New results in finite mixture modeling

Jang SCHILTZ (University of Luxembourg)
joint work with

Cédric NOEL(University of Lorraine \& University of Luxembourg)

Luxembourg-Waseda Conference
January, 252023

Outline

(1) Finite Mixture Models

Outline

(1) Finite Mixture Models
(2) The R package trajeR

Outline

(1) Finite Mixture Models
(2) The R package trajeR
(3) Finite mixture models for an underlying Beta distribution

Outline

(1) Finite Mixture Models
(2) The R package trajeR
(3) Finite mixture models for an underlying Beta distribution
4) Multiple Trajectory Analysis

Outline

(1) Finite Mixture Models
(2) The R package trajeR
(3) Finite mixture models for an underlying Beta distribution
4) Multiple Trajectory Analysis
(5) Identifiability of Finite Mixture Models

Outline

(1) Finite Mixture Models

(2) The R package trajeR

(3) Finite mixture models for an underlying Beta distribution

4 Multiple Trajectory Analysis
(5) Identifiability of Finite Mixture Models

General description of Finite Mixture models

We have a collection of individual trajectories.
We try to divide the population into a number of homogenous sub-populations and to estimate, at the same time, a typical trajectory for each sub-population. (Nagin 2005)

This model can be interpreted as functional fuzzy logic cluster analysis.

The basic model (Nagin 2005)

Consider a population of size N and a variable of interest Y. Let $Y_{i}=y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{T}}$ be T measures of the variable, taken at times $t_{1}, \ldots t_{T}$ for subject number i and π_{k} the probability of a given subject to belong to group number k

For a given group G_{k}, we suppose conditional independence for the sequential realizations of the elements $y_{i_{t}}$ over the T periods of measurements.

The density f of Y is given by

$$
\begin{equation*}
f\left(y_{i} ; \psi\right)=\sum_{k=1}^{K} \pi_{k} g^{k}\left(y_{i} ; \Theta_{k}\right) \tag{1}
\end{equation*}
$$

where $g^{k}(\cdot)$ denotes the distribution of $y_{i t}$ conditional on membership in group k and the role of the parameters Θ_{k} is to describe the shape of the trajectories in group k.

Possible data distributions

- Poisson distribution
- Binary logit distribution
- (Censored) normal distribution
- Beta distribution (Noel \& S. 2023)

Likelihood function for a normal distribution

Notations:

- $\beta^{j} t=\beta_{0}^{j}+\beta_{1}^{j} t+\beta_{2}^{j} t^{2}+\beta_{3}^{j} t^{3}+\beta_{4}^{j} t^{4}$.
- ϕ : density of standard centered normal law.

Then,

$$
\begin{equation*}
L=\frac{1}{\sigma} \prod_{i=1}^{N} \sum_{j=1}^{r} \pi_{j} \prod_{t=1}^{T} \phi\left(\frac{y_{i_{t}}-\beta^{j} t}{\sigma}\right) \tag{2}
\end{equation*}
$$

It is too complicated to get closed-forms equations.
SAS procedure proc Traj (Nagin \& Jones 2008).

Predictors of trajectory group membership

X : vector of variables potentially associated with group membership.

$$
\begin{equation*}
\pi_{k}\left(x_{i}\right)=\frac{e^{x_{i} \theta_{k}}}{\sum_{k=1}^{K} e^{x_{i} \theta_{k}}} \tag{3}
\end{equation*}
$$

where θ_{k} denotes the effect of x_{i} on the probability of group membership for group k.

$$
\begin{equation*}
L=\prod_{i=1}^{N} \sum_{k=1}^{K} \frac{e^{x_{i} \theta_{k}}}{\sum_{k=1}^{K} e^{x_{i} \theta_{k}}} \prod_{t=1}^{T} g^{k}\left(y_{i t}\right) \tag{4}
\end{equation*}
$$

Adding covariates to the trajectories

Let W be a vector of covariates potentially influencing Y.
The likelihood then becomes

$$
L=\prod_{i=1}^{N} \sum_{k=1}^{K} \frac{e^{x_{i} \theta_{k}}}{\sum_{k=1}^{K} e^{x_{i} \theta_{k}}} \prod_{t=1}^{T} p^{k}\left(y_{i t} \mid A_{i}, W_{i}, \Theta_{k}\right)
$$

Salary groups: Men versus women (S. 2016)

Generalized finite mixture model (S. 2015)

Let $x_{1} \ldots x_{M}$ and z_{t} be covariates potentially influencing Y.
We propose the following model:

$$
\begin{array}{r}
y_{i_{t}}=\left(\beta_{0}^{j}+\sum_{l=1}^{M} \alpha_{0 I}^{j} x_{i_{l}}+\gamma_{0}^{j} w_{i_{t}}\right)+\left(\beta_{1}^{j}+\sum_{l=1}^{M} \alpha_{1 /}^{j} x_{i_{l}}+\gamma_{1}^{j} w_{i_{t}}\right) t \\
+\left(\beta_{2}^{j}+\sum_{l=1}^{M} \alpha_{2 l}^{j} x_{i_{l}}+\gamma_{2}^{j} w_{i_{t}}\right) t^{2}+\left(\beta_{3}^{j}+\sum_{l=1}^{M} \alpha_{3 l}^{j} x_{i_{l}}+\gamma_{3}^{j} w_{i_{t}}\right) t^{3} \\
+\left(\beta_{4}^{j}+\sum_{l=1}^{M} \alpha_{4 l}^{j} x_{i_{l}}+\gamma_{4}^{j} w_{i_{t}}\right) t^{4}+\varepsilon_{i_{t}}^{j}
\end{array}
$$

where $\varepsilon_{i_{t}} \sim \mathcal{N}\left(0, \sigma^{j}\right), \sigma^{j}$ being the standard deviation, constant in group j.

Statistical Properties (S. 2015)

The model's estimated parameters are the result of maximum likelihood estimation. As such, they are consistent and asymptotically normally distributed.
Confidence intervals of level α for the parameters β_{k}^{j} :

$$
\begin{equation*}
C l_{\alpha}\left(\beta_{k}^{j}\right)=\left[\hat{\beta}_{k}^{j}-t_{1-\alpha / 2 ; N-(2+M) s} A S E\left(\hat{\beta}_{k}^{j}\right) ; \hat{\beta}_{k}^{j}+t_{1-\alpha / 2 ; N-(2+M) s} A S E\left(\hat{\beta}_{k}^{j}\right)\right] . \tag{5}
\end{equation*}
$$

Confidence intervals of level α for the disturbance factor σ_{j} :

$$
\begin{equation*}
C l_{\alpha}\left(\sigma_{j}\right)=\left[\sqrt{\frac{(N-(2+M) s-1) \hat{\sigma}_{j}^{2}}{\chi_{1-\alpha / 2 ; N-(2+M) s-1}^{2}}} ; \sqrt{\frac{(N-(2+M) s-1) \hat{\sigma}_{j}^{2}}{\chi_{\alpha / 2 ; N-(2+M) s-1}^{2}}}\right] . \tag{6}
\end{equation*}
$$

Outline

(1) Finite Mixture Models

(2) The R package trajeR
(3) Finite mixture models for an underlying Beta distribution

4 Multiple Trajectory Analysis
(5) Identifiability of Finite Mixture Models

trajeR (Noel \& S. 2022): Function signature

trajeR

+
+
+
+

```
```

```
R> trajeR(Y, A, Risk = NULL, TCOV = NULL, degre, degre.phi = O,
```

```
R> trajeR(Y, A, Risk = NULL, TCOV = NULL, degre, degre.phi = O,
```

 Model, Method = "L",
    ```
    Model, Method = "L",
    ssigma = FALSE, ymax = max (Y) + 1, ymin = min(Y) - 1,
    ssigma = FALSE, ymax = max (Y) + 1, ymin = min(Y) - 1,
    hessian = TRUE, itermax = 100, paraminit = NULL,
    hessian = TRUE, itermax = 100, paraminit = NULL,
    ProbIRLS = TRUE, refgr = 1, + fct = NULL, diffct = NULL,nbvar = NULL, nls.lmiter = 50)
```

 ProbIRLS = TRUE, refgr = 1, + fct = NULL, diffct = NULL,nbvar = NULL, nls.lmiter = 50)
    ```

\section*{Numerical output of result}
```


Model : Beta

Method : Likelihood

group Parameter Estimate Std. Error T for H0: Prob>|T|


```

```

```

\section*{trajeR - Censored Normal Model}
plot(solL, \(Y=\) data[,2:11], \(A=\operatorname{data[,12:21],~col~=~vcol)~}\)

Values and predicted trajectories for all groups


\section*{trajeR - Zero Inflated Poisson}

Values and predicted trajectories for all groups



\section*{trajeR - Logit}

Values and predicted trajectories for all groups



\section*{trajeR - Non Linear}

We suppose that the variable \(Y_{i t}\) is defined by
\[
\begin{equation*}
y_{i t}=f\left(a_{i t} ; \beta_{k}\right)+\epsilon_{i t} \tag{7}
\end{equation*}
\]
where \(\epsilon_{i t} \sim \mathcal{N}\left(0 ; \sigma_{k}\right)\).

\section*{trajeR - Non Linear}

Example with
\[
f\left(t ; \beta_{k}\right)=\frac{\beta_{k 1} t}{\beta_{k 2}+t}
\]

Plot of the individual's trajectories


By analysing the graph above, we fit initial parmaters as paraminit \(=c(0.25,0.25,0.25,0.25,2\), \(0.1,2.4,0.1,2.8,0.1,3,0.1,0.2,0.2,0.2,0.2)\)

\section*{trajeR - Non Linear}
\(\mathrm{fct}<-\operatorname{function}\left(\mathrm{t}\right.\), betak, TCOV)\{ return( \(\left.\left(\operatorname{betak}[1]^{*} \mathrm{t}\right) /(\operatorname{betak}[2]+\mathrm{t})\right)\) diffct \(<-\) function \((t\), betak, TCOV) \{ return(c( t/(betak[2]+t), \(\left.\left.-(\operatorname{betak}[1] * \mathrm{t}) /(\operatorname{betak}[2]+\mathrm{t})^{* *} 2\right)\right)\)
solEM \(=\operatorname{traje} R(Y=\operatorname{data}[, 2: 12], A=\operatorname{data}[, 13: 23], \mathrm{ng}=4, \mathrm{nbvar}=2\), Method \(=\) "EM", Model \(=" N L "\), hessian \(=\) TRUE, fct \(=\mathrm{fct}\), diffct \(=\) diffct, paraminit \(=\) paraminit)

\section*{trajeR - Non Linear}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
Call TrajeR with 4 groups and a 1,1 ajectory. \\
Model : Non Linear \\
Method : Expectation-maximization
\end{tabular}} \\
\hline group & Parameter & Estimate & Std. Error & \[
\begin{aligned}
& \text { T for H0: } \\
& \text { param. }=0
\end{aligned}
\] & Prob>|T| \\
\hline \multirow[t]{2}{*}{1} & Intercept & 3.30542 & 0.18506 & 17.86117 & 0 \\
\hline & Linear & 4.71859 & 0.60508 & 7.79825 & 0 \\
\hline \multirow[t]{2}{*}{2} & Intercept & 3.17397 & 0.06338 & 50.07605 & 0 \\
\hline & Linear & 1.29635 & 0.12496 & 10.37439 & 0 \\
\hline \multirow[t]{2}{*}{3} & Intercept & 3.07645 & \[
0.06425
\] & 47.88329 & 0 \\
\hline & Linear & 0.60537 & \[
0.11135
\] & 5.43645 & 0 \\
\hline \multirow[t]{2}{*}{4} & Intercept & 3.34255 & 0.02515 & 132.91026 & 0 \\
\hline & Linear & 0.04503 & 0.0236 & 1.90772 & 0.05648 \\
\hline \multirow[t]{4}{*}{1
2
3
4} & sigma1 & 0.63465 & NaN & NaN & NaN \\
\hline & sigma2 & 0.56821 & 0.0036 & 157.93961 & 0 \\
\hline & sigma3 & 0.60047 & 0.02216 & 27.0945 & 0 \\
\hline & sigma4 & 0.71747 & 0.01667 & 43.0461 & 0 \\
\hline \multirow[t]{4}{*}{1
2
3
4} & pi1 & 0.15427 & 0.01646 & 9.3702 & 0 \\
\hline & pi2 & 0.23712 & 0.02962 & 8.00592 & 0 \\
\hline & pi3 & 0.25955 & NaN & NaN & NaN \\
\hline & pi4 & 0.34906 & NaN & NaN & NaN \\
\hline \multicolumn{6}{|l|}{Likelihood : -4891.536} \\
\hline
\end{tabular}

Values and predicted trajectories for all groups


\section*{trajeR - Some functions}
- Membership's probability - GroupProb(...)
- Profiles of group - GroupProfiles(...)
\begin{tabular}{lrrrr} 
& Gr 1 & Gr 2 & Gr 3 & Gr 4 \\
X1 & 1.8467 & 3.2709 & 6.0562 & 6.5621 \\
X2 & 7.7916 & -0.9212 & -4.9915 & 5.3515 \\
X3 & 56.1620 & 74.0841 & 41.0704 & 32.8957 \\
X4 & 0.3636 & 0.2895 & 0.4972 & 0.3333 \\
X5 & 0.2545 & 0.3289 & 0.4525 & 0.3421
\end{tabular}

\section*{trajeR - Model performance}
- Average Posterior Probability - AvePP (. . .)
- Odds of Correct Classification - OCC( . . .)
- Estimated group probabilities versus proportion of the sample assigned to the group - propAssign(... )
- Confidence interval - ConfIntT (... )
- Summary - adequacy (...)
\begin{tabular}{lrrrr|} 
& 1 & 2 & 3 & 4 \\
Prob. est. & 0.10227620 & 0.3118053 & 0.2247159 & 0.3612026 \\
CI inf. & 0.08165381 & 0.2720132 & 0.1916078 & 0.3161885 \\
CI sup. & 0.12689314 & 0.3542225 & 0.2625223 & 0.4086869 \\
Prop. & 0.09800000 & 0.3180000 & 0.2220000 & 0.3620000 \\
AvePP & 0.89837432 & 0.9395957 & 0.9843333 & 0.9973927 \\
OCC & 77.59454723 & 34.3317995 & 216.7625509 & 676.5346954 \\
\hline
\end{tabular}

\section*{trajeR - Model selection}
- AIC - trajeRAIC(...)
- BIC - trajeRBIC(...)
- Slope Heuristics - trajeRSH (...)

\section*{Outline}

\section*{(1) Finite Mixture Models}

\section*{(2) The R package trajeR}
(3) Finite mixture models for an underlying Beta distribution

4 Multiple Trajectory Analysis
(5) Identifiability of Finite Mixture Models

\section*{The Beta distribution}


Figure 1 - Example of different shapes of the Beta density for some parameters.

\section*{Underlying Beta distribution}

Density of \(y_{i t}\) conditional to membership in group \(C_{k}\) :
\(g_{k}\left(y_{i t} ; \mu_{k i t}, \phi_{k i t}\right)=\frac{\Gamma\left(\phi_{k i t}\right)}{\Gamma\left(\mu_{k i t} \phi_{k i t}\right) \Gamma\left(\left(1-\mu_{k i t}\right) \phi_{k i t}\right)} y_{i t}^{\mu_{k i t} \phi_{k i t}-1}\left(1-y_{i t}\right)^{\left(1-\mu_{k i t}\right) \phi_{k i t}-1}\),
with
\[
\begin{equation*}
\mu_{k i t}=\frac{e^{\beta_{k} A_{i t}+\delta_{k} W_{i t}}}{1+e^{\beta_{k} A_{i t}+\delta_{k} W_{i t}}} \text { and } \phi_{k i t}=\zeta_{k} A_{i t} \tag{8}
\end{equation*}
\]

Likelihood of the data:
\[
\begin{equation*}
L=e^{\prod_{i=1}^{n}\left(\sum_{k=1}^{K} \pi_{k} \prod_{t=1}^{T} \frac{\Gamma\left(\phi_{k i t}\right)}{\Gamma\left(\mu_{k i t} \phi_{k i t}\right) \Gamma\left(1-\mu_{k i t}\right) \phi_{k i t}} y_{i t}^{\mu_{k i t} \phi_{k i t}-1}\left(1-y_{y t}\right)^{\left(1-\mu_{k i t}\right) \phi_{k i t}-1}\right)} . \tag{9}
\end{equation*}
\]

\section*{Data}

Data from 190 countries from "Our World In Data".
Main variable of interest: contamination rate. We create a panel with monthly data from January 2020 till April 2021.

Covariates: new cases, population size (in million inhabitants), total cases per million people, median age of the population, population density, number of inhabitants over 65 (in million inhabitants), government response stringency index, GDP per capita, extreme poverty index, cardiovascular death rate, diabetes prevalence rate, index of handwashing facilities, rate of hospital beds per thousand inhabitants, life expectancy, index of human development and stringency index.

The nine metrics used to calculate the stringency index are: school closures; workplace closures; cancellation of public events; restrictions on public gatherings; closures of public transport; stay-at-home requirements; public information campaigns; restrictions on internal movements; and international travel controls.

\section*{Individual trajectories}


Figure 2 - Contamination rates for all countries.

\section*{Model selection}

Kass and Wasserman's crierion: Let \(p_{k}\) be the probability that a model with \(k\) groups is the correct model. They show that \(p_{k}\) can be approximated by
\[
p_{k} \approx \frac{e^{B I C_{k}-B I C_{\max }}}{\sum_{k} e^{B I C_{k}-B I C_{\max }}} .
\]
\begin{tabular}{cccc}
\hline \begin{tabular}{c} 
Number of \\
groups
\end{tabular} & AIC & BIC & Prob \\
\hline 2 & 29851.99 & 14902.64 & 0.00000 \\
3 & 30341.00 & 15142.28 & 0.00000 \\
3 & 29945.96 & 14936.64 & 0.00000 \\
3 & 30777.14 & 15352.23 & 0.00000 \\
4 & 30839.69 & 15370.52 & 0.00000 \\
4 & 31192.78 & 15547.06 & 0.00001 \\
5 & 31241.46 & 15558.41 & 0.99999 \\
\hline
\end{tabular}

Table 1 - Model selection criteria

\section*{Typical trajectories}


\section*{World Map with the five clusters}

Map of the different groups

gr 1
 gr \(2 \square\) gr 3 \(\square\) gr 4 \(\square\) gr 5

Figure 5 - World map with the geographic distribution of the five groups

\section*{Predictors of group membership}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Group 1} & \multicolumn{3}{|c|}{Group 2} \\
\hline & Estimate & Std. Error & Prob \(>|\mathrm{T}|\) & Estimate & Std. Error & Prob \(>|T|\) \\
\hline intercept & -16.812 & 4.681 & 0 & -4.805 & 3.422 & 0.16 \\
\hline median age & 0.193 & 0.086 & 0.024 & 0.172 & 0.101 & 0.088 \\
\hline population density & -0.003 & 0.002 & 0.093 & 0.000 & 0.001 & 0.869 \\
\hline aged 65 older & -0.021 & 0.132 & 0.871 & \(-0.060\) & 0.126 & 0.631 \\
\hline life expectancy & 0.073 & 0.080 & 0.364 & \(-0.073\) & 0.071 & 0.304 \\
\hline \multirow[t]{3}{*}{mean of stringency} & 0.112 & 0.023 & 0 & 0.092 & 0.023 & 0 \\
\hline & \multicolumn{3}{|c|}{Group 3} & \multicolumn{3}{|c|}{Group 5} \\
\hline & Estimate & Std. Error & Prob \(>|\mathrm{T}|\) & Estimate & Std. Error & Prob \(>|T|\) \\
\hline intercept & -67.733 & 19.400 & 0 & -73.689 & 23.469 & 0.002 \\
\hline median age & 0.129 & 0.158 & 0.412 & 0.418 & 0.205 & 0.041 \\
\hline population density & 0.000 & 0.001 & 0.784 & 0.000 & 0.001 & 0.926 \\
\hline aged 65 older & 0.109 & 0.178 & 0.542 & -0.640 & 0.206 & 0.002 \\
\hline life expectancy & 0.646 & 0.223 & 0.004 & 0.646 & 0.283 & 0.023 \\
\hline mean of stringency & 0.185 & 0.054 & 0.001 & 0.228 & 0.075 & 0.002 \\
\hline
\end{tabular}

Table 4 - Predictors of group membership.

\section*{Stringency index as time dependent covariate}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Param. & sd & Test & Param. & sd & Test & Param. & sd & Test & Param. & sd & Test \\
\hline Beta 1 & & & Phi 1 & & & Delta 1 & & & Prob. 1 & & \\
\hline -5.843 & 0.026 & 0.000 & 14.337 & 0.317 & 0.000 & 0.001 & 0.000 & 0.001 & 0.328 & 0.039 & 0.00 \\
\hline -0.120 & 0.024 & 0.000 & -1.164 & 0.076 & 0.000 & & & & Prob. 2 & & \\
\hline 0.029 & 0.004 & 0.000 & 0.040 & 0.004 & 0.000 & Delta 2 & & & \[
0.175
\] & 0.030 & 0.00 \\
\hline -0.001 & 0.000 & 0.000 & Phi 2 & & & 0.000 & 0.000 & 0.955 & Prob. 3 & & \\
\hline Beta 2 & & & 19.866 & 0.570
0.125 & 0.000 & Delta 3 & & & 0.156 & 0.030 & 0.00 \\
\hline Beta 2
-5.927 & 0.003 & 0.000 & -1.710 & \[
0.125
\] & \[
0.000
\] & Delta
0.010 & 0.001 & 0.000 & Prob. 4 & & \\
\hline -0.014 & 0.004 & 0.000 & & & & & & & 0.301 & 0.035 & 0.00 \\
\hline 0.005 & 0.001 & 0.000 & Phi 3 & & & Delta 4 & & & Prob. 5 & & \\
\hline 0.000 & 0.000 & 0.001 & \[
\begin{array}{r}
9.624 \\
-0.521
\end{array}
\] & \[
\begin{aligned}
& 0.369 \\
& 0.097
\end{aligned}
\] & \[
\begin{aligned}
& 0.000 \\
& 0.000
\end{aligned}
\] & 0.000 & 0.000 & 0.000 & 0.040 & 0.016 & 0.01 \\
\hline Beta 3 & & & 0.016 & 0.005 & 0.003 & Delta 5 & & & & & \\
\hline -5.602 & 0.117 & 0.000 & Phi 4 & & & 0.004 & 0.001 & 0.004 & & & \\
\hline -0.421 & 0.070 & 0.000 & 12.887 & 0.372 & 0.000 & & & & & & \\
\hline 0.076 & 0.009 & 0.000 & 0.148 & 0.085 & 0.082 & & & & & & \\
\hline -0.003 & 0.000 & 0.000 & -0.015 & 0.004 & 0.000 & & & & & & \\
\hline & & & Phi 5 & & & & & & & & \\
\hline Beta 4 & & & 7.384 & 0.137 & 0.000 & & & & & & \\
\hline -5.972
0.012 & 0.012
0.005 & 0.000 & & & & & & & & & \\
\hline 0.012 & 0.005 & 0.018 & & & & & & & & & \\
\hline -0.001 & 0.001 & 0.043 & & & & & & & & & \\
\hline 0.000 & 0.000 & 0.027 & & & & & & & & & \\
\hline Beta 5 & & & & & & & & & & & \\
\hline -7.304 & 0.366 & 0.000 & & & & & & & & & \\
\hline 0.701 & 0.147 & 0.000 & & & & & & & & & \\
\hline -0.078 & 0.017 & 0.000 & & & & & & & & & \\
\hline 0.003 & 0.001 & 0.000 & & & & & & & & & \\
\hline
\end{tabular}

Table 5 - parameters of the final model with time dependent covariates.

\section*{Outline}

\section*{(1) Finite Mixture Models}

\section*{(2) The R package trajeR}
(3) Finite mixture models for an underlying Beta distribution

44 Multiple Trajectory Analysis

\section*{(5) Identifiability of Finite Mixture Models}

\section*{Basic Idea}

We conjointly analysis the trajectories of \(J\) variables \(Y^{1}, \ldots, Y^{J}\).

\section*{The model}

We suppose the trajectories for a variable \(Y^{\prime}\) can be linked to trajectories for all other variables \(Y^{j}, j \neq 1\). Then,
\[
\begin{aligned}
P\left(Y_{i}^{1}, \ldots, Y_{i}^{J} \mid A_{i}, W_{i}\right)= & \sum_{\left(k_{1}, \ldots, k_{J}\right) \in K_{1} \times \cdots \times K_{J}} \pi_{k_{J} \mid k_{1} \ldots k_{J-1}} \times \cdots \times \pi_{k_{2} \mid k_{1}} \times \pi_{k_{1}} \\
& \prod_{j=1}^{J} \prod_{t=1}^{T} p^{k_{j}}\left(y_{i t}^{j} \mid A_{i}, W_{i}, \Theta_{k}^{j}\right),
\end{aligned}
\]
where \(\pi_{k_{j} \mid k_{1} \ldots k_{j-1}}\) is the probability of belonging to group \(j\) conditional on the membership to groups 1 to \(j-1\).

\section*{Membership Probability}
\[
\begin{gathered}
\pi_{k_{1}}=\frac{e^{\theta_{k_{1}} x_{i}}}{\sum_{k_{1}=1}^{K_{1}} e^{\theta_{k_{1}} x_{i}}}, \quad \pi_{k_{2} \mid k_{1}}=\frac{e^{\theta_{k_{2}}^{k_{1}} w_{i}^{k_{2}}}}{\sum_{k_{2}=1}^{K_{2}} e^{\theta_{k_{2}}^{k_{1}} w_{i}^{k_{2}}}} \\
\pi_{k_{J} \mid k_{1} \ldots k_{J-1}}=\frac{e_{k_{J}}^{\theta_{1}^{k_{1} \ldots k_{J-1} w_{i}^{k_{J}}}}}{\sum_{k_{J}=1}^{K_{J}} e^{\theta_{k_{J}}^{k_{1} \ldots k_{J-1} w_{i}^{k_{J}}}}}
\end{gathered}
\]

One drawback of this method is the great expansion of the number of parameters and the fact that the parameters are hardly interpretable.

\section*{A new approach}

Denote by \(Z_{i}=\left(Z_{i 1}, \ldots, Z_{i J}\right)\) the vector containing the group membership of individual \(i\) for the variables \(Y^{1}, \ldots, Y^{J} . Z_{i} \in \llbracket 1 ; K_{1} \rrbracket \times \cdots \times \llbracket 1 ; K_{J} \rrbracket\).

Then,
\[
P\left(Z_{i j}=k \mid z_{i h} \text { for } h \neq j, X_{i}^{j}\right)=\frac{e^{B_{i j, k}}}{\sum_{h=1}^{K_{j}} e^{B_{i j, h}}}
\]
where \(B_{i j, k}=\alpha_{j, k}+\beta_{j, k} X_{i}^{j}+\sum_{h \neq j} \psi_{j h, k z_{i h}}\).
- \(\alpha_{j, k}\) is a choice specific intercept ;
- \(\beta_{j, k}\) is a vector corresponding to the covariate \(X_{i}^{j}\);
- \(z_{i h}\) the group membership of the individual \(i\) for \(Y^{h}\);
- \(\psi_{j h, k l}\) is an association parameter between belonging to group \(k\) for \(Y^{j}\) and belonging to the group \(/\) for \(Y^{h}\).

\section*{Number of parameters}

The Hammersley-Clifford Theorem allows to write the conditional probabilities as
\[
P\left(Z_{i j}=k \mid z_{i h} \text { for } h \neq j, X_{i}^{j}\right)=\frac{e^{B_{i j, k}}}{\sum_{h=1}^{K_{j}} e^{B_{i j, h}}}
\]
where \(B_{i j, k}=\alpha_{j, k}+\beta_{j, k} X_{i}^{j}+\sum_{h<j} \psi_{h j, z_{i h} k}+\sum_{h>j} \psi_{j h, k z_{i h}}\).

\section*{Proposition}

The numbers of parameters is
\[
\sum_{j=1}^{J}\left(K_{j}-1\right) \times\left(n \operatorname{col}\left(X_{i}^{j}\right)+1\right)+\sum_{1 \leq j \neq j^{\prime} \leq J}\left(K_{j}-1\right)\left(K_{j^{\prime}}-1\right)
\]

\section*{A simulation example}

We simulate trajectories for 200 individuals and 3 variables.
- \(Y^{1}\) (normal distribution) : \(\beta_{1,1}=(3.53,-2.25,0.47)\),
\[
\begin{aligned}
& \beta_{1,2}=(-1.62,3.9,-0.65), \beta_{1,3}=(0.263,0.036,0.01) \\
& \sigma_{1,1}=\sigma_{1,2}=\sigma_{1,3}=1
\end{aligned}
\]
- \(Y^{2}\) (ZIP distribution) : \(\beta_{2,1}=(1.2,2.3,-1.2,0.5,-0.1), \beta_{2,2}=(2)\),
\[
\beta_{2,3}=(-7.5,0,2.2,-.4), \nu_{1}=(-2,1), \nu_{2}=(-1,0.1), \nu_{3}=(0,-1)
\]
- \(Y^{3}\) (logit distribution) : \(\beta_{3,1}=(6.32,-5.8,1), \beta_{3,2}=(-6.69,1.92)\).

Furthermore, we choose all \(\theta_{j, k}=0\) and \(\psi=(-3,3,4,0,-2,5,1,0)\). We launch trajeR for each variable separately and we use the results as as initial values for the multi-trajectory model.

\section*{Results}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{Variable 1} & & \multicolumn{3}{|c|}{Variable 2} \\
\hline & Th. & EM & L & & Th. & EM & L \\
\hline \(\beta_{11}\) & 3.53 & 3.37162 & 3.37154 & \(\beta_{11}\) & 1.2 & -3.92980 & -3.92950 \\
\hline \(\beta_{12}\) & -2.25 & \(-2.13530\) & -2.13523 & \(\beta_{12}\) & 2.3 & \(-4.11672\) & -4.11653 \\
\hline \(\beta_{13}\) & 0.47 & 0.45090 & 0.45089 & \(\beta_{13}\) & -1.2 & 3.88076 & 3.88051 \\
\hline \(\beta_{21}\) & -1.620 & -1.71513 & -1.71513 & \(\beta_{14}\) & 0.5 & -0.68312 & -0.68305 \\
\hline \(\beta_{22}\) & 3.900 & 3.96422 & 3.96422 & \(\beta_{15}\) & -0.1 & 0.01616 & 0.01615 \\
\hline \(\beta_{23}\) & -0.650 & -0.66183 & -0.66183 & \(\beta_{21}\) & 2 & 2.01483 & 2.01483 \\
\hline \(\beta_{31}\) & 0.263 & 0.04619 & 0.04624 & \(\beta_{31}\) & -7.5 & -0.39232 & -0.39204 \\
\hline \(\beta_{32}\) & 0.036 & 0.15730 & 0.15725 & \(\beta_{32}\) & 0 & 4.55945 & 4.55895 \\
\hline \(\beta_{33}\) & 0.010 & -0.00882 & -0.00881 & \(\beta_{33}\) & 2.2 & -1.69650 & -1.69623 \\
\hline \(\sigma\) & 1 & 2.69943 & 2.69943 & \(\beta_{34}\) & -0.4 & 0.17702 & 0.17698 \\
\hline \(\theta_{1}\) & 0 & 0.00000 & 0.00000 & \(\nu_{11}\) & -2 & -0.98558 & -0.98296 \\
\hline \(\theta_{2}\) & 0 & 2.00645 & 2.00672 & \(\nu_{12}\) & 1 & -0.7915 & -0.79232 \\
\hline \(\theta_{3}\) & 0 & -5.40659 & -5.43048 & \(\nu_{21}\) & -1 & -1.08749 & -1.08734 \\
\hline & & & & \(\nu_{22}\) & 0.1 & 0.13039 & 0.13035 \\
\hline & & & & \(\nu_{31}\) & 0 & \(-3.38530\) & -3.38515 \\
\hline & & & & \(\nu_{32}\) & -1 & 1.53658 & 1.53652 \\
\hline & & & & \(\theta_{1}\) & 0 & 0.00000 & 0.00000 \\
\hline & & & & \(\theta_{2}\) & 0 & -0.07507 & -0.07461 \\
\hline & & & & \(\theta_{3}\) & 0 & 0.14593 & 0.14628 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|r|r|}
\hline & \multicolumn{3}{|c|}{ Variable 3 } \\
\hline & \multicolumn{1}{|c|}{ Th. } & \multicolumn{1}{|c|}{ EM } & \multicolumn{1}{c|}{ L } \\
\hline\(\beta_{11}\) & 6.32 & 6.28035 & 6.28024 \\
\(\beta_{12}\) & -5.8 & -5.73551 & -5.73545 \\
\(\beta_{13}\) & 1 & 0.98963 & 0.98962 \\
\hline\(\beta_{21}\) & -6.69 & -7.46613 & -7.46609 \\
\(\beta_{22}\) & 1.92 & 2.09930 & 2.09930 \\
\hline\(\theta_{1}\) & 0 & 0.00000 & 0.00000 \\
\hline\(\theta_{2}\) & 0 & -2.09538 & -2.09295 \\
\hline
\end{tabular}
\begin{tabular}{|c|r|r|r|r|r|r|r|r|}
\hline Parameters & \(\psi_{12,22}\) & \(\psi_{12,23}\) & \(\psi_{12,32}\) & \(\psi_{12,33}\) & \(\psi_{13,22}\) & \(\psi_{13,32}\) & \(\psi_{23,22}\) & \(\psi_{23,32}\) \\
\hline Theoretical & -3 & 3 & 4 & 0 & -2 & 5 & 1 & 0 \\
\hline EM & -5.47292 & 4.33422 & -4.57086 & -4.46658 & -2.12297 & 3.23218 & 1.18008 & -7.96007 \\
\hline Likelihood & -5.46968 & 4.35722 & -4.57081 & -3.3298 & -2.12013 & 3.23351 & 1.17703 & -10.00915 \\
\hline
\end{tabular}

\section*{Results}

Group 1
Group 2
Group 3


\section*{A real data example: Montreal Longintudinal Study}

Example from D. Nagin. Compares the link between hyperactivity and opposition score. The hyperactivity is measured on a scale between 0 and 4 and the opposition behavior on a scale between 0 and 10 .

\section*{Results}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{Variable 1} & & \multicolumn{2}{|c|}{Variable 2} \\
\hline & TrajeR & traj (SAS) & & TrajeR & traj (SAS) \\
\hline \(\beta_{11}\) & -2.55343 & -2.55348 & \(\beta_{11}\) & -1.67252 & -1.67258 \\
\hline \(\beta_{21}\) & 0.48071 & 0.48074 & \(\beta_{12}\) & -1.48300 & -1.48308 \\
\hline \(\beta_{22}\) & -6.24514 & -6.24425 & \(\beta_{21}\) & 2.15443 & 2.15440 \\
\hline \(\beta_{23}\) & -3.53665 & -3.53676 & \(\beta_{22}\) & -6.79570 & -6.79186 \\
\hline \(\beta_{24}\) & 14.90876 & 14.90347 & \(\beta_{23}\) & -4.29020 & -4.29356 \\
\hline \(\beta_{31}\) & 2.66416 & 2.66411 & \(\beta_{24}\) & 20.58775 & 20.56512 \\
\hline \(\beta_{32}\) & -1.98842 & -1.98840 & \(\beta_{31}\) & 4.96622 & 4.96615 \\
\hline \(\beta_{33}\) & -4.14192 & -4.14164 & \(\beta_{32}\) & -2.12531 & -2.12503 \\
\hline \(\sigma\) & 2.31949 & 2.3195 & \(\beta_{33}\) & -9.72094 & -9.71914 \\
\hline & & & \(\beta_{41}\) & 6.59242 & 6.59246 \\
\hline & & & \(\sigma\) & 2.54359 & 2.5436 \\
\hline
\end{tabular}

With trajeR we find the following 6 linking parameters.


\section*{Results}

Group 1



Group 2


Group 3


Group 4


Multiple Trajectory Analysis
January, 252023

\section*{Outline}

\section*{(1) Finite Mixture Models}

\section*{(2) The R package trajeR}
(3) Finite mixture models for an underlying Beta distribution

4 Multiple Trajectory Analysis
(5) Identifiability of Finite Mixture Models

\section*{Identifiability}

\section*{Definition:}

A finite mixture model is identifiable if a given data set leads to a uniquely determined set of model parameter estimations up to a permutation of the clusters.

Identifiability of the parameters is a necessary condition for the existence of consistent estimators for any statistical model.

Without identifiability, there might be several solutions for the parameter estimation problem.

\section*{Notations}

Distribution \(f\) of a finite mixture model:
\[
f\left(y_{i} ; \Omega\right)=\sum_{k=1}^{K} \pi_{k} g_{k}\left(y_{i} ; \theta^{k}\right)
\]

Cumulative distribution function \(F\) of a finite mixture model:
\[
F\left(y_{i} ; \Omega\right)=\sum_{k=1}^{K} \pi_{k} G_{k}\left(y_{i} ; \theta^{k}\right)
\]

\section*{Mixtures and mixing distributions}

Let \(\mathcal{F}=\left\{F(y ; \omega), y \in \mathbb{R}^{T}, \omega \in \mathbb{R}_{K}^{s+2}\right\}\) be a family of T-dimensional cdf's indexed by a parameter set \(\omega\), such that \(F(y ; \omega)\) is measurable in \(\mathbb{R}^{T} \times \mathbb{R}_{K}^{s+2}\).
The the \(s+2\)-dimensional cdf \(H(x)=\int_{\mathbb{R}_{k}^{s+2}} F(y ; \omega) d G(\omega)\) is the image of the above mapping, of the \(s+2\)-dimensional \(c d f G\).

The distribution \(H\) is called the mixture of \(\mathcal{F}\) and \(G\) its mixing distribution.
Let \(\mathcal{G}\) denote the class of all \(s+2\)-dimensional cdf's \(G\) and \(\mathcal{H}\) the induced class of mixtures \(H\).

Then \(\mathcal{H}\) is identifiable if \(Q\) is a one-to-one map from \(\mathcal{G}\) onto \(\mathcal{H}\).

\section*{Characterization of identifiability}

The set \(\mathcal{H}\) of all finite mixtures of class \(\mathcal{F}\) of distributions is the convex hull of \(\mathcal{F}\).
\[
\begin{equation*}
\mathcal{H}=\left\{H(y): H(y)=\sum_{i} c_{i} F\left(y, \omega_{i}\right), c_{i}>0, \sum_{i} c_{i}=1, F\left(y, \omega_{i}\right) \in \mathcal{F}\right\} \tag{10}
\end{equation*}
\]

\section*{Theorem}

A necessary and sufficient condition for the class \(\mathcal{H}\) of all finite mixtures of the family \(\mathcal{F}\) to be identifiable is that \(\mathcal{F}\) is a linearly independent family over the field of real numbers.

\section*{The Model}
\[
\begin{equation*}
Y_{i t}=f\left(a_{i t} ; \beta^{k}, \delta^{k}\right)+\varepsilon_{i t}^{k}=\beta^{k} A_{i t}+\delta^{k} W_{i t}+\varepsilon_{i t}^{k} . \tag{11}
\end{equation*}
\]

We can write
\[
\begin{equation*}
\mathcal{L}\left(\left(Y_{i}\right)_{i \in I}\right)=\bigotimes_{i \in I} F_{A_{i}, W_{i}, J} \tag{12}
\end{equation*}
\]

Identifiability of a model means that knowing the data distribution \(\mathcal{L}\left(Y_{i}\right), i \in I\), one can uniquely identify the mixing distribution \(J\).

That is, no two distinct sets of parameters lead to the same data distribution.

\section*{Nagin's base model}
\[
\mathcal{C}_{1}=\left(F_{A, J}: F_{A, J}=\bigotimes_{i \in I} F_{A_{i}, J}\right)_{J \in \Omega_{1}}
\]

Theorem
Let \(h_{j}=\min \left\{q:\left\{A_{i j}, i \in I\right\} \subseteq \cup_{i=1}^{q} H_{i} H_{i} \in \mathcal{H}_{n-1}\right\}\). If there exist \(j\) such that \(|S(J)|<h_{j}, \forall J\) then \(\mathcal{C}_{1}\) is identifiable.

\section*{Adding covariates independent of cluster membership}
\[
\begin{align*}
& \mathcal{C}_{2}=\left(F_{A, J}: F_{A, J}=\bigotimes_{i \in I} F_{A_{i}, W_{i}, J}\right)_{J \in \Omega_{1}},  \tag{13}\\
& \mathcal{C}_{2 A}=\left(F_{A, J}: F_{A, J}=\bigotimes_{i \in I} F_{A_{i}, J}\right)_{J \in \Omega_{1}},  \tag{14}\\
& \mathcal{C}_{2 W}=\left(F_{A, J}: F_{A, J}=\bigotimes_{i \in I} F_{W_{i}, J}\right)_{J \in \Omega_{1}} . \tag{15}
\end{align*}
\]

Theorem
If \(\mathcal{C}_{2 A}\) and \(\mathcal{C}_{2 W}\) are identifiable and \(W_{i j}\) is not a multiple of \(A_{i j}\), for all \(i, j\), then \(\mathcal{C}_{2}\) is identifiable.

\section*{Numerical Example}
- Two clusters with sizes \(\pi_{1}=\pi_{2}=\frac{1}{2}\).
- Two time-points 1 and 2.
- Same variability in both clusters \(\sigma=0.1\)

We simulate 50 samples of 100 trajectories with parameters
- \(\beta^{1}=(3,-2)\) and \(\beta^{2}=(0,2)\) (linear model)
- \(\beta^{1}=(10,-12.5,3.5)\) and \(\beta^{2}=(-2,5,-1)\) (polynomial model).

\section*{Parallel coordinate plots of the estimated parameter}


\section*{The generalized model}

\section*{Theorem}

The model is identifiable if
- \(d_{k}<T\) for all \(1 \leq k \leq K\) and all \(a_{i t}\) are distinct, for all \(i_{t}\).
- \(W_{k}\) has full rank for all \(1 \leq k \leq K\).
- \(r k\left(A_{k}, W_{k}\right)=r k\left(A_{k}\right)+r k\left(W_{k}\right)\), for all \(1 \leq k \leq K\).

\section*{Numerical Example}
- Two clusters with sizes \(\pi_{1}=\pi_{2}=\frac{1}{2}\).
- Two time-points 1 and 2.
- Same variability in both clusters \(\sigma=0.1\)
- Shape description parameters \(\beta_{1}=(3,-2), \beta_{2}=(0,2), \delta_{1}=2\) and \(\delta_{2}=-3\).

We simulate 50 samples of 100 trajectories for 3 types of models:
- The covariate is independent of time and only takes values 0 or 1
- The covariate is time dependent but in a nonlinear way
- The covariate is time dependent in a linear way

\section*{Parallel coordinate plots of the estimated parameter}


Model 1


Model 2


Model 3

\section*{Bibliography}
- Nagin, D.S. 2005: Group-based Modeling of Development. Cambridge, MA.: Harvard University Press.
- Schiltz, J. 2015: A generalization of Nagin's finite mixture model. In: Dependent data in social sciences research: Forms, issues, and methods of analysis' Mark Stemmler, Alexander von Eye \& Wolfgang Wiedermann (Eds.). Springer 2015.
- Noel, C \& Schiltz, J. 2022: TrajeR - an R package for finite mixture models. SSRN paper 4054519.
- Noel, C \& Schiltz, J. 2023: Finite Mixture Models for an underlying Beta distribution with an application to COVID-19 data.
- Noel, C \& Schiltz, J. 2024: Multitrajectory Analysis in Finite Mixture Models.
- Noel, C \& Schiltz, J. 2024: Identifiability for Finite Mixture Models.```

