal shows a dual behavior (i.e., it un-
dershoots instead of overshooting). More specifically,
we report the last record at which the signal value is
delimited by [v1, v1 + v2], followed by the next-seen
record at which it undershoots, going below v1. This
diagnosis allows engineers to understand the interval
over which the signal shows a dual behavior within
the time interval [tl, tu]. For instance, for signal β4 in
Figure14, the diagnosis is ⟨(2, 3.8), (3, 2.1)⟩.

6.1.7 Order relationship
Violation causes: A property with an if-then con-

struct is based on two patterns, each of which represents
one of the pattern constructs we support in SB-TemPsy-
DSL. According to the construct syntax if p1 then p2, p1 is
referred to as a cause pattern and p2 as an effect pattern. We
consider two possible violation causes of a property with
the if-then construct.

• c_if-then1: the cause pattern p1 holds at some time
interval [t1, t2] within the time interval [tl, tu], but then,
the effect pattern p2 fails to hold until the last times-
tamp (tu) of that time interval.

• c_if-then2: the cause pattern p1 holds within a time
interval [t1, t2] but since then, whenever the effect pat-
tern p2 holds (after p1) within a time interval [t3, t4], the
time distance (t3 − t2) between the occurrences of two
patterns p1 and p2 is violated.

Diagnoses: The diagnoses associated with a viola-
tion of an expression with an if-then construct are the
following:

• d_if-then1 includes the time interval delimited by
the last timestamp (t2) of the last occurrence of pattern
p1 and the last timestamp tu of the time interval [tl, tu],
showing the exact interval over which the effect pattern
p2 failed to hold. The corresponding diagnosis is then
the following: ⟨[t2, tu]⟩.

• d_if-then2 includes the time interval delimited by
the last timestamp (t2) in which the cause pattern p1
holds, and the first timestamp (t3) in which the effect
pattern p2 holds. The diagnosis also includes the vi-
olated time distance (t3 − t2) between the occurrence
of patterns p1 and p2. The diagnosis is the following:
⟨[t2, t3], t3 − t2⟩.

6.2 Scopes
Since the same syntactic constructs of SB-TemPsy-DSL (e.g.,
the keyword before) can be used to define both absolute
and event scopes (see Figure 3), we use the identifiers
a_ and e_ before the violation cause name depending on
whether it refers to an absolute or an event scope. Addition-
ally, we use bef, aft, and bet as shortcuts for before,
after, and between, respectively. For example, c_a_bef2
denotes a violation cause for the before absolute scope.

Violation causes:
• c_a_at1, c_a_bef1 and c_a_aft1 are violations re-

lated to absolute boundaries (i.e., timestamps) that are
not within the time interval of the trace over which the
property is evaluated.

• c_a_bet1 indicates that either at least one of the scope
boundaries is outside the time interval [ti, te] or the left
boundary (which is supposed to be smaller than the
right one) is greater than or equal to the right boundary.

• c_e_bef1 states that scope pattern p1 holds in the
execution trace, whereas the property pattern p fails to
hold sometime before p1 held.

• c_e_aft1 indicates that scope pattern p1 holds in the
execution trace, whereas the property pattern p fails to
hold after that.

• c_e_bet1 states that scope patterns p1 and p2 hold in
the execution trace, whereas the property pattern p fails

16

to hold between the last timestamp where p1 held and
the first timestamp in which p2 held.

Diagnoses: The diagnoses associated with scope-
based violations are the following:

• d_a_at1, d_a_bef1 and d_a_aft1 include the time
interval [ti, te] that delimits the execution trace, as well
as the absolute boundary t that is not within the range
delimited by that time interval.

• d_a_bet1 includes the time interval [ti, te] of the ex-
ecution trace over which the property is evaluated, as
well as the left and the right absolute boundaries of
the scope (i.e., timestamps n and m, respectively; see
Figure 3).

• d_e_bef1 includes the time interval [t1, t2] in which
the scope pattern p1 held and before which the property
pattern p failed to hold.

• d_e_aft1 includes the time interval [t1, t2] in which
the scope pattern p1 held and after which the property
pattern p failed to hold.

• d_e_bet1 includes the time interval [t2, t3] where
t2 represents the last timestamp in which pattern p1
(the left event-boundary) held and t3 (the right event-
boundary) is the first timestamp in which pattern p2
held throughout the execution trace.

6.3 Atoms
Violation causes: The violation cause c_not1 for the

construct “not sc” requires sc to be satisfied, since for “not
sc” to be violated, sc must be satisfied (see the semantics in
Figure 4).

Diagnosis: As depicted in Figure 8, many diagnosis
are associated with the violation cause c_not1. Indeed,
for c_not1 the diagnosis should explain why the violation
cause c_not1 (see Figure 7) holds, i.e., why sc is satisfied.
The reasons that lead to the satisfaction of sc depend on
the SB-TemPsy-DSL scope and the pattern used to define
sc. When sc is satisfied, both the scope and the pattern
are satisfied. Our diagnosis explains why the pattern used to
define sc holds. For this reason, the name of the diagnosis is
obtained by adding the string “d_not” before the name of
the pattern used to define sc. In the following, we explain
each of the diagnoses w.r.t the pattern defining sc:

• diagnosis d_not_assert includes a timestamp t in
which one or more signals (s1, s2, . . . , sn) defined in the
related property satisfy the corresponding condition c
as well as the corresponding value(s) taken by each of
these signals.

• diagnosis d_not_becomes includes the first times-
tamp t that satisfies the property condition, as well as
the value of the signal recorded at t.

• diagnosis d_not_spike includes the first and the last
records of a spike instance that occurred within the time
interval [tl, tu].

• diagnosis d_not_oscillation includes the first and
the last records of an oscillation instance.

• diagnosis d_not_rises includes the first record at
timestamp t in which (1) the signal defined in the prop-
erty rises, reaching the property threshold v, and (2)
the monotonicity constraint (if defined in the pattern) is
satisfied within the time interval [tl, t].

• diagnosis d_not_overshoots includes the first
record at which the signal defined in the property
overshoots (i.e., reaching a value that ranges between
values v and v1 + v2) and satisfies the monotonicity
constraint, if defined in the pattern.

• diagnosis d_not_if-then includes two time intervals
delimiting where the cause pattern and the effect one of
the property hold throughout the execution trace.

7 TD-SB-TemPsy AT WORK

In this section, we illustrate how TD-SB-TemPsy works by
applying algorithm 1 to three example properties, each of
them with different constructs.

7.1 Property with a single atom
Let us consider property P1, checked on the trace shown in
Figure 5:

P1 ≡ after 7 exists spike in β1

with width < 0.5 amplitude < 90.

Based on the SB-TemPsy-DSL grammar in Figure 3, this
property is made of a single atom of the form after t p,
i.e., it consists of an after scope construct (delimited by
an absolute time instant, parameter t = 7) constraining a
pattern p of type spike.

Given the presence of only one atom in the property,
algorithm 1 first determines whether the atom itself is
violated by the trace (line 5). Since the trace violates the
specification defined by the atom, algorithm 1 continues
by computing the associated diagnosis using function TD-
ATOM (algorithm 2).

Algorithm 2 relies on the auxiliary function GETVIOLA-
TIONCAUSES, which analyzes the syntactic structure of the
atom and determines the possible violation causes associ-
ated with it. In this case, the possible violation causes are
the one associated with the after scope construct with
an absolute boundary, i.e., c_a_aft1, and the five ones
associated with the spike construct, i.e., c_spikei with
1 ≤ i ≤ 5. This means that function GETVIOLATIONCAUSES
returns the list vcs = [c_a_aft1, c_spike1, c_spike2,
c_spike3, c_spike4, c_spike5].

The algorithm continues by looping through the viola-
tion causes in vcs , to determine the first violation cause that
holds on the trace; it will then return the corresponding
diagnosis. In this example, the violation cause c_a_aft1
holds on the trace since the value of parameter t (7) is
outside the time interval [0, 6]. The corresponding diagnosis
d_a_aft1 = ⟨[0, 6], 7⟩ shows the interval [0, 6] and the
absolute boundary 7.

7.2 Property with a single atom and negation
Let us consider property P2, checked on the trace shown in
Figure 11:

P2 ≡ not globally β3 becomes < 3

Based on the SB-TemPsy-DSL grammar in Figure 3, this
property is made of a single atom of the form not sc, where
sc ≡ globally p consists of a globally scope construct
constraining a pattern p of type becomes.

17

As in the previous example, with only one atom in the
property, algorithm 1 determines whether the atom itself is
violated by the trace (line 5). Since the trace violates the
specification defined by the atom, algorithm 1 continues
by computing the associated diagnosis using function TD-
ATOM (algorithm 2).

During the execution of algorithm 2, the auxiliary func-
tion GETVIOLATIONCAUSES returns the list vcs = [c_not1],
since, in this example, the only possible violation cause is
associated with the not construct.

Algorithm 2 will then compute the diagnosis corre-
sponding to the only violation cause included in list vcs , us-
ing the auxiliary function GETDIAGNOSIS. In this example,
the violation cause c_not1 holds on the trace since there
exists a time instant (timestamp 3) in which the value of
signal β3 decreases from value 4.5 to 0.9 (at timestamp 4).
The corresponding diagnosis d_not_becomes = ⟨4, 0.9⟩
shows the first record (at timestamp 4) in which the predi-
cate associated with the becomes pattern holds, as well as
the value of the signal.

7.3 Property with a conjunction of two atoms
Let us consider property P3, checked on the trace shown in
Figure 13

P3 ≡ globally β3 rises monotonically reaching 3
and between 2 and 6 assert β3 <= 4

Based on the SB-TemPsy-DSL grammar in Figure 3, this
property is made of a single clause that consists of
a conjunction of two atoms δ1 and δ2, where δ1 ≡
globally β3 rises monotonically reaching 3 and
δ2 ≡ between 2 and 6 assert β3 <= 4. Atom δ1 consists
of a globally scope construct constraining a pattern p of
type rises; atom δ2 consists of a between scope construct
(delimited by two absolute time instants, parameters t1 = 2
and t2 = 6) constraining a pattern p of type assert.

Given the presence of two atoms in the property, the
loop at lines 4–6 of algorithm 1 is executed twice. More
in details, algorithm 1 first determines whether atom δ1
is violated by the trace. Since the trace violates the spec-
ification defined by the atom, algorithm 1 continues by
computing the associated diagnosis using function TD-
ATOM (algorithm 2). During the execution of the latter, the
auxiliary function GETVIOLATIONCAUSES returns the list
vcs = [c_rises1,c_rises2,c_rises3,c_rises4], since
four possible violation causes are associated with the rises
pattern construct. Function CHECKVIOLATIONCAUSE will
then determine that the first violation cause (among those
in vcs) that holds on the trace is c_rises3, since signal β3

violates the monotonicity constraint in two time instants (at
timestamp 2 with value 2 and at timestamp 3 with value
0.5). The corresponding diagnosis, computed by function
GETDIAGNOSIS, is d_rises3 = ⟨⟨2, 2⟩, ⟨3, 0.5⟩⟩, consisting
of the tuples (each with a timestamp and the corresponding
signal value) that violate the monotonicity constraint.

A similar process is followed for atom δ2, which is also
violated by the trace. In this case, function GETVIOLATION-
CAUSES returns the list vcs = [c_a_bet1,c_assert1],
since the possible violation causes are associated with the
between scope construct and the assert pattern con-
struct. The first violation cause that holds on the trace is

c_assert1, since signal β3 violates the predicate associated
with the assertion at timestamp 5, when its value reaches 4.9.
The corresponding diagnosis d_assert1 = ⟨5, 4.9⟩ shows
the timestamp and the signal value. Algorithm 1 then ends
by returning the set of the diagnoses instances, containing
d_rises3 and d_assert1.

8 EVALUATION

Recall that, in CPSs, temporal properties are often complex,
since they are typically expressed as constraints on different
signal behaviors. Although we support characterizations
of individual signal behaviors, these can be and are often
considered together, to report violations within a single
property. As a result, we are interested in assessing the
applicability of TD-SB-TemPsy, that is to which extent and
how efficiently TD-SB-TemPsy is able to report diagnoses of
industrial properties violated by industrial traces.

8.1 Datasets
To the best of our knowledge, there is no public dataset
containing traces and properties suitable for investigating
the diagnosis of signal-based temporal properties expressed
in SB-TemPsy-DSL. For example, existing works on the
topic of trace diagnostics, that use different specification
languages (e.g., STL [13, 10]), have not released their traces
and properties. Moreover, the lack of standardized bench-
marks in the field of runtime verification is a well-known is-
sue [26], hindered by the diversity of the tools’ specification
languages [27]. Existing specification-based generators for
synthesized traces target a particular specification language,
such as MFODL [28], MLTL [29], and MTL [30]. No trace
generator exists for SB-TemPsy-DSL or for other languages
for signal-based properties (like STL and HLS [31]).

In light of this, to investigate the applicability of TD-SB-
TemPsy, we considered two different sources for obtaining
traces and getting access to properties of interest:

• an industrial system from the satellite domain (here-
after referred to as PROP-SAT), provided by our indus-
trial partner;

• the Fuel Control of an Automotive Powertrain (referred to
as AFC) benchmark model [32] and its requirements
used in the ARCH competition [19], a competition for
the falsification of temporal logic specifications written
in STL.

PROP-SAT dataset
This dataset was defined as follows. We considered 361
traces provided by our industrial partner; each of these
traces logs the in-orbit operations of a satellite. The number
of records in the traces ranges from 25 358 to 9 328 178
(avg = 438 224, StdDev ≈ 596 505), and the recording in-
terval ranges from 25min to 23 h.29min (avg = 6h.38min,
StdDev = 7h.5min).

We considered 98 properties defined with our industrial
partner and expressed in SB-TemPsy-DSL. These properties
were first elicited (and defined in English) through a series
of meetings with a group of system and software engineers
of our industrial partner. The corresponding SB-TemPsy-
DSL properties were then written by the first author and

18

validated by the engineers. This task cumulatively lasted
about 80 hours.

The number of occurrences of each scope and pattern
construct of SB-TemPsy-DSL in the properties is the follow-
ing. For scopes: globally 73, before 1, after 8, at 3,
between 15; for patterns: assert 111, becomes 13, spike
5, oscillation 23, rises 3, falls 7, overshoots 4,
undershoots 4, if-then 23. All the listed scopes and
pattern constructs are used in the definition of at least one
property; we remark that none of the properties used the
not sc construct for defining atoms.

We considered 361 × 98 = 35 378 trace-property combi-
nations, each obtained from one of the 361 traces and one of
the 98 properties.

We removed 13 426 trace-property combinations for
which the trace did not log (in any of its records) any
variables used in the property and therefore did not enable
the verification of its satisfaction. Such a situation occurred
because some properties are supposed to be checked only
at a certain operational stage (e.g., only during the launch
phase and not during the operational phase). As a result,
system engineers chose not to instrument the system, at
certain stages of operation, when properties were not meant
to be verified.

Then, we iteratively considered each of the remaining
21 952 trace-property combinations. Due to the sampling
strategy used by our industrial partner, two records of the
same trace may log different variables, i.e., a value may not
be present in every record for some of the variables. There-
fore, to ensure that the traces have the format described in
section 2, we proceeded as follows. For each trace-property
combination, we (a) removed entirely from the trace all the
records that only contain variable values that do not refer to
any of the variables used in the considered property, since
these records do not affect its satisfaction; (b) removed, from
each of the remaining records, the values of the variables
that were not used in the property, while preserving the rest
of the record; (c) generated missing values for the remaining
variables by using various interpolation functions [33]. We
considered different interpolation functions depending on
the type of the signal, as commonly done in the literature
(e.g., [2]).

Then, we analyzed each of the resulting 21 952 trace-
property combinations. Since TD-SB-TemPsy aims to sup-
port engineers in detecting the source of property violations,
we are interested in selecting the trace-property combina-
tions that lead to such violations. We executed SB-TemPsy-
Check by setting a timeout of 1min, thus enabling us to con-
sider all the trace-property combinations in approximately
1min× 21952=15 days of computation.

Out of the 21 952 trace-property combinations, 2328 of
them timed out (≈ 10.60%). The main reason behind such a
timeout is the known scalability issue of the trace checking
tool [1], especially when the property to check is defined
with an order relationship pattern or an event scope.

Among the remaining 19 624 (≈ 89.40%) trace-property
combinations that did not timeout, 14 940 combinations
represent traces that violate a property (76.13%). Though
this may appear surprising at first, some of the proper-
ties only refer to specific phases of the satellite life cycle
(e.g., satellite launch, deployment). We nevertheless checked

these properties by considering all the traces provided by
our industrial partner, including the ones that refer to the ac-
tual regular operations of the satellite. These trace-property
combinations naturally led to a property violation5.

Our final dataset contains 14 940 trace-property combi-
nations leading to a property violation. In this dataset, the
number of records in the traces ranges from 1 to 11 901
(avg ≈ 1032, StdDev ≈ 1471), the recording interval ranges
from 0 s, for traces with a single record, to 23 h.28min
(avg = 4h.51min, StdDev = 6h.24min). Notice that the
number of records and the recording intervals of the traces
of the final dataset are significantly smaller than those
observed for the original traces. This is due to the fact that,
for each trace-property combination, we removed from the
trace all the records that only contained variable values
that did not refer to any of the variables of the considered
property (see step (a) above).

AFC dataset
The AFC benchmark model [32] used in the ARCH com-
petition [19] comes with three properties (namely, AFC27,
AFC29, and AFC33). We excluded property AFC27 because
it could not be expressed with SB-TemPsy-DSL, since the
language does not support nested operators6. Properties
AFC29 and AFC33 have the same formula structure and
differ only in terms of their parameters. We considered
only one of them (property AFC29) and expressed it in SB-
TemPsy-DSL. The property states that “between 11 and 50
seconds, signal µ shall be lower than 0.007 ”, corresponding to
the SB-TemPsy-DSL specification:

ϕ29 ≡ between 11 and 50 assert µ < 0.007

As we are interested in reporting a diagnosis corre-
sponding to the violation of AFC29, we used the ARIsTEO
tool [34], a plugin for S-Taliro [35], to generate 10 traces that
falsify the property, sampled over 50 s (i.e., a time horizon of
[0, 50]), with simulations configured to use a variable sample
step.

We therefore obtained 10 trace-property combinations;
the number of records in the generated traces ranges from
22 824 to 23 988 (avg = 23 650, StdDev = 328).

This is admittedly a much smaller dataset than the
PROP-SAT one, if we consider the number of trace-property
combinations it contains and the fact that we only con-
sidered one property. Moreover, given the simplicity of
property AFC29, considering more traces would not lead
to different diagnoses and conclusions (i.e., the catalogue
of violation causes and corresponding diagnoses in TD-SB-
TemPsy includes a single violation cause c_assert1 and
one diagnosis d_assert1 for the assert construct sup-
ported by SB-TemPsy-DSL). We remark that, out of the eight
STL properties included in the benchmark description [32],
only three of them were included in the ARCH competition
benchmark [19], and thus were known to be falsifiable.
Nevertheless, this dataset is adequate for our goals, which
are (a) to demonstrate that we can obtain similar results

5. A property that does not refer to the regular operations of the
satellite is expected to be violated if checked on a trace recording such
regular operations.

6. We refer the reader to our previous work [1] in which we discuss
the expressiveness of SB-TemPsy-DSL

19

on a different dataset obtained from a publicly available
benchmark model; (b) to support open science, using a non-
proprietary dataset that can be made publicly available.

8.2 Applicability
We assessed the applicability of TD-SB-TemPsy by consid-
ering the 14940 trace-property combinations in the PROP-
SAT dataset as well as the 10 trace-property combinations
in the AFC one. Applicability entails the capacity to report
diagnoses within reasonable time.

We remark that we could not perform a comparison be-
tween TD-SB-TemPsy and state-of-the-art tools, for a number
of reasons. First, some alternative approaches [14, 15, 16] do
not support signal-based temporal properties, thus making
any comparison impossible. The only alternative that sup-
ports signal-based properties is AMT2.0 [13, 10]. However,
the tool is no longer publicly available7 and its successor
rtamt [36] has dropped support for diagnostics capabilities,
rendering impossible any experimental comparison.

8.2.1 PROP-SAT dataset
Methodology
We executed TD-SB-TemPsy on each trace-property combi-
nation in the PROP-SAT dataset, with a timeout of 1min,
leading to approximately 1min × 14940=10 days of com-
putation. For each execution, we recorded whether TD-
SB-TemPsy finished within the timeout and the diagnoses
(if any) it yielded. To assess the applicability of TD-SB-
TemPsy, we analyzed the number of combinations in which
TD-SB-TemPsy finished within the timeout and whether it
yielded a diagnosis, i.e., whether at least one violation cause
was applicable. We conducted our evaluation on a high-
performance computing platform, using nodes equipped
with Dell C6320 units (2 Xeon E5-2680v4@2.4GHz, 128GB).

Results
TD-SB-TemPsy finished within the timeout for ≈ 80.66% of
the combinations (12 051 out of 14 940).

For the remaining 2889 combinations that timed out,
≈ 9.48% of these combinations (274 out of 2889) come
from properties using the if-then construct, ≈ 76.71% of
the combinations (2216 out of 2889) come from properties
using the event scope constructs, and ≈ 13.81% of the
combinations (399 out of 2889) come from properties that
used the or and and operators to combine properties and
clauses defined using the aforementioned constructs. For
these combinations, the computational overhead to com-
pute the diagnosis led to timeouts. Note that, in practice,
engineers are likely to use larger timeouts than the one
selected here, which is due to experimental constraints, and,
therefore, we expect the percentage of combinations that
time out to decrease.

For the 12 051 trace-property combinations that finished
within the timeout, TD-SB-TemPsy always returned a diag-
nosis. We recall that a diagnosis is made by one or more
diagnosis instances that are generated by TD-SB-TemPsy for
the different atoms of the formula (see Section 4). These
instances describe why the scope and pattern constructs

7. https://www-verimag.imag.fr/AMT-2-0.html

Table 1
Number (#N) of diagnosis instances generated by TD-SB-TemPsy for
each scope and pattern construct of SB-TemPsy-DSL (as used in the

properties of our datasets).

Type Construct #N Construct #N Construct #N

PROP-SAT dataset

Scope globally 0 before 294 after 2640
at 1002 between 660

Pattern assert 7098 becomes 0 spike 321
oscillation 460 rises 0 falls 0
overshoots 0 undershoots 0 if-then 11

MD1 dataset

Pattern becomes 656 overshoots 942 undershoots 940

MD2 dataset

Pattern rises 90 falls 90

AFC dataset

Pattern assert 10

of SB-TemPsy-DSL used for the definitions of the atom are
violated by a trace. TD-SB-TemPsy produced one diagnosis
instance for each atom of the formula (corresponding to the
input property) for 94.38% of the combinations (11 374 out
of 12 051). For the remaining 5.62% of the combinations
(677 out of 12 051), some atoms of the formula did not lead
to any diagnosis instance. In total, the 12 051 combinations
returned 12 486 diagnosis instances.

The top part of Table 1 shows the number of diagnosis
instances (column #N) computed by TD-SB-TemPsy for each
scope and pattern construct of SB-TemPsy-DSL (as used
in the properties of the PROP-SAT dataset). These results
suggest that a relatively high percentage of the diagnosis
instances (1002 + 294 + 660 + 2640 = 4596 out of 12 486,
≈ 36.81%) is related to scope constructs. Indeed, since we
considered all the possible trace-property combinations in
the dataset, there are many combinations for which the time
instant values used to define the scope operators exceeded
the maximum timestamp recorded in the trace. The remain-
ing ≈ 63.19% of the diagnosis instances (7098 + 460 +
321 + 11 = 7890 out of 12 486) is related to patterns con-
structs. TD-SB-TemPsy returned diagnosis instances for the
assert, spike, oscillation, and if-then constructs,
though with different prevalence. TD-SB-TemPsy did not
report any diagnosis instances for the becomes, rises,
falls, overshoots, and undershoots constructs. We
further analyzed the properties containing these constructs
and noticed that, in all these cases, TD-SB-TemPsy detected
a violation of the corresponding scope. In such cases, the
diagnosis instances returned by TD-SB-TemPsy are only
related to the scope constructs.

To guarantee a complete applicability assessment of TD-
SB-TemPsy, covering all SB-TemPsy-DSL constructs, we built
two additional datasets (MD1 and MD2), derived from the
PROP-SAT one, using the following strategies:

MD1 (replacing the property scope). We considered all
the 2562 trace-property combinations where the properties
are defined using only one single pattern of type becomes,
overshoots, or undershootswithin a scope operator. We
changed the scope of the patterns to globally in order to
avoid any scope violations, thus making the detection of

https://www-verimag.imag.fr/AMT-2-0.html

20

Figure 15. A trace (from the AFC dataset) with a signal violating the
expression “between 11 and 50 assert µ < 0.007”.

violations of these property patterns possible. As a result,
we obtained 2562 additional trace-property combinations
which constitute the MD1 dataset.

MD2 (changing the pattern definition). The patterns
rises and falls were not used in any property containing
only one single pattern, but were always used within the
if-then construct. Therefore, we considered the 180 trace-
property combinations where the properties contained the
rises and falls patterns, and then we extracted from
the if-then construct the subproperties that were using
these patterns. This led to 180 additional trace-property
combinations, which constitute the MD2 dataset.

We executed TD-SB-TemPsy on the MD1 and MD2
datasets with a timeout of 1min. In the case of MD1, TD-
SB-TemPsy yielded diagnosis instances for ≈ 99.06% of
the combinations (2538 out of 2562), with no timeout; the
distribution of these instances is shown in the second block
(from the top) of Table 1. For MD2, TD-SB-TemPsy yielded
diagnosis instances for all 180 combinations; the distribution
of these instances is shown in the third block (from the top)
of Table 1.

8.2.2 AFC dataset
Methodology
We executed TD-SB-TemPsy on each of the 10 trace-property
combinations in the AFC dataset, with a timeout of 1min.
The total time to execute TD-SB-TemPsy on all these trace-
property combinations was ≈ 14 s; hence, no timeouts
occurred.

Also in this case, we assessed the applicability of TD-SB-
TemPsy by analyzing all the 10 trace-property combinations
processed by TD-SB-TemPsy, checking whether it yielded a
diagnosis.

Results
TD-SB-TemPsy yielded diagnosis instances for all the 10
trace-property combinations in the AFC dataset; all these
diagnoses were of type d_assert1.

For instance, the signal in Figure 15 violates property
ϕ29, showing at least one timestamp in which the signal vio-
lates the condition (µ < 0.007). More specifically, the signal

violates the condition for 99 records within the time interval
[45.85, 46.014], which lies within the scope interval [11, 50]
in ϕ29 (delimited by green vertical lines in the figure), with
values ranging between 0.0070103 and 0.0075373. Accord-
ing to the definition of the diagnosis d_assert1, TD-SB-
TemPsy reports the first record (i.e., timestamp and the corre-
sponding signal value) in which the condition was violated.
The diagnosis is then as follows: ⟨45.85, 0.0070278⟩. The
choice of reporting the first record that violates the condition
is motivated by the fact that we are interested in detecting
and reporting the root cause(s) of the property violation (See
section 6.1).

8.3 Discussion

The results show that TD-SB-TemPsy was widely applicable
in the context of the two datasets we considered, including
one based on an industrial case study.

Indeed, when considering the PROP-SAT dataset as well
as MD1 and MD2, TD-SB-TemPsy was able to finish within
the small timeout of 1min for 12 051+ 2562+ 180 = 14 793
out of 14 940+2562+180 = 17 682 (≈ 83.66%) of the trace-
property combinations in this group of datasets, returning
a diagnosis for 12 051 + 2538 + 180 = 14 769 combinations
(≈ 99.84% of the cases). Moreover, in the case of the AFC
dataset, TD-SB-TemPsy processed all the 10 trace-property
combinations well below the timeout, yielding a diagnosis
for all of them.

These results suggest that, in practice, our set of violation
causes provide sufficient coverage of observed violations.

8.3.1 Threats to Validity
In terms of internal validity, the choice of a timeout of 1min,
justified by the high computational time (15 days) for the
experiments on the PROP-SAT dataset, led to a number of
trace-property combinations for which TD-SB-TemPsy did
not finish its execution. Considering a larger timeout would
further increase the applicability of TD-SB-TemPsy. More-
over, we assumed that the traces in the PROP-SAT dataset
(provided by our industrial partner) were correctly collected
after the satellite deployment. The possible presence of
erroneous records might lead to a different number of trace-
property combinations leading to a violation, and to differ-
ent diagnosis instances. Furthermore, we have assumed that
the verdicts reported by SB-TemPsy-Check were correct.

In terms of external validity, the trace-property combina-
tions in the PROP-SAT dataset may be a threat for the gener-
alization of our results, as other datasets may differ in terms
of (a) the constructs used for expressing the properties,
(b) the type of property violations. We mitigated this threat
by selecting an industrial case study in the satellite domain
that is representative of complex CPS, with large traces and
many complex properties elicited with experts. Further, we
modified scopes and patterns in the properties of the PROP-
SAT dataset to expand our analysis such as to consider more
trace-property combinations. Moreover, we also considered
an additional dataset (AFC) from the benchmark used for
a popular competition for the falsification of temporal logic
specifications over CPS.

Regarding conclusion validity, the trace-property combi-
nations in our datasets did not trigger all the 34 violation

21

Figure 16. A trace (from the AFC dataset) with a signal violating the
expression “between 11 and 50 assert mu < 0.007” (with no zoom
factor in the plot).

causes in our catalogue (see Figure 7). More in details,
the trace-property combinations in the PROP-SAT and AFC
datasets cover 9 out of the 34 violation causes. If we include
the two additional datasets MD1 and MD2, the total number
of covered violation causes reach 17 out of 34 (8 new ones).
These 8 new covered violations causes are distributed as
follows: 2 becomes, 2 rises (and its dual falls) and 4
overshoots (and its dual undershoots).

8.4 Data Availability
We cannot publicly release the traces and properties used
in the experiments for the PROP-SAT because they are
subject to a non-disclosure agreement. We make the raw
output of TD-SB-TemPsy, the traces generated as part of the
AFC dataset, and the script used for the analysis of the
evaluation data available as supplementary material in a
permanent repository [37]. TD-SB-TemPsy is available under
the Apache 2.0 license at https://github.com/SNTSVV/
TD-SB-TemPsy; a permanent record is also available on
Figshare [38].

9 PRACTICAL IMPLICATIONS

9.1 Usefulness of the diagnoses
When engineers use a run-time verification tool that only
yields Boolean verdicts, if a property is violated on a trace,
engineers have to inspect the trace to understand the cause
of the violation.

Such an inspection is not necessarily trivial, especially
for the more complex types of properties (e.g., those in-
volving spike or oscillatory behaviors), and cannot rely on
a simple visualization of the signals. This problem is even
more noticeable when dealing with huge execution traces,
containing thousands of records.

For example, let us consider property ϕ29 from the AFC
dataset. Figure 16 shows one of the execution traces consid-
ered in our evaluation. Given the small order of magnitude
used in the numeric parameters of the property (e.g., the
threshold 0.007) and the shape of the signal, detecting the
violation through a visual inspection is not immediate, even
if a large zoom factor is used in the visualization.

On the other hand, if an engineer uses our approach, she
can immediately look up the important record in the trace,
since it is indicated in the diagnosis ⟨45.85, 0.0070278⟩.

Note that the example above is based on a simple as-
sertion property. Automating the diagnostics of violation is
even more important for more complex types of properties
(e.g., those involving spike or oscillatory behaviors).

The actual effort savings are specific to individual case
studies and can only be estimated through a user study. We
plan to conduct one as part of future work.

9.2 Extending the catalogue of violation patterns and
diagnoses

As discussed in section 1, our catalogue of 34 violation
causes, each associated with one diagnosis, is not complete.
Nevertheless, following the methodology illustrated in sec-
tion 5, users can add new violation causes depending on
their specific needs or on the requirements of particular
domains.

We remark that this extension of the catalogue is a one-
time effort. It can be performed by engineers following the
three steps: behavior analysis, definition of violation causes,
and definition of diagnoses. In particular, step “Definition
of violation causes” requires new violation causes to be
checked (for correctness) by verifying whether a formula
(obtained from the formal specification of the violation
cause semantics) is unsatisfiable (see section 5.4). This check
can be performed with state-of-the-art constraint solvers like
Z3. Overall, fulfilling this requirement prevents the users
from introducing errors in the definition of violation causes.

Finally, even if the original catalogue of 34 violation
causes is not complete, we remark that it results from an ex-
tended industrial case study and relies on a taxonomy [9] of
pattern-based constructs that have been identified through
a thorough review of the literature, whose completeness
has been validated in an industrial context. Based on this,
we expect our catalogue to be widely reusable in different
CPS domains, provided that the requirements to be checked
using a run-time verification tool can be expressed using
SB-TemPsy-DSL.

10 RELATED WORK

The problem of enriching Boolean verification verdicts
with additional information that supports reasoning on the
causes of such verdicts has been widely studied in the
literature. This section discusses related work in the trace-
checking and model-checking areas. We included the latter
since a trace can be seen as a model made by a sequence of
consecutive states, each representing one trace record, with
transitions connecting the consecutive records.

In the trace-checking area, there are two main strate-
gies (see Section 1) that aim to provide additional infor-
mation on the causes of a property violation: (i) isolat-
ing slices of the traces that explain the property violation
(e.g., [10, 11, 12, 13]); and (ii) checking whether the traces
show common behaviors that lead to the property violation
(e.g., [15, 16, 14]). The first strategy produces large explana-
tions for complex properties since the size of the explanation
increases with the number of operators of the formula ex-
pressing the property of interest. Existing approaches based
on the second strategy do not support complex signal-based
temporal properties (as the ones considered in this work)

https://github.com/SNTSVV/TD-SB-TemPsy
https://github.com/SNTSVV/TD-SB-TemPsy

22

Table 2
Comparison of trace diagnostic approaches

Approach SBTP Lang. Method. Eval.

Ferrère et al. [10] + TL - T
Mukherjee and Dasgupta [11] - TL - P
Beer et al. [12] - TL - P
Ničković et al. [13] + TL - P
Dawes and Reger [14] - TL - P
Dou et al. [15] - DSL - S
Luo et al. [16] - DSL - P
TD-SB-TemPsy + DSL + I,P

and are not complemented by a precise methodology that
describes how to add new causes that support more com-
plex properties. Therefore, in this work we have proposed a
novel, language-agnostic methodology for defining violation
causes and diagnoses, and applied it in the context of signal-
based temporal properties expressed in SB-TemPsy-DSL.

Table 2 provides a comparison, in terms of trace di-
agnostics support, of the aforementioned trace checking
approaches. Column SBTP indicates whether the approach
supports signal-based temporal properties. Column Lang.
indicates — using the symbols DSL and TL — whether
the approach supports, respectively, a high-level, DSL-like
specification language or a low-level, temporal-logic lan-
guage. Column Method. indicates whether the diagnostic
approach supports a methodology to add new violation
causes. Column Eval. indicates the type(s) of benchmarks
used in the evaluation of the approach (I: industrial case
study, P public benchmark, S: synthetic benchmark, T: toy
example).

As shown in the table, TD-SB-TemPsy is the only ap-
proach that supports signal-based temporal properties ex-
pressed in a DSL-like specification language, that is com-
plemented by a methodology allowing users to define new
violation causes, and that has been evaluated using datasets
derived both from a complex industrial case study and from
a public benchmark.

In the model-checking area, some approaches (e.g., [39,
40, 41, 42, 43, 44, 45, 46, 47, 48]) extract information from
the model (e.g., model slices) to explain the model checking
verdict. Typically, these approaches have limited scalability
and therefore are not easily applicable to the trace-checking
scenario. TD-SB-TemPsy relies on a conceptually different
technique, which leverages violation causes and diagnoses
to explain trace checking verdicts. Moreover, its implemen-
tation uses existing technologies that showed encouraging
scalability results in previous works; our evaluation con-
firms the applicability of our solution. Other approaches
(e.g., [49, 50, 51, 52, 53, 54, 55]) rely on deductive reasoning
techniques to explain model checking verdicts. Different
from the approach proposed in this work, they usually pro-
vide an exhaustive explanation for a verdict by considering
some initial assertions (e.g., simple conditions on the values
assumed by the variables in the states of the model) and
examining how logical operators can be applied to reach a
specific logical conclusion. However, the proofs produced
by deductive reasoning approaches are usually difficult to
understand for non-experts. Besides, their size significantly
grows with the size of the model to analyze [56]. Therefore,

when the model represents a trace, which is typically large
in practice (i.e., because of a large number of records),
the generated proofs are likely to be extremely large and
difficult to understand by engineers.

11 CONCLUSION

In this paper, we proposed TD-SB-TemPsy, a trace-diagnostic
approach for signal-based temporal properties, based on
violation causes and diagnoses. We defined a methodology
for defining violation causes and diagnoses that provides
formal soundness guarantees. We proposed a catalog of 34
violation causes, each associated with one diagnosis, for
properties expressed in SB-TemPsy-DSL. We evaluated TD-
SB-TemPsy by assessing its applicability on on two datasets,
including one based on a complex industrial case study.

For the latter, TD-SB-TemPsy finished within the strin-
gent timeout of 1min for ≈ 83.66% of the trace-property
combinations, yielding a diagnosis in ≈ 99.84% of these
cases; moreover, it also yielded a diagnosis, within the same
timeout, for all the trace-property combinations in the other
dataset. In practice, outside of experimental settings, longer
timeouts can be considered.

In the future, we plan to perform a large-scale, sys-
tematic evaluation to assess (a) the scalability of TD-SB-
TemPsy with respect to the trace size and (b) its applica-
bility when dealing with different violation causes. This
evaluation requires the use of synthesized traces, which
enable varying the trace size and controlling the causes of
property violations. Furthermore, we are going to assess
the applicability of TD-SB-TemPsy on a diverse set of CPS
case studies (e.g., unmanned aerial vehicles). Moreover, we
expect to revisit the implementation of TD-SB-TemPsy and
SB-TemPsy-Check, to support a tighter integration between
the two tools, so that some intermediate outputs for the
trace diagnostics procedure could be computed during the
execution of the trace checking one. In addition, we intend
to conduct a user study to assess the usefulness of the
diagnoses provided by TD-SB-TemPsy, for example in the
context of fault localization.

ACKNOWLEDGMENTS

Part of this work was supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC),
through its DG and CRC programs; by European Union’s
Horizon 2020 Research and Innovation Programme under
grant agreement No. 957254 (COSMOS).

REFERENCES

[1] C. Boufaied, C. Menghi, D. Bianculli, L. Briand, and
Y. Isasi Parache, “Trace-checking signal-based temporal
properties: A model-driven approach,” in International
Conference on Automated Software Engineering (ASE).
New York, NY, USA: IEEE/ACM, 2020, pp. 1004–1015.

[2] C. Menghi, E. Viganò, D. Bianculli, and L. C. Briand,
“Trace-Checking CPS Properties: Bridging the Cyber-
Physical Gap,” in International Conference on Software
Engineering (ICSE). Los Alamitos, CA, USA: IEEE,
2021, pp. 847–859.

23

[3] C. Menghi, S. Nejati, K. Gaaloul, and L. C. Briand,
“Generating automated and online test oracles for
simulink models with continuous and uncertain behav-
iors,” in European Software Engineering Conference and
Symposium on the Foundations of Software Engineering
(ESEC/FSE). New York, NY, USA: ACM, 2019, pp.
27–38.

[4] F. Gorostiaga and C. Sánchez, “Striver: Stream runtime
verification for real-time event-streams,” in Interna-
tional Conference on Runtime Verification (RV). Cham:
Springer, 2018, pp. 282–298.

[5] L. Convent, S. Hungerecker, M. Leucker, T. Scheffel,
M. Schmitz, and D. Thoma, “TeSSLa: temporal stream-
based specification language,” in Brazilian Symposium
on Formal Methods. Cham: Springer, 2018, pp. 144–162.

[6] P. Faymonville, B. Finkbeiner, S. Schirmer, and
H. Torfah, “A stream-based specification language
for network monitoring,” in International Conference
on Runtime Verification, vol. 10012, 09 2016. [Online].
Available: https://10.1007/978-3-319-46982-9_10

[7] C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and
T. Berger, “Specification patterns for robotic missions,”
IEEE Transactions on Software Engineering, vol. 47, no. 10,
pp. 2208–2224, 2021.

[8] M. Fowler, Domain-specific languages. Boston, MA,
USA: Pearson Education, 2010.

[9] C. Boufaied, M. Jukss, D. Bianculli, L. C. Briand,
and Y. Isasi Parache, “Signal-based properties
of cyber-physical systems: Taxonomy and logic-
based characterization,” Journal of Systems and
Software, vol. 174, p. 110881, 2021. [Online].
Available: https://www.sciencedirect.com/science/
article/pii/S0164121220302715

[10] T. Ferrère, O. Maler, and D. Ničković, “Trace diagnos-
tics using temporal implicants,” in International Sympo-
sium on Automated Technology for Verification and Analy-
sis. Cham: Springer, 2015, pp. 241–258.

[11] S. Mukherjee and P. Dasgupta, “Computing minimal
debugging windows in failure traces of ams asser-
tions,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 31, no. 11, pp. 1776–
1781, 2012.

[12] I. Beer, S. Ben-David, H. Chockler, A. Orni, and R. Tre-
fler, “Explaining counterexamples using causality,” in
International Conference on Computer Aided Verification
(CAV). Berlin, Heidelberg: Springer, 2009, pp. 94–108.

[13] D. Ničković, O. Lebeltel, O. Maler, T. Ferrère, and
D. Ulus, “Amt 2.0: Qualitative and quantitative trace
analysis with extended signal temporal logic,” in Tools
and Algorithms for the Construction and Analysis of Sys-
tems. Cham: Springer, 2018, pp. 303–319.

[14] J. H. Dawes and G. Reger, “Explaining violations of
properties in control-flow temporal logic,” in Interna-
tional Conference on Runtime Verification (RV). Cham:
Springer, 2019, pp. 202–220.

[15] W. Dou, D. Bianculli, and L. Briand, “Model-driven
trace diagnostics for pattern-based temporal specifica-
tions,” in Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems. New York, NY, USA: ACM, 2018, pp. 278–
288.

[16] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith,
T. Serbanuta, and G. Rosu, “Rv-monitor: Efficient
parametric runtime verification with simultaneous
properties,” in Runtime Verification (RV 2014), ser.
Lecture Notes in Computer Science, vol. 8734. Cham:
Springer, 2014, pp. 285–300. [Online]. Available:
https://doi.org/10.1007/978-3-319-11164-3_24

[17] W. Dou, D. Bianculli, and L. Briand, “A model-driven
approach to trace checking of pattern-based temporal
properties,” in Proc. MODELS2017. Los Alamitos, CA,
USA: IEEE Computer Society, 2017, pp. 323–333.

[18] D. Giannakopoulou, T. Pressburger, A. Mavridou, and
J. Schumann, “Generation of formal requirements from
structured natural language,” in Requirements Engi-
neering: Foundation for Software Quality (REFSQ 2020).
Cham: Springer International Publishing, 2020, pp. 19–
35.

[19] G. Ernst, P. Arcaini, I. Bennani, A. Chandratre,
A. Donzé, G. Fainekos, G. Frehse, K. Gaaloul, J. Inoue,
T. Khandait et al., “Arch-comp 2021 category report:
Falsification with validation of results.” in ARCH@
ADHS, 2021, pp. 133–152.

[20] Wikipedia contributors, “Beta angle —
Wikipedia, the free encyclopedia,” 2021, [On-
line; accessed 2-September-2021]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=
Beta_angle&oldid=1035086598

[21] T. Ott, A. Benoit, P. Van den Braembussche, and
W. Fichter, “ESA pointing error engineering hand-
book,” in 8th International ESA Conference on Guidance,
Navigation & Control Systems. Bruxelles: European
Space Agency, 2011, p. 17.

[22] A. J. Robinson and A. Voronkov, Handbook of automated
reasoning. Amsterdam, Holland: Elsevier, 2001, vol. 1.

[23] L. De Moura and N. Bjørner, “Z3: An efficient smt
solver,” in Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340.

[24] D. Giannakopoulou, T. Pressburger, A. Mavridou, and
J. Schumann, “Automated formalization of structured
natural language requirements,” Information and Soft-
ware Technology, vol. 137, p. 106590, 2021.

[25] OMG, “ISO/IEC 19507 (OCL v2.3.1),” http://www.
omg.org/spec/OCL/ISO/19507/PDF, April 2012.

[26] E. Bartocci, Y. Falcone, B. Bonakdarpour, C. Colombo,
N. Decker, K. Havelund, Y. Joshi, F. Klaedtke,
R. Milewicz, G. Reger, G. Rosu, J. Signoles,
D. Thoma, E. Zalinescu, and Y. Zhang, “First
international competition on runtime verification:
rules, benchmarks, tools, and final results of
CRV 2014,” Int. J. Softw. Tools Technol. Transf.,
vol. 21, no. 1, pp. 31–70, 2019. [Online]. Available:
https://doi.org/10.1007/s10009-017-0454-5

[27] G. Reger, “A report of rv-cubes 2017,” in RV-
CuBES 2017. An International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for
Runtime Verification Tools, September 15, 2017, Seattle,
WA, USA, ser. Kalpa Publications in Computing,
G. Reger and K. Havelund, Eds., vol. 3. EasyChair,
2017, pp. 1–9. [Online]. Available: https://doi.org/10.

https://10.1007/978-3-319-46982-9_10
https://www.sciencedirect.com/science/article/pii/S0164121220302715
https://www.sciencedirect.com/science/article/pii/S0164121220302715
https://doi.org/10.1007/978-3-319-11164-3_24
https://en.wikipedia.org/w/index.php?title=Beta_angle&oldid=1035086598
https://en.wikipedia.org/w/index.php?title=Beta_angle&oldid=1035086598
http://www.omg.org/spec/OCL/ISO/19507/PDF
http://www.omg.org/spec/OCL/ISO/19507/PDF
https://doi.org/10.1007/s10009-017-0454-5
https://doi.org/10.29007/2496

24

29007/2496
[28] S. Krstić and J. Schneider, “A benchmark generator for

online first-order monitoring,” in International Confer-
ence on Runtime Verification. Springer, 2020, pp. 482–
494.

[29] J. Li and K. Y. Rozier, “Mltl benchmark generation
via formula progression,” in International Conference on
Runtime Verification. Springer, 2018, pp. 426–433.

[30] D. Ulus, “Timescales: A benchmark generator for mtl
monitoring tools,” in International Conference on Runtime
Verification. Springer, 2019, pp. 402–412.

[31] C. Menghi, E. Viganò, D. Bianculli, and L. C. Briand,
“Trace-checking cps properties: Bridging the cyber-
physical gap,” in 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 847–
859.

[32] X. Jin, J. V. Deshmukh, J. Kapinski, K. Ueda, and
K. Butts, “Powertrain control verification benchmark,”
in Proceedings of the 17th International Conference on
Hybrid Systems: Computation and Control, ser. HSCC
’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 253–262. [Online]. Available:
https://doi.org/10.1145/2562059.2562140

[33] J. Szabados and P. Vértesi, Interpolation of functions.
Singapore: World Scientific, 1990.

[34] C. Menghi, S. Nejati, L. C. Briand, and P. Yago Isasi,
“Approximation-refinement testing of compute-
intensive cyber-physical models: An approach based
on system identification,” in Proc. ICSE 2020. New
York, NY, USA: ACM, 2020.

[35] Y. Annpureddy, C. Liu, G. Fainekos, and S. Sankara-
narayanan, “S-taliro: A tool for temporal logic falsifica-
tion for hybrid systems,” in International Conference on
Tools and Algorithms for the Construction and Analysis of
Systems. Berlin, Heidelberg: Springer, 2011, pp. 254–
257.

[36] D. Ničković and T. Yamaguchi, “Rtamt: Online ro-
bustness monitors from stl,” in International Symposium
on Automated Technology for Verification and Analysis.
Springer, 2020, pp. 564–571.

[37] C. Boufaied, “TD-SB-TemPsy Supplemen-
tary Material,” 1 2023. [Online].
Available: https://figshare.com/articles/software/
TD-SB-TemPsy_SupplementaryMaterial/21956924

[38] C. Boufaied, C. Menghi, D. Bianculli, and
L. Briand, “TD-SB-TemPsy software artifact,” 1 2023.
[Online]. Available: https://figshare.com/articles/
software/TD-SB-TemPsy/21954563

[39] C. Menghi, A. M. Rizzi, and A. Bernasconi, “Integrating
topological proofs with model checking to instrument
iterative design,” in Fundamental Approaches to Software
Engineering (FASE). Cham: Springer, 2020, pp. 53–74.

[40] V. Schuppan, “Towards a notion of unsatisfiable and
unrealizable cores for ltl,” Science of Computer Program-
ming, vol. 77, no. 7-8, pp. 908–939, 2012.

[41] F. Hantry and M.-S. Hacid, “Handling conflicts in
depth-first search for ltl tableau to debug compliance
based languages,” Electronic Proceedings in Theoretical
Computer Science, vol. 68, 09 2011.

[42] G. Zheng, T. Nguyen, S. G. Brida, G. Regis, M. F. Frias,
N. Aguirre, and H. Bagheri, “Flack: Counterexample-

guided fault localization for alloy models,” in Interna-
tional Conference on Software Engineering (ICSE). Los
Alamitos, CA, USA: IEEE, 2021, pp. 637–648.

[43] M. Chechik and A. Gurfinkel, “A framework for coun-
terexample generation and exploration,” in Fundamen-
tal Approaches to Software Engineering, ser. FASE. Berlin,
Heidelberg: Springer, 2005, p. 220–236.

[44] T. Bochot, P. Virelizier, H. Waeselynck, and V. Wiels,
“Paths to property violation: A structural approach
for analyzing counter-examples,” in International Sym-
posium on High Assurance Systems Engineering. Los
Alamitos, CA, USA: IEEE, 2010, pp. 74–83.

[45] A. Griggio, M. Roveri, and S. Tonetta, “Certifying
proofs for ltl model checking,” in Formal Methods in
Computer Aided Design (FMCAD). Los Alamitos, CA,
USA: IEEE, 2018, pp. 1–9.

[46] F. Funke, S. Jantsch, and C. Baier, “Farkas certificates
and minimal witnesses for probabilistic reachability
constraints,” in Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2020), ser. LNCS, vol.
12078. Cham: Springer, 2020, pp. 324–345.

[47] N. Timm, S. Gruner, M. Nxumalo, and J. Botha, “Model
checking safety and liveness via k-induction and wit-
ness refinement with constraint generation,” Science of
Computer Programming, vol. 200, p. 102532, 2020.

[48] A. Gurfinkel and M. Chechik, “Proof-like counter-
examples,” in Tools and Algorithms for the Construction
and Analysis of Systems. Berlin, Heidelberg: Springer,
2003, pp. 160–175.

[49] D. Peled and L. Zuck, “From model checking to a tem-
poral proof,” in International SPIN workshop on Model
checking of software. Berlin Heidelberg: Springer-Verlag,
2001, pp. 1–14.

[50] A. Bernasconi, C. Menghi, P. Spoletini, L. D. Zuck, and
C. Ghezzi, “From model checking to a temporal proof
for partial models,” in Software Engineering and Formal
Methods (SEFM). Cham: Springer, 2017, pp. 54–69.

[51] D. Peled, A. Pnueli, and L. Zuck, “From falsification to
verification,” in International Conference on Foundations
of Software Technology and Theoretical Computer Science.
Berlin, Heidelberg: Springer, 2001, pp. 292–304.

[52] A. Mebsout and C. Tinelli, “Proof certificates for smt-
based model checkers for infinite-state systems,” in
2016 Formal Methods in Computer-Aided Design (FM-
CAD). Los Alamitos, CA, USA: IEEE, 2016, pp. 117–
124.

[53] D. Basin, B. N. Bhatt, and D. Traytel, “Optimal proofs
for linear temporal logic on lasso words,” in Interna-
tional Symposium on Automated Technology for Verification
and Analysis. Cham: Springer, 2018, pp. 37–55.

[54] A. Pnueli and Y. Kesten, “A deductive proof system for
ctl,” in International Conference on Concurrency Theory.
Berlin, Heidelberg: Springer-Verlag, 2002, pp. 24–40.

[55] I. Balaban, A. Pnueli, and L. D. Zuck, “Proving the
refuted: Symbolic model checkers as proof generators,”
in Concurrency, Compositionality, and Correctness. Berlin,
Heidelberg: Springer, 2010, pp. 221–236.

[56] S. Grebing and M. Ulbrich, “Usability recommen-
dations for user guidance in deductive program
verification,” in Deductive Software Verification: Future
Perspectives: Reflections on the Occasion of 20 Years of KeY.

https://doi.org/10.29007/2496
https://doi.org/10.1145/2562059.2562140
https://figshare.com/articles/software/TD-SB-TemPsy_SupplementaryMaterial/21956924
https://figshare.com/articles/software/TD-SB-TemPsy_SupplementaryMaterial/21956924
https://figshare.com/articles/software/TD-SB-TemPsy/21954563
https://figshare.com/articles/software/TD-SB-TemPsy/21954563

25

Cham: Springer, 2020, pp. 261–284. [Online]. Available:
https://doi.org/10.1007/978-3-030-64354-6_11

Chaima Boufaied is a postdoctoral fellow at the
University of Ottawa. She got a PhD degree in
Informatics from the University of Luxembourg in
April 2021; between February 2021 and January
2022 she was a Research Associate at the In-
terdisciplinary Centre for Security, Reliability and
Trust (SnT), University of Luxembourg. Chaima’s
research focuses on the specification and verifi-
cation of cyber-physical systems, with particular
interest in run-time verification and log analysis.

Claudio Menghi is an Assistant Professor at
the University of Bergamo. After receiving his
Ph.D. at Politecnico di Milano, he was a post-
doctoral researcher at Chalmers | University of
Gothenburg (Sweden), a Research Associate
at the University of Luxembourg (Luxembourg),
and an Assistant Professor at McMaster Uni-
versity (Canada). His current research interests
lie in software engineering, focusing on cyber-
physical systems and formal verification.

Domenico Bianculli is associate
professor/chief scientist 2 at the Interdisciplinary
Centre for Security, Reliability and Trust (SnT),
University of Luxembourg. He holds a PhD
degree from Università della Svizzera italiana
(Lugano, Switzerland), a MSc in Computing
Systems Engineering and a BSc in Computer
Engineering, both from Politecnico di Milano
(Milan, Italy). Domenico’s research focuses on
the specification and verification of evolvable
software systems. His research interests

include: run-time verification, log analysis, program analysis, and
access control.

Lionel C. Briand is professor of software engi-
neering and has shared appointments between
(1) School of Electrical Engineering and Com-
puter Science, University of Ottawa, Canada and
(2) The SnT centre for Security, Reliability, and
Trust, University of Luxembourg. He is the head
of the SVV department at the SnT Centre and
a Canada Research Chair in Intelligent Software
Dependability and Compliance (Tier 1).

He holds an ERC Advanced Grant, the most
prestigious European individual research award,

and has conducted applied research in collaboration with industry for
more than 25 years, including projects in the automotive, aerospace,
manufacturing, financial, and energy domains. He was elevated to the
grades of IEEE and ACM fellow, granted the IEEE Computer Society
Harlan Mills award (2012) and the IEEE Reliability Society Engineer-
of-the-year award (2013) for his work on software verification and test-
ing. His research interests include: Model-driven development, testing
and verification, search-based software engineering, requirements en-
gineering, and empirical software engineering.

https://doi.org/10.1007/978-3-030-64354-6_11

	Introduction
	Case Study and Motivations
	Background: SB-TemPsy-DSL
	Pattern-based trace diagnostic
	Methodology for Defining Violation Causes and Diagnoses
	Behavior Analysis
	Definition of Violation Causes
	Definition of diagnoses
	Properties of the methodology

	Violation Causes and Diagnoses for SB-TemPsy-DSL
	Patterns
	assert: Event-based Data Assertion
	becomes: State-based Data Assertion
	Spike
	Oscillation
	Rise time
	Overshoot
	Order relationship

	Scopes
	Atoms

	TD-SB-TemPsy at work
	Property with a single atom
	Property with a single atom and negation
	Property with a conjunction of two atoms

	Evaluation
	Datasets
	Applicability
	PROP-SAT dataset
	AFC dataset

	Discussion
	Threats to Validity

	Data Availability

	Practical Implications
	Usefulness of the diagnoses
	Extending the catalogue of violation patterns and diagnoses

	Related Work
	Conclusion
	Biographies
	Chaima Boufaied
	Claudio Menghi
	Domenico Bianculli
	Lionel C. Briand

