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INTRODUCTION

Designing spacecraft is known as an extremely challenging problem. The very first stage of the design process, aka the
conceptual design (CD) phase, is even more abstract due to the lack of information and short turnaround time. It
requires multi-criteria decision-making on different concerns, from mission analysis to system architectures. In recent
years, spacecraft missions have become increasingly ambitious, requiring spacecraft to be designed for various
demanding applications. As a result, spacecraft design has become an increasingly challenging endeavour that requires
highly complex and multidisciplinary integration of multiple disciplines in a multi-layer hierarchical system architecture
solution.

Additionally, at the CD stage, initial unknowns are significant, while system inter-dependencies are complex. Such
complexity might lead to design system architectures that are not feasible in practice or do not fulfil nor optimize
functional requirements. Moreover, the lack of efficient automation to model and assess numerous design alternatives
reduce the benefits of the early design phases by missing more suitable designs and increasing the design time and cost.
Thus, either many design iterations by engineers are required, or a well-proven design with flight heritage is selected
and refined. Such approaches can give a promising baseline. However, neither approach is certain to yield an optimal
solution.

In this paper, we propose a novel spacecraft conceptual design approach to close the previously mentioned gaps. Our
framework focus on abstraction, modularity, and reusability of the different concepts used in the traditional spacecraft
design process. The different concepts such as mission requirements, architecture, technology, subsystem, components,
etc. are captured as features of the design process. A feature is a conceptual element of a tangible solution (e.g., product,
configuration, architecture) that exhibits variability concerns such as optionality, constraints, or dependency. Features
are reusable across entirely different missions and systems design applications. With such a feature and variability-
oriented technique, we propose to capture the whole spacecraft design process as configuration formulation and design
decision-making activities that are implemented through requirements engineering and parametric analysis framework.
The configuration process is based on a systematic and iterative approach that allows for rapidly exploring a wide range
of design options. Our approach is highly flexible and can be easily adapted to meet the specific needs of each
spacecraft mission.

This work results from the collaboration between researchers from space system engineering and software engineering
domains. Together, we conjecture that variability modelling and analysis methods that have been developed for
software systems can improve the space system design process, in particular the CD phase. We foresee the development
of engineering tools that guide engineers towards the optimal designs, automate most exploration and analysis steps,
and enable the thought sharing of expertise. As a preliminary endeavour to unite our two fields of research, in this
paper, we present our approach of variability modelling techniques to an application case of space system design. We
consider, more precisely, attitude determination and control satellite sub-system.

Our framework mainly consists of three parts. Each part is associated with a step. Step-1) A model that captures
requirements, technologies, and constraints between both. This model also includes the variability of the different
elements. The design processes of the different technology components are also defined using this model. Step-2) A
configurator that supports engineers in making suitable design decisions such as technology components selections
concerning requirements. Step-3) A solver that will analyse and optimize the different design variables and parameters
of the elements, such as technology components of the selected architectures.

Our work on this case has allowed us to identify the major challenges of space system design and to clarify our research
vision towards supporting the design process with variability-aware techniques. We retrospectively describe these
challenges and present research directions that, we believe, have the potential to disrupt the way space systems are
currently designed. To summarize, our key contributions are:
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e  We formulate the design of space systems as a configuration problem, and we highlight the complexity factors.
Most notably: configuration is multi-stage (component selection and parameter setting), it involves Boolean,
discrete and continuous parameters, and it is multi-step (multiple iterations in order to refine component
selections and their parameters value based on intermediate analysis).

® We develop a case study addressing design of a subsystem for a satellite. We identify the different variability
dimensions (requirements, technologies, components, etc.) that exist in design process of such systems. We
illustrate the complexity of modelling this design activity due to the large number of features, constraints, and
differences between engineering guidelines.

® We provide a framework to configure the system architecture and generate corresponding parametric and
constraint optimization models for further analysis. We implement our approach in a toolchain that may support
and automate engineers design activities. Our proposed approach and toolchain could potentially act as a
benchmark for future research on variability modelling and design of space systems.

SPACECRAFT DESIGN

The CD analysis of complex space systems is typically performed by a multidisciplinary process for designing the system
by modeling and integrating its constituting subsystems. The subsystems are modeled through parametric analysis
composed of physics-based equations and integrated into a system design framework [1, 2]. In addition, numerous design
synthesis tools and frameworks have been developed to support the design of space exploration and analysis [3,4,5,6]. In
essence, all design processes and toolchain consist of elements that can be grouped into three main categories. These
categories can be considered as the key aspects of a design process. For our context, we refer to these aspects as features
classes of a design process. They are namely, the requirements and constraints, parametric analysis, and design decisions,
see Fig. 1.

Requirements and Constraints: Every design process begins with a set of top-
level mission requirements (and constraints) that must be satisfied by the
spacecraft. Requirements start and drive the overall design process.
Requirements define how the system shall function over its lifetime and what
performance is needed to meet the mission objectives. The top-level mission - Parametric analysis
requirements are broken down into system-level requirements from which
further subsystem-level requirements are derived. The engineering and ) o
management of these requirements is a critical aspect of the design of complex - Design decisions
systems. In the traditional waterfall process, requirements are managed
sequentially and monolithically, while in agile processes, they are managed
incrementally [7]. Requirements management approaches for space systems
design have been proposed based on different maturity levels, such as DOORS
[8] and ReqlIF [9], which support the requirements decomposition and
traceability.

Requirements &
Constraints

amework

Fig. 1 Three feature-classes as
attributes of a design process

Parametric Analysis: In addition to the requirements management, a design process also includes some form of parametric
analysis capability. The key function of a parametric analysis engine is to design various subsystem disciplines and
integrate them into a system framework such that mission objective could be achieved in the optimal manner. This
typically involves physics-based parametric equations that model the characteristic features, performance, and behavior
of different subsystems and the entire system in a mathematical framework. For example, the characteristic attributes at
the system-level could be the overall physical dimensions, total mass etc., while the performance could be its power
consumption. Similarly, an example of the behavior attribute could be how the spacecraft attains the final operational
orbit. The important point to note here is that the parametric analysis provides a way to measure and check when the
requirements are satisfied. The parametric analysis can be implemented in numerous ways. One way is using any
programming language or numeric computing environment such as MATLAB, Python, Simulink, or MS Excel.
Alternatively, there is also a wide range of discipline-oriented high-fidelity tools and methods available such as GMAT
[10] and STK [11] for mission analysis, several CFD tools for aerothermodynamic analysis, CAD software for structural
analysis etc. This level of high-fidelity is not suitable at the CD stage as the inputs required for these tools are usually not
available at this early design phase. Further, these tools are computationally exhaustive and lead to a high turn-around
time which act as a drawback in developing and exploring the design solution space.

Design Decisions: The third critical aspect of a design process is the design decisions that are usually coupled with the
first two. Design decisions such as the selection of a specific material or a technology affect the parametric analysis and
have a large impact on the final configuration formulation. For example, a design decision related to the material of the
spacecraft's primary structure influences the structural load capacity. Similarly, the decision regarding the solar cell
material (Silicon v/s Gallium Arsenide) influences the solar array sizing and configuration that further defines the power
production capability of the spacecraft and hence the performance of the electric power subsystem. At the technology
level, design decisions such as using an electric versus a chemical propulsion system directly and significantly impact the
entire spacecraft size, configuration, and overall design solution. It should also be considered that some design decisions

SECESA 2022




could be driven by the requirements or imposed by constraints from top-level mission objectives. Hence, modeling design
decisions and requirements is a key differentiating aspect across design processes and tools that impact design quality.
Additionally, how well this modeling is integrated with the parametric analysis also impacts the efficiency of the design
framework. Variation in these design decisions leads to conducting trade studies and developing solution spaces. This is
a critical and challenging aspect that combines requirements engineering and design decision impact upon configuration
variability and analysis.

FEATURE-DRIVEN MODELING FRAMEWORK

In this section, we outline our solution that combines and extends spacecraft design and variability engineering [12] to
provide a framework that improves and support the design process of spacecraft. The proposed framework is model
driven [13] and aims to, 1) assist engineers in the different modeling and design steps ii) automatically derives and
captures the feasible system architectures concerning requirements and constraints, iii) refines selected architectures
through an optimizer, iv) support engineers during trade-off analysis.

The key aspect of our approach is the explicit captures of system architecture variability at both component and
parameter levels. This allows us to infer inter-dependencies between subsystems but also commonalities and differences
across architectures. Consequently, engineers can select and assess suitable architectures. As mentioned in the previous
section, a design process comprises three feature classes: requirements and constraints, parametric analysis, and design
decisions. We use this as the fundamental tenet for our approach, where the concept of features drives the design and
modelling process. In this feature-driven framework, requirements are integrated with parametric analysis and design
decisions in the design process and toolchain from the very beginning.

STEP 1: DESIGN PROCESS AND FRAMEWORK ENGINEERING
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Fig. 2 Feature-driven design framework

A

Our novel framework is developed in three steps, as shown in Fig. 2 and described next.

Step-1: The design process and feature framework development

The first step involves setting up the design process in terms of a feature model [14]. Features are all artifacts that do
not depend on a particular mission or a design process. In this step, the focus is on developing generic feature-driven
databases that capture the three feature classes. In a way, this step focuses on developing feature-based building blocks
of a design process. In order to accomplish this, we have to set up a design process that could be decomposed into the
three feature-based classes. It’s important to note that this first step is independent of any specific design process.
Features can capture every decisional aspect of the mission definition and system architecture and dependency
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relationships between them. Instead, the main goal is to develop the design framework composed of three feature
classes. For the current framework, we are using the generic design process from the well-known Space Mission
Analysis and Design (SMAD) textbook [15]. In this regard, the first step of the framework could be thought of as
converting the SMAD into various feature models that are generic in nature and are applied in the specific context of
designing missions on demand.

The design process begins with mission objectives accompanied by top-level mission requirements, which then drive
the requirements at system and subsystem levels. The requirements engineering leads to parametric analysis for mission
analysis and all spacecraft subsystems that are integrated into a system-level solution. The parametric analysis applies a
well-established set of physics-based equations from SMAD, and here, we are coding parametric analysis for different
subsystems (ADC, power, structures, propulsion etc.) in python script modules. We select python for its advantages of
being an object-oriented language and large open-source libraries. In addition to the physics-based equations, the
parametric analysis framework is also composed of a database of previous missions, systems, technologies, and
components. Following this design framework setup, we next model the variability and the configuration space using
feature models [16]. Here, we integrate requirements and technologies with variability concerns in a Feature-Oriented
Engineering Model. In this feature model, features represent the variable subsystem components but also requirements,
mission modes, spacecraft states, etc.

Step-2: Automatic configurator providing combination of all possible architecture solutions

Once the feature model is setup, the next step addresses mission definition and system architecture generation. In the
second step, we propose a reactive configurator that will automatically provide all possible system architecture
combinations that satisfy the defined top-level requirements and performance constraints [17, 18].

Mission definition includes a definition of mission con-ops, development of mission profile, and identifying spacecraft
states based on the mission profile. Further, mission definition also includes top-level mission requirements and
constraints from the mission objective. The designer uses all this information to specify system-level design decisions
that are valid for the mission requirements. The mission-specific information is then applied to the feature model
framework developed in step-1. The feature model uses this mission-specific information and matches it with the
technology/ component database to provide all possible combinations of various components where each combination is
system architecture. Thus, in this step, the designer is initially involved in setting up the requirements feature database
and implementing design decisions. Note that in this step, the design framework is not implementing any parametric
feasibility checks or even specifying any one particular solution but rather only produces all possible architecture
combinations that could be plausible.

Step-3: Selects the most optimum combination or optimize the sizing parameters.

Then the next step provides optimization methods to select the most suitable system architecture from all plausible
ones. This requires reasoning on system architecture's different functional and non-functional facets. Depending on the
architecture’s different subsystems, we may need to reason on both architecture parameters' optimization (sizing) and
architecture component optimization (selection).

For this, we propose integrating constraint programming [19] and multi-disciplinary optimization (MDO) [20]
capabilities. Our integration uses these paradigms in a complimentary way to select the most optimum combination
and/or optimize the sizing parameters. The key point of our optimization approach is to drive the optimization process
using the level of detail of the design decisions made during the definition and configuration step (step 2).

For example, a high level of design decisions at the component level will first invoke the MDO capabilities to design
the different component parameters using a traditional parametric process. Then the sized components can be
manufactured in a tailored fashion, or the “nearest” existing components in the database could be recommended to the
designers. On the other hand, we can formulate our architecture selection problem as a constraint optimization problem
using our constraint programming capabilities. Thus, we can exhaustively explore the different component alternatives
to optimize the component selection. Both constraint optimization problem and MDO problem formulation are
automatically generated through using the configurator module.

APPLICATION CASE-STUDY

In this section we demonstrate the application of our proposed framework. We apply the solution outlined in the
previous section towards design of a spacecraft subsystem first as a proof-of-concept. The presented application is only
intended to act as a demonstration for implementing the solution in a toolchain. The aim here is to get clarity and
experience of the development process. This application is rather a simplistic version of the ultimate vision for this
framework which will address the entire system. In this regard, the implementation workflow remains the same while
the application complexity will increase multifold due to various subsystems inter-dependencies and larger design
decisions space.

For this paper, we selected the Attitude Determination and Control Subsystem (ADCS) which is a crucial subsystem of
any spacecraft. In the following subsections, we first provide an overview of the generic ADCS design process which
corresponds to the first step of our proposed framework. We next present a feature-model corresponding to the design
process. These two constitute the first step of the framework. The following subsection implements the second step of
our framework explaining ACDS feature-based configurator identifying a valid ADCS solution. The last subsection
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addresses the third and final step of our framework and explains optimal architecture selection/sizing through an
optimization application.

ADCS Design Process

The ADCS stabilizes the vehicle and orients it in desired direction in consideration with the external disturbance torques
acting on it. This subsystem can be divided into 2 hardware component categories: sensors that determine the position
and orientation of the spacecraft, and actuators that perform the control function and compensate disturbances. Thus, the
goal of the ADCS design process is to provide with a combination of sensors and actuators. The design process of a
spacecraft’s ADCS is divided into six major steps, as follows.

1. Define System-level requirements: Payload and spacecraft pointing accuracy, stability accuracy, slew rate etc
2. Define control modes: Orbit Insertion, Acquisition, Nominal operation, Slew, Safe, Special

3. Quantify disturbances: Gravity gradient, magnetic, aerodynamics, solar pressure, internal disturbances, and
powered flight effects on control

4. Select Attitude control type: Passive control, spin control, or 3-axis control

5. Select and size ADCS hardware: Actuators (reaction wheels, thrusters or magnetic torquers), Sensors (Earth,
Sun, inertial or other sensors)

The process begins with defining system requirements in first step which corelates to top-level mission requirements.
Second step is selection of the control modes which depends on the mission definition and con-ops. In this step, we
define how s/c control is implemented in various mission phases. Next, primary disturbances or the external torques the
satellite will face during its lifetime are calculated. These are taken from SMAD and calculate four major type of
disturbance torques arising from gravity-gradient, magnetic field, aerodynamics, solar pressure. Based on these
disturbances and system requirements, the next step then proceeds to either size or select a combination of different
actuators and sensors that can fulfil the mission requirements. It can be deduced from above description that this 5-step
process for even a subsystem is a combination of three feature attributes of requirements (in step-1), design decisions
(in steps 2, 4, and 5), and parametric analysis (in steps 3 and 5).

ADCS Feature Framework Development
We now present an overview of the development of our feature model implemented in the FeatureIDE [21] as shown in
FIG. 3. The root feature represents the ADCS subsystem composed of 72 design decisions encoded as boolean features

and 27 crosstree constraints. This feature decomposition follows the design workflow presented in the previous
subsection.

ADCS
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Fig. 3 Feature model developed for ADCS application.

The first subfeature of ACDS concerns the definition of this subsystem's requirements, corresponding to the first design
step of the ACDS design process. This is essential because these requirements have the largest impact on the desing
decisions, recommendations, and selection of articular hardware combinations. For example, an accuracy of 0.005 to 3
degrees in attitude determination will demand sensors such as a sun sensor or a star tracker. However, if the accuracy
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requirement is even more strict (e.g., 0.0003 to 0.01), only
a star tracker can deliver it. Similarly, mission duration
(e.g., <1 day, > 1 day, > 1 year) is a key requirement
driving the configuration of the power subsystem.

The “control modes” feature corresponds to the second
step in the ACDS design process and demonstrates
capturing the design decision feature. Selecting a particular
set of control modes will constrain the acceptable set of
satellite architectures. The next feature attribute,
‘Disturbances’, captures the parametric equations analysis
feature class used to compute external disturbances
torques. Attitude control type determines the main control
systems concept (and technologies). These can be seen as a
popular combination of hardware for standard purposes.
The last subfeature of ACDS “select and size hardware”
addresses the selection of the relevant hardware
components. The corresponding subtree is mostly
constrained by the previous subfeatures (requirements,
control modes, etc.). Hence, in a concrete configuration
workflow, engineers would normally set the previous
subfeatures to reduce hardware configurations to suitable
architectures.

ADCS FeatureIDE Configurator

Once the feature model for ADCS is developed, we now
apply this model by identifying few selective attributes that
represent an ADCS configuration.

Fig. 4 shows a partial valid configuration that describes an
ADCS solution. The configuration process usually starts
by defining the sub-system requirements such as accuracy
in determination and control. These first design decisions
represented by features selection will drive the possible
actuators and sensors component space thanks to
constraints between features. These constraints can be hard
constraints that capture an impossibility in practice or more
general design guidelines. As can be seen in the figure, the
configurator implements specific requirements
(determination and control accuracy levels), decisions
(selection of control type and hardware components such
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Fig. 4 FeatureIDE Configurator implementation
showing selected feature attributes for ADCS
application.

as reaction wheels, sensors et al.) and parametric analysis (calculation of disturbance torques). These selections are

made specific to the mission and spacecraft being designed.

The component selection is also done out of a database of

various components based on mission requirements and design decisions. For this application, we have developed a

representative database of various off-the-shelf
actuators and sensors.

With this setup, we enable engineers to configure
subsystem and system architecture based on mission
requirements and design decisions attributed to the
specific configuration, in this case, for the ADCS
solution. This view shows again that the feature-
oriented configuration process allows engineers to
configure the different subsystems in an arbitrary
order. Furthermore, the interactive activation of the
constraints enables the identification and
understanding of the interdependencies between the
design choices.

ADCS Optimal selection and sizing

Once the design engineers have reached the desired
level of detail in the architecture configuration that is
valid -- according to the encoded feature model
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Fig. 5 Constraint optimization and optimal component
architecture selection using PyCSP3

constraints -- further analysis must be conducted to size and/or select components in order to make sure that at least one
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architecture meet the functional and non-functional requirements in practice. For this aim, we propose two
complementary ways to reason about the architecture derived from the features configuration.

Component Selection Optimization

First, we propose a constraint-based programming s | E—HE
approach where we select the most optimal combination of Auto-IVC None
hardware component architectures, as shown in Fig. 5. For e 1
the current paper, we used PyCSP3 [22], a constraint radius [Y—
satisfaction and optimization solver to list the architectural -
. . . model ang_vel ] LN: RUNONCE
components selections that satisfy performance constraints
such as minimum torque required for actuators or accuracy R fox
required for sensors. For the ADCS featureIDE o
configuration developed in the previous step, we first filter
out individually the components that first satisfy specified povet

performance constraints. One example for this
implementation is the actuators category where in the
featureIDE configurator, we selected reaction wheels as
the desired category of actuators. We then go to our
database of reaction wheels where we have a list of six existing reaction wheels. We filter this list by applying the
constraint of minimum torque required from a reaction wheel. In current implementation, we found that only two
reaction wheels met our torque constraints. Similarly, we perform constraint-based filtering for other components i.e.
sensors. For the current demonstration, we only limited to sun-sensors and star-trackers as our desired sensors. Once
this filtering is done, we then combine all filtered components in specific ADCS architectures. This combination is still
guided by the high-level architecture design performed in the featureIDE configurator in the previous step. As can be
seen in Fig. 5, we notionally show only six ADCS solutions, but in reality, our solver found more than 3000 solutions
by combining all filtered out reaction wheels, sun-sensors and star-trackers options. Our PyCSP3 optimizer then selects
the most optimal architectural components selection by adding a cost function over mass and power consumption to
minimize by the solver.

Fig. 6 Parametric sizing optimization example for a
reaction wheel in OpenMDAO

Multi-Disciplinary Analysis and Optimization (MDAO)
A second optimization direction is to actually size the components by

Dptimization terminated successfully

considering the performance constraints and applying the physical sizing §2”92F funcg'w" value: 1.9
. . . . . . erations:
equations to optimize on one or multiple cost functions. The sized Function evaluations: 7

components will be used to select the most suitable components in the (nize tion“gzgﬁgzee"a“’a“"“s: g
database. The main assumption is that selection of the nearest/closest

components regarding the optimally sized ones will provide the best
architecture.

For this we reuse the parametric process and mathematical models
previously created in step 1. However, this approach can also drive the ;iglgzl Hé?] e e
selection of the most suitable components in the database. In current case -

of ADCS subsystem, the sizing equations address actuators such as
reaction wheels and thrusters. Fig. 6 illustrates the sizing process of a
reaction wheel in OpenMDAO [23]. This process shows the dependency
and computation between input and output parameters. The two input
parameters that also act as design variables (radius and angular velocity) torque [16.]
represent the property of the reaction wheel. These inputs are used to POMCIR (333333333
compute the outputs such as mass, torque and power consumption that
represent performances of the reaction wheel. Such computations are
generally nonlinear. Thus, we used sequential least squares programming
optimization algorithms to converge to design variable values that
optimize the reaction wheel mass while satisfying a minimum torque requirement.

In this example (see Fig 7), as the mass only depends on the radius, the optimizer converges into the minimal radius
value with an angular velocity value that produces the minimum torque requirement. The tool lists the input and output
optimized parameter values and some info about the algorithm metrics. Here only 6 gradient evaluations have been
sufficient to converge to an optimal reaction wheel parameter values.

For this paper, we do not size the reaction wheels as we select commercially available reaction wheels that can fulfill
torque and angular momentum requirements. The example shown here is a representational example to show that
MDAUO is another optimization method which can be more valuable for subsystems such as propulsion or power where
components (propellant tanks or solar arrays) are parametrically sized to mission requirements. MDAO is also a more
suitable optimization approach for sizing the entire system as previously described in step-3 of our framework.

Explicit Output(s) in 'model’

Fig. 7 Reaction wheel sizing
optimization results
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CONCLUSION

The goal of this paper has been to propose a novel research direction that stemmed out of collaboration between
researchers from space systems engineering and software engineering domains. We have adopted tools and expertise from
the two domains towards innovating new ways of approaching the spacecraft design problem and to develop a prototype
solution concept.

In this paper, we have presented a prototype design approach that is feature-driven and address variability concerns such
as optionality, constraints, or interdisciplinary dependencies in a design process. We modelled the set of design choices,
requirements, and parametric analysis aspects of a design process as a feature model. We have applied this logic to develop
and implement a toolchain to demonstrate our proposed methodology.

We, then, use the FeatureIDE tool to enable engineers to specify these design choices to configure the design architecture
and produce a suitable blueprint that satisfies static design constraints. We have linked FeatureIDE to a prototype tool we
developed, which enables the evaluation of the complex parametric equations determining the validity of the design. Our
toolchain already overcomes the current state of practice in variability management as it benefits from the capability of
FeaturelDE to support configuration activities, combined with our domain-specific analysis tool.

The application in the current paper is limited to a spacecraft subsystem design and demonstrate a working example of
our proposed solution and toolchain. We are currently working on expanding our framework for other spacecraft
subsystems (power, structure, propulsion et al.) and eventually apply our toolset to comprehensively explore design
solution space for the entire spacecraft and system-of-system applications. Our application of variability modelling
methods, together with the configuration analysis software that we specifically developed for our satellite application
case, are available to benchmark future research solutions. We hope that our endeavour will drive more research at the
intersection of variability modelling and space system engineering, which will ultimately yield significant advances cross-
cutting these two fields.
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