New results in finite mixture modeling

Jang SCHILTZ (University of Luxembourg)

joint work with

Cédric NOEL(University of Lorraine & University of Luxembourg)

Luxembourg-Waseda Conference January, 25 2023

Finite Mixture Models

æ

<ロト < 同ト < ヨト < ヨト

Finite Mixture Models

2 The R package trajeR

▶ ∢ ⊒ ▶

э

1 Finite Mixture Models

- 2 The R package trajeR
- Finite mixture models for an underlying Beta distribution

э

- 2 The R package trajeR
- 3 Finite mixture models for an underlying Beta distribution
- Multiple Trajectory Analysis

- 2 The R package trajeR
- Finite mixture models for an underlying Beta distribution
- 4 Multiple Trajectory Analysis
- 5 Identifiability of Finite Mixture Models

- 2 The R package trajeR
- 3 Finite mixture models for an underlying Beta distribution
- 4 Multiple Trajectory Analysis
- 5 Identifiability of Finite Mixture Models

General description of Finite Mixture models

We have a collection of individual trajectories.

We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population. (Nagin 2005)

This model can be interpreted as functional fuzzy logic cluster analysis.

The basic model (Nagin 2005)

Consider a population of size N and a variable of interest Y.

Let $Y_i = y_{i_1}, y_{i_2}, ..., y_{i_T}$ be T measures of the variable, taken at times $t_1, ..., t_T$ for subject number i and π_k the probability of a given subject to belong to group number k

For a given group G_k , we suppose conditional independence for the sequential realizations of the elements y_{i_t} over the T periods of measurements.

The density f of Y is given by

$$f(y_i;\psi) = \sum_{k=1}^{K} \pi_k g^k(y_i;\Theta_k), \qquad (1)$$

where $g^k(\cdot)$ denotes the distribution of y_{it} conditional on membership in group k and the role of the parameters Θ_k is to describe the shape of the trajectories in group k.

イロト 不得 トイヨト イヨト 二日

Possible data distributions

- Poisson distribution
- Binary logit distribution
- (Censored) normal distribution
- Beta distribution (Noel & S. 2023)

Likelihood function for a normal distribution

Notations:

•
$$\beta^j t = \beta_0^j + \beta_1^j t + \beta_2^j t^2 + \beta_3^j t^3 + \beta_4^j t^4.$$

• ϕ : density of standard centered normal law.

Then,

$$L = \frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_j \prod_{t=1}^{T} \phi\left(\frac{y_{i_t} - \beta^j t}{\sigma}\right).$$
(2)

It is too complicated to get closed-forms equations.

SAS procedure proc Traj (Nagin & Jones 2008).

Predictors of trajectory group membership

X: vector of variables potentially associated with group membership.

$$\pi_k(x_i) = \frac{e^{x_i \theta_k}}{\sum\limits_{k=1}^{K} e^{x_i \theta_k}},$$
(3)

where θ_k denotes the effect of x_i on the probability of group membership for group k.

$$L = \prod_{i=1}^{N} \sum_{k=1}^{K} \frac{e^{x_{i}\theta_{k}}}{\sum_{k=1}^{K} e^{x_{i}\theta_{k}}} \prod_{t=1}^{T} g^{k}(y_{it}).$$
(4)

Adding covariates to the trajectories

Let W be a vector of covariates potentially influencing Y. The likelihood then becomes

$$L = \prod_{i=1}^{N} \sum_{k=1}^{K} \frac{e^{x_i \theta_k}}{\sum_{k=1}^{K} e^{x_i \theta_k}} \prod_{t=1}^{T} p^k(y_{it}|A_i, W_i, \Theta_k).$$

Salary groups: Men versus women (S. 2016)

Jang SCHILTZ

Multiple Trajectory Analysis

January, 25 2023 10

10/61

Generalized finite mixture model (S. 2015)

Let $x_1...x_M$ and z_t be covariates potentially influencing Y. We propose the following model:

$$\begin{split} y_{i_t} &= \left(\beta_0^j + \sum_{l=1}^M \alpha_{0l}^j x_{i_l} + \gamma_0^j w_{i_t}\right) + \left(\beta_1^j + \sum_{l=1}^M \alpha_{1l}^j x_{i_l} + \gamma_1^j w_{i_t}\right) t \\ &+ \left(\beta_2^j + \sum_{l=1}^M \alpha_{2l}^j x_{i_l} + \gamma_2^j w_{i_t}\right) t^2 + \left(\beta_3^j + \sum_{l=1}^M \alpha_{3l}^j x_{i_l} + \gamma_3^j w_{i_t}\right) t^3 \\ &+ \left(\beta_4^j + \sum_{l=1}^M \alpha_{4l}^j x_{i_l} + \gamma_4^j w_{i_t}\right) t^4 + \varepsilon_{i_t}^j, \end{split}$$

where $\varepsilon_{i_t} \sim \mathcal{N}(0, \sigma^j)$, σ^j being the standard deviation, constant in group j.

Statistical Properties (S. 2015)

The model's estimated parameters are the result of maximum likelihood estimation. As such, they are consistent and asymptotically normally distributed.

Confidence intervals of level α for the parameters β_k^j :

$$CI_{\alpha}(\beta_{k}^{j}) = \left[\hat{\beta}_{k}^{j} - t_{1-\alpha/2;N-(2+M)s}ASE(\hat{\beta}_{k}^{j}); \hat{\beta}_{k}^{j} + t_{1-\alpha/2;N-(2+M)s}ASE(\hat{\beta}_{k}^{j})\right]$$
(5)

Confidence intervals of level α for the disturbance factor σ_j :

$$Cl_{\alpha}(\sigma_{j}) = \left[\sqrt{\frac{(N - (2 + M)s - 1)\hat{\sigma}_{j}^{2}}{\chi^{2}_{1 - \alpha/2; N - (2 + M)s - 1}}}; \sqrt{\frac{(N - (2 + M)s - 1)\hat{\sigma}_{j}^{2}}{\chi^{2}_{\alpha/2; N - (2 + M)s - 1}}}\right].$$
 (6)

1 Finite Mixture Models

2 The R package trajeR

3 Finite mixture models for an underlying Beta distribution

4 Multiple Trajectory Analysis

5 Identifiability of Finite Mixture Models

trajeR (Noel & S. 2022): Function signature

R> trajeR(Y, A, Risk = NULL, TCOV = NULL, degre, degre.phi = 0, + Model, Method = "L", + ssigma = FALSE, ymax = max(Y) + 1, ymin = min(Y) - 1, + hessian = TRUE, itermax = 100, paraminit = NULL, + ProbIRLS = TRUE, refgr = 1, + fct = NULL, diffct = NULL, nbvar = NULL, nls.lmiter = 50)

(日)

Numerical output of result

##	Model : 1	Beta				
##	Method :	Likelihood				
##						
##	group	Parameter	Estimate	Std. Error	T for HO:	Prob> T
##					param.=0	
##						
##	mean					
##	1	Intercept	-5.95316	0.1281	-46.4734	0
##		Linear	3.66558	0.07649	47.92297	0
##		Quadratic	-0.49316	0.01027	-48.04232	0
##	zeta					
##	1	Intercept	2.26533	0.0993	22.81197	0
##		Linear	-0.00558	0.02466	-0.22636	0.82094
##						
##	mean					
##	2	Intercept	3.73504	0.04525	82.53444	0
##		Linear	-0.98061	0.01144	-85.70519	0
##	zeta					
##	2	Intercept	2.35458	0.07128	33.03302	0
##		Linear	-0.00144	0.01771	-0.08113	0.93534
##						
##	1	pi1	0.344	0.02069	0	0
##	2	pi2	0.656	0.02069	31.19708	0
##						
##	Likeliho	od : 2516.73	7			

< 一 →

э

trajeR - Censored Normal Model plot(solL, Y = data[,2:11], A = data[,12:21], col = vcol)

Values and predicted trajectories for all groups

trajeR - Zero Inflated Poisson

tory. Model : Z Method :	ero Inflate Likelihood	d Poisson	2,2 degrees	or polynomial	. snape or	trajec
group	Parameter	Estimate	Std. Error	T for H0: param.=0	Prob> T	
	Intercept	1.04873	0.09415	11.13945		
	Linear	0.61506	0.06423	9.57663		
	Quadratic	-0.07773	0.00998	-7.79183		
	Nu11	0.03161	0.16749	0.18871	0.85034	
	Nu12	-0.16776	0.05183	-3.23661	0.00123	
	Intercept	0.90787	0.09589	9.4679		
	Linear	0.01869	0.07032	0.2658	0.79042	
	Quadratic	0.00619	0.01131	0.54724	0.58426	
	Nu21	-1.08139	0.16018	-6.75111		
	Nu22	0.00452	0.04689	0.09632	0.92327	
	pi1	0.34869	0.04936	13.93138		
	pi2	0.65131	0.04936	26.59044		
Likelihoo	d : -5162.0	09				

Values and predicted trajectories for all groups

<ロト < 同ト < ヨト < ヨト

Value

э

trajeR - Logit

Call Traj ectory. Model : L Method :	eR with 3 g ogit Likelihood	roups and a	0,3,4 degrees	of polynom	ial shape of	tra
group	Parameter	Estimate	Std. Error	T for HO: param.=0	Prob> T	
1	Intercept	-1.94482	0.10059	-19.33387		
2	Intercept	-1.77021	0.03535	-50.07501		
	Linear	-0.44043	NaN	NaN	NaN	
	Quadratic	0.18687	NaN	NaN	NaN	
	Cubic	-0.01232	NaN	NaN	NaN	
	Intercept	1.74626	NaN	NaN	NaN	
	Linear	0.6443	0.07247	8.89028		
	Quadratic	-0.5554	0.02475	-22.44466		
	Cubic	0.08204	0.00195	42.07317		
	Quadratic	-0.00336	NaN	NaN	NaN	
			0 40075		0.04574	
	p11	0.41816	0.10875	2.41645	0.015/1	
	p12	0.21915	0.11423	1 02200	0 05210	
Jikelihoo	pt5 d : -2852.7	49	0.0625	1.95588	0.05518	

Values and predicted trajectories for all groups

3

trajeR - Non Linear

We suppose that the variable Y_{it} is defined by

$$y_{it} = f(a_{it}; \beta_k) + \epsilon_{it} \tag{7}$$

where $\epsilon_{it} \sim \mathcal{N}(0; \sigma_k)$.

э

trajeR - Non Linear

Example with

$$f(t;\beta_k) = \frac{\beta_{k1}t}{\beta_{k2}+t}$$

Plot of the individual's trajectories

By analysing the graph above, we fit initial parmaters as paraminit=c(0.25,0.25,0.25,0.25,2,0.1,2.4,0.1,2.8,0.1,3,0.1,0.2,0.2,0.2,0.2) $\label{eq:constraint} \begin{array}{l} fct < -\mbox{ function}(t,\mbox{ betak},\mbox{ TCOV}) \{\mbox{ return}(\mbox{ (betak}[1]^{*}t)/(\mbox{ betak},[2]+t)\) \\ diffct < -\mbox{ function}(t,\mbox{ betak},\mbox{ TCOV}) \{\mbox{ return}(\mbox{ c}(\mbox{ t}/(\mbox{ betak},[2]+t),\mbox{ -(betak}[1]^{*}t)/(\mbox{ betak},[2]+t)^{**}2\)) \end{array}$

solEM = trajeR(Y = data[,2:12], A = data[,13:23], ng = 4, nbvar = 2, Method = "EM", Model = "NL", hessian = TRUE, fct = fct, diffct = diffct, paraminit = paraminit)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

trajeR - Non Linear

Call Traj ajectory. Model : N Method :	eR with 4 g Ion Linear Expectation	roups and a -maximizatio	1,1,1,1 degre	ees of polyni	omial shape of	
group	Parameter	Estimate	Std. Error	T for H0: param.=0	Prob> T	
1	Intercept	3.30542	0.18506	17.86117		
	Linear	4.71859	0.60508	7.79825	θ	
2	Intercept	3.17397	0.06338	50.07605		
	Linear	1.29635	0.12496	10.37439		
3	Intercept	3.07645	0.06425	47.88329		
	Linear	0.60537	0.11135	5.43645		
4	Intercept	3.34255	0.02515	132.91026		
	Linear	0.04503	0.0236	1.90772	0.05648	
1	sigma1	0.63465	NaN	NaN	NaN	
	sigma2	0.56821	0.0036	157.93961		
	sigma3	0.60047	0.02216	27.0945		
4	sigma4	0.71747	0.01667	43.0461		
1	pi1	0.15427	0.01646	9.3702		
2	pi2	0.23712	0.02962	8.00592		
	pi3	0.25955	NaN	NaN	NaN	
4	pi4	0.34906	NaN	NaN	NaN	
Likelihoo	d : -4891.5	36				

Values and predicted trajectories for all groups

<ロト < 同ト < ヨト < ヨト

э

trajeR - Some functions

- Membership's probability GroupProb(...)
- Profiles of group GroupProfiles(...)

	Gr 1	Gr 2	Gr 3	Gr 4
Х1	1.8467	3.2709	6.0562	6.5621
Х2	7.7916	-0.9212	-4.9915	5.3515
Х3	56.1620	74.0841	41.0704	32.8957
X4	0.3636	0.2895	0.4972	0.3333
X5	0.2545	0.3289	0.4525	0.3421

э

trajeR - Model performance

- Average Posterior Probability AvePP(...)
- Odds of Correct Classification OCC(...)
- Estimated group probabilities versus proportion of the sample assigned to the group propAssign(...)
- Confidence interval ConfIntT(...)
- Summary adequacy(...)

	1	2	3	4
Prob. est.	0.10227620	0.3118053	0.2247159	0.3612026
CI inf.	0.08165381	0.2720132	0.1916078	0.3161885
CI sup.	0.12689314	0.3542225	0.2625223	0.4086869
Ргор.	0.09800000	0.3180000	0.2220000	0.3620000
AvePP	0.89837432	0.9395957	0.9843333	0.9973927
occ	77.59454723	34.3317995	216.7625509	676.5346954

trajeR - Model selection

- AIC trajeRAIC(...)
- BIC trajeRBIC(...)
- Slope Heuristics trajeRSH(...)

э

1 Finite Mixture Models

2 The R package trajeR

Finite mixture models for an underlying Beta distribution

4 Multiple Trajectory Analysis

5 Identifiability of Finite Mixture Models

The Beta distribution

Figure 1 – Example of different shapes of the Beta density for some parameters.

э

<ロト < 同ト < ヨト < ヨト

Underlying Beta distribution

Density of y_{it} conditional to membership in group C_k :

$$g_k(y_{it};\mu_{kit},\phi_{kit})=\frac{\Gamma(\phi_{kit})}{\Gamma(\mu_{kit}\phi_{kit})\Gamma((1-\mu_{kit})\phi_{kit})}y_{it}^{\mu_{kit}\phi_{kit}-1}(1-y_{it})^{(1-\mu_{kit})\phi_{kit}-1},$$

with

$$\mu_{kit} = \frac{e^{\beta_k A_{it} + \delta_k W_{it}}}{1 + e^{\beta_k A_{it} + \delta_k W_{it}}} \text{ and } \phi_{kit} = \zeta_k A_{it}.$$
(8)

Likelihood of the data:

$$L = e^{\prod_{i=1}^{n} \left(\sum_{k=1}^{K} \pi_{k} \prod_{t=1}^{T} \frac{\Gamma(\phi_{kit})}{\Gamma(\mu_{kit}\phi_{kit})\Gamma((1-\mu_{kit})\phi_{kit})} y_{it}^{\mu_{kit}\phi_{kit}-1} (1-y_{it})^{(1-\mu_{kit})\phi_{kit}-1} \right)}.$$
 (9)

э

Data

Data from 190 countries from "Our World In Data".

Main variable of interest: **contamination rate**. We create a panel with monthly data from January 2020 till April 2021.

Covariates: new cases, population size (in million inhabitants), total cases per million people, median age of the population, population density, number of inhabitants over 65 (in million inhabitants), government response stringency index, GDP per capita, extreme poverty index, cardiovascular death rate, diabetes prevalence rate, index of handwashing facilities, rate of hospital beds per thousand inhabitants, life expectancy, index of human development and stringency index.

The nine metrics used to calculate the **stringency index** are: school closures; workplace closures; cancellation of public events; restrictions on public gatherings; closures of public transport; stay-at-home requirements; public information campaigns; restrictions on internal movements; and international travel controls.

Individual trajectories

Figure 2 – Contamination rates for all countries.

January, 25 2023 30 / 61

э

<ロト < 同ト < ヨト < ヨト

Model selection

Kass and Wasserman's crierion: Let p_k be the probability that a model with k groups is the correct model. They show that p_k can be approximated by

$$p_k pprox rac{e^{BIC_k - BIC_{max}}}{\sum_k e^{BIC_k - BIC_{max}}}.$$

Number of groups	AIC	BIC	Prob
2	29851.99	14902.64	0.00000
3	30341.00	15142.28	0.00000
3	29945.96	14936.64	0.00000
3	30777.14	15352.23	0.00000
4	30839.69	15370.52	0.00000
4	31192.78	15547.06	0.00001
5	31241.46	15558.41	0.99999

Table 1 – Model selection criteria

Typical trajectories

э

<ロト < 同ト < ヨト < ヨト

World Map with the five clusters

Map of the different groups

Figure 5 - World map with the geographic distribution of the five groups

<

Predictors of group membership

		Group 1			Group 2			
	Estimate	Std. Error	Prob> T	Estimate	Std. Error	Prob> T		
intercept	-16.812	4.681	0	-4.805	3.422	0.16		
median age	0.193	0.086	0.024	0.172	0.101	0.088		
population density	-0.003	0.002	0.093	0.000	0.001	0.869		
aged 65 older	-0.021	0.132	0.871	-0.060	0.126	0.631		
life expectancy	0.073	0.080	0.364	-0.073	0.071	0.304		
mean of stringency	0.112	0.023	0	0.092	0.023	0		
	Group 3			Group 5				
		Group 3			Group 5			
	Estimate	Group 3 Std. Error	Prob> T	Estimate	Group 5 Std. Error	Prob> T		
intercept	Estimate -67.733	Group 3 Std. Error 19.400	Prob> T 0	Estimate -73.689	Group 5 Std. Error 23.469	Prob> T 0.002		
intercept median age	Estimate -67.733 0.129	Group 3 Std. Error 19.400 0.158	Prob> T 0 0.412	Estimate -73.689 0.418	Group 5 Std. Error 23.469 0.205	Prob> T 0.002 0.041		
intercept median age population density	Estimate -67.733 0.129 0.000	Group 3 Std. Error 19.400 0.158 0.001	Prob> T 0 0.412 0.784	Estimate -73.689 0.418 0.000	Group 5 Std. Error 23.469 0.205 0.001	Prob> T 0.002 0.041 0.926		
intercept median age population density aged 65 older	Estimate -67.733 0.129 0.000 0.109	Group 3 Std. Error 19.400 0.158 0.001 0.178	Prob> T 0 0.412 0.784 0.542	Estimate -73.689 0.418 0.000 -0.640	Group 5 Std. Error 23.469 0.205 0.001 0.206	Prob> T 0.002 0.041 0.926 0.002		
intercept median age population density aged 65 older life expectancy	Estimate -67.733 0.129 0.000 0.109 0.646	Group 3 Std. Error 19.400 0.158 0.001 0.178 0.223	Prob> T 0 0.412 0.784 0.542 0.004	Estimate -73.689 0.418 0.000 -0.640 0.646	Group 5 Std. Error 23.469 0.205 0.001 0.206 0.283	Prob> T 0.002 0.041 0.926 0.002 0.023		

Table 4 – Predictors of group membership.

э

<ロト < 同ト < ヨト < ヨト

Stringency index as time dependent covariate

Param.	sd	Test	Param.	sd	Test	Param.	sd	Test	Param.	sd	Test
Beta 1			Phi 1			Delta 1			Prob. 1		
-5.843	0.026	0.000	14.337	0.317	0.000	0.001	0.000	0.001	0.328	0.039	0.00
-0.120	0.024	0.000	-1.164	0.076	0.000				Prob. 2		
0.029	0.004	0.000	0.040	0.004	0.000	Delta 2			0.175	0.030	0.00
-0.001	0.000	0.000	Phi 2			0.000	0.000	0.955	Duch 9		
			19.866	0.570	0.000				0.156	0.020	0.00
Beta 2			-1.710	0.125	0.000	Delta 3			0.150	0.030	0.00
-5.927	0.003	0.000	0.061	0.006	0.000	0.010	0.001	0.000	Prob. 4		
-0.014	0.004	0.000	Dbi 2			D. H 4			0.301	0.035	0.00
0.005	0.001	0.000	0.624	0.260	0.000	Delta 4	0.000	0.000	Prob. 5		
0.000	0.000	0.001	0.524	0.007	0.000	0.000	0.000	0.000	0.040	0.016	0.01
			0.016	0.005	0.000	Dolta 5					
Beta 3		0.000	0.010	0.000	0.000	0.004	0.001	0.004			
-5.602	0.117	0.000	Phi 4	0.000		0.004	0.001	0.004			
-0.421	0.070	0.000	12.887	0.372	0.000						
0.076	0.009	0.000	0.148	0.085	0.082						
-0.003	0.000	0.000	-0.015	0.004	0.000						
Pote 4			Phi 5								
5 079	0.019	0.000	7.384	0.137	0.000						
-3.972	0.012	0.000				-					
0.012	0.000	0.010									
0.000	0.001	0.097									
0.000	0.000	0.021									
Beta 5											
-7.304	0.366	0.000									
0.701	0.147	0.000									
-0.078	0.017	0.000									
0.003	0.001	0.000									

Table 5 - parameters of the final model with time dependent covariates.

э

- 2 The R package trajeR
- 3 Finite mixture models for an underlying Beta distribution
- 4 Multiple Trajectory Analysis
- 5 Identifiability of Finite Mixture Models

We conjointly analysis the trajectories of J variables $Y^1, ..., Y^J$.

Image: A matrix and a matrix

э

The model

We suppose the trajectories for a variable Y^{I} can be linked to trajectories for all other variables $Y^{j}, j \neq I$. Then,

$$P(Y_i^1, \dots, Y_i^J | A_i, W_i) = \sum_{(k_1, \dots, k_J) \in \mathcal{K}_1 \times \dots \times \mathcal{K}_J} \pi_{k_J | k_1 \dots k_{J-1}} \times \dots \times \pi_{k_2 | k_1} \times \pi_{k_1}$$
$$\prod_{j=1}^J \prod_{t=1}^T p^{k_j} (y_{it}^j | A_i, W_i, \Theta_k^j),$$

where $\pi_{k_j|k_1...k_{j-1}}$ is the probability of belonging to group j conditional on the membership to groups 1 to j - 1.

Membership Probability

One drawback of this method is the great expansion of the number of parameters and the fact that the parameters are hardly interpretable.

A new approach

Denote by $Z_i = (Z_{i1}, \ldots, Z_{iJ})$ the vector containing the group membership of individual *i* for the variables Y^1, \ldots, Y^J . $Z_i \in \llbracket 1; K_1 \rrbracket \times \cdots \times \llbracket 1; K_J \rrbracket$.

Then,

$$P\left(Z_{ij}=k|z_{ih} \text{ for } h \neq j, X_i^j\right)=rac{e^{B_{ij,k}}}{\sum_{h=1}^{K_j}e^{B_{ij,h}}},$$

where $B_{ij,k} = \alpha_{j,k} + \beta_{j,k} X_i^j + \sum_{h \neq j} \psi_{jh,kz_{ih}}$.

• $\alpha_{j,k}$ is a choice specific intercept ;

- $\beta_{j,k}$ is a vector corresponding to the covariate X_i^j ;
- z_{ih} the group membership of the individual *i* for Y^h ;
- \$\psi_{jh,kl}\$ is an association parameter between belonging to group k for Y^j and belonging to the group l for Y^h.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Number of parameters

The Hammersley-Clifford Theorem allows to write the conditional probabilities as

$$P\left(Z_{ij} = k | z_{ih} \text{ for } h \neq j, X_i^j\right) = \frac{e^{B_{ij,k}}}{\sum_{h=1}^{K_j} e^{B_{ij,h}}}$$

where
$$B_{ij,k} = \alpha_{j,k} + \beta_{j,k} X_i^j + \sum_{h < j} \psi_{hj,z_{ih}k} + \sum_{h > j} \psi_{jh,kz_{ih}}.$$

Proposition

The numbers of parameters is

$$\sum_{j=1}^{J} (K_j - 1) imes (\mathit{ncol}(X_i^j) + 1) + \sum_{1 \le j
eq j' \le J} (K_j - 1)(K_{j'} - 1).$$

A simulation example

We simulate trajectories for 200 individuals and 3 variables.

•
$$Y^1$$
 (normal distribution) : $\beta_{1,1} = (3.53, -2.25, 0.47)$,
 $\beta_{1,2} = (-1.62, 3.9, -0.65)$, $\beta_{1,3} = (0.263, 0.036, 0.01)$,
 $\sigma_{1,1} = \sigma_{1,2} = \sigma_{1,3} = 1$;

•
$$Y^2$$
 (ZIP distribution) : $\beta_{2,1} = (1.2, 2.3, -1.2, 0.5, -0.1), \beta_{2,2} = (2), \beta_{2,3} = (-7.5, 0, 2.2, -.4), \nu_1 = (-2, 1), \nu_2 = (-1, 0.1), \nu_3 = (0, -1);$

•
$$Y^3$$
 (logit distribution) : $\beta_{3,1} = (6.32, -5.8, 1), \beta_{3,2} = (-6.69, 1.92).$

Furthermore, we choose all $\theta_{j,k} = 0$ and $\psi = (-3, 3, 4, 0, -2, 5, 1, 0)$. We launch trajeR for each variable separately and we use the results as as initial values for the multi-trajectory model.

Results

		Varia	able 1	1				1	Variable	2	
	Th.	EN	4	I			Th.		EM	L	
β_{11}	3.53	3.37	162	3.37	7154	β_{11}	1.2	-3	.92980	-3.92	950
β_{12}	-2.25	-2.13	530	-2.13	3523	β_{12}	2.3	-4	.11672	-4.11	653
β_{13}	0.47	0.45	090	0.45	6089	β_{13}	-1.2	3	.88076	3.88	051
β_{21}	-1.620	-1.71	513	-1.71	513	β_{14}	0.5	-0	.68312	-0.68	305
β_{22}	3.900	3.96	422	3.96	6422	β_{15}	-0.1	0	.01616	0.01	615
β_{23}	-0.650	-0.66	183	-0.66	6183	β_{21}	2	2	.01483	2.01	483
β_{31}	0.263	0.04	619	0.04	1624	β_{31}	-7.5	-0	.39232	-0.39	204
β_{32}	0.036	0.15	730	0.15	5725	β_{32}	0	4	.55945	4.55	895
β_{33}	0.010	-0.00	882	-0.00	0881	β_{33}	2.2	-1	.69650	-1.69	623
σ	1	2.69	943	2.69	943	β_{34}	-0.4	0	.17702	0.17	698
θ_1	0	0.00	000	0.00	0000	ν_{11}	-2	-0	.98558	-0.98	296
θ_2	0	2.00	645	2.00	672	ν_{12}	1	-	0.7915	-0.79	232
θ_3	0	-5.40	659	-5.43	3048	ν_{21}	-1	-1	.08749	-1.08	734
						ν_{22}	0.1	0	.13039	0.13	035
						ν_{31}	0	-3	.38530	-3.38	515
						ν_{32}	-1	1	.53658	1.53	652
						θ_1	0	0	.00000	0.00	000
						θ_2	0	-0	.07507	-0.07	461
						θ_3	0	0	.14593	0.14	628
					Var	iable	3				
				Th.	E	M	L				
		β_1	11	6.32	6.28	3035	6.280	24			
		β_1	12	-5.8	-5.73	3551	-5.735	45			
		β_1	13	1	0.98	8963	0.989	62			
		β	21 -	6.69	-7.46	613	-7.466	09			
		B	0.0	1.92	2.00	020	2 000	30			

Parameters	$\psi_{12,22}$	$\psi_{12,23}$	$\psi_{12,32}$	$\psi_{12,33}$	$\psi_{13,22}$	$\psi_{13,32}$	$\psi_{23,22}$	$\psi_{23,32}$
Theoretical	-3	3	4	0	-2	5	1	0
EM	-5.47292	4.33422	-4.57086	-4.46658	-2.12297	3.23218	1.18008	-7.96007
Likelihood	-5.46968	4.35722	-4.57081	-3.3298	-2.12013	3.23351	1.17703	-10.00915

0 -2.09538

0.00000

-2.09295

0 0.00000

 θ_1

 θ_2

Jang SCHILTZ

≣⊳ January, 25 2023 43/61

э

Results

Jang SCHILTZ

Multiple Trajectory Analysis

æ

A real data example: Montreal Longintudinal Study

Example from D. Nagin. Compares the link between hyperactivity and opposition score. The hyperactivity is measured on a scale between 0 and 4 and the opposition behavior on a scale between 0 and 10.

Results

	Vari	able 1		Vari	able 2
	TrajeR	traj (SAS)		TrajeR	traj (SAS)
β_{11}	-2.55343	-2.55348	β_{11}	-1.67252	-1.67258
β_{21}	0.48071	0.48074	β_{12}	-1.48300	-1.48308
β_{22}	-6.24514	-6.24425	β_{21}	2.15443	2.15440
β_{23}	-3.53665	-3.53676	β_{22}	-6.79570	-6.79186
β_{24}	14.90876	14.90347	β_{23}	-4.29020	-4.29356
β_{31}	2.66416	2.66411	β_{24}	20.58775	20.56512
β_{32}	-1.98842	-1.98840	β_{31}	4.96622	4.96615
β_{33}	-4.14192	-4.14164	β_{32}	-2.12531	-2.12503
σ	2.31949	2.3195	β_{33}	-9.72094	-9.71914
-		· · · · · · · · ·	β_{41}	6.59242	6.59246
			σ	2.54359	2.5436

With trajeR we find the following 6 linking parameters.

Parameters	$\psi_{12,22}$	$\psi_{12,23}$	$\psi_{12,24}$	$\psi_{12,32}$	$\psi_{12,33}$	$\psi_{12,34}$
Theoretical	19.97949	10.51569	8.94481	28.44746	31.69029	40.0845
Jang SCHILTZ		Multiple Trajectory Analysis			January, 25 2023 46 / 61	

Results

Jang SCHILTZ

Multiple Trajectory Analysis

- 2 The R package trajeR
- 3 Finite mixture models for an underlying Beta distribution
- 4 Multiple Trajectory Analysis
- 5 Identifiability of Finite Mixture Models

Identifiability

Definition:

A finite mixture model is identifiable if a given data set leads to a uniquely determined set of model parameter estimations up to a permutation of the clusters.

Identifiability of the parameters is a necessary condition for the existence of consistent estimators for any statistical model.

Without identifiability, there might be several solutions for the parameter estimation problem.

Notations

Distribution f of a finite mixture model:

$$f(y_i; \Omega) = \sum_{k=1}^{K} \pi_k g_k(y_i; \theta^k).$$

Cumulative distribution function F of a finite mixture model:

$$F(y_i; \Omega) = \sum_{k=1}^{K} \pi_k G_k(y_i; \theta^k).$$

3 N A 3 N

Image: A matrix and a matrix

э

Mixtures and mixing distributions

Let $\mathcal{F} = \{F(y; \omega), y \in \mathbb{R}^T, \omega \in \mathbb{R}^{s+2}_{\mathcal{K}}\}$ be a family of T-dimensional cdf's indexed by a parameter set ω , such that $F(y; \omega)$ is measurable in $\mathbb{R}^T \times \mathbb{R}^{s+2}_{\mathcal{K}}$.

The the s + 2-dimensional cdf $H(x) = \int_{\mathbb{R}^{s+2}_{K}} F(y; \omega) dG(\omega)$ is the image of the above mapping, of the s + 2-dimensional cdf G.

The distribution H is called the mixture of \mathcal{F} and G its mixing distribution.

Let G denote the class of all s + 2-dimensional cdf's G and H the induced class of mixtures H.

Then \mathcal{H} is identifiable if Q is a one-to-one map from \mathcal{G} onto \mathcal{H} .

Characterization of identifiability

The set \mathcal{H} of all finite mixtures of class \mathcal{F} of distributions is the convex hull of \mathcal{F} .

$$\mathcal{H} = \left\{ H(y) : H(y) = \sum_{i} c_{i} F(y, \omega_{i}), \ c_{i} > 0, \sum_{i} c_{i} = 1, \ F(y, \omega_{i}) \in \mathcal{F} \right\}.$$
(10)

Theorem

A necessary and sufficient condition for the class \mathcal{H} of all finite mixtures of the family \mathcal{F} to be identifiable is that \mathcal{F} is a linearly independent family over the field of real numbers.

The Model

$$Y_{it} = f(a_{it}; \beta^k, \delta^k) + \varepsilon_{it}^k = \beta^k A_{it} + \delta^k W_{it} + \varepsilon_{it}^k.$$
(11)

We can write

$$\mathcal{L}((Y_i)_{i\in I}) = \bigotimes_{i\in I} F_{A_i, W_i, J}.$$
(12)

Identifiability of a model means that knowing the data distribution $\mathcal{L}(Y_i), i \in I$, one can uniquely identify the mixing distribution J.

That is, no two distinct sets of parameters lead to the same data distribution.

Nagin's base model

$$C_1 = \left(F_{A,J} : F_{A,J} = \bigotimes_{i \in I} F_{A_i,J}\right)_{J \in \Omega_1}$$

Theorem

Let
$$h_j = \min \{ q : \{A_{ij}, i \in I\} \subseteq \cup_{i=1}^q H_i \ H_i \in \mathcal{H}_{n-1} \}.$$

If there exist j such that $|S(J)| < h_j, \ \forall J$ then \mathcal{C}_1 is identifiable.

æ

Adding covariates independent of cluster membership

$$C_{2} = \left(F_{A,J} : F_{A,J} = \bigotimes_{i \in I} F_{A_{i},W_{i},J}\right)_{J \in \Omega_{1}}, \quad (13)$$

$$C_{2A} = \left(F_{A,J} : F_{A,J} = \bigotimes_{i \in I} F_{A_{i},J}\right)_{J \in \Omega_{1}}, \quad (14)$$

$$C_{2W} = \left(F_{A,J} : F_{A,J} = \bigotimes_{i \in I} F_{W_{i},J}\right)_{J \in \Omega_{1}}. \quad (15)$$

Theorem

If C_{2A} and C_{2W} are identifiable and W_{ij} is not a multiple of A_{ij} , for all i, j, then C_2 is identifiable.

Jang SCHILTZ

January, 25 2023 55 / 61

э

<

Numerical Example

- Two clusters with sizes $\pi_1 = \pi_2 = \frac{1}{2}$.
- Two time-points 1 and 2.
- Same variability in both clusters $\sigma = 0.1$

We simulate 50 samples of 100 trajectories with parameters

Parallel coordinate plots of the estimated parameter

Linear Model

Parabolic Model

The generalized model

Theorem

The model is identifiable if

- $d_k < T$ for all $1 \le k \le K$ and all a_{it} are distinct, for all i_t .
- W_k has full rank for all $1 \le k \le K$.
- $rk(A_k, W_k) = rk(A_k) + rk(W_k)$, for all $1 \le k \le K$.

< 4 → <

3

Numerical Example

- Two clusters with sizes $\pi_1 = \pi_2 = \frac{1}{2}$.
- Two time-points 1 and 2.
- Same variability in both clusters $\sigma = 0.1$
- Shape description parameters $\beta_1 = (3, -2)$, $\beta_2 = (0, 2)$, $\delta_1 = 2$ and $\delta_2 = -3$.

We simulate 50 samples of 100 trajectories for 3 types of models:

- The covariate is independent of time and only takes values 0 or 1
- The covariate is time dependent but in a nonlinear way
- The covariate is time dependent in a linear way

- 3

Parallel coordinate plots of the estimated parameter

January, 25 2023 60 / 61

< □ > < 同 >

Bibliography

- Nagin, D.S. 2005: *Group-based Modeling of Development*. Cambridge, MA.: Harvard University Press.
- Schiltz, J. 2015: A generalization of Nagin's finite mixture model. In: Dependent data in social sciences research: Forms, issues, and methods of analysis' Mark Stemmler, Alexander von Eye & Wolfgang Wiedermann (Eds.). Springer 2015.
- Noel, C & Schiltz, J. 2022: TrajeR an R package for finite mixture models. SSRN paper 4054519.
- Noel, C & Schiltz, J. 2023: Finite Mixture Models for an underlying Beta distribution with an application to COVID-19 data.
- Noel, C & Schiltz, J. 2024: Multitrajectory Analysis in Finite Mixture Models.
- Noel, C & Schiltz, J. 2024: Identifiability for Finite Mixture Models.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・