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INTRODUCTION 
Designing spacecraft is known as an extremely challenging problem. The very first stage of the design process, aka the 
conceptual design (CD) phase, is even more abstract due to the lack of information and short turnaround time. It 
requires multi-criteria decision-making on different concerns, from mission analysis to system architectures. In recent 
years, spacecraft missions have become increasingly ambitious, requiring spacecraft to be designed for various 
demanding applications. As a result, spacecraft design has become an increasingly challenging endeavour that requires 
highly complex and multidisciplinary integration of multiple disciplines in a multi-layer hierarchical system architecture 
solution. 
Additionally, at the CD stage, initial unknowns are significant, while system inter-dependencies are complex. Such 
complexity might lead to design system architectures that are not feasible in practice or do not fulfil nor optimize 
functional requirements. Moreover, the lack of efficient automation to model and assess numerous design alternatives 
reduce the benefits of the early design phases by missing more suitable designs and increasing the design time and cost. 
Thus, either many design iterations by engineers are required, or a well-proven design with flight heritage is selected 
and refined. Such approaches can give a promising baseline. However, neither approach is certain to yield an optimal 
solution. 
  
In this paper, we propose a novel spacecraft conceptual design approach to close the previously mentioned gaps. Our 
framework focus on abstraction, modularity, and reusability of the different concepts used in the traditional spacecraft 
design process. The different concepts such as mission requirements, architecture, technology, subsystem, components, 
etc. are captured as features of the design process. A feature is a conceptual element of a tangible solution (e.g., product, 
configuration, architecture) that exhibits variability concerns such as optionality, constraints, or dependency. Features 
are reusable across entirely different missions and systems design applications. With such a feature and variability-
oriented technique, we propose to capture the whole spacecraft design process as configuration formulation and design 
decision-making activities that are implemented through requirements engineering and parametric analysis framework. 
The configuration process is based on a systematic and iterative approach that allows for rapidly exploring a wide range 
of design options. Our approach is highly flexible and can be easily adapted to meet the specific needs of each 
spacecraft mission. 
This work results from the collaboration between researchers from space system engineering and software engineering 
domains. Together, we conjecture that variability modelling and analysis methods that have been developed for 
software systems can improve the space system design process, in particular the CD phase. We foresee the development 
of engineering tools that guide engineers towards the optimal designs, automate most exploration and analysis steps, 
and enable the thought sharing of expertise. As a preliminary endeavour to unite our two fields of research, in this 
paper, we present our approach of variability modelling techniques to an application case of space system design. We 
consider, more precisely, attitude determination and control satellite sub-system. 
 
Our framework mainly consists of three parts. Each part is associated with a step. Step-1) A model that captures 
requirements, technologies, and constraints between both. This model also includes the variability of the different 
elements. The design processes of the different technology components are also defined using this model. Step-2) A 
configurator that supports engineers in making suitable design decisions such as technology components selections 
concerning requirements. Step-3) A solver that will analyse and optimize the different design variables and parameters 
of the elements, such as technology components of the selected architectures. 
 
Our work on this case has allowed us to identify the major challenges of space system design and to clarify our research 
vision towards supporting the design process with variability-aware techniques. We retrospectively describe these 
challenges and present research directions that, we believe, have the potential to disrupt the way space systems are 
currently designed. To summarize, our key contributions are: 
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• We formulate the design of space systems as a configuration problem, and we highlight the complexity factors. 
Most notably: configuration is multi-stage (component selection and parameter setting), it involves Boolean, 
discrete and continuous parameters, and it is multi-step (multiple iterations in order to refine component 
selections and their parameters value based on intermediate analysis). 

• We develop a case study addressing design of a subsystem for a satellite. We identify the different variability 
dimensions (requirements, technologies, components, etc.) that exist in design process of such systems. We 
illustrate the complexity of modelling this design activity due to the large number of features, constraints, and 
differences between engineering guidelines. 

• We provide a framework to configure the system architecture and generate corresponding parametric and 
constraint optimization models for further analysis. We implement our approach in a toolchain that may support 
and automate engineers design activities. Our proposed approach and toolchain could potentially act as a 
benchmark for future research on variability modelling and design of space systems. 

 
SPACECRAFT DESIGN 
The CD analysis of complex space systems is typically performed by a multidisciplinary process for designing the system 
by modeling and integrating its constituting subsystems. The subsystems are modeled through parametric analysis 
composed of physics-based equations and integrated into a system design framework [1, 2]. In addition, numerous design 
synthesis tools and frameworks have been developed to support the design of space exploration and analysis [3,4,5,6]. In 
essence, all design processes and toolchain consist of elements that can be grouped into three main categories. These 
categories can be considered as the key aspects of a design process. For our context, we refer to these aspects as features 
classes of a design process. They are namely, the requirements and constraints, parametric analysis, and design decisions, 
see Fig. 1. 
 
Requirements and Constraints: Every design process begins with a set of top-
level mission requirements (and constraints) that must be satisfied by the 
spacecraft. Requirements start and drive the overall design process. 
Requirements define how the system shall function over its lifetime and what 
performance is needed to meet the mission objectives. The top-level mission 
requirements are broken down into system-level requirements from which 
further subsystem-level requirements are derived. The engineering and 
management of these requirements is a critical aspect of the design of complex 
systems. In the traditional waterfall process, requirements are managed 
sequentially and monolithically, while in agile processes, they are managed 
incrementally [7]. Requirements management approaches for space systems 
design have been proposed based on different maturity levels, such as DOORS 
[8] and ReqIF [9], which support the requirements decomposition and 
traceability. 
 
Parametric Analysis: In addition to the requirements management, a design process also includes some form of parametric 
analysis capability. The key function of a parametric analysis engine is to design various subsystem disciplines and 
integrate them into a system framework such that mission objective could be achieved in the optimal manner. This 
typically involves physics-based parametric equations that model the characteristic features, performance, and behavior 
of different subsystems and the entire system in a mathematical framework. For example, the characteristic attributes at 
the system-level could be the overall physical dimensions, total mass etc., while the performance could be its power 
consumption. Similarly, an example of the behavior attribute could be how the spacecraft attains the final operational 
orbit. The important point to note here is that the parametric analysis provides a way to measure and check when the 
requirements are satisfied. The parametric analysis can be implemented in numerous ways. One way is using any 
programming language or numeric computing environment such as MATLAB, Python, Simulink, or MS Excel. 
Alternatively, there is also a wide range of discipline-oriented high-fidelity tools and methods available such as GMAT 
[10] and STK [11] for mission analysis, several CFD tools for aerothermodynamic analysis, CAD software for structural 
analysis etc. This level of high-fidelity is not suitable at the CD stage as the inputs required for these tools are usually not 
available at this early design phase. Further, these tools are computationally exhaustive and lead to a high turn-around 
time which act as a drawback in developing and exploring the design solution space. 
 
Design Decisions: The third critical aspect of a design process is the design decisions that are usually coupled with the 
first two. Design decisions such as the selection of a specific material or a technology affect the parametric analysis and 
have a large impact on the final configuration formulation. For example, a design decision related to the material of the 
spacecraft's primary structure influences the structural load capacity. Similarly, the decision regarding the solar cell 
material (Silicon v/s Gallium Arsenide) influences the solar array sizing and configuration that further defines the power 
production capability of the spacecraft and hence the performance of the electric power subsystem. At the technology 
level, design decisions such as using an electric versus a chemical propulsion system directly and significantly impact the 
entire spacecraft size, configuration, and overall design solution. It should also be considered that some design decisions 

 
Fig. 1 Three feature-classes as 
attributes of a design process 
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could be driven by the requirements or imposed by constraints from top-level mission objectives. Hence, modeling design 
decisions and requirements is a key differentiating aspect across design processes and tools that impact design quality. 
Additionally, how well this modeling is integrated with the parametric analysis also impacts the efficiency of the design 
framework. Variation in these design decisions leads to conducting trade studies and developing solution spaces. This is 
a critical and challenging aspect that combines requirements engineering and design decision impact upon configuration 
variability and analysis. 
 
FEATURE-DRIVEN MODELING FRAMEWORK 
In this section, we outline our solution that combines and extends spacecraft design and variability engineering [12] to 
provide a framework that improves and support the design process of spacecraft. The proposed framework is model 
driven [13] and aims to, i) assist engineers in the different modeling and design steps ii) automatically derives and 
captures the feasible system architectures concerning requirements and constraints, iii) refines selected architectures 
through an optimizer, iv) support engineers during trade-off analysis. 
  
The key aspect of our approach is the explicit captures of system architecture variability at both component and 
parameter levels. This allows us to infer inter-dependencies between subsystems but also commonalities and differences 
across architectures. Consequently, engineers can select and assess suitable architectures. As mentioned in the previous 
section, a design process comprises three feature classes: requirements and constraints, parametric analysis, and design 
decisions. We use this as the fundamental tenet for our approach, where the concept of features drives the design and 
modelling process. In this feature-driven framework, requirements are integrated with parametric analysis and design 
decisions in the design process and toolchain from the very beginning. 
 

 
 
Our novel framework is developed in three steps, as shown in Fig. 2 and described next.  
  
Step-1: The design process and feature framework development   
The first step involves setting up the design process in terms of a feature model [14]. Features are all artifacts that do 
not depend on a particular mission or a design process. In this step, the focus is on developing generic feature-driven 
databases that capture the three feature classes. In a way, this step focuses on developing feature-based building blocks 
of a design process. In order to accomplish this, we have to set up a design process that could be decomposed into the 
three feature-based classes. It’s important to note that this first step is independent of any specific design process. 
Features can capture every decisional aspect of the mission definition and system architecture and dependency 

 
Fig. 2 Feature-driven design framework 
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relationships between them. Instead, the main goal is to develop the design framework composed of three feature 
classes. For the current framework, we are using the generic design process from the well-known Space Mission 
Analysis and Design (SMAD) textbook [15]. In this regard, the first step of the framework could be thought of as 
converting the SMAD into various feature models that are generic in nature and are applied in the specific context of 
designing missions on demand. 
The design process begins with mission objectives accompanied by top-level mission requirements, which then drive 
the requirements at system and subsystem levels. The requirements engineering leads to parametric analysis for mission 
analysis and all spacecraft subsystems that are integrated into a system-level solution. The parametric analysis applies a 
well-established set of physics-based equations from SMAD, and here, we are coding parametric analysis for different 
subsystems (ADC, power, structures, propulsion etc.) in python script modules. We select python for its advantages of 
being an object-oriented language and large open-source libraries. In addition to the physics-based equations, the 
parametric analysis framework is also composed of a database of previous missions, systems, technologies, and 
components. Following this design framework setup, we next model the variability and the configuration space using 
feature models [16]. Here, we integrate requirements and technologies with variability concerns in a Feature-Oriented 
Engineering Model. In this feature model, features represent the variable subsystem components but also requirements, 
mission modes, spacecraft states, etc. 
  
Step-2: Automatic configurator providing combination of all possible architecture solutions  
Once the feature model is setup, the next step addresses mission definition and system architecture generation. In the 
second step, we propose a reactive configurator that will automatically provide all possible system architecture 
combinations that satisfy the defined top-level requirements and performance constraints [17, 18].   
Mission definition includes a definition of mission con-ops, development of mission profile, and identifying spacecraft 
states based on the mission profile. Further, mission definition also includes top-level mission requirements and 
constraints from the mission objective. The designer uses all this information to specify system-level design decisions 
that are valid for the mission requirements. The mission-specific information is then applied to the feature model 
framework developed in step-1. The feature model uses this mission-specific information and matches it with the 
technology/ component database to provide all possible combinations of various components where each combination is 
system architecture. Thus, in this step, the designer is initially involved in setting up the requirements feature database 
and implementing design decisions. Note that in this step, the design framework is not implementing any parametric 
feasibility checks or even specifying any one particular solution but rather only produces all possible architecture 
combinations that could be plausible. 
  
Step-3: Selects the most optimum combination or optimize the sizing parameters.  
Then the next step provides optimization methods to select the most suitable system architecture from all plausible 
ones. This requires reasoning on system architecture's different functional and non-functional facets. Depending on the 
architecture’s different subsystems, we may need to reason on both architecture parameters' optimization (sizing) and 
architecture component optimization (selection).   
For this, we propose integrating constraint programming [19] and multi-disciplinary optimization (MDO) [20] 
capabilities. Our integration uses these paradigms in a complimentary way to select the most optimum combination 
and/or optimize the sizing parameters. The key point of our optimization approach is to drive the optimization process 
using the level of detail of the design decisions made during the definition and configuration step (step 2). 
For example, a high level of design decisions at the component level will first invoke the MDO capabilities to design 
the different component parameters using a traditional parametric process. Then the sized components can be 
manufactured in a tailored fashion, or the “nearest” existing components in the database could be recommended to the 
designers. On the other hand, we can formulate our architecture selection problem as a constraint optimization problem 
using our constraint programming capabilities. Thus, we can exhaustively explore the different component alternatives 
to optimize the component selection. Both constraint optimization problem and MDO problem formulation are 
automatically generated through using the configurator module. 
 
APPLICATION CASE-STUDY 
In this section we demonstrate the application of our proposed framework. We apply the solution outlined in the 
previous section towards design of a spacecraft subsystem first as a proof-of-concept. The presented application is only 
intended to act as a demonstration for implementing the solution in a toolchain. The aim here is to get clarity and 
experience of the development process. This application is rather a simplistic version of the ultimate vision for this 
framework which will address the entire system. In this regard, the implementation workflow remains the same while 
the application complexity will increase multifold due to various subsystems inter-dependencies and larger design 
decisions space. 
For this paper, we selected the Attitude Determination and Control Subsystem (ADCS) which is a crucial subsystem of 
any spacecraft. In the following subsections, we first provide an overview of the generic ADCS design process which 
corresponds to the first step of our proposed framework. We next present a feature-model corresponding to the design 
process. These two constitute the first step of the framework. The following subsection implements the second step of 
our framework explaining ACDS feature-based configurator identifying a valid ADCS solution. The last subsection 
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addresses the third and final step of our framework and explains optimal architecture selection/sizing through an 
optimization application.  
 
ADCS Design Process 
The ADCS stabilizes the vehicle and orients it in desired direction in consideration with the external disturbance torques 
acting on it. This subsystem can be divided into 2 hardware component categories: sensors that determine the position 
and orientation of the spacecraft, and actuators that perform the control function and compensate disturbances. Thus, the 
goal of the ADCS design process is to provide with a combination of sensors and actuators. The design process of a 
spacecraft’s ADCS is divided into six major steps, as follows. 
 

1. Define System-level requirements: Payload and spacecraft pointing accuracy, stability accuracy, slew rate etc 

2. Define control modes: Orbit Insertion, Acquisition, Nominal operation, Slew, Safe, Special 

3. Quantify disturbances: Gravity gradient, magnetic, aerodynamics, solar pressure, internal disturbances, and 
powered flight effects on control 

4. Select Attitude control type: Passive control, spin control, or 3-axis control 

5. Select and size ADCS hardware: Actuators (reaction wheels, thrusters or magnetic torquers), Sensors (Earth, 
Sun, inertial or other sensors) 

The process begins with defining system requirements in first step which corelates to top-level mission requirements. 
Second step is selection of the control modes which depends on the mission definition and con-ops. In this step, we 
define how s/c control is implemented in various mission phases. Next, primary disturbances or the external torques the 
satellite will face during its lifetime are calculated. These are taken from SMAD and calculate four major type of 
disturbance torques arising from gravity-gradient, magnetic field, aerodynamics, solar pressure. Based on these 
disturbances and system requirements, the next step then proceeds to either size or select a combination of different 
actuators and sensors that can fulfil the mission requirements. It can be deduced from above description that this 5-step 
process for even a subsystem is a combination of three feature attributes of requirements (in step-1), design decisions 
(in steps 2, 4, and 5), and parametric analysis (in steps 3 and 5). 
 

ADCS Feature Framework Development 
We now present an overview of the development of our feature model implemented in the FeatureIDE [21] as shown in 
FIG. 3. The root feature represents the ADCS subsystem composed of 72 design decisions encoded as boolean features 
and 27 crosstree constraints. This feature decomposition follows the design workflow presented in the previous 
subsection.  

 
The first subfeature of ACDS concerns the definition of this subsystem's requirements, corresponding to the first design 
step of the ACDS design process. This is essential because these requirements have the largest impact on the desing 
decisions, recommendations, and selection of articular hardware combinations. For example, an accuracy of 0.005 to 3 
degrees in attitude determination will demand sensors such as a sun sensor or a star tracker. However, if the accuracy 

 
Fig. 3 Feature model developed for ADCS application. 
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requirement is even more strict (e.g., 0.0003 to 0.01), only 
a star tracker can deliver it. Similarly, mission duration 
(e.g., < 1 day, > 1 day, > 1 year) is a key requirement 
driving the configuration of the power subsystem. 
The “control modes” feature corresponds to the second 
step in the ACDS design process and demonstrates 
capturing the design decision feature. Selecting a particular 
set of control modes will constrain the acceptable set of 
satellite architectures. The next feature attribute, 
‘Disturbances’, captures the parametric equations analysis 
feature class used to compute external disturbances 
torques. Attitude control type determines the main control 
systems concept (and technologies). These can be seen as a 
popular combination of hardware for standard purposes. 
The last subfeature of ACDS “select and size hardware” 
addresses the selection of the relevant hardware 
components. The corresponding subtree is mostly 
constrained by the previous subfeatures (requirements, 
control modes, etc.). Hence, in a concrete configuration 
workflow, engineers would normally set the previous 
subfeatures to reduce hardware configurations to suitable 
architectures. 
 
ADCS FeatureIDE Configurator 
Once the feature model for ADCS is developed, we now 
apply this model by identifying few selective attributes that 
represent an ADCS configuration. 
Fig. 4 shows a partial valid configuration that describes an 
ADCS solution. The configuration process usually starts 
by defining the sub-system requirements such as accuracy 
in determination and control. These first design decisions 
represented by features selection will drive the possible 
actuators and sensors component space thanks to 
constraints between features. These constraints can be hard 
constraints that capture an impossibility in practice or more 
general design guidelines. As can be seen in the figure, the 
configurator implements specific requirements 
(determination and control accuracy levels), decisions 
(selection of control type and hardware components such 
as reaction wheels, sensors et al.) and parametric analysis (calculation of disturbance torques). These selections are 
made specific to the mission and spacecraft being designed. The component selection is also done out of a database of 
various components based on mission requirements and design decisions. For this application, we have developed a 
representative database of various off-the-shelf 
actuators and sensors. 
With this setup, we enable engineers to configure 
subsystem and system architecture based on mission 
requirements and design decisions attributed to the 
specific configuration, in this case, for the ADCS 
solution. This view shows again that the feature-
oriented configuration process allows engineers to 
configure the different subsystems in an arbitrary 
order. Furthermore, the interactive activation of the 
constraints enables the identification and 
understanding of the interdependencies between the 
design choices. 
 
ADCS Optimal selection and sizing 
Once the design engineers have reached the desired 
level of detail in the architecture configuration that is 
valid -- according to the encoded feature model 
constraints -- further analysis must be conducted to size and/or select components in order to make sure that at least one 

 
Fig. 5 Constraint optimization and optimal component 
architecture selection using PyCSP3 

  

  
Fig. 4 FeatureIDE Configurator implementation 
showing selected feature attributes for ADCS 
application. 
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architecture meet the functional and non-functional requirements in practice. For this aim, we propose two 
complementary ways to reason about the architecture derived from the features configuration.  
 
Component Selection Optimization 
First, we propose a constraint-based programming 
approach where we select the most optimal combination of 
hardware component architectures, as shown in Fig. 5. For 
the current paper, we used PyCSP3 [22], a constraint 
satisfaction and optimization solver to list the architectural 
components selections that satisfy performance constraints 
such as minimum torque required for actuators or accuracy 
required for sensors. For the ADCS featureIDE 
configuration developed in the previous step, we first filter 
out individually the components that first satisfy specified 
performance constraints. One example for this 
implementation is the actuators category where in the 
featureIDE configurator, we selected reaction wheels as 
the desired category of actuators. We then go to our 
database of reaction wheels where we have a list of six existing reaction wheels. We filter this list by applying the 
constraint of minimum torque required from a reaction wheel. In current implementation, we found that only two 
reaction wheels met our torque constraints. Similarly, we perform constraint-based filtering for other components i.e. 
sensors. For the current demonstration, we only limited to sun-sensors and star-trackers as our desired sensors. Once 
this filtering is done, we then combine all filtered components in specific ADCS architectures. This combination is still 
guided by the high-level architecture design performed in the featureIDE configurator in the previous step. As can be 
seen in Fig. 5, we notionally show only six ADCS solutions, but in reality, our solver found more than 3000 solutions 
by combining all filtered out reaction wheels, sun-sensors and star-trackers options. Our PyCSP3 optimizer then selects 
the most optimal architectural components selection by adding a cost function over mass and power consumption to 
minimize by the solver. 
 
Multi-Disciplinary Analysis and Optimization (MDAO) 
A second optimization direction is to actually size the components by 
considering the performance constraints and applying the physical sizing 
equations to optimize on one or multiple cost functions. The sized 
components will be used to select the most suitable components in the 
database. The main assumption is that selection of the nearest/closest 
components regarding the optimally sized ones will provide the best 
architecture.  
For this we reuse the parametric process and mathematical models 
previously created in step 1. However, this approach can also drive the 
selection of the most suitable components in the database. In current case 
of ADCS subsystem, the sizing equations address actuators such as 
reaction wheels and thrusters. Fig. 6 illustrates the sizing process of a 
reaction wheel in OpenMDAO [23]. This process shows the dependency 
and computation between input and output parameters. The two input 
parameters that also act as design variables (radius and angular velocity) 
represent the property of the reaction wheel. These inputs are used to 
compute the outputs such as mass, torque and power consumption that 
represent performances of the reaction wheel. Such computations are 
generally nonlinear. Thus, we used sequential least squares programming 
optimization algorithms to converge to design variable values that 
optimize the reaction wheel mass while satisfying a minimum torque requirement.  
In this example (see Fig 7), as the mass only depends on the radius, the optimizer converges into the minimal radius 
value with an angular velocity value that produces the minimum torque requirement. The tool lists the input and output 
optimized parameter values and some info about the algorithm metrics. Here only 6 gradient evaluations have been 
sufficient to converge to an optimal reaction wheel parameter values. 
For this paper, we do not size the reaction wheels as we select commercially available reaction wheels that can fulfill 
torque and angular momentum requirements. The example shown here is a representational example to show that 
MDAO is another optimization method which can be more valuable for subsystems such as propulsion or power where 
components (propellant tanks or solar arrays) are parametrically sized to mission requirements. MDAO is also a more 
suitable optimization approach for sizing the entire system as previously described in step-3 of our framework.  
 

 
Fig. 7 Reaction wheel sizing 
optimization results 

 
 

 
Fig. 6 Parametric sizing optimization example for a 
reaction wheel in OpenMDAO 
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CONCLUSION 
The goal of this paper has been to propose a novel research direction that stemmed out of collaboration between 
researchers from space systems engineering and software engineering domains. We have adopted tools and expertise from 
the two domains towards innovating new ways of approaching the spacecraft design problem and to develop a prototype 
solution concept. 
In this paper, we have presented a prototype design approach that is feature-driven and address variability concerns such 
as optionality, constraints, or interdisciplinary dependencies in a design process. We modelled the set of design choices, 
requirements, and parametric analysis aspects of a design process as a feature model. We have applied this logic to develop 
and implement a toolchain to demonstrate our proposed methodology.  
We, then, use the FeatureIDE tool to enable engineers to specify these design choices to configure the design architecture 
and produce a suitable blueprint that satisfies static design constraints. We have linked FeatureIDE to a prototype tool we 
developed, which enables the evaluation of the complex parametric equations determining the validity of the design. Our 
toolchain already overcomes the current state of practice in variability management as it benefits from the capability of 
FeatureIDE to support configuration activities, combined with our domain-specific analysis tool. 
The application in the current paper is limited to a spacecraft subsystem design and demonstrate a working example of 
our proposed solution and toolchain. We are currently working on expanding our framework for other spacecraft 
subsystems (power, structure, propulsion et al.) and eventually apply our toolset to comprehensively explore design 
solution space for the entire spacecraft and system-of-system applications. Our application of variability modelling 
methods, together with the configuration analysis software that we specifically developed for our satellite application 
case, are available to benchmark future research solutions. We hope that our endeavour will drive more research at the 
intersection of variability modelling and space system engineering, which will ultimately yield significant advances cross-
cutting these two fields. 
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