
Demystifying Hidden Sensitive Operations in Android apps

XIAOYU SUN,Monash University, Australia

XIAO CHEN,Monash University, Australia

LI LI∗,Monash University, Australia

HAIPENG CAI,Washington State University, United States

JOHN GRUNDY,Monash University, Australia

JORDAN SAMHI, University of Luxembourg, Luxembourg

TEGAWENDÉ F. BISSYANDÉ, University of Luxembourg, Luxembourg

JACQUES KLEIN, University of Luxembourg, Luxembourg

Security of Android devices is now paramount, given their wide adoption among consumers. As researchers develop tools

for statically or dynamically detecting suspicious apps, malware writers regularly update their attack mechanisms to hide

malicious behavior implementation. This poses two problems to current research techniques: static analysis approaches, given

their over-approximations, can report an overwhelming number of false alarms, while dynamic approaches will miss those

behaviors that are hidden through evasion techniques. We propose in this work a static approach speciically targeted at

highlighting hidden sensitive operations, mainly sensitive data lows. The prototype version of HiSenDroid has been evaluated

on a large-scale dataset of thousands of malware and goodware samples on which it successfully revealed anti-analysis code

snippets aiming at evading detection by dynamic analysis. We further experimentally show that, with FlowDroid, some

of the hidden sensitive behaviors would eventually lead to private data leaks. Those leaks would have been hard to spot

either manually among the large number of false positives reported by the state of the art static analyzers, or by dynamic

tools. Overall, by putting the light on hidden sensitive operations, HiSenDroid helps security analysts in validating potential

sensitive data operations, which would be previously unnoticed.

CCS Concepts: · Security and privacy✙ Domain-speciic security and privacy architectures.
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1 INTRODUCTION

Android is the most adopted mobile operating systems in terms of users, applications and developers [9]. However,
its popularity means that legitimate developers must co-exist with malware writers. Reports on many diferent
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kinds of attacks are presented in the technology and lay media. For example, security researchers have reported
a malicious łclicker trojanž1 which has been bundled into 34 diferent Google Play apps that have already
been installed more than 100 million times2. On a larger scale, antivirus engines have been lagging a large
number of apps as potential threats. For example, as of October 2020, the popular AndroZoo dataset [8] has
recorded more than 226,000 Android GooglePlay apps than have been lagged as adware/malware by at least 5
Antivirus products, and this number is still growing. Those adware/malware often not work along but collaborate
with many third parties over the internet. Some of the representative malicious behaviors include leading
users to malicious websites through devious advertisements [22, 23, 46, 71], distributing malicious apps in the
mobile network through drive-by downloads [19], leaking users’ sensitive data to web servers through HTTP
connections [28, 37, 47, 65], etc.
To protect Android users against the rapid spread of malware, the research and practice communities have

implemented a variety of measures and proposed several approaches to detect malware [11, 43, 52, 66, 72, 74].
These include static code analysis-based approaches [39, 41], dynamic testing based approaches [34], and learning-
based approaches [49]. Unfortunately the emergence of many diferent malware detection techniques has also
stimulated malware attackers into being more innovative to increasingly better hide malicious behaviour, in
order to bypass static code analysis (e.g., via obfuscation) and even dynamic detection (e.g., sensing of sandbox
execution). In practice, sophisticated code obfuscation techniques [53] are being leveraged by attackers to hide
their malicious program behavior, leading to false negatives in most static analyses thus resulting in imprecise and
unsound results. Camoulage techniques have been frequently leveraged by attackers to evade dynamic testing
approaches [25, 62]. Attackers often introduce a so-called logic bomb or time bomb to set of malicious functions
only after certain conditions are met. For instance, after knowing that Google applies a dynamic analysis tool
called bouncer to scan every app submitted to Google Play for ive minutes, as revealed by Oberheide et al. [55], a
bunch of malicious apps has been created and been demonstrated to be capable of penetrating Google’s bouncer
vetting system by simply waiting ive minutes before triggering their malicious behavior.

To cope with such hiddenmalicious behaviors, researchers have devised new detection approaches. For example,
Fratantonio et al. [27] have proposed an approach called TriggerScope to detect hidden behaviors triggered by
predeined circumstances such as events related to location, time, and SMS. However, TriggerScope is not capable
of detecting such malicious activities hidden behind other trigger types, such as the existence of other services
(i.e., other than location, time and SMS). In line with this research, Pan et al. [57] have proposed a machine
learning-based approach aiming to discover unknown trigger types. Their approach, however, needs to manually
label a dataset for training, which is known to be resource-intensive and error-prone.
Static analyzers sufer less than dynamic approaches from evasion techniques such as logic bomb or time

bomb. In particular, regarding sensitive low detection (also called privacy leak detection), numerous static
analysis tools have been proposed such as FlowDroid [12] (and its extension IccTA [38]), Amandroid [70], or
DroidSafe [30]. Although these tools are able to track sensitive lows (which are often hidden) by bringing key
new contributions to the research community, they still face some well-known limitations [60]: their inherent
over-approximations inevitably lead to false alarms, which, for some analyzers, occur at a high rate, making them
impractical. Consequently, when building on static analysis, manual investigation is often required. Unfortunately,
such eforts cannot scale. Dynamic validation then appears as an alternative. Unfortunately, runtime execution
often misses hidden sensitive lows due to the implementation of evasion techniques by attackers. While some
efort (e.g., [27, 57]) has been put to characterize Hidden Sensitive Operations (HSOs) in Android apps, our

1Such as the Android.Click.312.origin trojan and its modiied variant Android.Click.313.origin trojan. This aims to generate fraudulent

click-through and subscription revenues.
2https://www.forbes.com/sites/zakdofman/2019/08/13/android-warning-100m-users-have-installed-dangerous-new-malware-from-

google-play/#1956f51c22a9
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community has not yet proposed dedicated approaches to detect and explain such operations, allowing attackers
to achieve malicious behaviors while bypassing certain security vetting mechanisms.
We ill this research gap in this work by proposing a new prototype tool, HiSenDroid, which deploys an

automated static app analyzer tailored for detecting hidden sensitive operations. HiSenDroid performs a sequence
of static analyses, including call graph analysis, forward data-low analysis, inter-procedural backward data-low
analysis, etc. For exposed HSOs, HiSenDroid further goes one step deeper to record detailed information for
explaining why these HSOs should be lagged as such.

To summarize, key contributions of our work include:

• We propose using a static analysis approach to discover hidden sensitive operations that are not exposed to
the state-of-the-art static and dynamic analysis tools in Android apps. To this end, we leverage control
low and data low analyses to identify the unique code level characteristics of hidden sensitive operations.

• We designed and implemented a prototype tool HiSenDroid for analyzing hidden sensitive operations. We
release HiSenDroid as an open source project [5] for supporting security analysts in their analysis needs
and fostering further researches in this direction.

• We evaluated HiSenDroid on a large-scale dataset that contains 10,000 benign and 10,000 malware samples,
and discovered emerging anti-analysis techniques employed by malware samples, such as fulilling certain
restrictions related to time, location, SMS message, system properties, package manager, and other logics.

• With the help of FlowDroid [12], a static taint analyzer, we further experimentally show that HSOs have
been recurrently leveraged by attackers to leak sensitive user information.

The rest of the paper is organized as follows: Section 2 deines HSO and presents the motivation of our
research, i.e., why there is a strong need to demystify HSO. Section 3 depicts the design and implementation of
the proposed approach. Section 4 and Section 5 respectively describe the characteristics of common and susipious
HSOs detected by our approach from a large-scale dataset. Section 6 presents a practical implication of our
approach by characterizing sensitive data leaks triggered by HSOs. Section 7 discusses the limitations of the tool.
Section 8 reviews the related works, and inally Section 9 concludes this paper.

2 HSO DEFINITION AND MOTIVATION

We conducted an exploratory study to understand the characteristics of Hidden Sensitive Operations (HSO) in
Android apps. We irst dumped operations in a set of real-world Android malware. Then, we manually examined
those operations to observe the characteristics of such operations that could be considered as hidden-triggered
operations. Based on our manual summarization, we found that (1) if statement and the notion of branch are key
in the deinition of HSO; (2) the if statement contains a speciic operation that triggers the hidden sensitive lows,
and this trigger condition is related to Android API.
Let � denote one of the two branches of an if-then-else statement, or the branch of an if statement where the

else branch is considered empty.
Deinition 1 [Hidden Sensitive Branch (HSB)]: � is an HSB if it fulills the following rules:

(1) � contains sensitive Android APIs, and these APIs are diferent from those contained in the other branch
involved in the if-then-else statement. The rationale behind this condition is that a hidden branch is supposed
to achieve some sensitive behaviors that are diferent from those of the "normal" branch (i.e., non-HSB),
which per se might also access sensitive APIs as part of the app’s expected behaviors.

(2) � does not involve any of the variables appearing in the condition expression of the if-then-else statement.
The rationale behind this is that the branch is triggered by conditions that are also diferent from its
(sensitive) behaviors.

Less formally, an HSB could be deined as an "if branch" which accesses sensitive APIs, and which is fully
"independent" of the if condition and the other branch of the if statement.

ACM Trans. Softw. Eng. Methodol.
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1 public class MainActivity extends AppCompatActivity {

2 protected void onCreate(Bundle savedInstanceState) {

3 SmsManager smsManager = SmsManager.getDefault ();

4 ED ed = new ED(this);

5 StringBuilder message = new StringBuilder ();

6
7 if(ed.checkPackageName ()) {

8 TelephonyManager tm = (TelephonyManager) getSystemService(Context.TELEPHONY_SERVICE);

9 String imei = tm.getDeviceId ();

10 String phoneNumber = tm.getLine1Number ();

11 String subscriberId = tm.getSubscriberId ();

12 message.append(imei);

13 message.append(phoneNumber);

14 message.append(subscriberId);

15 smsManager.sendDataMessage("+115800763861", null , (short)1001, message.toString ().getBytes (), null ,

null);

16 } else {

17 // benign string operations

18 }}

19
20
21 public class ED {

22 public ED(Context pContext) {

23 mContext = pContext;

24 mListPackageName.add("com.google.android ... genymotion");

25 mListPackageName.add("com.bluestacks");

26 mListPackageName.add("com.bignox.app");

27 }

28 public boolean checkPackageName () {

29 if (! isCheckPackage || mListPackageName.isEmpty ()) {

30 return false;

31 }

32 final PackageManager packageManager = mContext.getPackageManager ();

33 for (final String pkgName : mListPackageName) {

34 final Intent tryIntent = packageManager.getLaunchIntentForPackage(pkgName);

35 if (tryIntent != null) {

36 final List <ResolveInfo > resolveInfos = packageManager.queryIntentActivities(tryIntent ,

PackageManager.MATCH_DEFAULT_ONLY);

37 if (! resolveInfos.isEmpty ()) {

38 return true;

39 }

40 }

41 }

42 return false;

43 }

Listing 1. An example of a real-world hidden sensitive data flow.

Let � denote the ��������� of an if statement.
Deinition 2 [Hidden Sensitive Operation (HSO)]: An HSO is an HSB that is triggered by a condition �

containing values obtained via (or directly impacted by) Android system APIs or system properties (i.e., attributes
of system classes). This may return diferent values when being executed under diferent circumstances, so as to
triggering hidden sensitive operations.
Listing 1 exempliies a simpliied code snippet illustrating these deinitions in practice. Note that Listing 1

presents the typical characteristics of an HSO in many real-world apps that we have manually analyzed. At line
7, the app irstly checks if it is running on one of the popular Android emulators (i.e., genymotion, bluestacks,

and bignox). If not, the app reads the device information and sends it to a hard-coded phone number through an
SMS. Otherwise, if an emulator environment is detected, it will only perform some unharmful string operations
(ignored). In this example, three private data ś namely the device’s IMEI, IMSI, and phone number ś are retrieved
in lines 9-11 and sent to a hard-coded phone number via SMS (line 15). All of these three leaks are hidden
behind the trigger condition ed.checkPackageName() (line 7). The trigger condition checks the return value of a

ACM Trans. Softw. Eng. Methodol.
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self-deined method checkPackageName() (line 30), which is determined by several other if-conditions deined in
the invoking method (lines 31,37,39). Finally, the trigger condition in the HSO is traced back to a system API
PackageManager.queryIntentActivities() (line 38) (cf. Deinition 2). This trigger condition examines whether
popular Android emulator packages (lines 26-28) are available in the device, i.e., checking if the app is running on
these emulators. If the running environment is not one of the hard-coded emulators, the HSO will be performed.
Otherwise, benign string operations are executed (lines 17-19) (cf. Deinition 1).

3 OUR APPROACH

To better help security analysts understand Hidden Sensitive Operations (HSO) placed in Android apps, we
designed and implemented a prototype tool, named HiSenDroid, to automatically locate such operations in
Android apps. HiSenDroid takes as input an Android app and outputs a set of hidden sensitive operations. Fig. 1
illustrates the working process of HiSenDroid. It achieves the aforementioned goal through three main modules,
namely: (1) Hidden Sensitive Branch Location; (2) Trigger Condition Inference; (3) Suspicious HSO Detection and
Explanation. We now respectively detail these three modules.

APK

HS Branch 

Location

Trigger Condition 

Inference

Suspicious HSO 

Detection & Explanation

Android 

app

List of Common 

HSOs

Suspicious 

Hidden Sensitive 

Operation

Fig. 1. The working process of HiSenDroid.

3.1 Hidden Sensitive Branch Location

The irst module of HiSenDroid is responsible for locating hidden sensitive branches (HSBs) in Android apps (i.e.,
fulilling the rules in Deinition 1). Towards locating HSBs, this module irst statically goes through all the methods
that appeared in the DEX ile of the input APK. For each method, this module then constructs an intra-procedural
control-low graph (CFG) and traverses the graph to locate if-then-else statements. Once an if-then-else statement

is located, it further extracts the sensitive APIs accessed by the two branches (hereinafter referred to as if-branch
and else-branch). Sensitive APIs are such methods that are protected by Android permissions, which are classiied
following the latest Android API-permission mappings PSCout [13], Axplorer [14], Arcade [7], and NatiDroid [36].
Any of the two branches will be considered a potential HSO if it has indeed accessed sensitive APIs that are
diferent from the APIs accessed by the other branch.
When extracting sensitive APIs, in order to obtain a soundy result [51] (e.g., including all the sensitive APIs

accessed by a potential HSB), this module traverses not only the methods directly presented in the HSB but also
all the methods that could be reached from the branch. This process is made possible by irst constructing a
call graph (CG) for the input APK. Unfortunately, as discussed by many existing works, Android apps do not
have a single entry point (e.g., main()) that connects other parts of the application code, making static analyses
challenging to cover all the app code. Fortunately, this challenge has been well addressed by the state-of-the-art by
artiicially creating a so-called dummy main method, connecting together all the separated code parts, including
system-driven lifecycle methods and event-driven callback methods [12].

ACM Trans. Softw. Eng. Methodol.
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Based on our observation and the indings of previous work [57], the connection between trigger conditions
and the operations along its paths is often weak. Indeed, the variables appearing in triggers typically do not
propagate data low to its following paths. Take Listing 1 as an example, the app checks if it is running inside
Android emulators at line 7, where the trigger condition code itself is not supposed to steal private data and is only
meant to determine the right situation for running hidden code. To leverage this property, we attempt to check
whether variables appearing in the HSB have data dependency with any variable within the condition expression.
Thus, for a given potential HSB, this module goes one step further to check if any of the variables appeared in
the HSB’s condition expression has been leveraged by the HSB code. If so, this HSB will not be considered as a
true HSB and thereby will be excluded from further analyses. This module achieves this by conducting a simple
intra-procedural control-low analysis. In a case of true HSB, there should not be intersections between the set of
variables that appeared in its condition expression and those within the branch.

3.2 Trigger Condition Inference

After locating HSBs, the second module goes one step deeper to infer hidden sensitive operations (HSOs) so as to
fulill Deinition 2. Given a true HSB, the idea of detecting HSOs is to infer the detailed trigger conditions that
lead to the execution of the HSB.
We began with a preliminary study to understand what kinds of trigger conditions have been used to hide

suspicious APIs, as identiied from the literature [1, 2, 4, 17, 18, 21, 31, 54, 57, 59, 68] on trigger conditions. For
example, Petsas et al. [59] investigated anti-analysis techniques that can be employed by Android apps to evade
detection, including pre-initialized static information(e.g., IMEI value), dynamic information that does not change
(e.g., Sensors data) and VM instruction emulation (e.g., hardware variable). In their paper, they demonstrated
how dynamic analysis could be evaded by the aforementioned trigger conditions in an emulated environment.
Pan et al. [57] further summarize that almost all the trigger conditions of HSOs can be characterized by System

Properties (e.g., OS or hardware traces of a mobile device) or Environment Parameters (time, locations, SMS,
etc.). To the best of our knowledge, the values in both types can be obtained through Android system APIs. In
other words, an HSO trigger condition is expected to involve, directly or indirectly, one or more system API calls
for interacting with the Android operation system. Therefore, since it is very important to identify all possible
trigger conditions, we propose considering all the condition checks to infer HSO’s trigger conditions3 as long as
they involve system properties, environment parameters, and any other values yielded by system APIs.
In this work, we follow the same criteria to infer HSOs (i.e., the trigger conditions involves values obtained

through Android system APIs). Speciically, to infer the trigger conditions, for each of the variables that appeared
in the HSB’s condition expression, there is a need to conduct backward data-low analyses to locate its deinition
statement. The code block between the deinition statement and the if-then-else statement is then referred to as a
Condition Triggering Block (CTB). Then, given a potential HSO, we check whether a system API is involved in
the deinition statement of the HSO’s CTB. If not, we will regard this HSO as a false result and consequently will
not consider it for further analyses.

When inferring the deinition statement, inter-procedural analysis needs to be taken into account because the
trigger conditions can be deined in other methods and transferred to the HSB via callee’s returned values or
caller’s parameter values. Indeed, take the code snippet shown in Listing 1 as an example, the trigger condition
is actually deined in method checkPackageName() despite the HSB is seated in the onCreate() method. Fig. 2
illustrates the backward tracking low showing how our approach identiies the trigger condition. When there is
a method involved in the backward tracking low, our data-low analysis will keep tracking the method’s caller

3We remind the readers that state-of-the-art studies (e.g., by Moser et al. [53] and Zeng et al. [73]) have further revealed that obfuscation (via

relective calls or opaque predicates) could be leveraged to complicate the inference of trigger conditions (e.g., changing the way how a system

property is obtained from the system). We do not take obfuscation as a type of trigger condition but will only consider it as a technique that

complicates the process of identifying trigger conditions. We will discuss the impact of obfuscation on our approach at the end of Section 5.

ACM Trans. Softw. Eng. Methodol.
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object as it may be relevant to the deinition of the trigger condition. For example, our analysis will keep tracking
$r1 when statement $r1.isEmpty() is reached. If the method is a user-deined function, our data-low analysis
will further jump into the method and keep tracking its returned variables (all variables will be tracked if there
are several return statements). The backward data-low analysis will terminate if System APIs are identiied, or
Android’s entry-point methods (such as UI callback methods or components’ lifecycle methods) are reached. The
analysis will also stop if the condition is linked to a constant value that is further not originated by if-statements.

public boolean checkPackageName() 
{
    $r1 = $r3.queryIntentActivities($r7, 65536);
    
    $z0 = $r1.isEmpty();
    
    if $z0 != 0 goto label2;
    
    return 1; 
}

protected void onCreate(android.os.Bundle) 
{
    $z0 = $r5.checkPackageName(); 
     
    //Trigger condition expression
    if $z0 == 0 goto label1;
    $r7 = $r3.getDeviceId(); //HSB
}

$r5

Fig. 2. The simplified working process of the trigger condition inference module. The code is presented in simplified Jimple,
which is an intermediate representation of Soot [35]. Soot is the underline static analysis framework leveraged by HiSenDroid
to achieve the backward data-flow analysis.

3.3 Suspicious HSO Detection

The last module takes the outputs of the previous module to detect hidden sensitive operations, following the
rules presented in Deinition 1 and Deinition 2 (cf. Section 2). Unfortunately, these rules are not perfect and may
introduce false-positive results that have similar characteristics of HSOs but are actually user intended behaviors.
Indeed, for the same operations, under diferent circumstances, they could be lagged as conventional usages or
suspicious operations and could lead to benign or user intended malicious behaviors. These false results include
common programming patterns used in legitimate if-then-else statements (hereinafter referred to as conventional
usages), which should be excluded by HiSenDroid . Therefore, we resort to building a list of conventional usages
(or whitelist) and based on it, in the last module of HiSenDroid, we ilter out non-malicious HSOs and only keep
suspicious HSOs.

Nevertheless, we argue that it is non-trivial to understand the developer’s intention behind the operations. There-
fore, in this last module, in addition to automatically detect suspicious hidden sensitive operations, HiSenDroid
goes one step deeper to also provide adequate details to explain why an suspicious HSO is lagged as such, i.e.,
what is the trigger condition, what is the logic of the if condition, and what are the sensitive behaviors triggered

ACM Trans. Softw. Eng. Methodol.
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if the logic is fulilled. This function is provided for helping security analysts understand whether the lagged
HSOs should be regarded as malicious or not.

By leveraging HiSenDroid, in Section 4, we study and collect conventional usages in large sets of Android apps,
whereas in Section 5, we put the emphasize on suspicious HSOs.

4 CONVENTIONAL USAGE ANALYSIS

The overall goal of this work is to detect hidden sensitive operations so as to unveil the evasive technologies that
are frequently leveraged to hide malicious behaviors. In this section, we evaluate our approach based on a large
set of Android apps towards checking if our approach HiSenDroid is capable of fulilling this goal. Speciically, in
this section, we conduct an exploratory study of recent hidden sensitive operations aiming to understand the
current status quo of conventional usages and build a comprehensive list of conventional usages (to be used by
HiSenDroid to discriminate suspicious HSOs from conventional usages).
Recall that our approach, in its last working step, takes as input a customizable list of conventional usages

to ilter out non-suspicious HSOs, which subsequently helps in saving signiicant security analysts’ eforts as
they now only need to scrutinize the retained small number of likely suspicious HSOs. Towards identifying such
conventional usages, we apply a semi-automatic process to summarize based on their frequency of occurrence.
The conventional usage whitelist is built based on reasonable assumptions that legitimate HSOs frequently appear
in Android apps, including both malware4 and goodware. We manually inspected the trigger APIs that have
appeared more than 50 times in our dataset and determined if they should be categorized as a conventional usage.
By doing so, we deined seven major categories of conventional usages. Also, the results of our manual analysis
are cross-validated by two authors. The two authors irst independently conduct the manual analysis (to discover
knowledge with support evidence from various software artifacts). They then had physical meetings to discuss,
merge, and inalize the results.
Experimental Setup. We applied HiSenDroid (with the list of conventional usages set to be empty5) on a

dataset that contains 10,000 malware samples (referred to as malware set) and 10,000 benign apps (referred to as
benign set). The malware set was collected from VirusShare [6] from 2012 to 2020. To better relecting recent
trends on the deceptive techniques used in malware samples, we only include the samples whose irst seen date
was on or after 2016. The malware samples were submitted to VirusTotal6 for screening, and only the ones that
have been labelled by more than ive anti-virus engines (VirusTotal has hosted over 70 anti-virus scanners) were
selected.
The benign set was randomly selected from a pool of more than 100,000 apps crawled from Google Play in

2019, which are further scanned to ensure non of them are tagged by VirusTotal.
Our tool has identiied 45,342 HSOs (35,974 in the malware set, and 9,368 in the benign set) triggered by 54,152

conditions. Note that some HSOs may be triggered by more than one condition (e.g., multiple conditions in a
CTB that are connected by AND or OR operators). Towards evaluating the precision of HiSenDroid, i.e., the
identiied HSOs meet our previous rule deinitions, we manually examine 20 randomly selected APKs from the
total 8,107 apps that have been identiied to contain at least one HSO. From these apps, our approach identiied
157(with a conidence level of 95% and a conidence interval of 7.81%) HSOs in total, among which 155 of them
are eventually conirmed to be true HSOs, giving an precision of 98.7%. This result suggests that HiSenDroid is
capable of identifying HSOs in Android APIs.
Figure 3 further presents the distribution of the number of HSOs detected in the apps from benign set and

malware set. Expectedly, malware samples involve signiicantly more HSOs than that of benign apps, as conirmed

4Malware is included because often not all of its code is malicious. It might contain a malicious payload but the other code could still remain

benign.
5The experimental results should contain both conventional usages and suspicious HSOs.
6https://www.virustotal.com
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Fig. 3. Distribution of the number of HSOs in benign set and malware set.

by the p-value a Mann-Whitney-Wilcoxon (MWW) test at a signiicance level7 at 0.001 [26]. This result suggests
that HSOs are more favored by malware than benign apps. Hence, our community should pay more attention to
the appearance of HSOs to help security analysts better dissect malicious apps.

Based on the previous experimental results, we manually analyzed the trigger conditions and the corresponding
hidden operations to identify conventional usages, i.e., HSOs (at least based on our deinition) that are actually
legitimate and occur relatively often in Android apps. We irst inspected the trigger APIs that have appeared
more than 50 times in our dataset and determined if it is a conventional usage. By doing so, we identiied seven
major categories of conventional usages. Then we reviewed each of the rest of the cases to further ilter out the
other conventional usages. Finally, 43,141 conventional usages have been identiied, out of which 40,412 cases
belong to the seven major categories. As the whitelist is generated by manual analysis, it cannot cover all possible
conventional usages. However, we believe that the majority of the conventional usages have been identiied (i.e.,
from the seven categories), new special cases can always be added to the list and incorporated into HiSenDroid
in the future. We now elaborate on the seven major categories, each with an example code snippet presented in
Listing 2.
SDK Version. With Android system update, new APIs are deined to replace old ones. To maintain the

compatibility of apps across diferent Android versions, it is a common practice to check the SDK version before
deciding the right API to use. Lines 2~7 show a simpliied code snippet of a legitimate conventional usage that
fulills all the rules we deined for an HSO. The code checks whether the Android version is newer than Android

level 17 (line 3), if so, the app leverages the addJavascriptInterface() API to inject Javascript into the WebView

(line 6), otherwise, it logs an error message (line 4) as the API is not available in the Android version lower than
17. While SDK version check commonly exists in both malware and benign apps (with 10,303 and 3,223 cases,
respectively), this check does not intend to hide the behaviors within the if-then-else statement and hence should
be excluded from the HSO results.

User Interface.When the user interacts with UI widgets (e.g., press a button), it retrieves and compares the UI
widget’s id (i.e., a system API) to determine which widget has been ired. If there happened to be a sensitive API
invoked in one of the branches’ statements, this code block will be misidentiied as HSO. Lines 10~17 show an

7Given a signiicance level � = 0.001, if p-value < � , there is one chance in a thousand that the diference between the two datasets is sue to

a coincidence.
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example of a button’s callback method, which checks the ID of the buttons (lines 12,15) and either go back to the
previous webpage (line 13) or reload the current page (line 16). User Interface has 8,052 instances in the malware

set and 2,426 instances in the benign set.
File. The existence of a ile or a directory is usually checked before ile operations, such as reading and writing

iles. The code for checking ile existence typically put the subsequent actions in one branch (where the ile does
exist), and show an error message in the other branch (where the ile does not exist). In some cases, it even has
only the if-branch. Therefore, it satisies the rules mentioned above and will be mistakenly identiied as an HSO.
Our results have observed 7,217 and 1,701 cases in our malware set and benign set, respectively. A ile checking
example can be found in lines 20~28, where the code checks the existence of an external storage (line 24), and
copy an image there (lines 26,27).

Permission. Since Android 6.0, the dangerous-level permissions need to be explicitly checked and requested
before accessing the APIs protected by these permissions. The example code for checking permission can be
found in lines 31~36. It irst checks whether the app has been granted READ_PHONE_STATE permission (line
32). Then, the app either invoke the permission protected API (line 33) or request the missing permission (line
35) based on the check result. Even though a sensitive API getDeviceId() is called in one branch, which behaves
quite diferently than the other branch, it does not mean to hide this behavior. Therefore, it is regarded as a
conventional usage. Permission check has appeared 6,727 and 936 times in the HSOs identiied in the malware set

and benign set, respectively.
Network.Network information (e.g., network type, connection status, etc.) is always checked before performing

network-related behaviors, ensuring that the network status is suitable for accomplishing the subsequent tasks.
For example, the network type (e.g., WiFi, cellular, etc.) is checked before downloading large iles, and if it is on
the cellular network, the download will be suspended. Another example demonstrated in lines 39~44 examines
the type of connected network (line 41) and get its DHCP information if the phone is connected to WiFi (1 is the
value of ConnectivityManager#TYPE_WIFI). There are 5,224 an 744 identiied HSO cases that are related to the
Network in the malware set and the benign set, respectively.

Intent. Intent is a crucial mechanism to assist the communication between diferent components in the Android
system. Intent has various legitimate usages, including starting activities and services, passing data and properties,
etc. Lines 47~51 demonstrate a legitimate example of handling the callback method of receiving an Intent. In
this example, it checks the action deined in the received Intent, and calls getActiveNetworkInfo() method (i.e., a
sensitive API) if the action is CONNECTIVITY_CHANGE. There are 1,911 an 1,011 identiied HSO cases that are
related to the Intent in the malware set and the benign set, respectively.

SharedPreferences. In Android system, data can be saved as <key, value> pairs and stores as a SharedPreferences
object in a ile that can be accessed by getSharedPreferences() interface. It provides a lightweight and easy-access
data store mechanism, which is widely used in storing small collection of data, such as conigurations of the app.
Reading the values from the SharedPreferences and action accordingly is considered a legitimate behavior. Lines
54~65 illustrate an example of using SharedPreferences, where the code retrieves the value of a coniguration
item łVPNFlagž (line 58) from a SharedPreferences object named łSPž (line 57), and query the corresponding VPN
services accordingly (lines 60~62). There are 878 and 358 cases involving the usage of SharedPreferences in our
malware set and benign set, respectively.
Completeness of conventional usages. Since the conventional usage categories are summarized with

manual eforts on a given set of apps, they may not be representative and thereby may not cover all possible cases.
Therefore, in this work, we go one step deeper to further investigate the completeness of all the seven categories
of conventional usages by applying our approach to another set of randomly selected 10,000 malware and 10,000
benign apps from AndroZoo [45]. We remind the readers that AndroZoo includes over 10 million Android apps
that were collected from both the oicial Google Play store and several third-party app markets. To avoid potential
biases in our results, we made additional eforts to remove potentially duplicated apps (i.e., diferent versions of
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the same app), and only the latest version is retained. For the 20,000 apps, we apply HiSenDroid to analyze these
apps and inspect the trigger conditions that have appeared more than 50 times. We then manually determine
if they are conventional usage. To do this, two of the authors spent ten person-days manually summarizing
conventional usages (e.g., API-API or Key-API pairs). After manually checking the experimental results and the
bytecode of apps, we have totally picked up 41,035 conventional usages, among which 38,920 cases fall into the
predeined whitelist (with a success rate of 94.8%). This result shows that, despite testing on diferent apps, our
whitelist is still quite stable and efective in eliminating conventional usages.

Apart from the aforementioned commonly appeared conventional usages, we further look into some of the
uncommon conventional usages. Our manual observation conirms that those uncommon conventional usages
are indeed legitimate HSOs that do not appear frequently in Android apps. We present two concrete examples of
uncommon conventional usages to illustrate this concept. One example is that an app irst checks if the directory
of downloads exists (i.e., a standard directory to place iles that have been downloaded by the user), and then
automatically starts the download using the android.app.DownloadManager#enqueue API once the download
manager is ready and connectivity is available. We consider it a conventional usage because it is against the second
principle of suspicious HSO’s deinition: the user does not intend to hide such behavior. In addition, given that
there exist several substitute ways of downloading iles (e.g., Http request, URLConnection, BuferedInputStream,
FileOutputStream, etc.), the native APIs lie in android.app.DownloadManager are not that commonly used by app
developers. Thus, we regarded it as an uncommon conventional usage. As another example, the sensitive behavior
of vibration could be triggered only when a user clicks a certain button. We consider it also a conventional usage
because it involves non-hidden behaviors. In fact, if app developers intend to hide sensitive behaviors, it would
be obvious that they won’t use vibration functionality to notify users. Moreover, the usage of vibration is less
common because it would annoy Android users, leading to a poor user experience. Such cases appear less than
50 times in our dataset and thus we regard them as uncommon conventional usage as well.

5 SUSPICIOUS HSO ANALYSIS

After eliminating conventional usages, all the remaining ones will be reported as suspicious HSOs. Among the
20,000 apps considered in this work, 1,304 of them, including 982 malware and 322 benign samples, were retained.
These apps have been reported to contain in total 2,201 suspicious HSOs, with 1,790 and 441 from malware and
benign apps, respectively. These numbers are recapped in Table 1. This experimental result shows that suspicious
HSOs are widely present in real-world Android apps. Figure 4 further illustrates the distribution of suspicious
HSOs in our dataset. On average, there are 2.0 and 1.4 HSOs in each malware sample and benign app, respectively.

Table 1. Number of suspicious HSOs.

Initial Dataset # HSOs # Suspicious HSOs

10,000 benign apps 9,368 (in 3,071 apps) 441 (in 322 apps)

10,000 malicious apps 35,974 (in 5,036 apps) 1,790 (in 982 apps)

Total 45,342 (in 8,107 apps) 2,201 (in 1,304 apps)

In this work, the elimination of conventional usages is based on a pre-deined whitelist, which only includes
recurrently presented HSOs in benign apps. Some less frequent yet still legitimated HSOs could have been
overlooked and hence result in suspicious ones. Indeed, the remaining suspicious HSOs may not always be true
positives (i.e., may contain a small number of false positives). To this end, we go one step further to calculate the
precision of our approach in pinpointing suspicious HSOs in Android apps. Unfortunately, there is no known
ground truth available for evaluating HSO usage in Android apps. Thus, we resort to a manual process to
calculate the precision. In this work, we manually inspected the bytecode of apps to see if HiSenDroid correctly
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and precisely identiied the suspicious trigger rather than those commonly appeared code blocks for normal
usage. Here, we identify truly suspicious behavior (i.e., conirmed to be true positive) only when the HSO is
security-relevant and potentially brings harm to Android users. Speciically, we rely on two principles to identify
truly suspicious HSOs: (1) the hidden behavior involves security-relevant APIs that are protected by Android
permissions, classiied following the latest Android API-permission mappings (cf. Section 3.1), and (2) the sensitive
APIs are intentionally hidden under dedicated trigger conditions. As a result, we count those who meet the two
aforementioned principles as true positives. For example, if an app irst intends to retrieve Device ID, and when
unsuccessful, tries to read the MAC address, we will consider it as a false positive because it is against the second
principle: does not intend to hide such behavior. As another example, an app checks the build’s ingerprint to see
if it is running on popular emulators, and the sensitive behavior of retrieving subscriberId would be triggered
only when it is not running in an emulator. We consider it as a true positive because it involves security-relevant
APIs and there is sensitive behavior that is clearly hidden under trigger conditions. In our dataset, 1,304 apps have
been reported to contain at least one HSO. Among the 1,304 apps, HiSenDroid has identiied 14,394 HSOs, for
which 2,231 of them are regarded as suspicious HSOs. By manually looking at each of those reported suspicious
HSOs, we are able to conirm that 1,938 out of 2,231 of them are true positive results (or 293 of them cannot be
conirmed without deeply examining the code), giving a precision of 86.8
Recall that the conventional usages are excluded in this work through a whitelist built through empirical

evidence, and the whitelist is only considered as a coniguration option to our approach. We believe that the
performance of detecting suspicious HSOs could be further improved if we are able to construct a better whitelist
of legitimate HSOs. This is nevertheless outside the scope of this work. We hence consider it as our future work.
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Fig. 4. Distribution of the number of suspicious HSOs in benign set and malware set.

5.1 Trigger Conditions

Known trigger types such as time-bomb and anti-emulator techniques have been broadly studied, speciic
algorithms for detecting such known trigger types have been developed [15, 27, 32]. Nevertheless, the community
still lacks the understanding of unknown trigger types. We therefore investigate the most frequent triggering
conditions in the suspicious HSOs detected by HiSenDroid.

HiSenDroid has identiied 168 unique APIs that have been traced as the source of the triggers in detected suspi-
cious HSOs. To make it much clearer, we present all these system properties trigger conditions and environment
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parameters trigger conditions in the artefact package 8. We then manually categorize them according to the types
of objects they accessed. Table 2 illustrates the trigger condition categories and examples of system APIs that are
frequently leveraged to fulill the trigger conditions discovered in HSOs. The top trigger condition categories
include time (e.g., at a certain time of a day), SMS (e.g., when receives SMS of certain formats), location (e.g., if
the device is in certain countries), system property (e.g., checks the device’s manufacturer), and package manager
(e.g., if speciic apps are installed).

Table 2. Categories of Trigger Conditions in HSO

Category Most Frequent Trigger API Examples

Time
util.Calendar#get
util.Date#getTime
util.Calendar#getTimeInMillis

System Properties
os.Build#MODEL
telephony.TelephonyManager#getSubscriberId
telephony.TelephonyManager#getDeviceId

Location
telephony.TelephonyManager#getSimCountryIso
telephony.TelephonyManager#getCellLocation
location.LocationManager#getLastKnownLocation

SMS Message
telephony.SmsManager#divideMessage
telephony.SmsManager#getDefault
telephony.SmsManager#getData

Package Manager
content.Context#getPackageManager
content.pm.PackageManager#getPackageInfo
content.pm.PackageManager#getApplicationInfo

Miscellaneous
android.widget.CheckBox#isChecked
android.app.KeyguardManager#isKeyguardLocked
java.net.NetworkInterface#getHardwareAddress

Here we elaborate on each trigger condition category with real-world suspicious HSO cases identiied in our
dataset.

Time Triggers compare time-related properties (such as current system time, time zone, etc.) with hard-coded
values to determine whether or not to execute the hidden sensitive behaviors. Listing 3 demonstrates a code
snippet from app com.wukongtv.wukongtv9, which leverages time-related triggers to hide suspicious behaviors.
When the irst time the app launches, it writes the timestamp into the SharedPreferences (i.e., var0). It then
compares the current system time with the irst launch time (line 6); if the time interval is greater than one day, it
triggers the sensitive method bq.f() (line 7) that retrieves the information (e.g., package name and process name)
of running tasks (lines 10~15). Doing so conceals the suspicious behaviors from automatic dynamic detection,
which usually starts testing immediately after the app is installed.

1 static void c(Context var0) {

2 Calendar var10000 = Calendar.getInstance ();

3 int var2 = var10000.get(6) * 100; // day_of_year

4 var2 += var10000.get (11); // hours_of_day

5 // var0 is retrieved from SharedPreferences

6 if (Math.abs(var0/100L - (long) (var2/100)) >= 1L) {

7 ab.h = bq.f(var0);

8https://bitbucket.org/se_anonymous/hisendroid/src/master/experiments_results/
9SHA-256:3397079daa388bdbcdcc42b6834d3c792bf5c80ad24491e3893de7cfc2b11db7
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8 }}}

9
10 public static Long [][] f(Context var0) {

11 var31 = var3.getRecentTasks (10, 1);

12 while(var31.iterator ().hasNext ()){

13 // get package name and process name of recent tasks

14 ...

15 }}

Listing 3. Code Example of Time Trigger.

System Property Triggers leverage system properties, such as the phone model, the phone number, and
hardware information, to limit the sensitive behaviors within speciic device brands (e.g., Samsung) or types
(e.g., real device). These triggers are also commonly adopted by anti-emulator techniques to detect the presence
of emulators. Listing 4 demonstrates an anti-emulator example extracted from app com.gwsoft.imusic.controller
10, which checks if the build’s ingerprint contains speciic strings that indicate popular emulators (line 2). The
sensitive behavior of retrieving subscriberId (line 5) is only executed if it does not run in an emulator.
1 private static boolean a(Context var0) {

2 if (Build.FINGERPRINT.contains("vbox86p/vbox86p")&& !Build.FINGERPRINT.contains("ttVM_Hdragon/ttVM_Hdragon")&&

!Build.FINGERPRINT.contains("generic/sdk/generic")&& !Build.FINGERPRINT.contains("generic_x86/sdk_x86/generic_x86")

3 // omit other strings that fingerprints popular Android emulators

4 ){

5 var2 = (( TelephonyManager)var0.getSystemService("phone")) .getSubscriberId ();

6 var11.put("imsi", var2);}}

Listing 4. Code Example of System Property Trigger.

SMS Triggers Utilize the content, type, and phone number of received SMSmessages to hide sensitive behaviors.
An example derived from app com.ingersoft.hillmotor11 is shown in Listing 5. When an SMS message is received,
it checks the originating address of the message (line 4). If it matches a pre-deined value (e.g., 10 or 11 etc in this
example), the behavior that repeatedly sends a message (line 6) to the same number via a text message service.
1 //var2 is the originating address retrieved from SMS

2 //var3 is the message body

3 public boolean repeat(Context var1 , String var2 , String var3) {

4 if ((var2.startsWith("10") || var2.startsWith("11") || var2.startsWith("12")) && !var2.equals("114") &&

!var2.equals("12306") && !var2.equals("116114") && !var2.equals("12580")) {

5 SmsManager var13 = SmsManager.getDefault ();

6 var25.sendTextMessage(var2 , (String)null , "Y", var16 , var12);

7 }}

Listing 5. Code Example of SMS Trigger.

Location Triggers obscure sensitive behaviors with ine grained (e.g., latitude and longitude) and coarse
grained (e.g. country) location information. Listing 6 shows an example derived from com.inter.

apps.patqut.apk 12 which queries the country code of the device (saved as var1), and checks if it is in Malaysia
(line 4). If so, the app then triggers the postLoginData2() method (line 5), which retrieves the device’s id (line 9)
and hands it over to another activity for further malicious behaviors.
1 TelephonyManager var3 = (TelephonyManager)this.getSystemService("phone");

2 String var1 = var3.getSimCountryIso ().toUpperCase ();

3 public void getin(String var1) {

4 if (var1.equals("MY")) {

5 this.postLoginData2 ();

6 }}

7
8 public void postLoginData2 () {

10SHA-256:8c679a7c57a7fbb355fb363d3784cc8380655701d482837869edd95f3a3ea470
11SHA-256:95e1cf498dec79351a9d104f5e9fb0110c267e9ef0099ada475d8832a2afb7302521
12SHA-256:22c9d7738073a7ac8f9b58029057c2741e89faac76b623837db2f3a8bb2d93c5
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9 String var2 = (( TelephonyManager)this.getSystemService("phone")) .getDeviceId ();

10 // hand over the obtained DeviceId to a new activity

11 ...

12 }

Listing 6. Code Example of Location Trigger.

Package Manager Triggers scan the list of installed apps and inspect if speciic apps (usually anti-virus tools)
are installed before conducting any sensitive behaviors. Listing 7 shows a code snippet taken from lash15.1.apk
13 which searches for AhnLab V3 Mobile Plus 2.0 (i.e., an anti-virus tool) in the list of installed apps (line 1~7). If
the anti-virus tool is not installed (line 10), it then starts its malicious behaviors. Speciically, it gets the package
name of the current active activity (lines 11, 12), and puts it into sleep if it is a bank app. After that, it launches a
new activity that contains a phishing web page to steal user’s bank credentials.

1 private boolean judgeAV () {

2 this.pm = this.getPackageManager ();

3 this.listAppcations = this.pm.getInstalledApplications (8192);

4 for(int v = 0; v < listAppcations.size(); ++v) {

5 if(listAppcations(v).name.equalsIgnoreCase("AhnLab V3 Mobile Plus 2.0")){

6 return true;}

7 return false ;}

8
9 public void run() {

10 if (!AutBan.this.judgeAV()) {

11 List var2 = (( ActivityManager)AutBan.this.getSystemService ("activity")).getRunningTasks (1);

12 String var1 = (( RunningTaskInfo)var2.get(0)).topActivity .getPackageName ();

13 // if the top activity is a bank app , it puts the activity into sleep and start a phising page

14 ...

15 }};

Listing 7. Code Example of Package Manager Trigger.

Other Triggers. Besides the most frequent trigger categories, we also observed some sophisticated triggers
speciically designed to counter automated dynamic testing approaches. Listing 8 shows an example taken
from a music player app com.gwsoft.imusic.controller14. The app hides sensitive behaviors that retrieve the
device’s information (lines 8~12) behind a trigger that will only be ired when an item on the song list (i.e.,
mCatalogSongsList) is clicked (line 2). The trick here is that automated dynamic testing tools running on an
emulator are likely not to have any music iles and, therefore, will have no items on the list to click. Hence, only
legitimate users who intend to use it to play music will have the chance to trigger the sensitive behavior.

1 // contains at least one song in the list

2 public void onItemClick(AdapterView <?> var1 , View var2 , int var3 , long var4) {

3 if (mCatalogSongsList != null && var3 + -1 >= 0 && var3 + -1 < mCatalogSongsList.size()){

4 CountlyAgent.onEvent(CuttingActivity.this , "activity_diy_do_re", String.valueOf(var3));

5 }}

6
7 public static void onEvent(Context var0 , String var1 , String var2) {

8 HashMap var3 = new HashMap;

9 var3.put("phone", getIMSI ());

10 var3.put("ip", getLocalIpAddress ());

11 var3.put("app_version", versionName);

12 var3.put("imei",getDeviceId ());

13 }

Listing 8. Code Example of Other Trigger.

13SHA-256:fdaba7f032ee7f9adf799713b25d4c2fef86ddbbe8709bf6ec021505b8f1d0d
14SHA-256:8c679a7c57a7fbb355fb363d3784cc8380655701d482837869edd95f3a3ea470
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(b) Top 10 Categories of Sensitive APIs in Malware.

Fig. 5. Categories of Trigger Conditions in HSO and Sensitive APIs in Malware.

5.2 Sensitive APIs involved in suspicious HSOs

While the invocation of sensitive APIs does not necessarily mean it is malicious, sensitive APIs deliberately
hidden in an HSB do raise its suspicion. HiSenDroid has identiied 134 unique hidden sensitive APIs that appeared
3,195 times in our dataset. Figure 5(b) presents the top ten classes of the most frequently invoked sensitive
APIs in malware set and benign set. The most involved APIs are network related, including the ones in URL,
ConnectivityManager, and WiiManager classes. TheWebView ((displays web pages)) and SmsManager (manages
SMS operations such as sending text messages) are also prevalently used in HSOs. Other commonly involved
API classes include PowerManager (controls the power state of the device such as keeping the screen stay
on), LocationManager (provides access to the system location services such as getting last known location),
ActivityManager (gives information about activities and services such as getting running tasks on the phone),
TelephonyManager (provides access to information of the telephony services such as phone number), and
AccountManager (manages user’s online accounts). The detailed most common APIs in HSOs can be found in
Table 3.

Interestingly, while most of the API classes have signiicantly more instances in malware samples than benign
apps, WebView is an exception. We therefore took an in-depth look into benign apps with WebView APIs in their
HSOs and observed that 34 out of 50 cases are free apps that display advertisement web pages for revenue.

5.3 Trigger Condition to Hidden Sensitive API Pairs

We now investigate the relationships between trigger conditions and the hidden sensitive APIs accessed in their
corresponding HSOs so as to identify common patterns leveraged by attackers to achieve malicious purposes.
Figure 6 graphically summarizes such relationships, i.e., trigger-to-hidden-sensitive-API pairs, where each node
represents an API in either the trigger conditions or the hidden sensitive branches, while each edge denotes the
connections between them. HiSenDroid has identiied 404 nodes within which 346 are APIs in trigger conditions,
134 are APIs in hidden sensitive branches, and 15 APIs exist in both triggers and hidden sensitive branches. There
are 2,847 edges found between them, which are illustrated in diferent colors according to their trigger conditions’
categories.
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Table 3. Details of The Top 10 Classes of Hidden Sensitive APIs in HSO

Class Most Frequent Sensitive API Examples

ConnectivityManager
net.ConnectivityManager#getActiveNetworkInfo
net.ConnectivityManager#getNetworkInfo
net.ConnectivityManager#getAllNetworkInfo

TelephonyManager
telephony.TelephonyManager#getDeviceId
telephony.TelephonyManager#getSubscriberId
telephony.TelephonyManager#getCellLocation

URL
net.URL#openConnection
net.URL#getContent
net.URL#openStream

WiiManager
net.wii.WiiManager#getScanResults
net.wii.WiiManager#getConnectionInfo
net.wii.WiiManager#getWiiState

LocationManager
location.LocationManager#getLastKnownLocation
location.LocationManager#requestLocationUpdates
location.LocationManager#getBestProvider

ActivityManager
app.ActivityManager#getRunningTasks
app.ActivityManager#getRecentTasks
app.ActivityManager#moveTaskToFront

PowerManager
os.PowerManager.WakeLock#release
os.PowerManager.WakeLock#acquire()
os.PowerManager.WakeLock#acquire(long)

WebView
webkit.WebView#setBackgroundColor
webkit.WebView#addJavascriptInterface
webkit.WebView#loadDataWithBaseURL

SmsManager
telephony.SmsManager#sendTextMessage
telephony.SmsManager#sendMultipartTextMessage
telephony.SmsManager#sendDataMessage

AccountManager
accounts.AccountManager#getAccountsByType
accounts.AccountManager#getAccounts
accounts.AccountManager#getUserData

Table 4 further details the top 10 pairs found in HSOs with their categories and counts. The most frequent
HSO patterns are to hide network-related activities behind retrieving the phone’s location. For instance, the
top one pattern that appeared 135 times in our dataset requests the SIM provider’s country code. Based on the
user’s location, it then determines whether or not to open a web page, and what web pages (e.g., advertisement
pages) to display to the user. Time-related HSO patterns are also widely found in the detected HSOs. They irstly
compare the current system time with preset values. If the condition fulills (e.g., the app is running for more
than ten minutes), they try to initialize a network connection and send out the user’s private information such
as IMEI, phone number, etc. More than 250 instances in our dataset leverage this pattern to steal users’ private
information stealthily. Other frequent HSO patterns on the top list are involved in anti-emulator tricks include
checking the phone’s model name and checking if speciic apps are installed (which could indicate if it is an
emulator) before acquiring sensitive information.

5.4 Suspicious HSOs in Third-party Code

Finally, we further look into the identiied HSOs to check if they are introduced by app developers or reused by
third-party libraries. For the sake of simplicity, we consider the code only located in the unique app package
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<java.util.Locale: java.util.Locale US>

<java.net.URL: java.net.URLConnection openConnection()>

<android.telephony.TelephonyManager: java.lang.String getSimCountryIso()>

<java.net.URL: java.net.URLConnection openConnection(java.net.Proxy)>

<android.net.ConnectivityManager: android.net.NetworkInfo getActiveNetworkInfo()>

<android.content.Context: java.lang.Object getSystemService(java.lang.String)>

<android.net.NetworkInfo: java.lang.String getExtraInfo()>

<java.util.Locale: java.util.Locale getDefault()>

<android.net.ConnectivityManager: android.net.NetworkInfo getNetworkInfo(int)>

<java.util.Calendar: java.util.Calendar getInstance(java.util.Locale)>

<android.webkit.WebView: void <init>

<android.webkit.WebView: void loadUrl(java.lang.String)>

<java.util.Locale: java.lang.String getLanguage()>

<android.webkit.CookieSyncManager: android.webkit.CookieSyncManager createInstance(android.content.Context)>

<android.location.LocationManager: java.util.List getAllProviders()>

<android.telephony.TelephonyManager: java.lang.String getSubscriberId()>

<android.telephony.TelephonyManager: android.telephony.CellLocation getCellLocation()>

<android.net.wi�.Wi�Manager: java.util.List getScanResults()>

<java.util.Locale: java.util.Locale CHINA>

<android.location.LocationManager: java.lang.String getBestProvider(android.location.Criteria,boolean)>

<java.net.HttpURLConnection: void connect()>

<android.location.Location: double mLongitude>

<android.location.LocationManager: boolean isProviderEnabled(java.lang.String)>

<android.os.Looper: void loop()>

<android.location.LocationManager: java.util.List getProviders(boolean)>

<android.app.Noti�cationManager: void notify(int,android.app.Noti�cation)>

<android.telephony.TelephonyManager: java.lang.String getDeviceId()>

<java.util.TimeZone: java.util.TimeZone getTimeZone(java.lang.String)>

<java.util.Calendar: long getTimeInMillis()>

<java.util.Calendar: int get(int)>

<android.location.Location: double mLatitude>

<android.net.ConnectivityManager: android.net.NetworkInfo[] getAllNetworkInfo()>

<org.apache.http.impl.client.DefaultHttpClient: org.apache.http.HttpResponse execute(org.apache.http.client.methods.HttpUriRequest)>

<android.content.Context: android.content.Context getApplicationContext()>

<java.util.Calendar: java.util.Calendar getInstance(java.util.TimeZone,java.util.Locale)>

<android.content.SharedPreferences: int getInt(java.lang.String,int)>

<android.telephony.TelephonyManager: java.util.List getNeighboringCellInfo()>

<android.content.res.Con�guration: java.util.Locale locale>

<android.content.res.Resources: android.content.res.Con�guration getCon�guration()>

<android.view.ContextThemeWrapper: android.content.res.Resources mResources>

<android.content.Intent: java.lang.String getStringExtra(java.lang.String)>

<java.text.DecimalFormat: java.lang.String format(double)>

<android.content.Intent: android.os.Parcelable getParcelableExtra(java.lang.String)>

<android.location.Location: double getLatitude()>

<android.location.Location: double getLongitude()>

<android.accounts.Account: java.lang.String name>

<android.bluetooth.BluetoothDevice: java.lang.String getName()>

<android.accounts.AccountManager: android.accounts.Account[] getAccountsByType(java.lang.String)>

<android.support.v4.content.ContextCompat: java.io.File[] getExternalFilesDirs(android.content.Context,java.lang.String)>

<android.content.Context: java.lang.String getString(int)>

<android.app.DownloadManager: android.net.Uri getUriForDownloadedFile(long)>

<android.content.Intent: android.os.Bundle getExtras()>

<android.telephony.TelephonyManager: java.lang.String getNetworkCountryIso()>

<android.content.Context: android.content.SharedPreferences getSharedPreferences(java.lang.String,int)>

<android.media.MediaPlayer: void stop()>

<android.content.SharedPreferences: java.lang.String getString(java.lang.String,java.lang.String)>

<java.io.File: java.lang.String getName()>

<android.content.ContentResolver: java.lang.String getType(android.net.Uri)>

<android.content.Context: android.content.ContentResolver getContentResolver()>

<android.os.Bundle: java.lang.String getString(java.lang.String)>

<android.database.Cursor: java.lang.String getString(int)>

<android.net.Uri: android.net.Uri parse(java.lang.String)>

<android.accounts.AccountManager: java.lang.String getUserData(android.accounts.Account,java.lang.String)>

<android.preference.PreferenceManager: android.content.SharedPreferences getDefaultSharedPreferences(android.content.Context)>

<java.io.File: java.lang.String[] list()>

<java.io.File: java.lang.String getAbsolutePath()>

<android.accounts.Account: java.lang.String type>

<android.content.Intent: java.lang.String getAction()>

<java.net.URI: java.lang.String getPath()>

<android.content.Intent: android.net.Uri getData()>

<android.os.PowerManager$WakeLock: void release()>

<android.net.Uri: java.lang.String getQueryParameter(java.lang.String)>

<android.support.v4.app.FragmentHostCallback: android.content.Context getContext()>

<android.accounts.AccountManager: android.accounts.Account[] getAccounts()>

<android.content.pm.PackageInfo: java.lang.String versionName>

<java.math.BigDecimal: java.lang.String toString()>

<java.math.BigInteger: java.lang.String toString()>

<android.content.pm.PackageManager: android.content.pm.PackageInfo getPackageInfo(java.lang.String,int)>

<android.app.Activity: android.content.SharedPreferences getSharedPreferences(java.lang.String,int)>
<android.content.Intent: long getLongExtra(java.lang.String,long)>

<android.telephony.gsm.GsmCellLocation: int getCid()>

<android.provider.Settings$Secure: java.lang.String getString(android.content.ContentResolver,java.lang.String)>

<java.util.Locale: java.lang.String toString()>

<java.io.File: java.io.File[] listFiles()>

<android.webkit.MimeTypeMap: android.webkit.MimeTypeMap getSingleton()>

<android.widget.EditText: android.text.Editable getEditableText()>

<android.telephony.cdma.CdmaCellLocation: int getBaseStationId()>

<android.location.Location: �oat getAccuracy()>

<android.content.Context: android.content.pm.PackageManager getPackageManager()>

<android.content.Context: java.lang.String getPackageName()>

<android.widget.Filter: void �lter(java.lang.CharSequence)>

<android.accounts.AccountManager: android.accounts.AccountManager get(android.content.Context)>

<android.content.res.Resources: java.lang.String getString(int)>

<android.net.Uri: java.lang.String getPath()>

<android.content.ContentResolver: android.database.Cursor query(android.net.Uri,java.lang.String[],java.lang.String,java.lang.String[],java.lang.String)>

<android.webkit.MimeTypeMap: java.lang.String getMimeTypeFromExtension(java.lang.String)>

<android.widget.EditText: android.text.Editable getText()>

<android.location.Location: android.os.Bundle getExtras()>

<android.database.DatabaseUtils: java.lang.String sqlEscapeString(java.lang.String)>

<android.widget.CheckBox: boolean isChecked()>

<android.webkit.WebIconDatabase: void removeAllIcons()>

<android.webkit.WebView: void clearCache(boolean)>

<org.apache.http.client.HttpClient: org.apache.http.HttpResponse execute(org.apache.http.client.methods.HttpUriRequest)>

<android.hardware.Camera$CameraInfo: int facing>

<android.hardware.Camera: android.hardware.Camera open()>

<android.os.Build$VERSION: java.lang.String RELEASE>

<android.content.SharedPreferences: long getLong(java.lang.String,long)>

<android.app.ActivityManager: java.util.List getRunningTasks(int)>
<org.apache.http.HttpResponse: org.apache.http.Header getFirstHeader(java.lang.String)>

<android.location.LocationManager: android.location.Location getLastKnownLocation(java.lang.String)>

<java.security.Security: java.security.Provider[] getProviders()>

<android.net.wi�.Wi�Manager: android.net.wi�.Wi�Info getConnectionInfo()>

<android.location.LocationManager: void requestLocationUpdates(java.lang.String,long,�oat,android.location.LocationListener,android.os.Looper)>

<org.apache.http.StatusLine: int getStatusCode()>

<android.widget.ImageView: int getHeight()>

<android.webkit.WebView: boolean dispatchKeyEvent(android.view.KeyEvent)>

<org.apache.http.HttpResponse: org.apache.http.StatusLine getStatusLine()>

<android.widget.ToggleButton: boolean isChecked()>

<android.media.MediaRecorder: void setAudioSource(int)>

<android.content.ComponentName: java.lang.String getClassName()>

<android.util.Log: int wtf(java.lang.String,java.lang.String)>

<android.bluetooth.BluetoothAdapter: android.bluetooth.BluetoothAdapter getDefaultAdapter()>

<android.media.MediaRecorder: void setVideoSource(int)>

<com.android.sohu.sdk.common.toolbox.f: int d()>

<com.google.a.j: java.lang.Object a(java.lang.String,java.lang.Class)>

<android.net.wi�.Wi�Manager: boolean setWi�Enabled(boolean)>

<android.content.ContentResolver: void setSyncAutomatically(android.accounts.Account,java.lang.String,boolean)>

<android.app.ListActivity: android.widget.ListView mList>

<android.app.Activity: boolean mFinished>

<android.webkit.WebView: void resumeTimers()>

<android.widget.ListView: android.widget.ListAdapter getAdapter()>

<android.app.KeyguardManager: boolean inKeyguardRestrictedInputMode()>

<android.media.AudioManager: void setSpeakerphoneOn(boolean)>

<java.net.InetAddress: java.net.InetAddress getByName(java.lang.String)>

<com.android.internal.telephony.ITelephony: boolean endCall()>

<android.content.ContentResolver: void addPeriodicSync(android.accounts.Account,java.lang.String,android.os.Bundle,long)>

<android.webkit.WebViewProvider: boolean canGoForward()>

<android.webkit.WebView: void goForward()>

<android.widget.ListAdapter: java.lang.Object getItem(int)>

<com.google.�rebase.messaging.RemoteMessage: java.util.Map a()>

<com.android.internal.telephony.ITelephony: void answerRingingCall()>

<android.os.Bundle: int getInt(java.lang.String)>

<android.support.v4.view.ViewPager: int getCurrentItem()>

<android.support.v4.app.Fragment: android.support.v4.app.h D>

<java.sql.ResultSet: java.lang.String getString(java.lang.String)>

<android.webkit.WebHistoryItem: java.lang.String getUrl()>

<android.app.ActivityManager: java.util.List getRecentTasks(int,int)>

<android.app.Activity: boolean isFinishing()>

<org.apache.http.util.EntityUtils: java.lang.String toString(org.apache.http.HttpEntity,java.lang.String)>

<android.content.res.AssetManager: java.io.InputStream open(java.lang.String)>

<android.content.ContentResolver: void setIsSyncable(android.accounts.Account,java.lang.String,int)>

<com.google.android.gms.ads.formats.NativeContentAd: java.util.List getImages()>

<android.net.wi�.Wi�Manager: boolean isWi�Enabled()>

<android.text.Editable: java.lang.String toString()>

<android.widget.AutoCompleteTextView: void performFiltering(java.lang.CharSequence,int)>

<android.widget.SeekBar: int getProgress()>

<android.provider.Settings$System: boolean putInt(android.content.ContentResolver,java.lang.String,int)>

<android.app.ActivityManager: void killBackgroundProcesses(java.lang.String)>

<android.webkit.WebBackForwardList: android.webkit.WebHistoryItem getItemAtIndex(int)>

<org.apache.http.util.EntityUtils: java.lang.String toString(org.apache.http.HttpEntity)>

<java.sql.Connection: java.sql.Statement createStatement()>

<com.google.android.gms.ads.internal.client.zzl: com.google.android.gms.ads.internal.util.client.zza zzcN()>

<com.google.android.gms.ads.internal.util.client.zza: boolean zzhr()>

<android.content.SharedPreferences: boolean getBoolean(java.lang.String,boolean)>

<android.app.Activity: com.android.internal.app.ActionBarImpl mActionBar>

<android.webkit.WebView: void addJavascriptInterface(java.lang.Object,java.lang.String)>

<android.content.IntentFilter: boolean hasCategory(java.lang.String)>

<android.webkit.WebViewProvider: boolean canGoBack()>

<android.webkit.WebView: void goBack()>

<android.content.pm.ApplicationInfo: java.lang.String packageName>

<android.content.pm.PackageManager: void getPackageSizeInfo(java.lang.String,android.content.pm.IPackageStatsObserver)>

<java.net.ServerSocket: java.net.Socket accept()>

<android.app.ActivityManager: void restartPackage(java.lang.String)>

<android.os.Bundle: java.io.Serializable getSerializable(java.lang.String)>

<android.content.Context: android.content.res.AssetManager getAssets()>

<android.os.Bundle: int getInt(java.lang.String,int)>

<android.net.VpnService: android.content.Intent prepare(android.content.Context)>

<android.support.v4.app.Fragment: android.support.v4.app.FragmentActivity mActivity>

<android.content.BroadcastReceiver$PendingResult: int mResultCode>

<android.os.Vibrator: void vibrate(long)>

<java.sql.Statement: java.sql.ResultSet executeQuery(java.lang.String)>

<java.net.Socket: java.net.InetAddress getInetAddress()>

<android.widget.Filter: void �lter(java.lang.CharSequence,android.widget.Filter$FilterListener)>

<android.content.ContextWrapper: android.content.Context mBase>

<android.webkit.WebView: void reload()>

<android.bluetooth.BluetoothAdapter: boolean isEnabled()>

<android.support.v4.content.a: boolean r(java.lang.String)>

<java.net.URL: java.io.InputStream openStream()>

<org.w3c.dom.Node: java.lang.String getNodeValue()>

<java.net.InetAddress: java.lang.String getHostAddress()>

<com.google.android.gms.common.GooglePlayServicesUtil: int isGooglePlayServicesAvailable(android.content.Context)>

<android.support.v4.a.g: int a(android.content.Context,java.lang.String)>

<android.graphics.PointF: �oat x>

<android.view.View: boolean startDrag(android.content.ClipData,android.view.View$DragShadowBuilder,java.lang.Object,int)>

<android.bluetooth.BluetoothPro�le: java.util.List getConnectedDevices()>

<android.media.AudioManager: void setBluetoothScoOn(boolean)>

<android.app.Activity: android.content.Context getApplicationContext()>

<java.net.ServerSocket: void <init>

<android.app.Service: android.app.Application mApplication>

<android.graphics.PointF: �oat y>

<java.net.Proxy: java.net.SocketAddress address()>

<java.util.zip.ZipFile: java.util.Enumeration entries()>

<android.app.Activity: android.content.ContentResolver getContentResolver()>

<android.webkit.WebViewProvider: java.lang.String getUrl()>

<java.net.NetworkInterface: java.util.Enumeration getNetworkInterfaces()>

<com.google.a.j: com.google.a.m g()>

<java.util.UUID: boolean equals(java.lang.Object)>

<android.widget.FrameLayout: int getChildCount()>

<android.webkit.WebView: void clearHistory()>

<android.support.v4.content.ContextCompat: int b(android.content.Context,java.lang.String)>

<android.bluetooth.BluetoothAdapter: int getState()>
<android.media.AudioManager: void startBluetoothSco()>

<android.media.AudioManager: boolean isBluetoothScoAvailableO�Call()>

<android.bluetooth.BluetoothAdapter: int getPro�leConnectionState(int)>

<android.support.v4.a.a: int a(android.content.Context,java.lang.String)>

<android.provider.CalendarContract$Instances: android.database.Cursor query(android.content.ContentResolver,java.lang.String[],long,long)>

<android.location.LocationManager: void requestLocationUpdates(java.lang.String,long,�oat,android.location.LocationListener)>

<com.google.a.o: com.google.a.j a(java.io.Reader)>

<android.widget.AutoCompleteTextView: android.widget.Filter mFilter>

<android.app.Activity: int getRequestedOrientation()>

<android.webkit.CookieManager: boolean hasCookies()>

<java.util.EnumSet: boolean contains(java.lang.Object)>

<android.view.SurfaceView: void updateWindow(boolean,boolean)>

<android.media.AudioManager: void stopBluetoothSco()>

<android.accounts.AccountManager: void invalidateAuthToken(java.lang.String,java.lang.String)>

<android.content.ContentResolver: void setMasterSyncAutomatically(boolean)>

<android.os.ParcelUuid: java.util.UUID getUuid()>

<android.webkit.WebView: void loadData(java.lang.String,java.lang.String,java.lang.String)>

<android.provider.Settings$Secure: int getInt(android.content.ContentResolver,java.lang.String)>

<android.support.v7.pp: boolean o()>

<android.webkit.WebView: void destroy()>

<android.support.v4.a.b: int a(android.content.Context,java.lang.String)>

<android.content.Intent: short getShortExtra(java.lang.String,short)>

<android.bluetooth.BluetoothAdapter: boolean isDiscovering()>

<android.support.v4.a.c: int a(android.content.Context,java.lang.String)>

<android.telephony.TelephonyManager: java.util.List getAllCellInfo()>

<android.widget.RelativeLayout: int getVisibility()>

<android.os.Bundle: boolean containsKey(java.lang.String)>

<android.os.PowerManager$WakeLock: void acquire()>

<java.net.NetworkInterface: byte[] getHardwareAddress()>

<android.media.CamcorderPro�le: android.media.CamcorderPro�le get(int)>

<java.util.Enumeration: boolean hasMoreElements()>

<android.content.ClipData: android.content.ClipData newPlainText(java.lang.CharSequence,java.lang.CharSequence)>

<android.view.IWindowSession: boolean performDrag(android.view.IWindow,android.os.IBinder,�oat,�oat,�oat,�oat,android.content.ClipData)>

<android.bluetooth.BluetoothAdapter: boolean enable()>

<java.net.HttpURLConnection: java.lang.String getHeaderField(java.lang.String)>

<android.widget.RadioGroup: int getCheckedRadioButtonId()>

<android.os.Bundle: java.lang.Object get(java.lang.String)>

<android.app.Activity: android.view.WindowManager mWindowManager>

<android.hardware.SensorEvent: �oat[] values>

<org.apache.commons.lang3.StringUtils: boolean isNotEmpty(java.lang.CharSequence)>

<android.webkit.WebView: void loadDataWithBaseURL(java.lang.String,java.lang.String,java.lang.String,java.lang.String,java.lang.String)>

<android.support.v4.b.a: int a(android.content.Context,java.lang.String)>

<android.media.RingtoneManager: android.media.Ringtone getRingtone(android.content.Context,android.net.Uri)>

<android.bluetooth.BluetoothAdapter: java.util.Set getBondedDevices()>

<android.bluetooth.BluetoothAdapter: boolean disable()>

<android.view.IWindowSession: android.os.IBinder prepareDrag(android.view.IWindow,int,int,int,android.view.Surface)>

<android.os.SystemProperties: java.lang.String get(java.lang.String)>

<com.google.�rebase.messaging.c: java.util.Map a()>

<java.net.URL: java.lang.Object getContent()>

<android.app.IActivityManager: int getRequestedOrientation(android.os.IBinder)>

<android.widget.LinearLayout: int getVisibility()>

<android.telephony.TelephonyManager: java.lang.String getLine1Number()>

<android.widget.LinearLayout: android.view.ViewGroup$LayoutParams getLayoutParams()>

<android.app.Dialog: boolean isShowing()>

<android.accounts.AccountManager: android.accounts.AccountManagerFuture getAuthToken(android.accounts.Account,java.lang.String,android.os.Bundle,android.app.Activity,android.accounts.AccountManagerCallback,android.os.Handler)>

<android.media.CamcorderPro�le: int videoFrameHeight>

<android.widget.TextView: java.lang.CharSequence getText()>

<android.media.AudioManager: boolean isMusicActive()>

<android.media.AudioRecord: void <init>

<android.widget.Button: int getId()>

<android.support.v4.content.a: int b(android.content.Context,java.lang.String)>

<android.media.AudioManager: int requestAudioFocus(android.media.AudioManager$OnAudioFocusChangeListener,int,int)>

<com.google.a.m: boolean a(java.lang.String)>

<android.widget.AdapterView: java.lang.Object getItemAtPosition(int)>

<android.webkit.WebView: void onPause()>

<android.media.AudioManager: void setMode(int)>

<android.widget.RelativeLayout: boolean isShown()>

<android.net.wi�.Wi�Manager: boolean startScan()>

<android.app.Activity: android.app.SearchManager mSearchManager>

<android.view.ContextThemeWrapper: java.lang.Object getSystemService(java.lang.String)>

<android.net.wi�.Wi�Info: int getIpAddress()>

<android.os.Bundle: boolean getBoolean(java.lang.String,boolean)>

<android.support.v4.app.Fragment: android.os.Bundle mArguments>

<android.os.Handler: android.os.Looper getLooper()>

<android.app.usage.UsageStats: java.lang.String getPackageName()>

<android.content.pm.PackageManager: java.util.List queryIntentActivities(android.content.Intent,int)>

<android.content.pm.ApplicationInfo: java.lang.CharSequence loadLabel(android.content.pm.PackageManager)>

<android.content.pm.PackageInfo: java.lang.String packageName>

<android.content.pm.PackageManager: android.content.pm.ApplicationInfo getApplicationInfo(java.lang.String,int)>

<android.os.Message: android.os.Bundle getData()>

<android.content.pm.PackageManager: android.content.pm.PackageInfo getPackageArchiveInfo(java.lang.String,int)>

<android.content.pm.PackageManager: java.util.List getInstalledPackages(int)>

<android.content.pm.PackageInfo: int versionCode>

<android.content.pm.PackageManager: boolean hasSystemFeature(java.lang.String)>

<android.content.pm.ActivityInfo: java.lang.String packageName>

<android.content.pm.Signature: java.lang.String toCharsString()>

<android.content.pm.PackageManager: android.content.pm.ResolveInfo resolveActivity(android.content.Intent,int)>

<android.content.pm.PackageInfo: android.content.pm.Signature[] signatures>

<android.content.pm.ResolveInfo: android.content.pm.ActivityInfo activityInfo>

<android.app.Activity: android.content.pm.PackageManager getPackageManager()>

<android.content.ComponentName: java.lang.String getPackageName()>

<java.util.StringTokenizer: java.lang.String nextToken()>

<android.content.Context: android.content.pm.ApplicationInfo getApplicationInfo()>

<android.content.pm.ApplicationInfo: java.lang.String nativeLibraryDir>

<android.util.Log: int wtf(java.lang.String,java.lang.String,java.lang.Throwable)>

<android.app.usage.UsageStatsManager: java.util.List queryUsageStats(int,long,long)>

<android.content.pm.Signature: byte[] toByteArray()>

<android.app.ActivityManager$RunningTaskInfo: android.content.ComponentName topActivity>

<java.lang.System: long currentTimeMillis()>

<android.telephony.SmsManager: void sendTextMessage(java.lang.String,java.lang.String,java.lang.String,android.app.PendingIntent,android.app.PendingIntent)>

<android.telephony.SmsMessage: java.lang.String getOriginatingAddress()>

<android.os.Message: java.lang.Object obj>

<android.telephony.SmsManager: java.util.ArrayList divideMessage(java.lang.String)>

<com.android.internal.telephony.ISms: void sendText(java.lang.String,java.lang.String,java.lang.String,android.app.PendingIntent,android.app.PendingIntent)>

<android.telephony.SmsManager: android.telephony.SmsManager getDefault()>

<com.android.internal.telephony.ISms: void sendMultipartText(java.lang.String,java.lang.String,java.util.List,java.util.List,java.util.List)>

<android.os.Message: int arg1>

<android.os.Bundle: java.lang.String[] getStringArray(java.lang.String)>

<android.os.Bundle: int[] getIntArray(java.lang.String)>

<android.telephony.SmsManager: void sendMultipartTextMessage(java.lang.String,java.lang.String,java.util.ArrayList,java.util.ArrayList,java.util.ArrayList)>

<android.telephony.SmsMessage: java.lang.String getDisplayOriginatingAddress()>

<android.os.Message: int arg2>

<android.telephony.TelephonyManager: java.lang.String getSimSerialNumber()>

<android.os.Message: int what>

<android.app.PendingIntent: android.app.PendingIntent getBroadcast(android.content.Context,int,android.content.Intent,int)>

<android.provider.Telephony$Sms$Intents: android.telephony.SmsMessage[] getMessagesFromIntent(android.content.Intent)>
<android.provider.Telephony$Threads: long getOrCreateThreadId(android.content.Context,java.lang.String)>

<java.util.Properties: java.lang.Object get(java.lang.Object)>

<android.os.Build: java.lang.String MODEL>

<android.webkit.WebView: void setBackgroundColor(int)>

<android.telephony.TelephonyManager: java.lang.String getSimOperator()>

<android.provider.Settings$System: int getInt(android.content.ContentResolver,java.lang.String,int)>

<android.os.Vibrator: void vibrate(long[],int)>

<java.util.Properties: java.lang.String getProperty(java.lang.String,java.lang.String)>

<android.app.WallpaperManager: void setStream(java.io.InputStream)>

<android.app.WallpaperManager: void setBitmap(android.graphics.Bitmap)>

<android.app.Application: android.content.Context getApplicationContext()>

<android.os.Build: java.lang.String DEVICE>

<android.provider.Settings$System: int getInt(android.content.ContentResolver,java.lang.String)>

<android.telephony.TelephonyManager: int getCallState()>

<android.media.AudioManager: boolean isWiredHeadsetOn()>

<android.os.Build: java.lang.String FINGERPRINT>

<android.os.Build: java.lang.String BRAND>

<android.provider.Settings$System: android.net.Uri getUriFor(java.lang.String)>

<android.database.Cursor: int getColumnIndex(java.lang.String)>

<android.os.Build: java.lang.String MANUFACTURER>

<android.media.AudioManager: void setParameters(java.lang.String)>

<java.net.URLEncoder: java.lang.String encode(java.lang.String,java.lang.String)>

<android.telephony.TelephonyManager: int getSimState()>

<java.util.Properties: java.lang.String getProperty(java.lang.String)>

<java.util.Properties: java.util.Set entrySet()>

<java.net.URLConnection: java.io.InputStream getInputStream()>

<java.io.ByteArrayOutputStream: byte[] toByteArray()>

<org.apache.http.HttpResponse: org.apache.http.Header[] getAllHeaders()>

<java.util.Calendar: java.util.Calendar getInstance()>

<android.content.SharedPreferences: java.util.Map getAll()>

<android.content.Intent: java.io.Serializable getSerializableExtra(java.lang.String)>

<java.util.Date: long getTime()>

<android.os.SystemClock: long elapsedRealtime()>

<android.net.wi�.Wi�Manager$Wi�Lock: void acquire()>

<android.os.SystemClock: long uptimeMillis()>

<java.io.File: long lastModi�ed()>

<android.net.wi�.Wi�Manager: int getWi�State()>

<android.text.format.Time: int hour>

<android.support.v4.content.a: long b(android.content.Context,java.lang.String,java.lang.String)>

<java.util.Date: boolean after(java.util.Date)>

<android.provider.Settings$System: boolean putLong(android.content.ContentResolver,java.lang.String,long)>

<android.app.Noti�cationManager: void notify(java.lang.String,int,android.app.Noti�cation)>

<java.util.Calendar: java.util.Calendar getInstance(java.util.TimeZone)>

<java.sql.Timestamp: long getTime()>

<java.util.Calendar: java.util.Date getTime()>

<java.util.GregorianCalendar: long getTimeInMillis()>

<java.util.Calendar: boolean after(java.lang.Object)>

<android.os.Build$VERSION: int SDK_INT>
<java.net.URLConnection: void connect()>

<android.media.AsyncPlayer: void play(android.content.Context,android.net.Uri,boolean,int)>

Time System Properties Package Manager Location SMS Others

Fig. 6. The HSO Trigger-Sensitive API Pairs Graph.
Table 4. Top 10 Trigger Condition to Hidden Sensitive API Pairs.

Category Trigger Condition APIs Hidden Sensitive APIs Counts

Location TelephonyManager#getSimCountryIso java.net.URL#openConnection 135

Location TelephonyManager#getCellLocation ConnectivityManager#getActiveNetworkInfo 131

Time java.lang.System#currentTimeMillis ConnectivityManager#getNetworkInfo 80

Time java.lang.System#currentTimeMillis ConnectivityManager#getAllNetworkInfo 66

Time java.lang.System#currentTimeMillis ConnectivityManager#getActiveNetworkInfo 57

System Properties android.os.Build#MODEL TelephonyManager#getSubscriberId 54

System Properties android.os.Build#MODEL Settings$System#putInt 54

SMS android.os.Message#obj PowerManager$WakeLock#release 52

Package Manager PackageManager#getInstalledPackages ActivityManager#getRunningTasks 51

Time java.lang.System#currentTimeMillis DefaultHttpClient#execute 49

(also known as the app id) as developers newly implemented code while all the other code (i.e., in packages not
connected with the app’s domain name) as third-party code (e.g., third-party libraries). Among the 2,201 HSOs,
surprisingly, over half of them (i.e., 1,342) is contributed by third-party code (i.e., 1,173 HSOs in malware and 169
in benign apps), among which malware tends to be more favored to introduce HSOs through third-party code
than benign apps. This experimental evidence suggests that attackers have more incentives to achieve malicious
behaviors through third-party code as it allows easy code reuse that makes it much easier to implement new
malware.

5.5 Comparison with state-of-the-art

We now compare our approach with state-of-the-art works targeting the problem of detecting hidden sensi-
tive operations. To the best of our knowledge, there are two closely related approaches: HSOMiner[57] and
TriggerScope[27]. Unfortunately, the source code of HSOMiner is not publicly available, and it is infeasible to
compare against it because they trained data on the authors’ labelled dataset, which has also not been publicly
released. We have contacted the authors about launching their approach to analyze Android apps. Unfortunately,
we have not yet received any response from them. Similarly, the authors of TriggerScope have also not made
it publicly available. As a result, we cannot compare with TriggerScope as well. Fortunately, Jordan Samhi
has provided a re-implemented version15 of TriggerScope based on the details given in its research paper. The

15https://github.com/JordanSamhi/TSOpen
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Table 5. The comparison results between HiSenDroid and TSOpen.

Tool # Analyzed # Analyzed # HSOs in # HSOs in # Time # Location # SMS
Name Goodware Malware Goodware Malware HSOs HSOs HSOs

HiSenDroid 10,000 10,000 441(in 322 apps) 1,790(in 982 apps) 546 405 116
TSOpen 10,000 10,000 110(in 51 apps) 237(in 123 apps) 229 49 69

Common 10,000 10,000 71 194 186 48 31

re-implemented version is named as TSOpen (referring to as the open implementation of TriggerScope) and
has already been leveraged by previous studies [63]. In this work, we resort to comparing our approach with
TriggerScope by actually comparing it with TSOpen.

To set up the experiments for a fair comparison, we run TSOpen on the same 10,000 malware and 10,000 benign
apps selected in evaluating HiSenDroid in section 4 (as indicated in the second and third columns in Table 5).
The experiments are executed under the same environment, i.e., the same server and the same timeout threshold
(i.e., 20 minutes).

The experimental results are summarized in Table 5. Overall, the number of HSOs found by HiSenDroid in
goodware and malware (i.e., 441 and 1,790, respectively) is larger than those found by the TSOpen (i.e., 110 and
237, respectively). Recall that when evaluating the performance of HiSenDroid at the beginning of Section 5, we
have manually validated the 2,231 suspicious HSOs yielded by HiSenDroid, for which 1,938 are conirmed to be
true positives, giving a precision of 86.8%. In this work, we further conduct the same manual validation for the
results of TSOpen. Our manual validation conirms that TSOpen has at least correctly detected 90.2% of logic
bombs. This result is expected as TSOpen only detects three types of HSOs (i.e., time, location, and SMS) while
HiSenDroid aims at detecting a broader scope of HSOs. To enable a fair comparison16, in this work, we will only
consider HiSenDroid’s results falling in these three categories.
As highlighted in Table 5 (cf. Columns 6-8), HiSenDroid detects more HSOs in all of the three categories.

Among the detected HSOs, we ind that 265 HSOs (186, 48, and 31 in time, location, and SMS, respectively) were
detected by both tools (as summarized in the fourth row in Table 5). Besides that, there are 802 HSOs (360, 357
and 85 in time, location, and SMS, respectively) exclusively detected by HiSenDroid, while still 82 HSOs (38, 1,
and 43 in time, location, and SMS, respectively) identiied by TSOpen are not lagged by HiSenDroid.
On a further investigation, we found the reason why HiSenDroid failed in detecting the 82 HSOs is that

HiSenDroid’s deinition of potentially-sensitive APIs is diferent from the deinition in TSOpen. In this work,
we consider all the APIs that are protected by Android permissions as potentially sensitive, while TSOpen
takes a diferent approach to pre-select such a set of sensitive APIs17. Their set of sensitive APIs includes
both permission-protected and permission-free APIs. For example, TSOpen treats the following two APIs,
<android.content.BroadcastReceiver: void abortBroadcast()> and <android.os.Handler: boolean sendEmptyMes-
sage(int)>, as sensitive APIs. However, HiSenDroid does not consider them as sensitive because they are not
protected by permissions. Furthermore, considering that TriggerScope was published in 2016 and the Android
API rapidly evolves, it is understandable that certain APIs (especially the latest ones) are not included, resulting in
possibly less suspicious HSOs. Moreover, as claimed in their paper, TriggerScope only focused on characterizing
logic bombs on some given behaviors, while HiSenDroid treated each sensitive API in state-of-the-art Android
API-permission mappings [7, 13, 14, 36] as a target API, leading to better performance in terms of both quantity
and variety in detected HSOs, compared with TriggerScope.

16We consider the original outputs of HiSenDroid and TSOpen for comparison since only a small number of their results could be false

positive.
17The sensitive APIs are a part of internal implementation of TSOpen, which is not conigurable.
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5.6 Impact of Code Obfuscation

As experimentally revealed by Zeng [73] and Moser et al. [53], trigger conditions of HSOs could be obfuscated in
order to evade the detection of advanced semantics-based malware analyzers. Therefore, we are interested in
checking to what extent our approach is impacted by obfuscation, especially when applied to pinpoint HSOs
in real-world Android apps. Since there is no existing dataset that is suitable for our experiment, we resort to
preparing such a dataset from scratch, i.e., to form a set of obfuscated app pairs for which each pair contains a non-
obfuscated app and its obfuscated counterpart. We start by randomly selecting 1,000 malware from our dataset
and then apply Obfuscapk[10] on them to generate their obfuscated counterparts. Obfuscapk is a modular Python
tool designed to directly obfuscate closed-source Android apps. Obfuscapk supports six types of obfuscation
operations, which could be conigured to achieve diferent granularities when obfuscating Android apps.

The six types of operations are summarized as follows.

(1) Nop: Insert junk code. Nop, short for no-operation, is a dedicated instruction that does nothing. This
technique just inserts random nop instructions within every method implementation.

(2) Rename: operations that change the names of the used identiiers (classes, ields, methods).
(3) Reorder: This technique consists of changing the order of basic blocks in the code.When a branch instruction

is found, the condition is inverted (e.g., branch if lower than, becomes branch if greater or equal than)
and the target basic blocks are reordered accordingly. Furthermore, it also randomly rearranges the code
abusing goto instructions.

(4) Relection: This technique analyzes the existing code looking for method invocations of the app, ignoring
the calls to the Android framework (see AdvancedRelection). If it inds an instruction with a suitable
method invocation (i.e., no constructor methods, public visibility, enough free registers etc.) such invocation
is redirected to a custom method that will invoke the original method using the Relection APIs.

(5) Advanced Relection: Uses relection to invoke dangerous APIs of the Android Framework. To ind out if
a method belongs to the Android Framework, Obfuscapk refers to the mapping discovered by Backes et
al. [14]

(6) Encryption: packaging encrypted code/resources and decrypting them during the app execution. When
Obfuscapk starts, it automatically generates a random secret key (32 characters long, using ASCII letters
and digits) that will be used for encryption.

In this work, we are interested in checking the impact of all of these six types of operations on our approach.
Hence, for each of the selected apps and each obfuscation type, we launch Obfuscapk to generate an obfuscated
app. For the 1,000 selected apps, we expect to generate 6,000 obfuscated apps and eventually form 6,000 obfuscated
app pairs. We then launch HiSenDroid to analyze those apps and compare the number of detected HSOs obtained
on apps with and without obfuscation. Table 6 summarizes our experimental results.
Expectedly, except for relection, our approach is resilient to all the other four obfuscation types. Our deep

analysis reveals that the reason why HiSenDroid is unafected by Nop obfuscator is that Nop obfuscator will only
insert junk code, which is a dedicated instruction that does nothing. In terms of Rename and Reorder obfuscator,
their code transformations will retain the functionality as the original APK thus will not impact our approach.
Also, the reason why the Encryption obfuscator has no efect on HiSenDroid is that it will only encrypt constant
strings in code, which will not impact the data low analysis of our approach. In terms of relection obfuscator
and advanced Relection obfuscator, both trigger conditions and sensitive API invocations can be redirected to
other code entities by relection calls, while those entities cannot be always resolved statically since the relection
call targets may not be statically resolved, which would lead to false negatives of HiSenDroid. The remaining
two types that have an impact on our approach are all related to relection, which performs complicated code
changes that will likely break the data low processes. Nevertheless, even for relection, our approach can still
detect around one-third of HSOs.
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Table 6. The comparison results of HiSenDroid before and ater obfuscation techniques in malware.

Obfuscator Nop Rename Reorder Relection Advanced Relection Encryption

# HSOs Before Obfuscation 144(in 821 apps) 18(in 332 apps) 146(in 792 apps) 13(in 345 apps) 145(in 821 apps) 141(in 811 apps)
# HSOs After Obfuscation 144(in 821 apps) 18(in 332 apps) 146(in 792 apps) 4(in 345 apps) 64(in 821 apps) 141(in 811 apps)

Common 144 18 146 4 64 141

To better mitigate the impact of relection-based obfuscation on our approach, we further propose to strengthen
the capability of HiSenDroid by integrating the state-of-the-art relection analysis tool DroidRA to handle
relection usages [67]. After statically locating the relective calls, DroidRA can transform a relection-included
Android app to a relection-free version, where the located relective calls will be represented by standard java
calls. The newly generated relection-free app would allow HiSenDroid to yield relection-aware analysis results.
Speciically, considering the 345 apps and 821 apps that are obfuscated by relection calls and advanced relection
calls, respectively, we irst apply DroidRA to convert them into 1,166 relection-free apps. After that, we execute
HiSenDroid to perform HSO analysis on these new apps and compare the number of detected HSOs obtained
based on the original apps. As a result, HiSenDroid is able to detect all 13 relection-relevant HSOs which are
obfuscated with relection obfuscation, while detecting 124 (with a success rate of 85.5%) relection-relevant
HSOs that are obfuscated with advanced relection obfuscation. The reason why HiSenDroid fails on detecting a
small portion of relection-relevant HSOs is that DroidRA may not resolve all the advanced relective calls. For
example, DroidRA relies on COAL [56] solver to infer relective calls, which might introduce false negatives,
leading to relection calls unresolved and thus can not be successfully detected by HiSenDroid. Nevertheless,
our experimental result shows the capability of HiSenDroid in achieving most of the relection-aware hidden
sensitive operation detections.

6 IMPLICATION: DETECTION OF HIDDEN SENSITIVE DATA FLOWS

After being able to automatically detect suspicious HSOs, we now go one step further to investigate how such
HSOs can bring security harms to users. There might be diferent security implications, in this work, we only
focus on sensitive data leaks, which is also part of our initial attempts towards demonstrating the usefulness of
identifying suspicious HSOs. Speciically, we are interested in detecting hidden sensitive data lows (HSDFs), i.e.,
leaking sensitive data collected through HSOs. To the best of our knowledge, hidden sensitive data low has not
yet been explored by our community. Unfortunately, it has not even been clearly deined. To this end, we irst
deine HSDF following the previous rules leveraged to deine HSOs (cf. Section 2). Let � denote a sensitive data
low (also known as a private data leak as mentioned in the FlowDroid work [12]), we consider that a sensitive
data low happens when a sensitive łtaintedž information goes from a source (e.g. the API method getDeviceId) to
a given sink (e.g. the API method sendTextMessage).
Deinition 3 [Hidden Sensitive Data Flow (HSDF)]: A sensitive data low � is an HSDF if the source of �

appears in the hidden sensitive branch of a HSO.
Although HSDFs have not yet been speciically exploited by the state-of-the-art, our community has proposed

various approaches to detect general sensitive data-lows. One of the most famous approaches is FlowDroid [12],
a state-of-the-art static analyzer that performs taint analysis to pinpoint sensitive data leaks lowing from a
pre-deined set of source methods to sink methods. These source and sink methods can be easily customized. In
this work, we leverage FlowDroid to detect sensitive data lows related to HSOs. If a sensitive data low reported
by FlowDroid has its source method invoked in an HSO, we regard it as an HSDF.
By applying FlowDroid18 to 1,304 apps (982 malware and 322 goodware) involving suspicious HSOs, we ind

that 67 apps further involve HSDFs, accounting to in total 401 HSDFs. While manually checking the experimental

18In this work, the latest development branch of FlowDroid[3] is leveraged for the experiments. It should be roughly equivalent to the

FlowDroid 2.8 release.
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results of FlowDroid and HiSenDroid, we ind that 16 sensitive APIs, which are frequently invoked within HSOs
to collect system information, are not taken into account by the source set of FlowDroid by default. These APIs
(listed in Table 7), after manual conirmation, should still be considered as source methods by FlowDroid as they
are responsible for retrieving sensitive data that should not be exposed to other parties. Here, to clarify, when
doing the experiment, we include both of the default source and sink methods of FlowDroid and the additional
sensitive APIs involved in HSOs in the SourceAndSink.txt ile of FlowDroid. During the manual process, we have
not found any sensitive API (i.e., involving dangerous operations) that should be additionally considered as a sink
method by FlowDroid. Hence, we add the 16 APIs to the source set of Flowdroid and keep its sink set unchanged
(hereinafter referred to this version as FlowDroid + HiSenDroid) and relaunch it on the same set of apps. This
time, we are able to disclose 1,110 HSDFs from 1,304 apps. This result shows that suspicious HSOs could be
leveraged to leak users’ sensitive information outside of their devices. As an example shown in Listing 5, the
sensitive data device id and subscriber id, which are unique to the device and hence can be leveraged to uniquely
track the phone, are eventually sent outside the device through a text message.

Considering general sensitive data-lows (SDF), we compare FlowDroid with HiSenDroid on the same dataset.
In general, among the 1,304 apps, HisenDroid+FlowDroid detect 31,215 SDF, which is signiicantly larger than
that of the original FlowDroid (which is 16,946). This result, as expected19, does experimentally demonstrate the
efectiveness of our approach towards revealing more data lows in Android Apps. Our experimental results are
illustrated in Figure 7, which indicates the distribution of the number of sensitive data lows in each app yielded
by HisenDroid+FlowDroid and HiSenDroid. This result shows that FlowDroid + HiSenDroid has signiicantly
improved the original results of FlowDroid, which shows the usefulness of our identiied HSOs and suggests that
there is a strong need to characterize hidden sensitive operations.
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Fig. 7. Results of Sensitive data Flows in Android Apps.

19We remind the readers that, in this work, we did not improve FlowDroid by itself but only enlarged its source set as some of the sensitive

APIs, which are favored by HSOs, are overlooked by FlowDroid.
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Table 7. The list of selected source methods that, by default, are not included by FlowDroid.

API Signature

android.net.wii.WiiManager#getConnectionInfo()
android.app.ActivityManager#getRunningTasks
android.app.ActivityManager#getRecentTasks
android.accounts.AccountManager#getUserData
android.net.ConnectivityManager#getNetworkInfo
android.provider.Settings$System#getUriFor
android.telephony.TelephonyManager#getNeighboringCellInfo
android.telephony.TelephonyManager#getCellLocation
android.accounts.AccountManager#getAccountsByType
android.net.wii.WiiManager#getScanResults
android.net.wii.WiiManager#getConiguredNetworks
java.net.URL#openConnection
android.net.ConnectivityManager#getAllNetworkInfo
android.net.VpnService#prepare
android.hardware.Camera#open
android.net.ConnectivityManager#getActiveNetworkInfo

7 LIMITATIONS

Themain limitation of our approach lies in the backward data-low analysis, which applies only context-insensitive
analysis and thereby may lead to imprecise results. Furthermore, at the moment, our approach is not aware of
dynamically loaded code, relectively accessed methods, and native code. Subsequently, HiSenDroid may overlook
certain app features and hence result in false-negative results.

Second, HiSenDroid data-low analysis may be susceptible to obfuscation techniques. According to some former
research works [29, 61, 64], obfuscation (especially those involving complicated changes of the program code)
may cause false negatives of the static analysis approach. Indeed, as demonstrated by Moser [53], obfuscation
is actually a challenge for almost all static program analyzers. Just like all prior eforts on static analysis of
HSOs [27], [57], we do not consider the apps whose branch conditions have been deeply obfuscated. Fortunately,
the majority of obfuscations applied to Android apps only involve basic transformations (such as renaming [24])
that do not involve complicated code changes (e.g., structural or logic changes, or invoke sensitive code through
relections, etc.), which will not impact the analysis of our approach. This has also been conirmed by our
exploratory study towards understanding the impact of obfuscation on our approach, as discussed in Section 5.6.
Considering relection obfuscation, integrating DroidRA with HiSenDroid as a pipeline is demonstrated to be
efective in eliminating the impact of relection calls. Therefore, we believe that the technical capabilities and our
results would not be signiicantly impacted by code obfuscation. Nevertheless, as part of our future work, we plan
to integrate other approaches developed by our fellow researchers to mitigate these long-standing challenges,
e.g., by applying DroidRA [40, 67] to mitigate the impact of relection-enhanced code obfuscations.

Although summarized from many sensitive operations, the deinition of HSO rules may not be perfect. Indeed,
on the one hand, the set of sensitive operations considered for summarization may not be representative, and
the set of apps leveraged to obtain such sensitive operations may not be represented as well. On the other hand,
the manual analysis leveraged to summarize the rules may contain errors since it is known that human eforts
are prone to errors. Apart from that, the deinition of HSO is based on empirical evidence that might not be
perfect. There might be complicated cases that do not follow the deinition but still manifest themselves as hidden
sensitive behaviors in practice, leading to false negatives. This limitation can also apply to the conventional

ACM Trans. Softw. Eng. Methodol.



24 • Xiaoyu Sun, Xiao Chen, Li Li, Haipeng Cai, John Grundy, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

usage analyses since the list of conventional usages is manually summarized based on a given set of apps. The
subsequent outputs (i.e., whitelist) may not be representative. Nonetheless, our follow-up study using a set of
20,000 new apps has shown that this impact is negligible. Furthermore, in this work, we have attempted to
provide detailed insights to explain why HSOs are reported as such. This knowledge is expected to be useful
for practitioners and researchers to characterize conventional usages and for security analysts to understand
suspicious HSOs.

Moreover, since the original implementation of TriggerScope is not publicly available, we have resorted to an
open re-implementation version of TriggerScope to compare our approach against it. This alternative decision
may result in possible biases as the re-implementation may not really represent the original version. Unfortunately,
the re-implemented version is the only source we can publicly locate to fulill the comparison. As of our future
work, we plan to also evaluate the reliability of the re-implementation of TriggerScope so as to mitigate potential
biases, if any.
Last but not the least, the performance of the hidden sensitive data low analysis may be impacted by the

collection of sensitive APIs (i.e., sources). On one hand, some sensitive APIs, especially the latest ones, might be
overlooked by FlowDroid and hence cannot be considered for pinpointing potential leaks, leading to false-negative
results. In this work, our experimental results have conirmed this. On the other hand, some historical sensitive
APIs included in FlowDroid’s source list might be deprecated and subsequently removed from a certain Android
API version [42]. There is hence no need to include them when analyzing apps targeting higher API versions,
as these APIs will not be used anymore, not even mentioning causing sensitive data leaks. To overcome these
impacts, we believe there is a need to keep updating FlowDroid’s list of sensitive APIs, in order to achieve a more
efective and sound sensitive data low analysis for Android apps. Furthermore, ideally, FlowDroid should also
not be expected to include APIs that are released after itself.

8 RELATED WORK

Hidden sensitive operations have long existed in Android malware as evasive technologies have widely been used
by attackers to hide their malicious behaviors. Our research community has hence proposed various approaches
to tackle these issues. We now discuss some of the representative works from two angles, including the evasive
techniques that have been proposed to hide malicious code from being identiied, and the detection methods
proposed to pinpoint such evasive techniques.

Evasive Techniques. There has been a number of research works on hiding malicious behavior from detection,
most of which focus on evading the dynamic test platforms such as virtual machines and emulators. Early works
target the Windows platform [17], while recently the trend has been moved to Android [18, 21, 31, 48, 50, 59, 68].
These evasive techniques detect the presence of a simulated environment by either looking into the system
properties of the testing platform (e.g., system ingerprints, hardware capabilities, etc.) [18, 59, 68], or leveraging
a reverse Turing test that examines if the app interacts with a human user [21]. For instance, Diao et al. [21]
observed that programmed interaction has speciic patterns of input and interaction frequency, which is diferent
from real users. Overall, the evasive techniques usually hide malicious activities in an if-then-else statement. The
hidden malicious behavior will only be set of when certain conditions are fulilled (e.g., not in an emulator);
otherwise dummy benign operations are triggered. The prevalence of such evasive techniques motivated us to
investigate the HSOs in Android apps and propose HiSenDroid to detect them.
Detection of Evasive Techniques. The pervasive evasive techniques (e.g., anti-emulator techniques) have

motivated the research community to take countermeasures. Great efort has been spent on detecting known types
of hidden behaviors that hampers the dynamic analysis process. These works include detecting anti-emulator
techniques [15, 32, 33, 44] and generic logic-bombs [16, 20, 27, 58, 75]. The approaches of detecting anti-emulator
techniques compare the behavioral deviation of the tested apps on the various environments when feeding
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them the same input. The fundamental idea is that if the app behaves diferently in diferent environments, it is
likely trying to evade one or more analysis platforms (usually referred to as bare-metal analysis in the literature)
[15, 32, 33, 44]. While these early works investigate a critical category of hidden operations (i.e., anti-emulator),
the proposed methods lack generalization that cannot be applied to detect other types of hidden operations
emerging recently.

Besides the detection of anti-emulator techniques, several works are focusing on uncovering other trigger-based
behaviors. These approaches leverage symbolic execution or static code analysis and instrumentation to expose
the hidden branches in an if-then-else statement [16, 20, 27, 58, 75]. As examples, Zheng et al. [75] proposed to
leverage a static analysis approach to retrieve all UI related events, and use dynamic testing to trigger them
and log the invocation of sensitive APIs. Unlike HiSenDroid that leverages static analysis, the dynamic analysis
based approach introduces signiicant system- and time-overhead. The coverage of the dynamic analysis is also
in question. Fratantonio et al. [27] proposed TriggerScope to detect hidden triggered behaviors based on the
observation that certain triggers (i.e., time, location, and SMS related triggers) always involve the comparison of
speciic types of input (i.e., system time, system location, and received SMS). Symbolic execution is then leveraged
to detect such narrow conditions. While TriggerScope is efective in detecting the above-mentioned three types
of logic bombs, it cannot be generalized to detect hidden operations triggered by other types of conditions, such
as system property, which has been found pervasive in Android apps.
Similar to HiSenDroid, another line of work attempts to detect unknown types of trigger-based behav-

iors [57], [69]. A prominent example is HSOMiner [57], which extracts static characteristics of hidden behaviors
as features and trains a machine learning model to identify the code blocks that observe similar patterns. The
major diferences between our work and HSOMiner are twofold. First, HSOMiner requires a large number of
manually labelled training samples, which involves extensive human experts’ efort. Its performance also heavily
relies on the manually labelled training data, which is prone to errors. Our method, on the other hand, is an
automatic process without human intervention. Second, HSOMiner, as a machine learning based approach, lacks
explanations of the decisions. In contrast, our static code analysis based approach outputs the full call traces of
detected HSOs, and provides more detailed information for further analysis.

9 CONCLUSION

In this work, we present to the community a prototype tool called HiSenDroid, which performs a static code
analysis to uncover hidden sensitive operations that will only be triggered under special circumstances such
as at a speciic location or in a certain time period. Additionally, HiSenDroid goes one step deeper to provide
details aiming at helping security analysts understand why a given hidden sensitive operation is lagged as such.
Experimental results over 20,000 apps, including both malicious and benign apps, show that hidden sensitive
operations are indeed quite frequently presented in Android apps and HiSenDroid is efective in automatically
discovering them. Moreover, with the help of FlowDroid, a state-of-the-art static taint analyzer, we further
experimentally ind that hidden sensitive operations could eventually lead to privacy leaks.

10 ACKNOWLEDGMENTS

The authors would like to thank the anonymous TOSEM reviewers who have provided insightful and constructive
comments, which have been extremely useful for helping in improving this manuscript. This work was partly
supported by the Australian Research Council (ARC) under a Laureate Fellowship project FL190100035, a Discovery
Early Career Researcher Award (DECRA) project DE200100016, and a Discovery project DP200100020, by the
Luxembourg National Research Fund (FNR) (under project CHARACTERIZE C17/IS/11693861), by the SPARTA
project, which has received funding from the European Union’s Horizon 2020 research and innovation program
under grant agreement No 830892.

ACM Trans. Softw. Eng. Methodol.



26 • Xiaoyu Sun, Xiao Chen, Li Li, Haipeng Cai, John Grundy, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

REFERENCES
[1] [n.d.]. Android security: Adding tampering detection to your app. https://www.airpair.com/android/posts/adding-tampering-detection-

to-your-android-app#4-1-emulator. Last updated: 2021-11-20.

[2] [n.d.]. Android.hehe: Malware now disconnects phone calls. https://www.ireeye.com/blog/threat-research/2014/01/android-

hehemalware-now-disconnects-phone-calls.html. Last updated: 2021-11-20.

[3] [n.d.]. FlowDroid Development Branch. https://github.com/secure-software-engineering/FlowDroid/tree/develop. Last updated:

2021-10-14.

[4] [n.d.]. Hacking team rcsandroid spying tool listens to calls; roots devices to get in. https://www.trendmicro.com/en_us/research/15/g/

hacking-team-rcsandroid-spying-tool-listens-to-calls-roots-devices-to-get-in.html. Last updated: 2021-11-20.

[5] [n.d.]. HiSenDroid. https://bitbucket.org/se_anonymous/workspace/projects/HIS. Last updated: 2021-03-30.

[6] 2020. Virusshare. http://virusshare.com/

[7] Yousra Aafer, Guanhong Tao, Jianjun Huang, Xiangyu Zhang, and Ninghui Li. 2018. Precise android api protection mapping derivation

and reasoning. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 1151ś1164.

[8] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. 2016. Androzoo: Collecting millions of android apps for the

research community. In 2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR). IEEE, 468ś471.

[9] William Stofega Anthony Scarsella. 2020. Worldwide Smartphone Market Shares, 2019. https://www.idc.com/getdoc.jsp?containerId=

US46194820.

[10] Simone Aonzo, Gabriel Claudiu Georgiu, Luca Verderame, and Alessio Merlo. 2020. Obfuscapk: An open-source black-box obfuscation

tool for Android apps. SoftwareX 11 (2020), 100403.

[11] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT Siemens. 2014. Drebin: Efective and

explainable detection of android malware in your pocket.. In Ndss, Vol. 14. 23ś26.

[12] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and

Patrick McDaniel. 2014. Flowdroid: Precise context, low, ield, object-sensitive and lifecycle-aware taint analysis for android apps. Acm

Sigplan Notices 49, 6 (2014), 259ś269.

[13] KathyWain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout: analyzing the android permission speciication. In Proceedings

of the 2012 ACM conference on Computer and communications security. 217ś228.

[14] Michael Backes, Sven Bugiel, Erik Derr, Patrick McDaniel, Damien Octeau, and Sebastian Weisgerber. 2016. On Demystifying the

Android Application Framework:{Re-Visiting} Android Permission Speciication Analysis. In 25th USENIX security symposium (USENIX

security 16). 1101ś1118.

[15] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2010. Eicient Detection

of Split Personalities in Malware.. In NDSS. Citeseer.

[16] David Brumley, Cody Hartwig, Zhenkai Liang, James Newsome, Dawn Song, and Heng Yin. 2008. Automatically identifying trigger-based

behavior in malware. In Botnet Detection. Springer, 65ś88.

[17] Xu Chen, Jon Andersen, Z Morley Mao, Michael Bailey, and Jose Nazario. 2008. Towards an understanding of anti-virtualization and

anti-debugging behavior in modern malware. In 2008 IEEE international conference on dependable systems and networks with FTCS and

DCC (DSN). IEEE, 177ś186.

[18] Valerio Costamagna, Cong Zheng, and Heqing Huang. 2018. Identifying and Evading Android Sandbox Through Usage-Proile Based

Fingerprints. In Proceedings of the First Workshop on Radical and Experiential Security. 17ś23.

[19] Marco Cova, Christopher Kruegel, and Giovanni Vigna. 2010. Detection and analysis of drive-by-download attacks and malicious

JavaScript code. In Proceedings of the 19th international conference on World wide web. 281ś290.

[20] Jedidiah R Crandall, Gary Wassermann, Daniela AS de Oliveira, Zhendong Su, S Felix Wu, and Frederic T Chong. 2006. Temporal search:

Detecting hidden malware timebombs with virtual machines. ACM SIGOPS Operating Systems Review 40, 5 (2006), 25ś36.

[21] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang. 2016. Evading android runtime analysis through detecting programmed

interactions. In Proceedings of the 9th ACM conference on security & privacy in wireless and mobile networks. 159ś164.

[22] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bissyandé, Tianming Liu, Guoai Xu, and Jacques Klein. 2018. Frauddroid:

Automated ad fraud detection for android apps. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering. 257ś268.

[23] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Guoai Xu, and Shaodong Zhang. 2018. How do mobile apps violate the behavioral policy of

advertisement libraries?. In Proceedings of the 19th International Workshop on Mobile Computing Systems & Applications. 75ś80.

[24] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao Xu, Kai Chen, Xiaofeng Wang, and Kehuan Zhang.

2018. Understanding android obfuscation techniques: A large-scale investigation in the wild. In International conference on security and

privacy in communication systems. Springer, 172ś192.

[25] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2008. A survey on automated dynamic malware-analysis

techniques and tools. ACM computing surveys (CSUR) 44, 2 (2008), 1ś42.

ACM Trans. Softw. Eng. Methodol.

https://www.airpair.com/android/posts/adding-tampering-detection-to-your-android-app#4-1-emulator
https://www.airpair.com/android/posts/adding-tampering-detection-to-your-android-app#4-1-emulator
https://www.fireeye.com/blog/threat-research/2014/01/android-hehemalware-now-disconnects-phone-calls.html
https://www.fireeye.com/blog/threat-research/2014/01/android-hehemalware-now-disconnects-phone-calls.html
https://github.com/secure-software-engineering/FlowDroid/tree/develop
https://www.trendmicro.com/en_us/research/15/g/hacking-team-rcsandroid-spying-tool-listens-to-calls-roots-devices-to-get-in.html
https://www.trendmicro.com/en_us/research/15/g/hacking-team-rcsandroid-spying-tool-listens-to-calls-roots-devices-to-get-in.html
https://bitbucket.org/se_anonymous/workspace/projects/HIS
http://virusshare.com/
https://www.idc.com/getdoc.jsp?containerId=US46194820
https://www.idc.com/getdoc.jsp?containerId=US46194820


Demystifying Hidden Sensitive Operations in Android apps • 27

[26] Michael P Fay and Michael A Proschan. 2010. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple

interpretations of decision rules. Statistics surveys 4 (2010), 1.

[27] Yanick Fratantonio, Antonio Bianchi, William Robertson, Engin Kirda, Christopher Kruegel, and Giovanni Vigna. 2016. Triggerscope:

Towards detecting logic bombs in android applications. In 2016 IEEE symposium on security and privacy (SP). IEEE, 377ś396.

[28] Jun Gao, Li Li, Pingfan Kong, Tegawendé F Bissyandé, and Jacques Klein. 2020. Borrowing Your Enemy’s Arrows: the Case of Code

Reuse in Android via Direct Inter-app Code Invocation. In The 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE 2020).

[29] Leonid Glanz, Patrick Müller, Lars Baumgärtner, Michael Reif, Sven Amann, Pauline Anthonysamy, and Mira Mezini. 2020. Hidden in

plain sight: Obfuscated strings threatening your privacy. In Proceedings of the 15th ACMAsia Conference on Computer and Communications

Security. 694ś707.

[30] Michael I Gordon, Deokhwan Kim, Jef H Perkins, Limei Gilham, Nguyen Nguyen, and Martin C Rinard. 2015. Information low analysis

of android applications in droidsafe.. In NDSS, Vol. 15. 110.

[31] Yiming Jing, Ziming Zhao, Gail-Joon Ahn, and Hongxin Hu. 2014. Morpheus: automatically generating heuristics to detect android

emulators. In Proceedings of the 30th Annual Computer Security Applications Conference. 216ś225.

[32] Dhilung Kirat and Giovanni Vigna. 2015. Malgene: Automatic extraction of malware analysis evasion signature. In Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications Security. 769ś780.

[33] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. 2014. Barecloud: bare-metal analysis-based evasive malware detection. In 23rd

{USENIX} Security Symposium ({USENIX} Security 14). 287ś301.

[34] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein. 2018. Automated Testing of Android Apps: A

Systematic Literature Review. IEEE Transactions on Reliability (2018).

[35] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. The Soot framework for Java program analysis: a retrospective. In

Cetus Users and Compiler Infastructure Workshop (CETUS 2011), Vol. 15. 35.

[36] Chaoran Li, Xiao Chen, Ruoxi Sun, Jason Xue, Sheng Wen, Muhammad Ejaz Ahmed, Seyit Camtepe, and Yang Xiang. 2022. Cross-

Language Android Permission Speciication. In Proceedings of the 30th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering.

[37] Li Li, Kevin Allix, Daoyuan Li, Alexandre Bartel, Tegawendé F Bissyandé, and Jacques Klein. 2015. Potential component leaks in Android

apps: An investigation into a new feature set for malware detection. In 2015 IEEE International Conference on Software Quality, Reliability

and Security. IEEE, 195ś200.

[38] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden, Damien

Octeau, and Patrick Mcdaniel. 2015. IccTA: Detecting Inter-Component Privacy Leaks in Android Apps. In Proceedings of the 37th

International Conference on Software Engineering (ICSE 2015).

[39] Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2019. Rebooting Research on Detecting Repackaged Android Apps: Literature Review

and Benchmark. IEEE Transactions on Software Engineering (TSE) (2019).

[40] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein. 2016. Droidra: Taming relection to support whole-program analysis

of android apps. In Proceedings of the 25th International Symposium on Software Testing and Analysis. 318ś329.

[41] Li Li, Tegawendé F Bissyandé, Mike Papadakis, Siegfried Rasthofer, Alexandre Bartel, Damien Octeau, Jacques Klein, and Yves Le Traon.

2017. Static Analysis of Android Apps: A Systematic Literature Review. Information and Software Technology (2017).

[42] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid: Automating the detection of api-related compatibility issues

in android apps. In Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis. 153ś163.

[43] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Yves Le Traon, David Lo, and Lorenzo Cavallaro. 2017. Understanding Android

App Piggybacking: A Systematic Study of Malicious Code Grafting. IEEE Transactions on Information Forensics & Security (TIFS) (2017).

[44] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. 2011. Detecting environment-sensitive malware. In International

Workshop on Recent Advances in Intrusion Detection. Springer, 338ś357.

[45] Pei Liu, Li Li, Yanjie Zhao, Xiaoyu Sun, and John Grundy. 2020. Androzooopen: Collecting large-scale open source android apps for the

research community. In Proceedings of the 17th International Conference on Mining Software Repositories. 548ś552.

[46] Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng Dong, Yao Guo, Liu Wang, Tegawendé F Bissyandé, and Jacques Klein. 2020.

MadDroid: Characterising and Detecting Devious Ad Content for Android Apps. In The Web Conference 2020 (WWW 2020).

[47] Yonghui Liu, Li Li, Pingfan Kong, Xiaoyu Sun, and Tegawendé F Bissyandé. 2021. A First Look at Security Risks of Android TV Apps. In

2021 36th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW). IEEE, 59ś64.

[48] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2021. Deep learning for android malware defenses: a systematic literature

review. arXiv preprint arXiv:2103.05292 (2021).

[49] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Deep Learning for Android Malware Defenses: a Systematic Literature

Review. ACM Computing Surveys (CSUR) (2022).

[50] Yue Liu, Chakkrit Tantithamthavorn, Li Li, and Yepang Liu. 2022. Explainable AI for Android Malware Detection: Towards Understanding

Why the Models Perform So Well?. In The 33rd IEEE International Symposium on Software Reliability Engineering (ISSRE 2022).

ACM Trans. Softw. Eng. Methodol.



28 • Xiaoyu Sun, Xiao Chen, Li Li, Haipeng Cai, John Grundy, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

[51] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer,

Uday P Khedker, Anders Mùller, and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto. Commun. ACM 58, 2 (2015),

44ś46.

[52] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristofaro, Gordon Ross, and Gianluca Stringhini. 2016.

Mamadroid: Detecting android malware by building markov chains of behavioral models. arXiv preprint arXiv:1612.04433 (2016).

[53] Andreas Moser, Christopher Kruegel, and Engin Kirda. 2007. Limits of static analysis for malware detection. In Twenty-Third Annual

Computer Security Applications Conference (ACSAC 2007). IEEE, 421ś430.

[54] Ravshanbek Norboev, Zakia Hossain, Lannan Luo, and Qiang Zeng. 2017. On the robustness of stochastic stealthy network against android

app repackaging. Technical Report. Technical Report. Temple University.

[55] Jon Oberheide and Charlie Miller. 2012. Dissecting the android bouncer. SummerCon2012, New York 95 (2012), 110.

[56] Damien Octeau, Daniel Luchaup, MatthewDering, Somesh Jha, and PatrickMcDaniel. 2015. Composite constant propagation: Application

to android inter-component communication analysis. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,

Vol. 1. IEEE, 77ś88.

[57] Xiaorui Pan, Xueqiang Wang, Yue Duan, XiaoFeng Wang, and Heng Yin. 2017. Dark Hazard: Learning-based, Large-Scale Discovery of

Hidden Sensitive Operations in Android Apps.. In NDSS.

[58] Dorottya Papp, Thorsten Tarrach, and Levente Buttyán. 2019. Towards Detecting Trigger-Based Behavior in Binaries: Uncovering the

Correct Environment. In International Conference on Software Engineering and Formal Methods. Springer, 491ś509.

[59] Thanasis Petsas, Giannis Voyatzis, Elias Athanasopoulos, Michalis Polychronakis, and Sotiris Ioannidis. 2014. Rage against the virtual

machine: hindering dynamic analysis of android malware. In Proceedings of the Seventh European Workshop on System Security. 1ś6.

[60] Lina Qiu, Yingying Wang, and Julia Rubin. 2018. Analyzing the Analyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe. In Proceedings

of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2018). Association for Computing Machinery,

New York, NY, USA, 176ś186. https://doi.org/10.1145/3213846.3213873

[61] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. 2016. Harvesting Runtime Values in Android Applications That

Feature Anti-Analysis Techniques.. In NDSS.

[62] Siegfried Rasthofer, Steven Arzt, Stefan Triller, and Michael Pradel. 2017. Making malory behave maliciously: Targeted fuzzing of

android execution environments. In 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE). IEEE, 300ś311.

[63] Jordan Samhi and Alexandre Bartel. 2021. On The (In) Efectiveness of Static Logic Bomb Detector for Android Apps. IEEE Transactions

on Dependable and Secure Computing (2021).

[64] Jordan Samhi, Jun Gao, Nadia Daoudi, Pierre Graux, Henri Hoyez, Xiaoyu Sun, Kevin Allix, Tegawendé F Bissyandé, and Jacques Klein.

2022. JuCify: a step towards Android code uniication for enhanced static analysis. In Proceedings of the 44th International Conference on

Software Engineering. 1232ś1244.

[65] Xiaoyu Sun, Xiao Chen, Kui Liu, Sheng Wen, Li Li, and John Grundy. 2021. Characterizing Sensor Leaks in Android Apps. In 2021 IEEE

32nd International Symposium on Software Reliability Engineering (ISSRE). IEEE, 498ś509.

[66] Xiaoyu Sun, Xiao Chen, Yanjie Zhao, Pei Liu, John Grundy, and Li Li. 2022. Mining Android API Usage to Generate Unit Test Cases for

Pinpointing Compatibility Issues. arXiv preprint arXiv:2208.13417 (2022).

[67] Xiaoyu Sun, Li Li, Tegawendé F Bissyandé, Jacques Klein, Damien Octeau, and John Grundy. 2021. Taming Relection: An Essential Step

Toward Whole-program Analysis of Android Apps. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 3 (2021),

1ś36.

[68] Timothy Vidas and Nicolas Christin. 2014. Evading android runtime analysis via sandbox detection. In Proceedings of the 9th ACM

symposium on Information, computer and communications security. 447ś458.

[69] Xiaolei Wang, Sencun Zhu, Dehua Zhou, and Yuexiang Yang. 2017. Droid-AntiRM: Taming control low anti-analysis to support

automated dynamic analysis of android malware. In Proceedings of the 33rd Annual Computer Security Applications Conference. 350ś361.

[70] Fengguo Wei, Sankardas Roy, and Xinming Ou. 2014. Amandroid: A precise and general inter-component data low analysis framework

for security vetting of android apps. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security.

1329ś1341.

[71] Guosheng Xu, Yangyu Hu, Qian Guo, Ren He, Li Li, Guoai Xu, Zhihui Han, and Haoyu Wang. 2020. Dissecting Mobile Oferwall

Advertisements: An Explorative Study. In 2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS).

518ś526. https://doi.org/10.1109/QRS51102.2020.00072

[72] Guosheng Xu, Siyi Li, Hao Zhou, Shucen Liu, Yutian Tang, Li Li, Xiapu Luo, Xusheng Xiao, Guoai Xu, and Haoyu Wang. 2022. Lie to Me:

Abusing the Mobile Content Sharing Service for Fun and Proit. In Proceedings of the ACM Web Conference 2022. 3327ś3335.

[73] Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, and Zhoujun Li. 2018. Resilient decentralized android application repackaging

detection using logic bombs. In Proceedings of the 2018 International Symposium on Code Generation and Optimization. 50ś61.

[74] Yanjie Zhao, Li Li, Haoyu Wang, Haipeng Cai, Tegawende Bissyande, Jacques Klein, and John Grundy. 2021. On the Impact of Sample

Duplication in Machine Learning based Android Malware Detection. ACM Transactions on Software Engineering and Methodology

(TOSEM) (2021).

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3213846.3213873
https://doi.org/10.1109/QRS51102.2020.00072


Demystifying Hidden Sensitive Operations in Android apps • 29

[75] Cong Zheng, Shixiong Zhu, Shuaifu Dai, Guofei Gu, Xiaorui Gong, Xinhui Han, and Wei Zou. 2012. Smartdroid: an automatic system

for revealing ui-based trigger conditions in android applications. In Proceedings of the second ACM workshop on Security and privacy in

smartphones and mobile devices. 93ś104.

ACM Trans. Softw. Eng. Methodol.



30 • Xiaoyu Sun, Xiao Chen, Li Li, Haipeng Cai, John Grundy, Jordan Samhi, Tegawendé F. Bissyandé, and Jacques Klein

1 // conventional usages - SDK version check

2 public void addJavascriptInterface(Object var1 , String var2) {

3 if (VERSION.SDK_INT < 17) {

4 TaoLog.e("HybridWebView", "addJavascriptInterface is disabled before API level 17 for security.");

5 } else {

6 super.addJavascriptInterface(var1 , var2);

7 }}

8
9 // conventional usages - User Interface

10 class ClickEvent implements View.OnClickListener {

11 public void onClick(View view) {

12 if(view.getId() == backButton.getId()){

13 webView.goBack ()

14 }

15 else if (view.getId() == reloadButton.getId()){

16 webView.reload ();

17 }}}

18
19 // conventional usages - File Handling

20 public static File inputstreamtofile(InputStream ins) {

21 File SDFile = Environment.getExternalStorageDirectory ();

22 File desDir=new File(SDFile.getAbsolutePath ());

23 File newFile=new File(desDir.getAbsolutePath () + File.separatorChar+"myPaint.png") ;

24 if(desDir.exists ()){

25 OutputStream os = new FileOutputStream(newFile);

26 while (( bytesRead = ins.read(buffer , 0, 8192)) != -1) {

27 os.write(buffer , 0, bytesRead);

28 }}}

29
30 // conventional usages - Permission Check

31 public static String getDeviceInfo(Context context) {

32 if (checkPermission(context , Manifest.permission.READ_PHONE_STATE)) {

33 String device_id = tm.getDeviceId ();

34 } else {

35 requestPermissions(context , new String [] {Manifest.permission.READ_PHONE_STATE}, REQUEST_CODE)

36 }}

37
38 // conventional usages - Network

39 public String g() {

40 var1 = (( ConnectivityManager)a.getSystemService("connectivity")) .getActiveNetworkInfo ();

41 var9 = var1.getType ();

42 if(var9 == 1){

43 var10 = (( WifiManager)a.getSystemService("wifi")).getDhcpInfo ();

44 }}

45
46 // conventional usages - Intent Management

47 public void onReceive(final Context context , Intent intent) {

48 String action = intent.getAction ();

49 if (action.equalsIgnoreCase ("android.net.conn.CONNECTIVITY_CHANGE") {

50 connectivityManager.getActiveNetworkInfo ();

51 }}

52
53 // conventional usages - SharedPreferences

54 public class VpnAddressIp{

55 public SharedPreferences sp;

56 public String VPNAddress () {

57 sp = context.getSharedPreferences("SP", Context.MODE_PRIVATE);

58 VPNflag = sp.getInt("VPNFlag", 1);

59 VPNAddress vpnaddress = new VPNAddress(context);

60 if (VPNflag == 1) {

61 VPNAddressBean bean = vpnaddress.queryVPN (1);

62 networkaddress = bean.getNetwork ();

63 }

64 return networkaddress;

65 }}

Listing 2. Examples of conventional usages.
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