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Abstract—With growing adoption of Distributed Ledger Tech-
nologies, their networks must scale while maintaining efficient
communication for the underlying consensus and replication
mechanisms. New content distribution concepts like Named Data
Networking create opportunities to achieve this. We present and
evaluate XRP-NDN overlay, a solution to increase communication
efficiency for consensus-validation blockchains like XRP Ledger.
We send consensus messages over different communication
models and show that the chosen model lowers the number
of messages at node level to minimum, while maintaining or
improving performance by leveraging overlay advantages.

Index Terms—XRP, blockchain, overlay, NDN, communication

I. INTRODUCTION

While different aspects of Distributed Ledger Technology
(DLT) benefited from increased research attention, the un-
derlying communication schemes, often relying on flooding
mechanisms due to their one-to-many and many-to-many
communication needs, received somewhat less attention. The
task of scaling these networks comes with its challenges, one
being to maintain or improve the efficiency and resilience
of underlying communication. Each blockchain type has its
specifics, and per our understanding, a one-size-fits-all solution
is far from possible. For the Ethereum (ETH) blockchain based
on Proof of Work (PoW), Gossipsub [1] was proposed to
improve its communication layer, while [2] proposed a Named
Data Networking (NDN)-based design for block propagation.
The community effort was mainly directed towards PoW-type
DLTs, with other types like consensus-validation blockchains
receiving less attention. XRP Ledger (XRPL) is such a
DLT [3], [4]. The size of its consensus protocol messages
is small enough (around 0.5kB) as to not be a challenge.
XRPL communication needs are rather near-real-time because:
i) by design it aims to do real-time settlement [5], ii) it
needs close synchronisation, interconnection and fault free
operation between validators [6], and iii) by implementation,
in the 3-5s between 2 ledgers multiple consensus rounds and
their message exchanges are held; in comparison, on BTC
median block propagation time is 6.5s and mean=12.5s [7].
It is rather the dissemination of a high number of flooded
messages and their processing at each node that challenges
XRPL scalability, by increasing requirements for channel
bandwidth, node hardware, and costs. If unaddressed, at some
point this can result in network performance degradation. The

problem can be stated: How can the performance burden due
to a high number of messages induced by flooding at scale,
be alleviated? Different approaches can be considered, e.g.
improving the dissemination protocol, or external solutions
such as overlays. We focus on decreasing the number of
messages while deviating them through an NDN overlay
where we can leverage specific properties to achieve this goal.
NDN [8] is a type of content distribution network which
instead of delivering packets to a given destination (IP), it
fetches the data by name, offering content caching to improve
delivery speed and reduce congestion, and built-in multicast.

Our contribution is two-fold: i) to our knowledge for
consensus-validation DLTs there was no prior work on the
topic, and ii) we propose, implement and evaluate multiple
models to find the best one for the concrete case of XRPL.

II. BACKGROUND

XRPL is an open-source, permissionless, decentralized
blockchain appreciated for transaction (tx) throughput (1500
tx/s), speed (tx settles in 3-5s), low fees and low energy
consumption. The blockchain building process consists of a
Byzantine Fault Tolerant "Consensus" [6] and a "Validation"
stage. Consensus-wise a node only needs to communicate with
those from its Unique Node List (UNL). UNL [9] is the set
of nodes that a node does not necessarily consider to be all
honest, but trusts not to collude. Consensus stages are: i)
"Open", when new tx’s are received; ii) "Close", when new tx
are not accepted but consensus advances towards ledger close;
iii) "Establish", where nodes agree on effective close time and
current tx set by exchanging proposals and adding or removing
tx’s; iv) "Consensus reached", when nodes agree on the tx set
to include in ledger; v) in "Accept" phase nodes apply the
agreed tx set in canonical order and share the result, and vi)
"end round" state meaning the round is finished and partici-
pants move to ledger validation. During Validation, validators
share results as signed messages, called validations, containing
the calculated ledger’s hash to check if they obtained identical
results. Then, they compare the results and declare the ledger
validated IF enough trusted validators agree. Flooding is the
main dissemination protocol, which ensures robustness and
simplicity at expense of efficiency. Dissemination efficiency
for main flooded data types: Transactions (Tx), Proposals, and
Validations could be optimised.



Because today’s Internet is rather used as an information
distribution network, NDN [10], [11] fetches data by name.
NDN distinguishes itself as follows: i) Data is named by appli-
cation, and Consumers request it by name - a consumer-driven
process; ii) Data is signed by Producers and can be verified
by consumers; iii) Routers record data requests (interests) and
erase it once received. As such, smart strategies can be used for
forwarding, and loops eliminated. NDN offers content caching
to improve delivery speed and reduce congestion, a simpler
configuration of network devices, and data-level security. On
NDN Producers create data while Consumers are interested
to receive or "consume" it. Hence, the two packet types: i)
Interests sent by Consumers ask Producers for data; ii) Data
created by Producers is sent to Consumers in response to
Interests. Other building blocks are Content Store which stores
for some time data already seen to serve it immediately in
case of new requests; Pending Interest Table stores unfulfilled
interests; Forward Information Base helps packet routing.

III. DESIGN AND IMPLEMENTATION

We chose overlays because their specific properties can be
leveraged to achieve our goal without touching the application
or underlay, which offers flexibility. Applications can process
less messages by shifting some overhead to overlay, opt in/out
of it, or fallback to p2p as backup. NDN was chosen as overlay
because of its in-network caching which can lower the number
of messages, and native multicast which should soon have
mechanisms to reduce message duplicates [12]. Data can be
disseminated on NDN in two ways: In the native pull-based
approach, consumers request and receive data by name. In a
push approach [13] data is sent over interests with multicast.

Aiming to decrease XRPL nodes’ load, i.e. number of
messages processed, we seek to answer following questions:

Q1 On which models can we map XRP consensus to NDN?
Q2 How do models compare each other and with baseline?

To answer Q1 we identified several NDN-specific communi-
cation models shown in Fig. 1 and a fourth one which is an
optimized multicast model, called “piggybacking”.

1) "Polling": Each validator associates to each validation
an increasing "sequence number". Interested nodes send pe-
riodic interests to fetch last "sequence number". If sequence
unchanged, they do nothing; if sequence increased, they ask
for the new validation. As the interval between ledgers on
XRPL is 3-5s, we chose a 200ms polling interval to ensure
we don’t delay much the propagation of validations.

2) "Announce-pull": Validators having created a new val-
idation send a multicast interest to let all nodes know the
sequence of their new validation. Interested nodes pull the
validation with the given sequence.

3) "Advanced-request": Because on XRPL Consumers know
the identity of originating Producers (UNL validators), and
because the interval between validations is generally 3-5s, the
announcement of a new validation can be considered made
before the validation is produced. The time required to forward
interests to source is eliminated by proactively requesting
validations in advance, and data is served as soon as created.
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Fig. 1: Assessed NDN dissemination models

4) "Piggyback": Validators encapsulate validations in Inter-
ests ("appParameters" field) and send them with multicast to
all nodes. While this amounts to broadcast, it can be advan-
tageous because: i) number of messages at XRPL application
level (M1) is lower than baseline, while we also obtained some
improvement for M3; ii) current work to decrease number of
duplicates for NDN multicasting [12], can further improve
efficiency; iii) on XRPL the multicast can be sent only to
specific nodes interested to hear only messages from validators
on their UNL. Compared to announce-pull it reduces the
number of messages on overlay because for disseminating a
validation, only the Interest is sent. It can also help latency-
wise in some cases (no two way request-response): in the pull
approach data caching can generally help latency only when
multiple nodes request same data on same path.

To answer Q2, we define the following metrics:
M1 XRPL node load: How do the models compare with

regard to the number of validations in/out of a node?
M2 Network load: How models compare each other and with

baseline regarding the number of messages and bytes
travelling the overlay to send a validation to all nodes?

M3 XRPL network stability: How do models affect the inter-
arrival time between validations?

We also analysed M3 for UNL validators in production
XRPL network which gave us real-life behavior information.

IV. EXPERIMENTAL EVALUATION

For evaluation we used a real (lab) testbed and the pro-
duction network. The baseline was original xrpl_v1.7 [14],
which required significant effort to integrate [15] NDN. We
used NDNts library [16], [17] for the overlay. Experiments
were performed on three topologies, shown in Fig. 2, which
can reveal if topology influences performance. Star topology is
seven NDN nodes disposed in star, where the three edge nodes
are also XRP nodes. The central node is the most stressed



Fig. 2: The experimental topologies

traffic-wise so it could potentially be a bottleneck. The triangle
(tri) topology is six NDN nodes in triangle. The three edge
nodes are also XRP nodes. This one is more balanced: the
three middle nodes share traffic more fairly. Baseline is a full
mesh of three unmodified XRP nodes which is a natural choice
for a fair comparison with the other topologies: at XRP logical
level (message-wise) it is the closest equivalent to the others.

Collection of metrics: M1: For the unmodified XRPL,
Rippled Monitor [18] and Grafana collected the number of
validations and bytes in/out of a node. For the modified XRPL,
we used our tool. M2: Vnstat [19] and Tshark [20] counted
bytes/packets at machine NIC level. M3: We parsed XRPL
logs for validation inter-arrival times. To improve figures
readability we plot in orange the rolling mean (rm) over the
previous 20 data-points (generally over 1-2 min, depending
on interarrival times); in green, the rm(20) plus 2 times the
rolling standard deviation (rSTD) computed over the same
20 data-points: rm(20)+2∗ rSTD(20); and in red, the same
rm(20) from which we substract 2 times the rSTD(20), i.e.:
rm(20)−2∗rSTD(20). Results obtained are discussed below:

1) Production XRPL: We deploy an XRP node on the live
network to listen for validations from official UNL validators.
We record the first unique validation from each of them, and
drop duplicates. We do not collect M1, M2 because a fair
comparison is impossible for these metrics: such topology,
number of nodes, and real-life internet can not be recreated
in lab. Under M3, while generally validations were spaced
at 3-5s (mean=3.92s; median=4s; quantile(0.25)=3.98s; quan-
tile(0.75)=4.02s, as in Fig. 3c, 3a, 3b), some validators showed
somewhat different behavior, not presented for space reasons.

2) "Baseline": From one of the nodes, we record the
intervals between the first arrived unique validations from
other validators and drop duplicates. M1: We compute the
ratio of validations in+out to ledgers created: on average 7.34
validations go in/out of a node to build a ledger, and 17845 in
2 hours. Regarding M2 Tshark recorded 14420 packets in 10
min and Vnstat 58kbit/s in 5 min, while under (M3) interarrival
times are spaced sharply at 3s with mean, median and quantiles
around 3s, as in Fig. 4a, 4d.

3) "Polling": was the first model, tested on the tri topology,

(a) Pdf: validation interarrival time (b) Validation interarrival time

(c) Time series: validation interarrival time

Fig. 3: Typical validation interarrival time on XRPL livenet

(a) Pdf: baseline (b) Pdf: piggyback (tri topology)

(c) Time series: baseline

(d) Time series: piggyback model

Fig. 4: Validation interarrival time: piggyback versus baseline

mostly to see how XRPL and NDN work together. We consider
network stability (M3) eliminatory. So because it performed
worse than the baseline and piggybacking under M3 (Fig. 5a),
and because of the high number of overlay messages due to
polling, we didn’t evaluate further. However it can be improved
e.g. to use adaptive polling intervals.

4) "Announce-pull" was the second model, tested on both
topologies as an improvement to "polling". Fig. 6 shows tri
was better, without approaching baseline regarding M3 (rm,
rSTD). Fig. 6, 5a show announce-pull(star) topology is better
than polling under M3. We didn’t collect M1, M2 because the
model was worse than baseline and piggybacking (Table I).

5) "Advanced-request": M3 for the tri topology (Fig. 5b)
was not satisfactory so this model was not investigated further.

6) "Piggyback": Under M1, there were three validations
in+out of the XRP node per ledger which is 2.44 times



TABLE I: Experiments summary

Model Topo Val inter-arrival time XRP node load NIC load Content Store (rates / min)
q(0.25) q(0.5) q(0.75) vals in+out/ledger avg bitrate (5min) pkt/10min misses hits entries

Baseline tri 3.00 3.00 3.00 7.34 59kbit/s 14420 N/A N/A N/A
Adv-req tri 3.00 4.00 5.00 not collected 20kbit/s 11800 not collected
Polling tri 2.95 3.48 4.52 not collected
Announce
Pull

star 3.00 3.86 4.21 not collected 170->790 (2h) 0 887->1520 (2h)
tri 3.86 4.07 4.84 not collected 900->1500 (2h) 0 190-785 (2h)

Piggyback tri 3.00 3.00 3.00 3 80kbit/s 13700 785 (flat) 0 65 (flat)

(a) Pdf: polling (tri) (b) Pdf: advanced-request (tri)

Fig. 5: Validation interarrival time: Polling, Advanced-request

(a) Pdf: star topology (b) Pdf: tri topology

Fig. 6: Validation interarrival time: Announce-Pull model

better than baseline (7.34 validations). Probability distribution
plots also show improved performance over baseline. For M2,
tshark recorded 13713 packets in 10 min, and vnstat 80kbit/s
over 5 min. M3 is better than baseline (Fig. 4d,4c). Evaluation
was done on the tri topology.

As per Table I summary, the most suitable solution is the
encapsulation of validations in Interests disseminated with
multicast (goal is to minimise the number of messages, and
the ratio piggybacking/baseline is 3/7 under M1). The model
improves over baseline as shown by comparing interarrival
times, while ensuring robust dissemination and low latency.

V. RELATED WORK

Work to optimise protocols efficiency includes: temporarily
"squelching" [21] some peers, not yet in production; Erlay [22]
reduces bandwidth by 84% but increases latency by 2.6s;
Perigee [23] focuses on propagation delay but not message
number; GossipSub [1] improves communication of PoW-
ETH; Epidemic Broadcast Trees are embedded on a gossip-
based overlay in [24], while Splitstream [25] evenly distributes
between nodes the load to forward messages.

Overlays are proposed to improve DLT messaging in [26];
BoNDN [13] proposes tx dissemination for Bitcoin through
pushing over NDN interests, and subscribe-push for blocks.

This is challenged in [2] for using NDN multicast: it is
doubtful if in practice NDN nodes would enable multicast for
given labels. XRPL has known-in-advance validators (UNL)
so this is not problematic. A solution to propagate tx and
blocks for PoW-ETH is proposed in [2]. In our opinion the
needs of consensus-validation DLTs are fairly different from
PoW-DLTs’, to require separate consideration: size of XRPL
consensus messages is much smaller than ETH blocks, and
XRPL uses UNLs where from a consensus perspective a
validator needs only receive messages from nodes in its UNL.
Also on NDN data can be signed and dated by producer, which
on XRPL is known (UNL validators), making some attacks
discussed in the paper not applicable for XRP-NDN overlay.
ETH P2P is used to broadcast new blocks’ creation, then they
are pulled on NDN. On XRPL the challenge consists of a
very large number of messages - result of flooding at scale,
which need to be minimised, and in this work we search and
propose a paradigm suitable to XRPL. Data sync is dismissed
by [2] for various reasons including security. While for XRPL
validations the sync vector can be easily constructed, we agree
sync was not designed for Byzantine environment, and could
add unnecessary traffic hindering scalability.

VI. CONCLUSIONS AND FUTURE WORK

XRPL flooding mechanism lacked peer-reviewed research.
In this paper we investigate how messaging can be optimised
using NDN, a promising candidate because of its well re-
searched and optimised caching and dissemination mecha-
nisms. We propose multiple mapping models for message dis-
semination and investigate the advantages and disadvantages
of each model according to the needs of consensus-validation
blockchains. Similar to validations, proposals can also use
piggybacking. For fast tx propagation, so that is included in
the earliest possible ledger (case of high frequency trading),
tx could use same model. Attacks such as poisoning may
require mitigation such as in-flight verification, auditing, or
node scoring. Experimentation was limited to the scenarios
and topologies reported. We plan to test real-life scenarios to
further assess robustness and security, and also a cost analysis.
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