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WHAT IS THE DEGREE OF A SMOOTH HYPERSURFACE?

ANTONIO LERARIO AND MICHELE STECCONI

Abstract. We deal with the problem of the algebraic approximation of type-W singularities
of smooth functions on a closed n-disk, namely the set of points in the disk where the jet
extension of the function meets a given semialgebraic subset W of the jet space; examples of
sets arising in this way are the zero set of a function, or the set of its critical points.

We prove that the type-W singularity defined by a smooth function, satisfying a transver-
sality condition, is isotopic to the one defined by a polynomial whose degree is explicitly
bounded in terms of the distance of the original function from the set of functions which do
not satisfy the transversality condition. Ultimately, the bound depends on the second deriva-
tives of the jet of the function. The estimate on the degree of the approximating polynomial
implies an estimate on the Betti numbers of the original singularity. Using more refined and
recently developed tools, we prove a second bound, directly for Betti numbers, that is of lower
order than that implied by the previous one, in that it depends only on the first derivatives
of the jet.

These results specialize to the case of a smooth compact hypersurface, resulting in a control
of the minimal degree of its algebraic realization (from which the title of the paper) and of
its Betti numbers. As a corollary we prove an upper bound on the number of isotopy classes
of compact hypersurfaces satisfying a certain quantitative transversality condition. Moreover,
we show that in this case the second estimate on the Betti numbers is asymptotically sharp.
Finally, we relate the two estimates - the one for the degree of a polynomial realization and
the one for the Betti numbers - with the geometric data of the hypersurface, independent
from its defining equation, showing that the bounds can be given in terms of the reach and
the diameter.

Overview

Let D be a disk in Rn and f ∈ Cr+2(D,Rk). We deal with the problem of the algebraic
approximation of the set jrf−1(W ) consisting of the points in the disk D where the r-th jet
extension of f meets a given semialgebraic set W ⊂ Jr(D,Rk). We call such sets type–W
singularities; examples of sets arising in this way are the zero set of f , or the set of its critical
points.

Under some transversality conditions, we prove that f can be approximated with a polynomial
map p : D → Rk such that the corresponding singularity is diffeomorphic to the original one,
and such that the degree of this polynomial map can be controlled by the Cr+2 data of f .
More precisely, denoting by ∆W ⊂ Cr+1(D,Rk) the set of maps whose r-th jet extension is not
transverse to W , we show that there exists a polynomial p such that:

(0.1) jrp−1(W ) ∼ jrf−1(W ) and deg(p) ≤ O
( ‖f‖Cr+2(D,Rk)

distCr+1(f,∆W )

)
.

(Here “∼” means “ambient isotopic” and the implied constant depends on the size of the disk).
The estimate on the degree of p implies an estimate on the Betti numbers of the singularity,
however, using more refined tools introduced in [Ste21], we prove a similar estimate, but involving
only the Cr+1 data of f .

http://dx.doi.org/10.5427/jsing.2021.23l
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For a given W ⊂ Jr(D,Rk), we introduce a notion of C` condition number κ(`)
W (f,D) of a

type–W singularity of a map f ∈ C`(D,Rk), ` ≥ r+1, and we show that our estimates, as (0.1),
can be equivalently stated using this notion.

These results specialize to the case of zero sets of f ∈ C2(D,R), and give a way to approximate
a smooth hypersurface defined by the equation f = 0 with an algebraic one, with controlled
degree (from which the title of the paper). In this case we deal both with the approximation of
f = 0 inside the disk D and with its global approximation in Rn. As a corollary we prove an
upper bound on the number of diffeomorphism classes of compact hypersurfaces with a bounded
condition number.

Moreover, we also deal with the more basic problem of producing an actual equation f = 0
for a given compact hypersurface Z ⊂ Rn, and we control the condition number of this equation
with the geometric data of Z (its reach and its diameter). We prove that the Betti numbers of
the hypersurface can be estimated with the κ(1) condition number of the defining equation and
we show that the order of this estimate is sharp.

In particular, combining these results, we show that a compact hypersurface Z ⊂ D ⊂ Rn
with positive reach ρ(Z) > 0 is isotopic to the zero set in D of a polynomial p of degree

deg(p) ≤ c(D) · 2
(

1 + 1
ρ(Z) + 5n

ρ(Z)2

)
,

where c(D) > 0 is a constant depending on the size of the disk D (and in particular on the
diameter of Z).

1. Introduction

1.1. On the constants of the paper. Many constants will appear in the paper. The objects
on which they depend will be indicated according to the following convention. If D ⊂ Rn is a
disk, then by writing c = c(D) we mean that the constant c depends on n, on the center and
on the diameter of D. Similarly, given a subset W ⊂ Jr(D,Rk) of the jet space (see the next
paragraph) the notation c = c(W ) implies that the constant c depends also on n, r, k,D as well
as on all the parameters that are mentioned in the definition of W .

We will keep the notation c(D), although often the dependence on the position of the disk
can be dropped, as this in that case will be obvious from the nature of the statements (see for
instance subsection 1.7). The only exception is Theorem 1, in which case we make an explicit
comment.

1.2. Polynomial approximation of singularities of smooth maps. In this paper we deal
with the following problem: given a smooth (i.e. sufficiently regular) function f : D → R defined
on a disk D ⊆ Rn and whose zero set Z(f) is a smooth compact manifold, what is the smallest
degree of a polynomial p whose zero set Z(p) is diffeomorphic to Z(f)?

More generally, we will consider the problem of the polynomial approximation of nondegen-
erate singularities of smooth maps: given a closed and stratified subset W of the jet space1

Jr(D,Rk) and a smooth map f : D → Rk transverse to all the strata of W , what is the
smallest degree of a polynomial map p : D → Rk such that the two pairs (D, jrf−1(W )) and
(D, jrp−1(W )) are diffeomorphic?

Besides the case of hypersurfaces, which corresponds to the choice of

W = D × {0} ⊂ J0(D,R) = D × R,

1Here Jr(D,Rk) denotes the r-th jet bundle of maps f : D → Rk and, given f : D → Rk of class Cr,
jrf : D → Rk denotes its r-th jet extension (see 2.1 for more details).
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other examples of special interests covered by this framework are: systems of smooth inequalities,
corresponding to the case of W = D×C ⊂ J0(D,Rk) = D×Rk, where C is a closed polyhedral
cone; critical points of a function f : D → R, corresponding to the choice

W = D × R× {0} ⊂ J1(D,R) = D × R× Rn;
critical points of a smooth map f : D → Rn, with the choice

W = D × Rk × {det = 0} ⊂ J1(D,Rn) = D × Rn × Rn×n.
In general we will call the set jrf−1(W ) a type–W singularity.

In order to answer the above questions, we shall adopt first a geometric approach. We make
the assumption, verified in all cases of practical interest, that W ⊆ Jr(D,Rk) is a semialgebraic
set. Note that this does not mean that the singularity is semialgebraic, but rather that it is
given by semialgebraic conditions on the derivatives of a smooth map. Given such W , we denote
by ∆W ⊂ Cr+1(D,Rk) the set:

∆W =
{
f ∈ Cr+1(D,Rk) such that jrf : D → Jr(D,Rk) is not transverse to W

}
.

Here transversality means with respect to all the strata of a given fixed Whitney stratification
of W , both for jrf and (jrf)|∂D. The set ∆W acts as a discriminant for our problem, and the
jet of a map f ∈ Cr+1(D,Rk) is transverse to W if and only if distCr+1(f,∆W ) > 0. When
both jrf and (jrf)|∂D are transverse to W , we will simply write jrf t W . In this case the
set jrf−1(W ) ⊆ D is a Whitney stratified subcomplex2 of the disk and we will refer to it as a
nondegenerate singularity; for instance, if W is a smooth submanifold, then so is jrf−1(W ).

Given subcomplexesK0 andK1 of the disk, we will say that the two pairs (D,K0) and (D,K1)
are isotopic, and write (D,K0) ∼ (D,K1), if there exists a continuous family of diffeomorphisms
ϕt : D → D, with t ∈ [0, 1], such that ϕ0 = idD and ϕ1(K0) = K1. With this notation, our first
result is the following.

Theorem 1. Let W ⊆ Jr(D,Rk) be closed and semialgebraic. For every f ∈ Cr+2(D,Rk) with
jrf tW there exists a polynomial map p = (p1, . . . , pk) with each pi ∈ R[x1, . . . , xn] with

(1.1) deg(pi) ≤ c1 (r,D) max
{
r + 1,

‖f‖Cr+2(D,Rk)

distCr+1(f,∆W )

}
and such that:
(1.2) (D, jrf−1(W )) ∼ (D, jrp−1(W )).
(Here c1(r,D) is a constant depending only on the size of the disk D and on r, n).

The transversality assumption in the previous statement is necessary to prevent pathological
situations. For instance, every closed set in D is the zero set of a smooth function, thus there ex-
ists a smooth f such that f−1(0) equals the Cantor set; however in this case the pair (D, f−1(0))
cannot be diffeomorphic to a pair (D, p−1(0)) with p a polynomial.

From the previous result, using standard techniques from real algebraic geometry, one can im-
mediately produce an upper bound on the topological complexity of a nondegenerate singularity,
measured by the sum of its Betti numbers.

Corollary 2. Given W ⊆ Jr(D,Rk) closed and semialgebraic there exists c2(W ) > 0 such that
for every f ∈ Cr+2(D,Rk) with jrf tW we have:

(1.3) b(jrf−1(W )) ≤ c2(W ) ·max
{
r + 1,

‖f‖Cr+2(D,Rk)

distCr+1(f,∆W )

}n
.

2Meaning that the closed disk admits a Whitney stratification such that all the strata intersecting W are
contained in W and, together, form a Whitney stratification of W .
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1.3. Cr+1 bound for Betti numbers. Note that in (1.3), the Cr+2 norm of the function f
appears, even if the transversality condition would require only looking at the (r+1)-th jet of f .
This comes from the fact that the error estimate for the polynomial approximation of f in the
Cr+1 topology involves its Cr+2 norm (this condition can be slightly relaxed when working with
Lipschitz derivatives). However, if one is only interested in bounding the topology of jrf−1(W ),
it turns out that an estimate on the Cr+1 norm of f suffices, at least in the case W is smooth,
as we will prove in Theorem 3 below. In the case of hypersurfaces, we will discuss this in more
details in Section 1.7.

Theorem 3. Let W ⊆ Jr(D,Rk) be a smooth, compact and semialgebraic submanifold with the
property that W t Jrz (D,Rk) for all z ∈ D. There exists a constant c3(W ) > 0 such that for
every f ∈ Cr+1(D,Rk) with jrf tW and jrf−1(W ) ∩ ∂D = ∅ we have:

(1.4) b(jrf−1(W )) ≤ c3(W ) ·max
{
r,
‖f‖Cr+1(D,Rk)

δ̂W (f,D)

}n
.

The quantity δ̂W (f,D) is defined in Section 3.3. In analogy with the Cr+1 distance from the
discriminant appearing in the estimate (1.3), it depends only on W and on the (r + 1)-th jet of
the map f . In particular we have δ̂W (f,D) > 0 if and only if jrf tW and jrf−1(W )∩ ∂D = ∅.
Notice the different type of boundary condition: the transversality assumption “(jrf)|∂D tW”
in Theorem 2 is replaced here with the stronger requirement that there is no point z ∈ ∂D such
that jrf(z) ∈W .

What is interesting about Theorem 3 is that the right hand side of (1.4) does not depend on
the size (nor even on the existence) of the derivatives of f of order higher than r + 1. This is
obtained by means of Theorem 21, a recent result from [LS19] that says that given a function
f such that jrf t W , the Betti numbers of a singularity (jrg)−1(W ) are bigger than those of
(jrf)−1(W ), provided that g is close enough to f in the Cr topology. In this way we can control
directly the Betti numbers of jrg−1(W ) and relax the requirements on the needed polynomial
approximation, since we can bypass the isotopy condition (1.2) of Theorem 1.

1.4. The condition number of a singularity. It is often more convenient to substitute the
distance from the discriminant with a more explicit quantity δW (f,D), defined as follows. Denote
by ΣW,z ⊂ Jr+1

z (D,Rk) the set of all possible jets of maps which are not transverse to W at z.
This is a closed and semialgebraic subset of Jr+1

z (D,Rk) and we define the number:

δW (f,D) = min
z∈D

dist(jr+1f(z),ΣW,z).

Observe that when z ∈ ∂D the set ΣW,z consists of “two pieces”: in fact if z ∈ int(D) we only
have to consider the transversality of jrf , while if z ∈ ∂D one needs also to take into account
the transversality of (jrf)|∂D, which involves a restriction of the jet, as a multilinear map, to
Tz(∂D) ' {z}⊥.

The transversality of jrf in most cases has a simple geometric interpretation, and for
z ∈ int(D) the set ΣW,z can be easily described. For example: in the case of hypersurfaces,
ΣW,z = {z}×{0}×{0} ⊂ D×R×Rn and dist(j1f(z),ΣW,z) =

(
|f(z)|2 + ‖∇f(z)‖2

)1/2 ; in the
case of critical points of a smooth function f : D → R, we have that

ΣW,z = {z} × R× {0} × {det = 0} ⊂ D × R× Rn × Sym(n,R)

and dist(j2f(z),ΣW,z) =
(
‖∇f(z)‖2 + (σ1(He(f)(z)))2

)1/2
, where He(f)(z) denotes the Hessian

of f at z and σ1 denotes the smallest singular value.
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The quantity δW (f,D) vanishes exactly when f ∈ ∆W , and jrf t W if and only if
δW (f,D) > 0 (Lemma 19 below). The key property, that allows to translate estimates in terms
of this quantity into the above geometric framework, is the fact that the distance to the discrim-
inant and the quantity δW (f,D) have the same order of magnitude. In fact, in Proposition 15,
we show that there exists a constant C = C(n, k, r) > 0 such that:

(1.5) δW (f,D) ≤ distCr+1(f,ΣW ) ≤ C · δW (f,D).

The first inequality follows from a characterization of the set of functions not transverse to W
at z as those with jet belonging to ΣW,z; the second inequality uses a classical result of Whitney
on the norm of a map with prescribed jet at one point.

Remark 4. The constant C > 0 in (1.5) depends also on the choice of the pointwise norm on the
jet bundles. In general we have C > 1, as shown in Example 16.

Using this notation, we introduce the notion of condition number for a map with respect to
a closed, stratified W ⊆ Jr(D,Rk) (Definition 18). Given f ∈ C`(D,Rk) with ` ≥ r+ 1, we set:

(1.6) κ
(`)
W (f,D) =

‖f‖C`(D,Rk)

δW (f,D) ≥
‖f‖C`(D,Rk)

distCr+1(f,∆W ) .

Notice that the numerator in (1.6) depends on the topology we are considering on the space
of functions, while the denominator does not. Transversality is synonymous of bounded (i.e.
non-infinite) condition number. Because of the inequality on the right hand side of (1.6), the
estimates (1.1) and (1.3) can also be stated using κ(r+2)

W (f,D).

1.5. The condition number of a defining equation for a hypersurface. Given a smooth
and compact hypersurface Z contained in int(D), the existence of a polynomial p such that
(D,Z) ∼ (D,Z(p)) is guaranteed by a classical result of Seifert [Sei36]. This problem is also
known as the “algebraic approximation problem”, and has several generalizations, culminating
with the celebrated Nash-Tognoli Theorem [Nas52,Tog73]: every smooth and compact manifold
M is diffeomorphic to an algebraic set in Rn. (Our problem concerns with the special case M is
already a hypersurface in Rn).

The proof of Seifert’s Theorem (clearly explained in [Kol17]) consists in first realizing Z as
the regular zero set of a function f : Rn → R and then approximating f on the disk D in the
C1 topology with a polynomial. In the very first step, one uses the fact that every smooth and
compact hypersurface in Rn is the zero set of a smooth function. This result is well-known, see
for instance [DFN85, Theorem 7.2.3], and a natural question in our framework is to produce an
estimate on the condition number of a defining equation for Z, in terms of some metric data of
the embedding Z ↪→ Rn.

To this end, given Z ⊂ Rn of class C1 we define the reach of Z as:

ρ(Z) = sup
r>0
{dist(x, Z) < r =⇒ ∃!z ∈ Z |dist(x, Z) = dist(x, z)} .

The reach of a C1 manifold doesn’t need to be positive, as shown in [KP81, Example 4], where
for every 0 < ε < 2 an example of a C2−ε compact curve with zero reach in R2 is constructed3;
however ρ(Z) > 0 if Z is of class C2. We prove the following result4.

3Near the origin this is in fact just the set Z ⊂ R2 defined by Z = {y = x2−ε}
4In the special case of hypersurfaces, i.e. whenW = D×{0}, in the notation of the various involved quantities

we omit the dependence from W in the subscripts.
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Theorem 5. Given a compact hypersurface Z ⊂ Rn of class C1 with ρ(Z) > 0, there exists a
C1 function f : Rn → R whose zero set is Z and such that for every disk D containing Z such
that dist(Z, ∂D) > ρ(Z), we have:

(1.7) κ(1)(f,D) ≤ 2
(

1 + 1
ρ(Z)

)
.

If moreover Z is of class C2, then the function f can be chosen of class C2 and satisfying:

(1.8) κ(2)(f,D) ≤ 2
(

1 + 1
ρ(Z) + 5n

ρ(Z)2

)
.

1.6. What is the degree of a smooth hypersurface? Once a compact C2 hypersurface
Z ⊂ Rn is given, as we have seen with Theorem 5, we can produce a defining equation with C2

condition number controlled with a function of the reach ρ(Z) > 0 (recall that the C2 regularity
assumption implies that the reach is nonzero). Therefore, assuming Z = Z(f) with f ∈ C2, we
come back to our original question: what is the smallest degree of a polynomial p whose zero set
Z(p) is diffeomorphic to Z(f)? Here we should make a choice: whether we want to approximate
Z only inside the disk D, or we want to get a global approximation in Rn. In fact Nash-Tognoli
Theorem also consists of two separate results: for a compact M , Nash first proved that M is
diffeomorphic to a component of a real algebraic set, and then Tognoli proved that we can choose
this algebraic set to be connected.

We deal with the problem of the global approximation in Appendix A, where we prove an
explicit (but rather unpleasant) bound on the degree of the global approximating polynomial in
terms of the C2 data of the defining function. Concerning the approximation of Z(f) inside the
disk D, specializing Theorem 1, we see that there exists a polynomial p with:

(1.9) deg(p) ≤ c1(0, D) ·max
{

1, κ(2)(f,D)
}

such that (D,Z(f)) ∼ (D,Z(p)).

Remark 6. Recall that the constant c1(0, D) coming from Theorem 1 depends only on the
dimension n and on the radius of the disk, but not on its position. The same holds for all the
constants ci appearing in the results of the present subsection and of subsection 1.7 regarding
the case of hypersurfaces. As this fact is obvious from the nature of the statements, we won’t
mention it again.

Combining this with Theorem 5 we get the following result, which uses only the available
geometry of Z.

Corollary 7. Given a compact hypersurface Z ⊂ Rn of class C2 and a disk D containing it
such that dist(Z, ∂D) > ρ(Z), there exists a polynomial p with

deg(p) ≤ c1(0, D) · 2
(

1 + 1
ρ(Z) + 5n

ρ(Z)2

)
such that

(D,Z) ∼ (D,Z(p)).

Another interesting consequence of (1.9) is Theorem 8 below, which provides a bound on the
number #(κ,D) of isotopy classes (and in particular on the number of diffeomorphism classes)
of compact hypersurfaces Z ⊂ int(D) defined by a regular equation Z = Z(f) with bounded C2

condition number.
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Theorem 8. There exist two constants C1, C2 (depending on D) such that the number #(κ,D)
of rigid isotopy classes of pairs (D,Z(f)) with Z(f) ⊂ int(D) ⊂ Rn and with κ(2)(f,D) ≤ κ is
bounded by:

#(κ,D) ≤ min
{
C1, κ

(C2κ
n+1)

}
In the case of the approximation of a hypersurface Z inside the disk D, we introduce in Section

4.2 the notion of isotopy degree of Z in D, denoted by degiso(Z,D): this is the smallest degree
of a polynomial p such that (D,Z(f)) ∼ (D,Z(p)). The idea here is that, as soon as you can
move from the smooth category to the semialgebraic one, a complete new set of tools becomes
available (for instance the use of Thom-Milnor for controlling the topology of the zero set) and
Theorem 1 allows to make this transition quantitative.

An interesting observation is that if f is itself a polynomial of degree d, then degiso(Z(f), D)
might be smaller than d. In fact, for most polynomials f of degree d one has

degiso(Z(f), D) ≤ O(
√
d log d),

see Remark 33.

1.7. Semicontinuity of Betti numbers. If we are interested in providing an upper bound for
the sum of the Betti numbers of a compact C2 hypersurface, we can in principle use Corollary 2
and get:

b(Z(f)) ≤ c2 max
{

1, κ(2)(f,D)
}n

,

for some constant c2 = c2(W ) > 0. However, with some extra work, it is possible to provide a
bound on the Betti numbers of Z(f) only using κ(1)(f,D), i.e. only using C1-information on f ,
as next Theorem shows.
Theorem 9. Let f ∈ C1(D,R) be given such that the equation f = 0 is regular and all of its
solutions belong to the interior of D.

(1) There exists a constant c4 = c4(D) > 0 such that the total Betti number of Z(f) is
bounded by:

(1.10) b(Z(f)) ≤ c4 · (κ(1)(f,D))n.
(2) There exists a bounded sequence {fm}m∈N ⊂ C1(D,R) with

lim
m→∞

κ(1)(fm, D) = +∞

and a constant c5 = c5(D) > 0 such that for every m ∈ N the zero set Z(fm) ⊂ int(D)
is regular and

b(Z(fm)) ≥ c5 · (κ(1)(fm, D))n.
Let us comment this result. First, we observe that it is possible to deduce a result similar to

(1.10) also from the work of Yomdin [Yom85], where bounds on the Betti numbers of Z(f) are
stated in terms of the distance from zero to the the set of critical values of f (Remark 17 below
compares the two quantities). See also [Yom84] for an other result of Yomdin, concerning the
Hausdorff measure of Z(f).

Here (1.10) is a consequence of a semicontinuity result for the Betti numbers of the zero set of
f under small perturbations in the C0 topology (rather than in the C1 topology, which is what
one would expect to need). This is discussed in Section 1.7.

The second part of the statement shows that the bound in (1.10) is “sharp”: as we get close
to the discriminant ∆, the complexity of f can actually increase as the reciprocal of the distance
from ∆.
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Combining Theorem 9 with Theorem 5 we get the following estimate for the Betti numbers
of a hypersurface in terms of its reach, if nonzero. (A similar bound can be obtained using the
results from [NSW08], see Remark 34 below).
Corollary 10. For any disk D ⊂ Rn there exists a constant c6 = c6(D) > 0 such that, for every
compact hypersurface Z ⊂ D of class C1 with ρ(Z) > 0, we have:

b(Z) ≤ c6
(

1 + 1
ρ(Z)

)n
.

1.8. Related work, open questions and comments. We conclude this Introduction by
pointing out some related work and open problems.

To start with, we point out that one can formulate a more general question: given a compact
manifold M , can we estimate ` and d such that M is diffeomorphic to an algebraic set Z of
degree d in R`? Clearly, the existence of d, ` is guaranteed by Nash-Tognoli. Approaching this
problem requires looking at the proof of Nash and Tognoli and making it quantitative – but using
which data? That has to be understood. For instance, if M is a 3–manifold, the data could be
some triangulation or the Heegaard decomposition. We plan to investigate this direction in a
forthcoming work.

This paper, in some sense, deals with the problem of “immersed Nash-Tognoli for complete
intersections”. The regularity plays a crucial role for us: we essentially covers the C2 case. The
C1 case is harder, and more fascinating. In fact, as a first step, one would need to solve the
following problem: let M be a compact C1 hypersurface in R`; find a regular smooth equation
f = 0 for M with bounded condition number. Here is a toy model for this problem. Minimize
the Cr norm of a function f : [−1, 1]→ R with prescribed derivatives up to order r at the origin.
Here, by Cr norm we mean:

‖f‖Cr := max
x∈[−1,1]

r∑
k=0
|f (k)(x)|.

It is a result of Whitney that ‖f‖Cr = O(‖jrf(0)‖). Several papers of Fefferman (see for instance
[Fef10]) deal with this problem, but where the fiberwise norm is the sup-norm (this makes the
computation simpler). Now, one can interpret the previous problem as follows: letM ⊂ Rn be a
C1 hypersurface and assign the one-jet of a function f : Rn → R alongM to be: f vanishes onM
and its gradient has norm 1 on M . Estimate the C1 norm of the function f on a ball containing
M . All this is related to the existence of regular neighborhoods, on which the only quantitative
results that we are aware of is for the smooth case. In the C2 case one has the reach as an
estimator of the size of these regular neighborhoods, but what happens in the C1 case? We point
out that a related problem has recently been studied by Yomdin in [Yom20,Yom21b,Yom21a],
in the context of smooth rigidity. A smooth rigidity inequality is an estimate that gives a lower
bound for the d+ 1 derivatives of a function f : D → R if f has a certain geometrical behaviour,
forbidden for polynomials of degree d. An example of such behaviour is: the topology of the zero
set of f exceeds Thom-Milnor’s bound. Interestingly, [Yom21b, Theorem 5.2] uses our results
and produces a lower bound for the C2 norm of f : D → R, in terms of the forbidden degree
d and the distance to the discriminant δ(f,D) > 0. (This bound shows that the norm grows
at least linearly with d.) We believe this is just the first step of a deeper connection between
our approach, rigidity inequalities and extensions problem, which we hope will be investigated
further.
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2. Preliminaries

2.1. Jet bundles. We assume that the reader is already familiar with notion of jet space,
referring to the textbooks [Hir94, VA85] for more details. We simply recall that the jet space
Jr(D,Rk) can be naturally identified with D × Jr(n, k), where

Jr(n, k) =
(

r⊕
i=1

R(n+i
i )
)k

and R(n+i
i ) is the space of homogeneous polynomials of degree i in n variables (see [Hir94]).

(The identification of a jet with an element of Jr(n, k) is made through the list of the partial
derivatives). We endow Jr(n, k) with the standard euclidean structure, allowing to compute
distances between elements in Jrz (D,Rk).

Using this notation, we can define the Cr norm of f ∈ Cr(D,Rk) as

(2.1) ‖f‖Cr(D,Rk) = max
z∈D
‖jrf(z)‖.

More explicitly, given f = (f1, . . . , fk) ∈ Cr(D,Rk) its Cr norm is:

‖f‖Cr(D,Rk) = sup
z∈D

 k∑
i=1

∑
|α|≤r

∣∣∣∣∂αfi∂xα
(z)
∣∣∣∣2
1/2

.

We observe that the definition of Cr norm is sensitive to the choice of the norm in the fibers
of the jet bundle. For instance, if one replaces in (2.1) the quantity ‖jrf(z)‖ with the sup of the
value of each partial derivative of f order at most r at z, one gets an equivalent Cr norm. The
choice of another fiberwise norm results in different constants appearing in the theorems below,
which would have similar statements.

2.2. Stratifications. Recall from [BCR98, Section 9.7] that given two disjoint and connected
Nash submanifolds (i.e. smooth and semialgebraic) X and Y in Rn, such that Y ⊂ clos(X), we
say that they satisfy the Whitney condition (a) if for every point y ∈ Y and for every sequence
{xn}n≥0 ⊂ X such that lim xn = y and limn TxnX = τ ∈ G(dim(X), n), then τ contains TyY.

Given a semialgebraic setW ⊆ Rp we will say that this set isWhitney stratified if it is stratified
as W =

∐
Wj with each stratum a Nash submanifold such that, whenever Wj1 ⊂ clos(Wj2)

for some pair of strata Wj1 and Wj2 , then they satisfy Whitney condition (a). Recall that,
by [BCR98, Theorem 9.7.11], every semialgebraic stratification can be refined to a Whitney
stratification.

Definition 11. Let W ⊆ Jr(D,Rk) be closed, semialgebraic and Whitney stratified:

(2.2) W =
s∐
j=1

Wj .

Given f ∈ Cr+1(D,Rk) we will say that jrf is transverse to W , and write jrf tW , if both jrf
and jrf |∂D are transverse to all the strata of the stratification (2.2).

Proposition 12. Given W ⊆ Jr(D,Rk) closed, semialgebraic and Whitney stratified, there
exists ΣW ⊂ Jr+1(D,Rk), closed and semialgebraic, such that for every f ∈ Cr+1(D,Rk) we
have that jrf is not transverse to W at z if and only if jr+1f(z) ∈ ΣW .
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Proof. Let W =
∐
jWj be the given Whitney stratification of W . The condition that

jrf : D → Jr(D,Rk) is not transverse to W at x means that jrf(x) ∈Wj for some j = 1, . . . , s
and that:
(2.3) im (dx(jrf)) + Tjrf(x)Wj 6= Tjrf(x)J

r(D,Rk) ' Rp.

For every stratum Wj let dj denote its dimension and let τj : Wj → Rdj×p be a semialgebraic
map such that for every w ∈Wj the columns of τj(w) are an orthonormal basis for TwWj – we
can assume that τj is continuous, possibly after refining the stratification. Then the condition
(2.3) can be written as:

rk(dxjrf, τj(jrf(x))) ≤ p− 1.
In particular, since both dxjrf and jrf(x) are linear images of jr+1f(x), i.e.

dxj
rf = π1(jr+1f(x)) and jrf(x) = π2(jr+1f(x))

for some semialgebraic maps
π1 : Jr+1(D,Rk)→ J1(D,Jr(d,Rk)) and π2 : Jr+1(D,Rk)→ Jr(D,Rk),

it follows that the condition that jrf is not transverse toW can be written as: there exists x ∈ D
such that π2(jr+1f(x)) ∈Wj for some j = 1, . . . , s and rk(π1(jr+1f(x)), τj(π2(jr+1f(x))) ≤ p−1.

In other words, defining the semialgebraic set:

Σ1
W =

s⋃
j=1

π−1
2 (Wj) ∩ {rk (π1(·), τj(π2(·))) ≤ p− 1}

= π−1
2 (W ) ∩

 s⋃
j=1
{rk (π1(·), τj(π2(·))) ≤ p− 1}

 ,(2.4)

we see that jrf is not transverse to W at x if and only if jr+1f(x) ∈ Σ1
W . Analogously

we can define a semialgebraic set Σ2
W such that jrf |∂D is not transverse to W if and only if

jr+1f(x) ∈ Σ2
W for some x ∈ ∂D. The set ΣW is defined as the union of Σ1

W and Σ2
W .

Let us now prove that ΣW is closed. We will show that Σ1
W is closed, the proof for Σ2

W

is similar. Since W is closed, it is enough to show that the set in the parenthesis in (2.4) is
closed, and this follows immediately from the fact that the stratification for W satisfies Whitney
condition (a). �

2.3. Distance to the discriminant.
Definition 13. Let W ⊆ Jr(D,Rk) closed, semialgebraic and Whitney stratified. We define the
quantity:
(2.5) δW (f,D) = inf

z∈D
dist(jr+1f(z),ΣW,z),

where we set ΣW,z = ΣW ∩ Jr+1
z (D,Rk) and we adopt the convention that if ΣW,z = ∅ then

dist(jr+1f(z),ΣW,z) =∞.

We introduce now the set of all maps which are not transverse to W .

Definition 14. Let W ⊆ Jr(D,Rk) be closed, semialgebraic and Whitney stratified. We denote
by ∆W ⊂ Cr+1(D,Rk) the set

∆W = {g ∈ Cr+1(D,Rk) | g is not transverse to W},
and, for z ∈ D, by ∆W,z(D) the set

∆W,z = {g ∈ Cr+1(D,Rk) | g is not transverse to W at z}.
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Observe that, since transversality is an open condition, the set ∆W is closed and

(2.6) ∆W =
⋃
z∈D

∆W,z.

Moreover, by Proposition 12, we have:
∆W,z = {g ∈ Cr+1 | jr+1g(z) ∈ ΣW,z}.

Next result relates δW (f,D) with the distance from ∆W in the space of Cr+1 maps.

Proposition 15. There exists a constant C = C(r, k, n) such that, for every W ⊆ Jr(D,Rk)
closed, semialgebraic and Whitney stratified, and for every f ∈ Cr+1(D,Rk) we have:

δW (f,D) ≤ distCr+1(D,Rk)(f,∆W ) ≤ C · δW (f,D).

Proof. Let us prove the first part of the statement:
distCr+1(D,Rk)(f,∆W ) = inf

s∈∆W

‖f − s‖Cr+1(D,Rk)

= inf
z∈D

inf
s∈∆W,z

‖f − s‖Cr+1(D,Rk) using (2.6)

= inf
z∈D

inf
s∈∆W,z

sup
x∈D
‖jr+1f(x)− jr+1s(x)‖

≥ inf
z∈D

inf
s∈∆W,z

‖jr+1f(z)− jr+1s(z)‖

≥ inf
z∈D

inf
s∈∆W,z

dist
(
jr+1f(z),ΣW,z

)
by Proposition 12

= inf
z∈D

dist
(
jr+1f(z),ΣW,z

)
= δW (f,D).

For the second part of the statement we use a classical result by Whitney on the infimum of the
Cr+1 norm of a function with prescribed (r + 1)-th jet at one point (see [Fef10, Theorem 1] for
a modern reference): there exists C = C(r, k, n) > 0 such that, given P ∈ Jr+1

z (D,Rk), we have

(2.7) inf
{
‖g‖Cr+1(D,Rk) | jr+1g(z) = P

}
≤ C · ‖P‖.

Observe now that:
inf

s∈∆W,z

‖f − s‖Cr+1(D,Rk) = inf
{
‖f − s‖Cr+1(D,Rk) | jr+1s(z) ∈ ΣW,z

}
= inf
σ(z)∈ΣW,z

inf
jr+1s(z)=σ(z)

‖f − s‖Cr+1(D,Rk)

= inf
σ(z)∈ΣW,z

(
inf
{
‖f − s‖Cr+1(D,Rk) | jr+1s(z) = σ(z)

})
= inf
σ(z)∈ΣW,z

(
inf
{
‖g‖Cr+1(D,Rk) | jr+1g(z) = jr+1f(z)− σ(z)

})
≤ inf
σ(z)∈ΣW,z

(
C · ‖jr+1f(z)− σ(z)‖

)
= C · dist(jr+1f(z),ΣW,z),(2.8)

where in the first line we have used Proposition 12, and in the fifth line we have used Whitney’s
result (2.7). Taking now the infimum over z ∈ D on both sides of (2.8) concludes the proof. �

Example 16. In this example we show that in general C > 1. Let us consider D = [−1, 1] and
the “critical points” singularity W ⊂ J1(D,R) defined by:

W = D × R× {0}.
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In this way, given f ∈ C1(D,R), we have that j1f−1(W ) consists of the set of critical points for
f . The pointwise discriminant ΣW,z ⊂ J2

z (D,R) is
ΣW,z = {z} × R× {0} × {0}.

Let f(x) = x. We claim that distC2(f,∆W ) > δW (f,D). To start with, observe that:
δW (f,D) = inf

z∈D
dist(j2f(z),ΣW,z)

= inf
z∈D

dist((z, z, 1, 0), {z} × R× {0} × {0})

= inf
z∈D
‖(z, z, 1, 0)− (z, z, 0, 0)‖ = 1.

We now assume that in this case C = 1, which implies distC2(f,∆W ) ≤ 1, and prove that this
leads to a contradiction.

If C = 1, then for every ε > 0 there is g ∈ ∆W such that:
‖f − g‖C2 < 1 + ε.

Such a function g, being in ∆W , has a degenerate critical point at x0 ∈ D and therefore:

‖f − g‖C2 ≥ ‖j2f(x0)− j2g(x0)‖ =
(

(x0 − g(x0))2 + 1
)1/2

.

Together with this, the inequality distC2(f,∆W ) ≤ 1 implies now that:
|x0 − g(x0)|2 < ε2 + 2ε.

Let us now call φ = f − g. This function satisfies:

(2.9) |φ(x0)| <
√
ε2 + 2ε, φ′(x0) = 1, φ′′(x0) = 0 and ‖φ‖C2 < 1 + ε.

We show that the existence for every ε > 0 of a C2 function satisfying the list of conditions (2.9)
leads to a contradiction. To this end, consider the following differential inequality:

y2 + (y′)2 ≤ a2, y(0) = 1, y′(0) = 0.
Then it is easy to see (by direct integration) that:

y(x) ≥ y(0) cosx−
√
a2 − y(0) sin x.

Letting now y = φ′ and a = 1 + ε, we get

φ′(x) ≥ cosx−
√

(1 + ε)2 − 1 sin x
and, integrating

φ(x) ≥ sin x+
√
ε2 + 2ε(cosx− 1)−

√
ε2 + 2ε.

This means that
(1 + ε)2 ≥ ‖j2φ(x)‖2 ≥ 1 + 2(ε2 + 2ε)(1− cosx)− 2

√
ε2 + 2ε sin x+ φ′′(x)2 −O(ε1/2).

In turn this implies:
|φ′′(x)| ≤ cε1/4,

and consequently
φ′(x) ≥ 1− cε1/4x and φ(x) ≥ x− cε1/4x2/2.

In particular:
‖j2φ(1)‖2 ≥ 2−O(ε1/4),

which for ε > 0 small enough is a contradiction.
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Remark 17. For a given f : Rn → R of regularity class C1, we can introduce the quantity:

γ(f,D) = distR(0, f(Crit(f |D)),

i.e. the distance from zero to the critical values of f |D. Denoting as above by ∆ = ∆W the set
of functions for which f = 0 is not regular on D, for every f ∈ C1(D,R) we have:

δ(f,D) ≤ distC1(D,R)(f,∆) ≤ γ(f,D)

The first inequality is just Proposition 15. For the second inequality, let γ(f,D) = γ0 > 0
(otherwise f ∈ ∆ and the inequality is trivial) and pick ξ ∈ R with |ξ| = γ0 and ξ a critical value
of f |D. Then f − ξ ∈ ∆ and f − tξ /∈ ∆ if |t| < 1. Therefore:

distC1(D,R)(f,∆) ≤ ‖f − (f − ξ)‖C1(D,R) = ‖ξ‖C1(D,R) = |ξ| = γ0.

Definition 18. Let W ⊆ Jr(D,Rk) closed, semialgebraic and Whitney stratified and let
f ∈ C`(D,Rk) with ` ≥ r + 1. We define the C`-condition number of f on the disk D with
respect to W as:

κ
(`)
W (f,D) =

‖f‖C`(D,Rk)

δW (f,D) .

Lemma 19. Let W ⊆ Jr(D,Rk) closed and semialgebraic, Whitney stratified. For every
f ∈ Cr+1(D,Rk), we have that jrf is transverse to W if and only if δW (f,D) > 0, and in
this case jrf−1(W ) is a Whitney stratified set. In particular, if W is smooth, then jrf−1(W ) is
a smooth neat5 submanifold of D.

Proof. If jrf is transverse toW , then for no point z ∈ D we have jr+1f(z) ∈ ΣW,z by Proposition
12; this means that for every z ∈ W we have dist(jr+1f(z),ΣW,z) > 0, and since the function
z 7→ dist(jr+1f(z),ΣW,z) is continuous on the compact set D, then the infimum in (2.5) is a
minimum and this minimum must be positive.

Vice versa, if δW (f,D) > 0 then dist(jr+1f(z),ΣW,z) > 0 for every z ∈ D and jrf is transverse
to W by Proposition 12.

When δW (f,D) > 0, the fact that jrf−1(W ) is a stratified set is a standard application of
the transversality theorems; similarly in the case W is smooth. �

2.4. Quantitative transversality.

Lemma 20. Let W ⊆ Jr(D,Rk) be closed and semialgebraic, Whitney stratified and let
f ∈ Cr+1(D,Rk) be such that jrf is transverse to W (in particular δW (f,D) > 0). For ev-
ery g ∈ Cr+1(D,Rk) such that

‖f − g‖Cr+1(D,Rk) < distCr+1(f,∆W ),

the two pairs (D, jrf−1(W )) and (D, jrg−1(W )) are isotopic. In particular, the result holds if
‖f − g‖Cr+1(D,Rk) < δW (f,D).

Proof. By assumption on ‖f − g‖Cr+1 , the homotopy ft = f + t(g − f) : D → Rk, for t ∈ [0, 1]
is all disjoint from ∆W . In particular the corresponding homotopy jrft : D → Jr(D,Rk) is all
transverse to W and the result follows from Thom’s Isotopy Lemma [Tho69, Théorème 2.D.2].
As for the second part of the statement: by Proposition 15 we have δW (f,D) ≤ distCr+1(f,∆W )
and the conclusion follows from the first part. �

5A neat submanifold W of a manifold with boundary D is a manifold with boundary such that ∂W ⊂ ∂D
and for any point x ∈ ∂W the following condition holds: TxW 6⊂ Tx(∂D), see [Hir94].
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2.5. Semicontinuity of Betti numbers. The key ingredient in the proof of the topological
bound of Theorem 3 is the following result. Applied to the case of W ⊂ Jr(D,Rk) ⊂ Rp,
ϕ = jrf and ψ = jrg, it allows to control, from below, the Betti numbers of the singularity
Z = (jrg)−1(W ), provided that g is close enough in the Cr topology to a known function f ,
such that jrf t W . In this sense, it plays a role analogous to that played by Lemma 20 in the
proof of Theorem 1, with the significant difference that it requires only to know the Cr distance
between f and g.

Theorem 21 (Theorem 2 from [LS19]). Let ϕ : D → Rp be a C1 function and let W ⊂ Rp be
a smooth closed submanifold. Assume that ϕ t W and that the set Z = ϕ−1(W ) is contained
in the interior of D. Let E ⊂ E1 ⊂ int(D) be tubular neighborhoods of Z with the property that
E ⊂ E1

6.
(1) Let the space C0(D,Rp) be topologized by the standard C0 norm. Define the set UE,ϕ as

the connected component containing ϕ of the set
(2.10) UE =

{
ψ ∈ C0(D,Rp) : ψ−1(W ) ⊂ E

}
.

Then UE,ϕ is open in C0(D,Rp).
(2) Let b̌(Z) denote the sum of the Čech Betti numbers of Z. For any g ∈ UE,ϕ, we have

(2.11) b(Z) ≤ b̌
(
ψ−1(W )

)
.

Remark 22. The statement reported in [LS19] is weaker than the one above, in the sense that it
doesn’t specifies the neighborhood UE,ϕ and it requires that ψ tW . The proof of this stronger
form can be found in the second author’s PhD thesis [Ste21]. In the proof of [LS19, Theorem
2], the condition on ψ t W is needed in order to guarantee that a neighborhood of the zero
set retracts to it. In this context, let us notice that we will use Theorem 21 in the proof of
Theorem 9 and of Theorem 3, where ψ will be a polynomial and W a semialgebraic subset. In
this case, being the preimage of a semialgebraic set via a polynomial map semialgebraic, the
condition of having a neighborhood which retracts on it is already verified; moreover, for the
same reason, on the right hand side of (2.11) one can take ordinary Betti numbers (as Čech
cohomology coincides with the singular one). Finally, the description of the neighborhood as in
(2.10), even if not stated in the original theorem [LS19, Theorem 2], is evident from its proof.

3. Polynomial approximation of singularities

3.1. Proof of Theorem 1. In the sequel we will need the following quantitative versions of
Weierstrass’ Approximation Theorem from [BBL02].

Theorem 23 (Theorem 2 from [BBL02]). For every r ≥ 0 there exists a constant ar(D) > 0
such that for every f ∈ Cr(D,R) and for every d ≥ 0 there is a polynomial pd(f) ∈ R[x1, . . . , xn]
of degree at most d such that for every ` ≤ min{r, d}:

‖f − pd(f)‖C`(D,R) ≤
ar(D)
dr−`

· ‖f‖Cr(D,R).

Corollary 24. For every r ≥ 0 there exists a constant ar+2(D) > 0 such that for every
f ∈ Cr+2(D,R) and for every ε > 0 there is a polynomial pd(f) ∈ R[x1, . . . , xn] of degree
at most d such that ‖f − pd(f)‖Cr+1(D,R) < ε and:

d ≤ max
{
r + 1,

‖f‖Cr+2(D,R)

ε
· ar+2(D)

}
.

6Only the existence of E1 is needed.
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With this result available, we prove now Theorem 1.
Let f = (f1, . . . , fk) and use Theorem 23 to get for every d ∈ N a polynomial map

pd(f) = (pd(f1), . . . , pd(fk)) such that:

(3.1) ‖f − pd(f)‖Cr+1(D,Rk) =
(

k∑
i=1
‖fi − pd(fi)‖2Cr+1(D,R)

)1/2

≤ ar+2(D)
d

· ‖f‖Cr+2(d,Rk).

Choose now the approximating degree to be

(3.2) d = max
{
r + 1,

⌊ ‖f‖Cr+2(D,Rk)

distCr+1(f,∆W ) · 2ar+2(D)
⌋}

.

Then

ar+2(D) ·
‖f‖Cr+2(D,Rk)

distCr+1(f,∆W ) < 2ar+2(D) ·
‖f‖Cr+2(D,Rk)

distCr+1(f,∆W ) ≤ d,

and the inequality (3.1) becomes:
‖f − pd(f)‖Cr+1(D,Rk) < distCr+1(f,∆W ).

The conclusion follows now from Lemma 20. Lemma 25 below ensures that the inequality (3.2)
can be put in the slightly different form stated in the theorem, with the constant outside of
max{. . . }.

Lemma 25. Let r, f, a > 0 be positive real numbers and define c := max{1, a}. Then
max{r, af} ≤ c ·max{r, f}.

Proof. Let L := max{r, af} and R := max{r, f}. Depending on the order of r, f, a, there are
4 possible cases for the value of the couple (L,R), listed on the left column. On the rightmost
column we write the ratio R

L .

(L,R) L
R ≤ . . .

(r, r) 1
(af, r) a
(r, f) 1
(af, f) a

In all cases, the inequality L ≤ c ·R is satisfied, so the lemma is proved. �

Remark 26. From Lemma 25 we also deduce that the constant c1(r,D) can be defined as
c1(r,D) := max{1, 2ar+2(D)}.

Notice that this number is independent from the position of the disk, since the result of
Theorem 23 for a given disk D ⊂ Rn implies the same result for every other disk D + x, for all
x ∈ Rn.

3.2. Proof of Corollary 2. Let pd(f) : D → Rk be the polynomial map given by Theorem 1,
with:

d = deg(pd(f)) ≤ c1(r,D) ·max
{
r + 1,

‖f‖Cr+2(D,Rk)

distCr+1(f,∆W )

}
and such that

(D, jrf−1(W )) ∼ (D, jrpd(f)−1(W )).
Observe that jrpd(f) : D → D × Jr(n, k) is also a polynomial map, with each component of
degree bounded by d. The set W ⊂ Jr(D,Rk) can be described by a quantifier-free Boolean
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formula without negations, involving a family of polynomials Q = {q1, . . . , qs} with s = s(W )
and deg(qi) ≤ a1(W ), whose atoms are of the form qi ≤ 0, qi ≥ 0 or qi = 0. In particular
jrpd(f)−1(W ) can also be described by a quantifier-free Boolean formula without negations,
involving a family of s polynomials of degrees bounded by d · a1(W ), whose atoms are of the
form qi ◦ jrpd(f) ≤ 0, qi ◦ jrpd(f) ≥ 0 or qi ◦ jrpd(f) = 0. We are therefore in the position of
applying [Bas99, Theorem 1] and we get the existence of a constant a2 > 0 such that:

b(jrf−1(W )) = b(jrpd(f)−1(W ))
≤ an2 s(W )n(a1(W )d)n

≤ (a2s(W )a1(W ))n
(
c1(r,D) ·max

{
r + 1,

‖f‖Cr+2(D,Rk)

distCr+1(f,∆W )

})n
≤ c2(W ) ·max

{
r + 1,

‖f‖Cr+2(D,Rk)

distCr+1(f,∆W )

}n
.

3.3. Proof of Theorem 3. Let us make the identification

Jr+1(D,Rk) ∼= D × Rp × Rq,

in such a way that the canonical projection jr+1
z f → jrzf corresponds to the map (z, ξ, η) 7→ (z, ξ)

and the so called “source map” jr+1
z f 7→ z corresponds to the projection on the first factor.

Definition 27. Let W ⊂ Jr(D,Rk) ∼= D × Rp be a smooth closed semialgebraic submanifold
and let θ ∈W .

C(TθW ) :=
{
α ∈ Rn×(n+p)

∣∣∣ dim (im(α) + TθW ) < n+ p
}

The set C(TθW ) is the semialgebraic subset of the space Rn×(n+p) consisting of all the linear
maps Rn → Rn+p that are not transverse to the vector space TθW ⊂ Rn+p.

Let W be compact. Suppose that W t Jrz (D,Rk) for all z ∈ D, where in our identification
Jrz (D,Rk) = {z} × Rp, and define Wz = W ∩ Jrz (D,Rk). Then the set

(3.3) Bε(W ) :=
{

(z, ξ) ∈ Jr(D,Rk)
∣∣∣ dist ((z, ξ),Wz) < ε

}
is a smooth open tubular neighborhood of W , for small enough ε whose fibers are contained in
the spaces Jrz (D,Rk) (here we are using the transversality assumption). Let us denote by ε0(W )
the supremum of the set of all ε with such property.

Definition 28. Let W be compact and such that W t Jrz (D,Rk) for all z ∈ D, so that
Wz = W ∩ Jr(D,Rk) is a closed submanifold. For any f ∈ Cr+1(D,Rk) let

πW (f, z) = {θ ∈Wz : dist(jrf(z),W ) = |jrf(z)− θ|}

and define

δ̂W (f, z) :=
(

dist(jrf(z),Wz)2 + min
θ∈πW (f,z)

dist (dz(jrf), C(TθW ))2
) 1

2

;

δ̂W (f,D) := min
{

inf
z∈D

δ̂W (f, z); inf
z∈∂D

dist(jrf,Wz); ε0(W )
}

;

Remark 29. Notice that δ̂W (f,D) > 0 if and only if jrf is transverse toW at any point z ∈ int(D)
and moreover jrf−1(W ) ∩ ∂D = ∅.
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Lemma 30. Let W ⊂ D×Rp be a compact smooth submanifold and assume that W t {z}×Rp
for all z ∈ D. Let (z, ξ) ∈ ∂Bε(W ), with 0 < ε < ε0(W ) and let (z, w) ∈ W be such that
|ξ − w| = ε. Then

T(z,w)W ⊂ T(z,ξ)∂Bε(W ).

Proof. Let ξ(t), w(s) ∈ Rp be two smooth curves such that ξ(0) = ξ, w(0) = w, (z, w(s)) ∈ W
and (z, ξ(t)) ∈ ∂Bε(W ). Then for all s, t we have

|ξ(t)− w(s)| ≥ dist ((z, ξ(t)),Wz) = ε = |ξ(0)− w(0)|,
so that differentiating the function (s, t) 7→ |ξ(t) − w(s)|2 at the point (0, 0), we get that
〈(ξ − w), ẇ〉 = 0 and 〈(ξ − w), ξ̇〉 = 0. The arbitrariness in the choice of the two curves implies
that

T(z,ξ)W ∩ ({0} × Rp) ⊂ {0} × (ξ − w)⊥ = T(z,ξ)∂Bε(W ) ∩ ({0} × Rp);
here on the right we have an equality instead than an inclusion for dimensional reasons.

Now let (z(t), w(t)) ∈ W be any smooth curve in W such that z(0), w(0) = z, w. Given the
tubular neighborhood structure of ∂Bε(W ) (see the discussion after equation (3.3)), there also
exists a smooth curve (z(t), ξ(t)) ∈ ∂Bε(W ) with ξ(0) = ξ and of course (ż, ξ̇) ∈ T(z,ξ)∂Bε(W ).
Thus

|ξ(t)− w(t)| ≥ dist
(
ξ(t),Wz(t)

)
= ε = |ξ(0)− w(0)|,

so that differentiating at t = 0 we get that ξ̇ − ẇ ∈ (w − ξ)⊥ meaning that the vector (0, ξ̇ − ẇ)
belongs to the tangent space T(z,ξ)∂Bε(W ). We conclude that (ż, ẇ) ∈ T(z,ξ)∂Bε(W ). Since the
latter construction can be repeated for any tangent vector (ż, ẇ) ∈ T(z,w)W , this concludes the
proof. �

Proof of Theorem 3. Consider the set Bε(W ) defined as in (3.3) and let us prove that

(3.4) jrf t ∂Bε(W ), ∀ε ∈ (0, δ̂W (f,D)).
By contradiction assume that there is a point z ∈ D such that jrf(z) ∈ ∂Bε(W ), but jrf is not
transverse to ∂Bε(W ) at z i.e.
(3.5) im (dz(jrf)) ⊂ Tjrf(z)∂Bε(W ).
Since ε < ε0(W ), there exists a (unique) point θ ∈ Wz such that ‖jrf − θ‖ = ε i.e.
{θ} = πW (jrf(z)). By Lemma 30 we have that Tjrf(z)∂Bε(W ) ⊃ TθW and this, together
with (3.5), implies that the linear map dz(jrf) : Rn → Rn+p belongs to the critical set C(TθW ).
This leads to a contradiction:

δ̂W (f, z) ≤ dist (jrf(z),Wz) = ε < δ̂W (f, z),
proving (3.4).

Fix 0 < ε < δ̂W (f,D). From the transversality condition (3.4) it follows that the set
E = jrf−1(Bε(W )) is a smooth tubular neighborhood of the submanifold Z = jrf−1(W ) in
the smooth manifold int(D). The fact that E is contained in the interior of D is due to the
inequality

ε < δ̂W (f,D) ≤ inf
z∈∂D

dist(jrf,Wz).

Now let g ∈ R[z1, . . . , zn]k be a polynomial such that ‖f − g‖Cr(D,Rk) ≤ ε. Then jrg−1(W ) ⊂ E
indeed if jrg(z) ∈W , then

dist(jrf(z),Wz) ≤ dist(jrf(z), jrg(z)) + dist(jrg(z),Wz) ≤ ε+ 0,
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hence jrf(z) ∈ Bε(W ). The same is true for all maps gt = tg + (1 − t)f , therefore the map g
belongs to the set UE,jrf ⊂ C0(D,Rn+p) defined in the statement of Theorem 21 and thus

(3.6) b(Z) ≤ b
(
jrg−1(W )

)
.

(Since jrg is a polynomial, we can use the singular homology Betti numbers.) By Theorem 23 we
can assume that each component of g has degree smaller than an integer number
d ≤ ar+1(D)‖f‖Cr+1(D,Rk)ε

−1 or, if the latter is less than r, d ≤ r so that since W is semi-
algebraic and the map jrg is polynomial there exists a constant a(W ) > 0 depending only on
W such that
(3.7) b

(
jrg−1(W )

)
≤ a(W )dn ≤ a(W ) max

{
r, ar+1(D)‖f‖Cr+1(D,Rk)ε

−1}n .
Combining (3.6) and (3.7) and from the arbitrariness of ε, we obtain the thesis. �

4. What is the degree of a smooth hypersurface?

In this section we consider the case in which jrf−1(W ) is just the zero set of the function
f : D → R. In this case W = W0 is the subset of the space J0(D,R) ∼= D × R corresponding to
W0 = D × {0}.

In this particular case we have that δW0(f,D) = dist(f,∆W0) (see Proposition 31 below) and
for the rest of the current section we will denote this quantity by δ(f,D).

Notice that under the identification
J1(D,R) ∼= D × R× Rn,

we have that ΣW0,z = {z}×{0}×{0} for every z ∈ int(D), while ΣW0,z = {z}×{0}×(Tz∂D)⊥ if
z ∈ ∂D, therefore the distance of f from the discriminant W0 can be expressed by the following
formula.

δ(f,D) = min
{

inf
z∈D

(
|f(z)|2 + |∇f(z)|2

) 1
2 , inf

z∈∂D

(
|f(z)|2 + |∇(f |∂D)(z)|2

) 1
2

}
.

Proposition 31. δW0(f,D) = distC1(f,∆W0).

Proof. Let us make the identification J1(D,R) ∼= D×R×Rn. By definition, there exists a point
x ∈ D and a jet jxg = (x, r, v) ∈ J1

x(D,R) such that j1(f + g)(x) ∈ ΣW0,x and
δW0(f,D) = ‖(r, v)‖.

Fix ε > 0 and let ρε : R → [−ε, ε] be a smooth function such that maxt∈R |ρ′ε(t)| = ρ′ε(0) = 1.
For instance ρ can be constructed as follows:

ρε(t) =


t if − ε2 ≤ t ≤

ε
2

is increasing and convex if t ≤ − ε2
is increasing and concave if ε2 ≤ t
ε if |t| ≥ 2ε.

Define now a new function h ∈ C1(D,R) such that h(z) = r+ ρε(vT (z− x)). Then the function
f + h belongs to the discriminant set DW0 since j1(f + h)(x) = j1(f + g)(x) ∈ ΣW0,x, therefore

distC1(f,∆W0) ≤ ‖h‖C1(D,R)

≤ sup
z∈D

(
|r + ρε(z)|2 + |ρ′ε(vT (z − x))v|2

) 1
2

≤
(
|r + ε|2 + |v|2

) 1
2 .
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Thus, from the arbitrariness of ε > 0, we conclude that

distC1(f,∆W0) ≤ (r2 + |v|2) 1
2 = δW0(f,D).

Combining this with the general inequality (1.5) we obtain the thesis.
�

4.1. Proof of Theorem 5. Denote by ρ = ρ(Z).We consider the function d∗Z : Rn → R defined
to be the signed distance from Z. By [Foo84, Remark 2], if Z is of class C1 and with positive
reach ρ(Z) > 0, the function d∗Z is C1 on the set {d∗Z < ρ(Z)}.

We need to consider also an auxiliary function g : R→ R of class C2 such that g(t) = −g(−t)
for all t ∈ R and:

g(t) =


t if 0 ≤ t ≤ 1

2
is increasing and concave if 1

2 ≤ t ≤
7
8

3
4 if t ≥ 7

8

The existence of such a function is elementary; it can be taken, for instance, to be piecewise
polynomial. Denoting by gρ the function t 7→ ρ · g(t/ρ), we set:
(4.1) f(x) = gρ(d∗Z(x)).

Let us start by estimating δ(f,D), for a diskDR with Z ⊂ intDR−ρ. Notice that this condition
implies that, by construction, the function f ≡ 3

4ρ on Rn\int(D) and in particular:

(4.2) δ(f,D) = min
{

inf
z∈D

(
|f(z)|2 + ‖∇f(z)‖2

)1/2
,

3
4ρ
}
.

Observe now that for every x such that t = d∗Z(x) < ρ we have:
|f(x)|2 + ‖∇f(x)‖2 = |gρ(d∗Z(x))|2 + |g′ρ(d∗Z(x))|2 · ‖∇d∗Z(x)‖2

= |gρ(d∗Z(x))|2 + |g′ρ(d∗Z(x))|2

= ρ2|g(t/ρ)|2 + |g′(t/ρ)|2,(4.3)

where in the second line we have used the fact that ‖∇d∗Z‖ ≡ 1. In particular, partitioning the
domain of definition of the function gρ, it follows that:

inf
z∈D
|f(z)|2 + ‖∇f(z)‖2 = inf

{
1 + ρ2

4 , ρ
2(3/4)2, inf

1
2ρ≤t≤

7
8 t
ρ2|g(t/ρ)|2 + |g′(t/ρ)|2

}

≥ inf
{

1 + ρ2

4 , ρ
2(3/4)2, inf

1
2ρ≤t≤

7
8 t
ρ2|g(t/ρ)|2 + inf

1
2ρ≤t≤

7
8 t
|g′(t/ρ)|2

}

= inf
{

1 + ρ2

4 , ρ
2(3/4)2,

ρ2

4

}
= ρ2

4 .

Together with (4.2), this gives:

(4.4) δ(f,D) ≥ ρ

2 .

Let us now estimate κ(f,D). Again partitioning the domain and using (4.3) and the fact that
|g′(t)| ≤ 1 for all t, we immediately get:

(4.5) ‖f‖C1(D,R) ≤ 1 + 3
4ρ.
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Combining (4.4) with (4.5) gives (1.7).
In order to get (1.8), we will work with the further assumption that Z is of class C2. Under

this assumption the function d∗Z is C2 on {d∗Z < ρ(Z)} and, using (4.1) we get:

(4.6) ∂2f

∂xi∂xj
(x) =

{
0 if d∗Z(x) > 7

8ρ

g′′ρ (d∗Z(x))∂id∗Z(x)∂id∗Z(x) + g′ρ(d∗Z(x))∂2
ijd∗Z(x) otherwise

.

Since the function g is fixed with ‖g′‖ ≤ 1 and ‖g′′‖ ≤ a1 (for some constant a1 > 0), we have

‖g′ρ‖ = ‖g′‖ ≤ 1 and ‖g′′ρ‖ = 1
ρ
‖g′′‖ ≤ a1

ρ
.

In particular, in order to estimate the absolute value of (4.6), we need an estimate for the Hessian
of d∗Z . We use now the following fact [GT01, Lemma 14.17]: given x ∈ {d∗Z < ρ} with d∗Z(x) = t,
the Hessian of d∗Z at x has eigenvalues:

β1(t) = −λ1

1− λ1t
, . . . , βn−1(t) = −λn−1

1− λn−1t
, βn(t) = 0

where λ1, . . . , λn−1 are the eigenvalues of the Weingarten map of the hypersurface Z at
z(x) = argminz∈Zdist(z, x), i.e. the principal curvatures of Z in Rn.

The modulus of each of these eigenvalues can be estimated by

|λi| ≤
1

ρ(Z) ,

and each ratio |1 − λit|−1 is smaller than 1 if λ1 ≤ 0 and, if λi > 0, smaller than its value at
t = 7

8ρ (the extremum of the interval where we have to estimate the function), which is:

1
|1− λit|

≤ 1∣∣1− λi 7
8ρ
∣∣ ≤ 8,

where we have used 0 < λi ≤ 1
ρ . Going back to (4.6), we have

∣∣∣∣ ∂2f

∂xi∂xj
(x)
∣∣∣∣ ≤ |g′′ρ (t)|+ |g′ρ(t)| · |∂2

ijd∗Z(x)|.

Observe now that for the construction of the function g we need:

g′′(1/2) = g′′(7/8) = 0 and
∫ 7/8

1/2
g′′(s)ds = −1.

Since 7/8 − 1/2 = 3/8 > 1/3, we can choose the function g such that |g′′| ≤ 3, which implies
|g′′ρ | ≤ 3/ρ.
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From this we immediately deduce that

‖f‖C2(D,R) ≤ ‖f‖C1(D,R) +

∑
i,j

|∂2
ijf |2

1/2

≤ 1 + 3
4ρ+

∑
i,j

(|g′′ρ |+ |∂2
ijd∗Z |)2

1/2

≤ 1 + 3
4ρ+

∑
i,j

(3/ρ+ |∂2
ijd∗Z |)2

1/2

≤ 1 + 3
4ρ+

∑
i,j

2((3/ρ)2 + |∂2
ijd∗Z |2)

1/2

≤ 1 + 3
4ρ+

√
2

n2 9
ρ2 +

∑
i,j

|∂2
ijd∗Z |2

1/2

= 1 + 3
4ρ+

√
2
(
n2 9
ρ2 + ‖∂2

ijd∗Z‖2F
)1/2

= 1 + 3
4ρ+

√
2
(
n2 9
ρ2 +

n∑
i=1

λi(∂2
ijd∗Z)2

)1/2

≤ 1 + 3
4ρ+

√
2
(
n2 9
ρ2 + n

ρ2

)1/2

≤ 1 + 3
4ρ+ 5n

ρ
.

Together with (4.4) this gives (1.8).

4.2. The isotopy degree of a smooth hypersurface.

Definition 32. Let Z ⊂ D be a smooth, compact submanifold without boundary. We define the
number degiso(Z,D), the isotopy degree of Z in D, as the minimum degree of a polynomial p
such (D,Z) ∼ (D,Z(p)).

Remark 33. We observe that the isotopy degree of a hypersurface defined by a polynomial of
degree d can be smaller than d. In fact, following [DL18], one can prove that for most polynomials
p of degree d we have

degiso(Z(p)) = O
(√

d log d
)
,

in the following sense. First, we can put a gaussian measure µ on the space of polynomials of
degree d by defining for every open set A in R[x1, . . . , xn] its measure by

µ(A) =
∫
A
e−‖p‖

2
FSdλ∫

R[x1,...,xn] e
−‖p‖2

FSdλ
,

where λ is the Lebesgue measure on R[x1, . . . , xn] ' RN (the identification is made through the
list of coefficients) and ‖ · ‖FS denotes the Fubini-Study norm: this norm is induced by a scalar
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product for which {√
d!

α1! · · ·αn!(d− |α|)! · x
α1
1 · · ·xαnn

}
|α|≤d

form an orthonormal basis. Let now p ∈ R[x1, . . . , xn] be a polynomial of degree d and denote
by x = (x0, x1, . . . , xn) and by h ∈ R[x0, . . . , xn] the homogenization of p, the new variable being
x0. Then we can decompose h into its spherical harmonics part

h = hd + ‖x‖2 · hd−2 + ‖x‖4 · hd−4 + · · · .
Denote by h̃ the projection of h on the space of harmonics of degree at most

√
bd log d, where

b > 0 is a positive constant (defined in [DL18, Proposition 6]):

h̃(x0, . . . , xn) =
∑

`≤
√
bd log d

‖x‖d−`h`(x0, . . . , xn)

= ‖x‖d−b
√
bd log dc

∑
`≤
√
bd log d

‖x‖b
√
bd log dc−`h`(x0, . . . , xn)

= ‖x‖d−b
√
bd log dc · q(x0, . . . , xn).

Here q is a homogeneous polynomial of degree bounded by O(
√
d log d). Then, by [DL18,

Theorem 7], there is a set Sd ⊂ R[x0, . . . , xn] of homogeneous polynomials of degree d such
that µ(Sd) → 1 as d → ∞ (i.e. with almost full measure) with the property that for every
h ∈ Sd

(Sn, Z(h)) ∼ (Sn, Z(h̃)) = (Sn, Z(q)).
When we set x0 = 1 in q we obtain a polynomial p̃ on Rn ' {x0 = 1}, whose zero set is isotopic
to Z(p) and with degree O(

√
d log d).

4.3. Proof of Theorem 8. We will first prove the following preliminary estimate.
For d, n > 0 denote by Zd,n the set of rigid isotopy classes of pairs (Rn, Z(p)) with Z(p) ⊂ Rn

regular zero set of a polynomial p ∈ R[x1, . . . , xn] of degree at most d. We claim that:
(4.7) #Zd,n ≤ 2T (2T − 1)`−1,

where T = (n+ 1)(d− 1)n and ` =
(
n+d+1
n+1

)
.

The cardinality of Zd,n is bounded by the number of connected components of the complement
of a discriminant in the space of polynomials. More precisely, denoting by

∆d,n ⊂ R[x1, . . . , xn] ' R`

the discriminant for Z(p) being nonsingular, the number of rigid isotopy classes of (Rn, Z(p)) is
bounded by b0(R`\∆d,n). Denoting by ∆̂d,n ⊂ SN the one point compactification of ∆d,n, we
have (using Alexander duality):

#Zd,n ≤ b0(R`\∆d,n)

= b0(S`\∆̂d,n)

= b̃0(S`\∆̂d,n) + 1

≤ b̃(S`\∆̂d,n) + 1

= b̃(∆̂d,n) + 1

= b(∆̂d,n).
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In particular, in order to estimate #Zd,n it is enough to estimate the total Betti number of ∆̂d,n.
To this end we will use a Mayer-Vietoris argument and write:

∆̂d,n = ∆d,n ∪
(
U∞ ∩ ∆̂d,n

)
,

where U∞ ⊂ S` is an open ball centered at the point at infinity in S`. Observe that U∞ ∩ ∆̂d,n

is contractible and

∆d,n ∩
(
U∞ ∩ ∆̂d,n

)
∼ Z(discd,n, ‖ · ‖2 = R),

meaning that the two spaces are homotopy equivalent; here discd,n is a polynomial on R` whose
zero set is ∆d,n and ‖ · ‖2 = R defines a sphere on the same space (the boundary of U∞, viewed
as a subset of R`). In particular both ∆d,n and ∆d,n ∩

(
U∞ ∩ ∆̂d,n

)
are described in RN by

polynomial equations of degree bounded by [EH16, Proposition 7.4]:

deg(discd,n) = (n+ 1)(d− 1)n = T.

Using Mayer-Vietoris and [Mil64], it follows that:

b(∆̂d,n) ≤ b(∆d,n) + b
(
U∞ ∩ ∆̂d,n

)
+ b

(
∆d,n ∩

(
U∞ ∩ ∆̂d,n

))
≤ T (2T − 1)`−1 + 1 + T (2T − 1)`−1

≤ 2T (2T − 1)`−1,

which proves the claim (4.7).
For d, n > 0 denote now by Cd,n the set of rigid isotopy classes of pairs (D,C) with

C ⊂ int(D) ⊂ Rn a smooth component of the zero set Z(p) of a polynomial p ∈ R[x1, . . . , xn] of
degree at most d. We claim now that:

(4.8) #Cd,n ≤ d(2d− 1)n−1#Zd,n.

In order to see this, observe first that if C is a smooth component of Z(p) we can slightly perturb
p within the space of polynomials of the same degree, without changing the rigid isotopy class of
(D,C) and making the whole zero set Z(p) smooth (i.e. we can assume Z(p) is smooth already).
Also, notice that the inclusion (D,C) ↪→ (Rn, C) gives a correspondence of rigid isotopy classes
and we can work in the whole Rn instead of the interior of the disk D (being the two ambient
spaces diffeomorphic). To every rigid isotopy class of pairs (Rn, Z(p)) corresponds at most
b0(Z(p)) rigid isotopy classes of pairs (Rn, C) with C a connected component of Z(p) and this,
together with the fact that b0(Z(p)) ≤ d(2d− 1)n−1, gives (4.8).

By part Theorem 1 we know that, given a pair (D,Z(f)) with f = 0 regular, Z(f) ⊂ int(D)
and κ2(f,D) ≤ κ, there exists a polynomial p with

d = deg(p) ≤ (1 + 2a2(D) · κ) := k

such that the pairs (D,Z(f)) and (D,Z(p)) are rigidly isotopic. In particular, #(κ,D) is bounded
by #Cb1+2a2(D)·κc,n. Combining (4.8) and (4.7) we get:

#(κ,D) ≤ d(2d− 1)n−12T (2T − 1)`−1

≤ 2ndn(n+ 1)(d− 1)n (2(n+ 1)dn)
(d+n+1)n+1

(n+1)!

≤ c(n)
(k+n+1)n+1

(n+1)! k2n+ (k+n+1)n+1
(n+1)! =: (∗),
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so that as k → +∞ we get:

(∗) ≤ k3 (2k)n+1
(n+1)!

≤ kc
′(n)kn+1

= (1 + 2a2(D) · κ)c
′(n)(1+2a2(D)·κ)n+1

≤ (c′′(n)κ)c
′′(n)κn+1

≤ κc
′′′(n)κn+1

.

By the continuity of the expression (∗) with respect to κ, we conclude that there is a constant
C1(n) such that if κ > C1(n) then #(κ,D) ≤ κC2(n)κn+1 , where C2(n) = c′′′(n) is the constant
found before. This concludes the proof.

4.4. Proof of Theorem 9. For what regards the first part of the theorem, we will show that

b(Z(f)) ≤
(
a1(D)κ(1)(f,D) + 1

)n
,

where a1(D) is the constant given by Theorem 23. This implies (1.10), since κ(1)(f,D) ≥ 1, by
definition.

Fix ε > 0. First, observe that if ε < δ(f,D), then f and f |∂D have no critical value in the
interval (−ε, ε), from which it follows that the set E = f−1(−ε, ε) is entirely contained in the
interior of D. Moreover E is a tubular neighborhood of Z(f), since by Morse theory f−1(−ε, ε)
is diffeomorphic to Z(f)× (−ε, ε). To see that E satisfies the hypotheses of theorem 21, define
E1 = f−1(−ε1, ε1), where ε < ε1 < δ(f,D) and notice that then E1 ⊂ int(D) is a tubular
neighborhood of Z(f) such that E ⊂ E1.

Let p ∈ R[x1, . . . , xn] be a polynomial such that ‖f − p‖C0(D,R) < ε. By Theorem 23 we can
assume that its degree d satisfies the bound

(4.9) d− 1 ≤ a1(D)‖f‖C1(D,R)
1
ε

(take p = pd(f), where d is the biggest positive integer such that (4.9) is true). Let
Ft = f + t(p − f) and call Ft its restriction to M = int(D). Consider the set UE defined
as in (2.10), where N = R and Y = {0}. Suppose that Ft ∈ UE for every t ∈ [0, 1], then we
could apply Theorem 21 to deduce that

b(Z(f)) ≤ b(Z(p)) ≤
(
a1(D)‖f‖C1(D,R)

ε
+ 1
)n

where the second inequality is due to the Milnor-Thom bound [Mil64] and to (4.9). The thesis
now would follow by the arbitrariness of ε.

Thus to conclude the proof it is sufficient to show that F−1
t (0) ⊂ E. To see this, let x ∈ D

such that Ft(x) = 0 and observe that then

|f(x)| = |Ft(x)− t(p(x)− f(x))| ≤ ‖f − p‖C0(D,R) < ε.

Let us turn to the second statement of the theorem. Assume for simplicity that D is the
standard unit disk in Rn. We will show that for any given compact hypersurface Z ⊂ D defined
by a regular C1 equation f = 0 such that f = 1 near ∂D, there exists a sequence of smooth
functions fm such that

b(Z(fm)) ≥ b(Z)
κ(1)(f,D)n

h(D)κ(1)(fm, D)n,



WHAT IS THE DEGREE OF A SMOOTH HYPERSURFACE? 229

Figure 1. Z(fm), on the right, is the disjoint union of many copies of Z.

where h(D) is the infimum among the numbers Nεn, such that there exists a collection of N
disjoint n-dimensional disks of radius ε contained in D.

Extend f to the whole space Rn, by setting f(x) = 1 for all x /∈ D. Let m ∈ N and define
fm,z ∈ C1(Rn,R) to be the function

fm,z(x) = f (m(x− z)) ,

so that the submanifold Z(fm,z) is contained in the interior of the disk of radius m−1 centered
in the point z and it is diffeomorphic to Z. Moreover we can observe that, with m ≥ 1, we have
the inequalities

δ(fm,z, D) = δ(fm,0,D) = inf
x∈D

(
|f(x)|2 +m2‖∇f(x)‖2

)1/2 ≥ δ(f,D);

‖fk,z‖C1(D,R) = ‖fk,0‖C1(D,R) = sup
x∈D

(
|f(x)|2 +m2‖∇f(x)‖2

)1/2 ≤ m‖f‖C1(D,R);

therefore κ(1)(fm,z, D) ≤ mκ(1)(f,D).
For any m ∈ N, choose a finite family Im of points zm,i ∈ D, such that the disks Dm,i,

centered in zm,i and with radius m−1, are disjoint. Since the (Hausdorff) dimension of Dn is
n, we can assume that the number of points in such a family is #(Im) ≥ h(D)mn. Define the
function fm ∈ C1(D,R) as

fm = 1−#(Im) +
∑
i∈Im

fm,zi ,

so that fm coincides with fm,i on the disk Dm,i and it is constantly equal to 1 outside the union
of all disks.

It follows that κ(1)(fm, D) ≤ mκ(1)(f,D) and that the sequence κ(1)(fm, D) is divergent as
m→ +∞. Moreover, the zero set of fm is homeomorphic to a disjoint union of #(Im) copies of
Z, hence

b(Z(fm)) ≥ #(Im)b(Z) ≥ h(D)b(Z)mn.

Putting these two observations together we conclude that

b(Z(fm)) ≥ h(D)b(Z)
(
κ(1)(fm, D)
κ(1)(f,D)

)n
.
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4.5. Proof of Corollary 10.

Remark 34. Combining Theorem 9 with Theorem 5, one can obtain the estimate for the Betti
numbers of Z from Corollary 10. We observe that it is possible to obtain a similar estimate also
from the work [NSW08], let us sketch how.

To start with, [NSW08, Proposition 3.1] claims that there exists ε > 0 with

(4.10) ε <

√
3
5ρ(Z)

such that, if x1, . . . , xm ∈ Rn is a collection of points which are ε
2–dense in Z, then the inclusion

Z ↪→
m⋃
i=1

B(x1, ε) =: U

is a homotopy equivalence. Since each ball is contractible, the set U is also homotopy equivalent
to the nerve complex C of the cover {B(pi, ε), i = 1, . . . ,m}, and in particular b(Z) = b(C).

The number of vertices of this complex, i.e. m, can be chosen to be of the order:

m ≤ a1(n)vol(Z)
εn−1 .

Moreover we can chose the ε
2–net to also satisfy the following: every ball B(pi, ε) intersects at

most a2(n) > 0 other balls from the family. In particular, each vertex of C belongs to at most
a2(n) cells, and:

(4.11) b(Z) = b(C) ≤ a2(n)m ≤ a3(n)vol(Z)
εn−1 .

Now, by Weyl’s tube formula:

vol(U(Z, ρ(Z))) = vol(Z)ρ(Z) ≤ vol(DR+ρ),

from which we get that

vol(Z) ≤ vol(DR+ρ)
ρ

.

Choose now ε = c4ρ(Z) such that (4.10) is satisfied. Then, combining (4.11) with (4.10) we get:

b(Z) ≤ a3(n)vol(Z)
εn−1 = a5(n) vol(Z)

ρ(Z)n−1 ≤ a6(n)vol(DR+ρ)
ρ(Z)n .

Proof of Corollary 10. Observe that ρ(Z) cannot be greater than the radius of D unless Z is
empty, in which case there is nothing to prove. Define D′ to be the disk with a double radius
than that of D, so that Z and D′ satisfy the hypotheses of Theorem 5, thus there exists a
function f such that

b(Z) = b (Z(f)) ≤ (c4(D′) · κ1(f,D′))n ≤ c4(D′) · 2n
(

1 + 1
ρ(Z)

)n
,

where the first inequality is implied by Theorem 9. Taking c6(D) = 2nc4(D′) we conclude the
proof. �
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Appendix A. Global polynomial approximation of hypersurfaces

The aim of this Section is to prove Theorem 36, which gives a quantitative bound for the
degree of a polynomial approximating a smooth hypersurface on the whole Rn. We need first
the following Lemma.

Lemma 35. Let D ⊂ Rn be a euclidean disk of radius R. For every `, n, d ≥ 0 there exists a
constant c`(n, d) > 0 such that if p ∈ R[x1, . . . , xn] of degree deg(p) = d, then:

|p(x)| ≤ c`(n, d) ‖p‖C`(D,R)

(
‖x‖
R

)d
(1 +R`) ∀‖x‖ ≥ R > 0.

Proof. Let Vn,d ⊂ R[x1, . . . , xn] be the space of polynomials of degree at most d. Since Vn,d is
a finite-dimensional vector space the norm ‖ · ‖C`(D1,R)|Vn,d (here D1 is the unit disk) and the
norm ‖ · ‖coeff , given by the “maximum of the modulus of the coefficients”, are equivalent and
there exists a constant a1(n, d) > 0 such that:

‖f‖coeff ≤ a1(n, d)‖f‖C`(D1,R).

Let now pR(y) = p(Ry). Then for every ‖y‖ ≥ 1:

|pR(y)| ≤ dim(Vn,d) ‖pR‖coeff ‖y‖d

≤ dim(Vn,d) a1(n, d) ‖pR‖C`(D1,R) ‖y‖d.

On the other hand we have:

‖pR‖C`(D1,R) = max
‖y‖≤1

∑
|α|≤`

|∂αpR(y)|2
1/2

= max
‖y‖≤1

∑
|α|≤`

∣∣∣∂αp(Ry)R|α|
∣∣∣2
1/2

≤ max
‖Ry‖≤R

∑
|α|≤`

|∂αp(Ry)|2
1/2

(R` + 1)

= ‖p‖C`(D1,R)(R` + 1).

This gives:

|p(x)| = |pR(x/R)| ≤ dim(Vn,d) a1(n, d) (R` + 1)‖p‖C`(DR,R)

(
‖x‖
R

)d
.

Defining the constant c`(n, d) := dim(Vn,d) a1(n, d) gives the claim. �

Theorem 36. Let D be a disk of radius R > 0 centered at the point z0 and consider f ∈ C2(D,R)
such that the equation f = 0 is regular in D and Z(f) ⊂ int(D). Let also τ = τ(f,D) > 0 be
such that:

e−3τR = max
z∈Z(f)

‖z − z0‖

and set r = e−2τR < R. Denote by Dr the disk with the same center of D and with radius r.
Let c1(n, d) > 0 be the constant from Lemma 35 and define:

κ̃(`) = max{κ(`)(f,D), κ(`)(f,Dr)}.



232 ANTONIO LERARIO AND MICHELE STECCONI

There exists a polynomial p ∈ R[x1, . . . , xn] with

deg(p) ≤ max

{
r + 1, k̃(2) · 2a2(D),

log k̃(1) + log 1
τ

+ log
(
8 + 8

Re−τ + 4Re−τ + 4τ
)

+ log (c1(n, d))
τ

}
such that:

(Rn, Z(p)) ∼ (Rn, Z(f)).

Remark 37. The estimate above is more interesting when τ → 0 and k̃(1) → +∞, in which case
it implies the simpler inequality

deg(p) ≤ C k̃
(2)

τ2

Proof of Theorem 36. Assume that D is centered at 0. The first step of the proof is to argue as
in the proof of Theorem 1 and find a polynomial p0 ∈ R[x1, . . . , xn] such that

‖p0 − f‖C1(D,R) <
1
2 min {δ(f,D), δ(f,Dr)} =: δ,

so that (D,Z(p0) ∩D) ∼= (D,Z(f)) and, at the same time, Z(p0) ∩ D ⊂ int(Dr). Thus we
can assume that p0(D r Dr) > 0, since p0 has no zeroes in that region. Moreover, thanks to
Theorem 23 we can estimate the degree d of p0:

(A.1)

d ≤ max
{
r + 1,

‖f‖C2(D,R)

min {δ(f,D), δ(f,Dr)}
· 2ar+2(D)

}
= max

{
r + 1,max

{‖f‖C2(D,R)

δ(f,D) ,
‖f‖C2(D,R)

δ(f,Dr)

}
· 2ar+2(D)

}
= max

{
r + 1, k̃ · 2ar+2(D)

}
.

Now we have to modify p0 in order to eliminate those components of its zero set Z(p0) that
are not contained in D. To this end we define a new polynomial p ∈ R[x1, . . . , xn] such that

p = p0 + a

(
|x|2

s2

)`
,

for some r < s < R, a > 0 and ` ∈ N. We need to take ` and a so big that
(1) p(x) > 0 for every x /∈ int(D). This ensures that Z(p) = Z(p) ∩D.
(2) ‖p− p0‖C1(D,R) <

1
2δ(f,D), so that ‖p− f‖C1(D,R) < δ(f,D) and

thus (D,Z(p) ∩D) ∼= (D,Z(f)) by Lemma 20.
Combined with the fact that Z(f) ⊂ int(D), the two conditions above imply that

(Rn, Z(p)) ∼= (Rn, Z(f)).

Thus it remains to estimate the degree of such a polynomial p.
Let x /∈ D. By Lemma 35 we have

p(x) ≥ a
(
|x|
s

)2`
− |p0(x)|

≥ a
(
|x|
s

)2`
− c1(n, d)(1 + s)‖p0‖C1(Ds,R)

(
|x|
s

)d
,



WHAT IS THE DEGREE OF A SMOOTH HYPERSURFACE? 233

where Ds is the disk of radius s. Therefore condition (1) is certainly satisfied for all ` > 1
2d and

(A.2)

a ≥ c1(n, d)(1 + s) · 2‖f‖C1(D,R)

≥ c1(n, d)(1 + s) ·
(
‖f‖C1(Ds,R) + δ

)
≥ c(n, d)(1 + s2) · ‖p0‖C1(Ds,R).

Lemma 38. For any ρ > 1 and ` ∈ N,

` log ρ ≤ ρ` − 1.

Proof. The function ` 7→ ϕ(`) = ` log ρ − ρ` + 1 takes the value ϕ(0) = 0 at ` = 0 and has
negative derivative for all ` > 0:

ϕ′(`) = log ρ− log ρ · ρ` = −(ρ` − 1) log ρ ≤ 0.

�

Applying the previous Lemma with ρ = s
r > 1, we obtain the inequality

` ≤
((s

r

)`
− 1
)

1
log
(
s
r

) .
Therefore

‖p− p0‖C2(Dr,R) ≤ a
(r
s

)2`
+ a2`r

2`−1

s2`

= a
(r
s

)2`
(

1 + 2`
r

)
≤ a

(r
s

)2`
(

1 + 2
(
s
r

)2` − 1
r log

(
s
r

) )

≤ a

((r
s

)2`
+ 2
r log

(
s
r

))

≤ a

(
1 + 2

r log
(
s
r

))(r
s

)2`
.

To ensure that condition (2) is satisfied it is thus sufficient to assume that

a

(
1 + 2

r log
(
s
r

))(r
s

)2`
≤ δ,

which, combined with (A.2), becomes(r
s

)2`
≤

(
1 + 2

r log
(
s
r

))−1
δ

2c1(n, d)(1 + s)‖f‖C1(D,R)
,

i.e.
(s
r

)2`
≥

(
8

r log
(
s
r

) + 4
)
c1(n, d)(1 + s)k̃(1),

i.e. 2` ≥
log k̃(1) + log

(
c1(n, d)(1 + s)

(
8

r log( sr ) + 4
))

log
(
s
r

) .
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By taking s = e−τR ∈ (r,R), we get that s
r = eτ and obtain the final formula formula

2` ≥
log k̃(1) + log (c1(n, d)) + log

(
(1 + e−τR)

( 8
Re−ττ + 4

))
τ

=
log k̃(1) + log 1

τ + log
(
8 + 8

Re−τ + 4Re−τ + 4τ
)

+ log (c1(n, d))
τ

.

We conclude that if we take 2` ≥ d and such that the previous inequality holds, then p satisfies
conditions (1) and (2). Combining this fact with the estimate (A.1) on d we conclude the
proof. �
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