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General description of Finite Mixture models

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous
sub-populations and to estimate, at the same time, a typical trajectory for
each sub-population. (Nagin 2005)

This model can be interpreted as functional fuzzy logic cluster analysis.
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The basic model (Nagin 2005)

Consider a population of size N and a variable of interest Y .
Let Yi = yi1 , yi2 , ..., yiT be T measures of the variable, taken at times
t1, ...tT for subject number i and πk the probability of a given subject to
belong to group number k

For a given group Gk , we suppose conditional independence for the
sequential realizations of the elements yit over the T periods of
measurements.

The density f of Y is given by

f (yi ;ψ) =
K∑

k=1

πkg
k(yi ; Θk), (1)

where gk(·) denotes the distribution of yit conditional on membership in
group k and the role of the parameters Θk is to describe the shape of the
trajectories in group k.
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Possible data distributions

Poisson distribution

Binary logit distribution

(Censored) normal distribution

Beta distribution (Noel & S. 2023)
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Likelihood function for a normal distribution

Notations:

βj t = βj0 + βj1t + βj2t
2 + βj3t

3 + βj4t
4.

φ: density of standard centered normal law.

Then,

L =
1

σ

N∏
i=1

r∑
j=1

πj

T∏
t=1

φ

(
yit − βj t

σ

)
. (2)

It is too complicated to get closed-forms equations.

SAS procedure proc Traj (Nagin & Jones 2008).
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Predictors of trajectory group membership

X : vector of variables potentially associated with group membership.

πk(xi ) =
exiθk

K∑
k=1

exiθk

, (3)

where θk denotes the effect of xi on the probability of group membership
for group k .

L =
N∏
i=1

K∑
k=1

exiθk

K∑
k=1

exiθk

T∏
t=1

gk(yit). (4)
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Adding covariates to the trajectories

Let W be a vector of covariates potentially influencing Y .

The likelihood then becomes

L =
N∏
i=1

K∑
k=1

exiθk

K∑
k=1

exiθk

T∏
t=1

pk(yit |Ai ,Wi ,Θk).
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Salary groups: Men versus women (S. 2016)
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Generalized finite mixture model (S. 2015)

Let x1...xM and zt be covariates potentially influencing Y .

We propose the following model:

yit =

(
βj0 +

M∑
l=1

αj
0lxil + γj0wit

)
+

(
βj1 +

M∑
l=1

αj
1lxil + γj1wit

)
t

+

(
βj2 +

M∑
l=1

αj
2lxil + γj2wit

)
t2 +

(
βj3 +

M∑
l=1

αj
3lxil + γj3wit

)
t3

+

(
βj4 +

M∑
l=1

αj
4lxil + γj4wit

)
t4 + εjit ,

where εit ∼ N (0, σj), σj being the standard deviation, constant in group j .
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Statistical Properties (S. 2015)

The model’s estimated parameters are the result of maximum likelihood
estimation. As such, they are consistent and asymptotically normally
distributed.

Confidence intervals of level α for the parameters βjk :

CIα(βjk) =
[
β̂jk − t1−α/2;N−(2+M)sASE (β̂jk); β̂jk + t1−α/2;N−(2+M)sASE (β̂jk)

]
.

(5)

Confidence intervals of level α for the disturbance factor σj :

CIα(σj) =

√√√√(N − (2 + M)s − 1)σ̂j
2

χ2
1−α/2;N−(2+M)s−1

;

√√√√(N − (2 + M)s − 1)σ̂j
2

χ2
α/2;N−(2+M)s−1

 . (6)
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trajeR (Noel & S. 2022): Function signature
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Numerical output of result
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trajeR - Censored Normal Model
plot(solL, Y = data[,2:11], A = data[,12:21], col = vcol)
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trajeR - Zero Inflated Poisson
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trajeR - Logit
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trajeR - Non Linear

We suppose that the variable Yit is defined by

yit = f (ait ;βk) + εit (7)

where εit ∼ N (0; σk).
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trajeR - Non Linear

Example with

f (t;βk) =
βk1t

βk2 + t
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By analysing the graph above,
we fit initial parmaters as
paraminit=c(0.25,0.25,0.25,0.25,2,
0.1,2.4,0.1,2.8,0.1,3,0.1,0.2,0.2,0.2,0.2)
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trajeR - Non Linear

fct < − function(t, betak, TCOV){ return( (betak[1]*t)/(betak[2]+t) )
diffct < − function(t, betak, TCOV){ return(c( t/(betak[2]+t),
-(betak[1]*t)/(betak[2]+t)**2 ))

solEM = trajeR(Y = data[,2:12], A = data[,13:23], ng = 4, nbvar = 2,
Method = ”EM”, Model = ”NL”, hessian = TRUE, fct = fct, diffct =
diffct, paraminit = paraminit)
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trajeR - Non Linear
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trajeR - Some functions

Membership’s probability – GroupProb(...)

Profiles of group – GroupProfiles(...)
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trajeR - Model performance

Average Posterior Probability – AvePP(...)

Odds of Correct Classification – OCC(...)

Estimated group probabilities versus proportion of the sample
assigned to the group – propAssign(...)

Confidence interval – ConfIntT(...)

Summary – adequacy(...)
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trajeR - Model selection

AIC – trajeRAIC(...)

BIC – trajeRBIC(...)

Slope Heuristics – trajeRSH(...)
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The Beta distribution
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Underlying Beta distribution

Density of yit conditional to membership in group Ck :

gk(yit ;µkit , φkit) =
Γ(φkit)

Γ(µkitφkit)Γ((1− µkit)φkit)
yµkitφkit−1
it (1−yit)(1−µkit)φkit−1,

with

µkit =
eβkAit+δkWit

1 + eβkAit+δkWit
and φkit = ζkAit . (8)

Likelihood of the data:

L = e
∏n

i=1

(∑K
k=1 πk

∏T
t=1

Γ(φkit )

Γ(µkitφkit )Γ((1−µkit )φkit )
y
µkitφkit−1

it (1−yit)(1−µkit )φkit−1
)
. (9)
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Data

Data from 190 countries from ”Our World In Data”.

Main variable of interest: contamination rate. We create a panel with
monthly data from January 2020 till April 2021.

Covariates: new cases, population size (in million inhabitants), total cases
per million people, median age of the population, population density,
number of inhabitants over 65 (in million inhabitants), government
response stringency index, GDP per capita, extreme poverty index,
cardiovascular death rate, diabetes prevalence rate, index of handwashing
facilities, rate of hospital beds per thousand inhabitants, life expectancy,
index of human development and stringency index.

The nine metrics used to calculate the stringency index are: school
closures; workplace closures; cancellation of public events; restrictions on
public gatherings; closures of public transport; stay-at-home requirements;
public information campaigns; restrictions on internal movements; and
international travel controls.
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Individual trajectories
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Model selection

Kass and Wasserman’s crierion: Let pk be the probability that a model
with k groups is the correct model. They show that pk can be
approximated by

pk ≈
eBICk−BICmax∑
k e

BICk−BICmax
.
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Typical trajectories
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World Map with the five clusters

Jang SCHILTZ Multiple Trajectory Analysis January, 25 2023 33 / 61



Predictors of group membership
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Stringency index as time dependent covariate
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Basic Idea

We conjointly analysis the trajectories of J variables Y 1, ...,Y J .
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The model

We suppose the trajectories for a variable Y l can be linked to trajectories
for all other variables Y j , j 6= l . Then,

P(Y 1
i , . . . ,Y

J
i |Ai ,Wi ) =

∑
(k1,...,kJ)∈K1×···×KJ

πkJ |k1...kJ−1
× · · · × πk2|k1

× πk1

J∏
j=1

T∏
t=1

pkj (y jit |Ai ,Wi ,Θ
j
k),

where πkj |k1...kj−1
is the probability of belonging to group j conditional on

the membership to groups 1 to j − 1.
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Membership Probability

πk1 =
eθk1

xi

K1∑
k1=1

eθk1
xi

, πk2|k1
=

e
θ
k1
k2
w

k2
i

K2∑
k2=1

e
θ
k1
k2
w

k2
i

, . . . ,

πkJ |k1...kJ−1
=

e
θk1...kJ−1w

kJ
i

kJ
KJ∑

kJ=1

e
θ
k1...kJ−1w

kJ
i

kJ

.

One drawback of this method is the great expansion of the number of
parameters and the fact that the parameters are hardly interpretable.
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A new approach

Denote by Zi = (Zi1, . . . ,ZiJ) the vector containing the group membership
of individual i for the variables Y 1, . . . ,Y J . Zi ∈ [[1;K1]]× · · · × [[1;KJ ]].

Then,

P
(
Zij = k|zih for h 6= j ,X j

i

)
=

eBij,k∑Kj

h=1 e
Bij,h

,

where Bij ,k = αj ,k + βj ,kX
j
i +

∑
h 6=j

ψjh,kzih .

αj ,k is a choice specific intercept ;

βj ,k is a vector corresponding to the covariate X j
i ;

zih the group membership of the individual i for Y h ;

ψjh,kl is an association parameter between belonging to group k for
Y j and belonging to the group l for Y h.
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Number of parameters

The Hammersley-Clifford Theorem allows to write the conditional
probabilities as

P
(
Zij = k |zih for h 6= j ,X j

i

)
=

eBij,k∑Kj

h=1 e
Bij,h

where Bij ,k = αj ,k + βj ,kX
j
i +

∑
h<j

ψhj ,zihk +
∑
h>j

ψjh,kzih .

Proposition

The numbers of parameters is

J∑
j=1

(Kj − 1)× (ncol(X j
i ) + 1) +

∑
1≤j 6=j ′≤J

(Kj − 1)(Kj ′ − 1).
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A simulation example

We simulate trajectories for 200 individuals and 3 variables.

Y 1 (normal distribution) : β1,1 = (3.53,−2.25, 0.47),
β1,2 = (−1.62, 3.9,−0.65), β1,3 = (0.263, 0.036, 0.01),
σ1,1 = σ1,2 = σ1,3 = 1 ;

Y 2 (ZIP distribution) : β2,1 = (1.2, 2.3,−1.2, 0.5,−0.1), β2,2 = (2),
β2,3 = (−7.5, 0, 2.2,−.4), ν1 = (−2, 1), ν2 = (−1, 0.1), ν3 = (0,−1);

Y 3 (logit distribution) : β3,1 = (6.32,−5.8, 1), β3,2 = (−6.69, 1.92).

Furthermore, we choose all θj ,k = 0 and ψ = (−3, 3, 4, 0,−2, 5, 1, 0). We
launch trajeR for each variable separately and we use the results as as
initial values for the multi-trajectory model.
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Results
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Results
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A real data example: Montreal Longintudinal Study

Example from D. Nagin. Compares the link between hyperactivity and
opposition score. The hyperactivity is measured on a scale between 0 and
4 and the opposition behavior on a scale between 0 and 10.
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Results
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Results
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Identifiability

Definition:

A finite mixture model is identifiable if a given data set leads to a uniquely
determined set of model parameter estimations up to a permutation of the
clusters.

Identifiability of the parameters is a necessary condition for the existence
of consistent estimators for any statistical model.

Without identifiability, there might be several solutions for the parameter
estimation problem.
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Notations

Distribution f of a finite mixture model:

f (yi ; Ω) =
K∑

k=1

πkgk(yi ; θ
k).

Cumulative distribution function F of a finite mixture model:

F (yi ; Ω) =
K∑

k=1

πkGk(yi ; θ
k).
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Mixtures and mixing distributions

Let F =
{
F (y ;ω), y ∈ RT , ω ∈ Rs+2

K

}
be a family of T-dimensional

cdf’s indexed by a parameter set ω, such that F (y ;ω) is measurable in
RT × Rs+2

K .

The the s + 2-dimensional cdf H(x) =
∫
Rs+2
K

F (y ;ω)dG (ω) is the image of

the above mapping, of the s + 2-dimensional cdf G .

The distribution H is called the mixture of F and G its mixing distribution.

Let G denote the class of all s + 2-dimensional cdf’s G and H the induced
class of mixtures H.

Then H is identifiable if Q is a one-to-one map from G onto H.
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Characterization of identifiability

The set H of all finite mixtures of class F of distributions is the convex
hull of F .

H =

{
H(y) : H(y) =

∑
i

ciF (y , ωi ), ci > 0,
∑
i

ci = 1, F (y , ωi ) ∈ F

}
.

(10)

Theorem

A necessary and sufficient condition for the class H of all finite mixtures of
the family F to be identifiable is that F is a linearly independent family
over the field of real numbers.
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The Model

Yit = f (ait ;β
k , δk) + εkit = βkAit + δkWit + εkit . (11)

We can write
L ((Yi )i∈I ) =

⊗
i∈I

FAi ,Wi ,J . (12)

Identifiability of a model means that knowing the data distribution
L(Yi ), i ∈ I , one can uniquely identify the mixing distribution J.

That is, no two distinct sets of parameters lead to the same data
distribution.
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Nagin’s base model

C1 =

(
FA,J : FA,J =

⊗
i∈I

FAi ,J

)
J∈Ω1

Theorem

Let hj = min
{
q : {Aij , i ∈ I} ⊆ ∪qi=1Hi Hi ∈ Hn−1

}
.

If there exist j such that |S(J)| < hj , ∀J then C1 is identifiable.
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Adding covariates independent of cluster membership

C2 =

(
FA,J : FA,J =

⊗
i∈I

FAi ,Wi ,J

)
J∈Ω1

, (13)

C2A =

(
FA,J : FA,J =

⊗
i∈I

FAi ,J

)
J∈Ω1

, (14)

C2W =

(
FA,J : FA,J =

⊗
i∈I

FWi ,J

)
J∈Ω1

. (15)

Theorem

If C2A and C2W are identifiable and Wij is not a multiple of Aij , for all i , j ,
then C2 is identifiable.
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Numerical Example

Two clusters with sizes π1 = π2 = 1
2 .

Two time-points 1 and 2.

Same variability in both clusters σ = 0.1

We simulate 50 samples of 100 trajectories with parameters

β1 = (3,−2) and β2 = (0, 2) (linear model)

β1 = (10,−12.5, 3.5) and β2 = (−2, 5,−1) (polynomial model).
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Parallel coordinate plots of the estimated parameter
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The generalized model

Theorem

The model is identifiable if

dk < T for all 1 ≤ k ≤ K and all ait are distinct, for all it .

Wk has full rank for all 1 ≤ k ≤ K .

rk(Ak ,Wk) = rk(Ak) + rk(Wk), for all 1 ≤ k ≤ K .
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Numerical Example

Two clusters with sizes π1 = π2 = 1
2 .

Two time-points 1 and 2.

Same variability in both clusters σ = 0.1

Shape description parameters β1 = (3,−2), β2 = (0, 2), δ1 = 2 and
δ2 = −3.

We simulate 50 samples of 100 trajectories for 3 types of models:

The covariate is independent of time and only takes values 0 or 1

The covariate is time dependent but in a nonlinear way

The covariate is time dependent in a linear way
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Parallel coordinate plots of the estimated parameter
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