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ABSTRACT 1 
Intermodal rail operations represent a complex stochastic system that is impacted by disruptions from diverse 2 
causes like extreme weather events, planned and unplanned upstream network delays, equipment failures, labor 3 
actions, and intra-railyard inefficiency. Understanding and predicting the occurrence of these disruptions holds the 4 
potential to limit their system-wide schedule impact through early-warning prompting mitigating actions. 5 
This paper presents the results of a set of machine learning models trained to predict disruptions in rail intermodal 6 
operations, and the most suitable model in terms of the evaluation metrics (e.g., AUC, recall, and F1-score) was 7 
used to explore the major predictors of the disruptions and their subsequent delays. The supporting dataset includes 8 
intermodal rail journeys with origin the central station of the freight rail network of the National Railway Company 9 
of Luxembourg in Bettembourg, connecting several EU countries terminals.  10 
Results show that a gradient boosting machine model, using the CatBoost implementation, outperforms other ML 11 
models in terms of the selected evaluation metrics. Additionally, results suggest that the train weight, train length, 12 
number of wagons composing the train, weight per wagon, and the month of operation are the major predictors 13 
that cause the disruptions in the intermodal operations in the studied rail network. 14 
The outcome of the study suggests that a better distribution of freight weight across the wagons will reduce the 15 
probability of a delayed trip, and this insight can be used to optimize the intermodal operations of the National 16 
Railway Company of Luxembourg. 17 
 18 
Keywords: Rail operation disruptions, Machine learning, Freight transport, Logistics operations, Gradient 19 
boosting. 20 
  21 



J. Pineda-Jaramillo, W. McDonald, W. Zheng and F. Viti 

3 
 

INTRODUCTION 1 
 2 
Rail is increasingly chosen for freight transport since it often provides the best set of trade-offs with respect to 3 
operational costs, reliability and efficiency, and its utilization increasingly occurs within the intermodal context. 4 
Moreover, rail transport is much safer for both operator staff and the public compared to its competitors due to 5 
aspects such as advanced control systems that reduce human errors (1). Considering that rail intermodal operations 6 
is one of the principal actions in the freight transport sector, it is essential to optimize all aspects including the 7 
operational use of the rail infrastructure. Disruptions, and their associated delays in rail intermodal operations may 8 
occur for many reasons (e.g., disturbance in the flow of operations, accidents, technical failures, lower-than-9 
planned travel speeds, construction and repair works, and extreme weather conditions (2, 3)).  10 

Delays represent positive deviations between realized and scheduled times of events; they are often 11 
classified in two groups: those that are caused directly by the variability of process times preparing the train for 12 
departure and those caused by the variability in the actual operation of the train along its journey (4). Additionally, 13 
delays may be categorized as “primary” delays that originate unexpectedly as the result of extensions of the 14 
planned times of individual scheduled processes and “secondary” delays that directly result from the occurrence 15 
of a primary delay (5, 6).  16 

Once a disruption occurs, train dispatchers must assess the severity of its impact on the overall schedule 17 
and try to reduce losses by taking actions during the operation, in order to reduce the chain of delays that could 18 
affect the entire system operation (7, 8). Train disruption prediction, with the aim of optimizing the rail operation 19 
and reducing subsequent delays, has been widely studied by different authors (9–11); where it is possible to find 20 
various approaches, from stochastic methods (12, 13) to machine learning (ML) models (14–18). Despite the 21 
significant body of research, train disruption prediction models continue to struggle to predict delays and guide 22 
mitigating actions in operational environments. Specifically, they often fail to identify the underlying causes of 23 
delay and the expected impact to operations, which significantly limits the efficacy of mitigation actions. 24 

Advances in artificial intelligence (AI) have shown promise in addressing the limitations of conventional 25 
models. For instance, ML and more specifically deep learning techniques can be applied to process and detect 26 
connections between nonlinear, high-dimensional and sequential/time series data (19–22), being successfully used 27 
to find causality, rather than just correlation, in rail operations (23, 24). Identifying disruptions and their 28 
subsequent delay causality in rail intermodal operations is an integral part of quality operational and strategic 29 
decision-making and, at the same time, gaps in causal understanding is directly related to ML’s challenges of 30 
generalizability, interpretability, explainability, and ultimately ability to build robust operational models (25–27).  31 

Overall, the existing literature has focused mainly on examining the direct correlations between predictors 32 
and disruption occurrence and/or severity in rail operations using traditional statistical methods or ML models, in 33 
order to find the best model in terms of prediction accuracy without explaining the causality of disruptions (5, 10–34 
17, 28). Some studies have examined causal interrelationships between predictors and train disruptions, but they 35 
have tended to be highly theoretical, rather than inferring/learning causal links from real-world operational data 36 
(6). Furthermore, previous studies dealing with the application of ML models to predict rail disruptions have 37 
focused mainly on passenger trains, while studies carried out on freight trains have focused on applying ML 38 
models to analyze the impact of design of the rail network rather than the impact of operational features without 39 
explaining the contribution of each feature to the disruptions and their subsequent delays (5, 29) . To address a 40 
number of these issues, this study uses ML to develop a structural causal network from operational data, exploring 41 
the causal relationships between rail operating features and disruptions. The causal network is used to develop a 42 
predictive model capable of predicting the risk of disruptions and their subsequent delay causality in rail 43 
intermodal operations. 44 

More specifically, this study addresses the effect of different features on disruptions in rail intermodal 45 
operations using a supporting dataset of 7,969 trips occurring between November 2019 and April 2021 between 46 
the central terminal of the freight rail network of the National Railway Company of Luxembourg (CFL 47 
multimodal) in Bettembourg (Luxembourg) and connecting with several countries within the EU. After evaluating 48 
a set of ML models, the most suitable approach is employed to identify the major predictors behind the disruptions. 49 
Within this framework, the purposes of this study and main contributions of the paper are: 50 
• The examination of different ML models for predicting disruptions in rail intermodal operations based on 51 

operations data. We consider different sources of data available for rail intermodal operations in a network 52 
connecting various EU countries. To the best of our knowledge, and on the basis of the found literature, this 53 
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is the first time that operational data from an extensive network linking various countries has been used for 1 
the prediction of disruptions in rail intermodal operations and their subsequent delays. 2 

• The use of ML models is investigated to develop a structural causal network from data to explore the causal 3 
interrelationships between operational rail predictors with the aim of discovering the interactions between 4 
those predictors that lead to disruptions in rail intermodal operations.  5 

METHODS 6 
 7 
This section describes the process to develop a predictive model capable of predicting a disruption that causes a 8 
delayed train, and then of exploring the predictors of disruptions in rail intermodal operations applying causal ML 9 
approaches. Figure 1 illustrates the flowchart of the methodology implemented in this study, from data collection 10 
to examination of the major key predictors that most influence disruptions in rail intermodal operations. All steps 11 
presented in the flowchart are discussed below. 12 
 13 

 14 
Figure 1 Flowchart of the methodology implemented in this study 15 
 16 
Data collection and pre-processing 17 
Data of rail intermodal operations carried out by CFL multimodal were provided by the company itself. The CFL 18 
data is primarily divided into three datasets regarding (a) the trains (e.g., features concerning the origin and 19 
destination of the trains such as station, country, planned and actual times of departure, planned and actual times 20 
of arrival, maximum TEU (Twenty-foot equivalent unit), incoterm, TEU count, max length, train length in meters, 21 
etc.); (b) the wagons (e.g., information on each wagon comprising the trains of the previous dataset: wagon model, 22 
order or wagons in the composition of the train, model max speed, tare weight of the wagon model, tare weight of 23 
the actual wagon, etc.); and (c) the stations (e.g., information on the stations through which the trains pass: order, 24 
name, city, country, planned and actual times of departure, planned and actual times of arrival, geographical 25 
locations of intermediary stations during the trip, etc.). The datasets include the operations performed by CFL 26 
multimodal from November 2019 to April 2021.  27 

A unique dataset is created after joining and merging the available datasets using common identifiers 28 
(IDs). Then, the unique dataset is filtered to extract the subset of observations related to operations originating in 29 
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Bettembourg. In addition, each row is organized in such a way that it presents the trips between a pair of control 1 
stations, which are the stations that the train crosses between the station of origin and the station of destination. 2 

After obtaining an unique dataset that presents the trips originating in Bettembourg, the dataset was pre-3 
processed using traditional methods developed in data mining processes such as removing or filling missing values 4 
following specific criteria such as the use of the median (numerical features) or the most common values 5 
(categorical features), transforming the categorical features using dummy variables, removing redundant features 6 
by analyzing the multicollinearity between predictors and identifying the predictive power score, among others 7 
(20). Furthermore, the z-score normalization method was applied to the dataset to rescale the values of the 8 
numerical features without distorting differences in the ranges of values or losing information in order to enhance 9 
the results of the models (30–32). The z-score normalization method is calculated as presented in Equation (1), 10 
where z is the new value calculated using x as the previous value, 𝜇𝜇 as the mean, and 𝜎𝜎 as the standard deviation 11 
for each column in the dataset.  12 

 13 
z =

𝑥𝑥 − 𝜇𝜇
𝜎𝜎

 (1) 
 14 

The feature to be predicted in this study is the deviation between the scheduled arrival time and the actual 15 
arrival time in the trips between a pair of control stations (i.e., the arrival delay for each station pair). We propose 16 
a specific threshold in order to identify whether the trip is delayed or not due to the occurrence of a disruption, so 17 
the underlying problem can be defined as a binary classification problem (delayed or non-delayed). This approach 18 
was chosen because it allows to achieve more general results allowing to explore the causal interrelationships 19 
between operational rail predictors with the aim of discovering the interactions between those predictors that lead 20 
to disruptions and their subsequent delays in rail intermodal operations. Additionally, in order to evaluate the 21 
robustness of the ML models and the significance of the predictors, we treated the binary classification problem 22 
using two scenarios, using a threshold of (a) 15 minutes, and (b) 30 minutes. After pre-processing the dataset, we 23 
identified a total of 7,969 trips between control stations.  24 
 25 
Machine Learning models 26 
Data were randomly split into a training set and a test set with a ratio of 70%-30%, respectively, where each subset 27 
was composed of the target feature to predict (arrived) and the remaining independent input features following 28 
the same proportion, making several tests including different combinations of input features in order to improve 29 
the results. This division is carried out with the objective of using the training set to train the ML models, and then 30 
using the test set to evaluate their performance (24). Then, a set of ML models was trained to predict whether the 31 
trip is delayed or not and those models were chosen because they have been widely and successfully implemented 32 
in classification problems in different fields (see Table 1). Furthermore, the AUC, recall and F1-score evaluation 33 
metrics were used as loss functions. 34 

In order to evaluate the performance of the ML models and select the best performing one, the stratified 35 
K-fold cross-validation method was used to reduce any bias generated by the model (45, 46). This method divides 36 
the training set into 𝐾𝐾 subsets, and for each subset the classes are characterised in roughly the same numbers as 37 
the entire training set and the incumbent model is applied to the other 𝐾𝐾 − 1 subsets, and then the AUC metric is 38 
selected to evaluate the performance of the model in the holdout/test subset. Furthermore, the process of optimizing 39 
a ML model implies the need to tune a set of parameters in order to improve its performance, and the most widely 40 
used method to carry out this process is the random search method, which allows evaluating the parameter values 41 
that have a greater impact on the performance of the ML model (47). 42 

After choosing the best ML model for predicting whether the trip is delayed or not, the learning curve 43 
method was implemented in order to identify whether the model has overfitting or underfitting problems. This 44 
method allows analyzing the behavior of the model as a greater number of observations are used in the training 45 
process (48). The processing time for the training and validation of the ML models is negligible, taking only a few 46 
minutes using Python 3.8.5 in an Intel Core i9-10885H CPU @ 2.40 GHz with a memory ram of 32 GB, DDR4, 47 
a Hard Disk SSD 1TB NVMe class 40, and a GPU NVIDIA Quadro P620 DDR5. 48 
 49 
 50 
 51 
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TABLE 1 ML models used in this study 1 
Model Description Literature 

Logistic Regression This model uses a logistic function to model the probability that an observation 
belongs to a class. (33) 

Linear Discriminant 
Analysis 

This model takes advantage of powerful dimensionality reduction methods by 
locating an efficient linear transformation where the original high-dimensional 
space data are transformed to a lower dimensional space, and it assumes an 
identical covariance for all classes. 

(34–36) 

Quadratic Discriminant 
Analysis 

Similar to Linear Discriminant Analysis, but it does not assume that the covariance 
of each of the classes is identical. (36) 

Naïve Bayes It calculates class probabilities using Bayes theorem while assuming that the 
features are independent. (37–39) 

Gaussian Process 
Classification 

This model assumes some prior distribution on the underlying probability densities 
and then determines the final classification providing a good fit for the observed 
data and guaranteeing smoothness. 

(40) 

Multi-Layer Perceptron 
This model is an Artificial Neural Network that creates a set of outputs from a set 
of inputs and is characterized by several layers of input nodes connected as a 
directed graph between the input and output layers. 

(20, 24, 38) 

Support Vector Machine 
(Radial Kernel) 

It classifies observations by projecting the independent features into a high-
dimensional feature space, where the classes are linearly separable. 

(14, 20, 37–
39, 41) 

K-Nearest Neighbors It predicts the class of the test sample according to the k training samples, which 
are the nearest neighbors to the test sample. (36) 

Extra Trees Ensemble method that randomly combines the predictions from many decision 
trees with the aim of minimizing the variance of the prediction results. (41, 42) 

Adaptive Boosting Ensemble method that combines the output of different learning models to create a 
weighted sum that represents the final output of the classifier. (39, 41) 

Random Forest Ensemble method that uses feature randomness when training many decision trees 
in parallel in order to create an uncorrelated forest of trees with major accuracy. (24, 37, 38) 

Gradient Boosting Ensemble method that builds a sequence of decision trees, where each successive 
tree aims to improve the previously wrong classifications of the preceding trees. (24, 38) 

CatBoost Same Gradient Boosting model but using a different open-source library. (43, 44) 
 2 
Analysis of causality of the predictors 3 
The Shapley Additive Explanation technique (commonly known as SHAP method) is implemented to extract the 4 
feature importance and the direct impact of each feature in order to better interpret the output of the ML model, 5 
with numerous studies having taken advantage of this method (49–52).  6 

The SHAP method is based on game theory and offers an insightful method for estimating the contribution 7 
of each feature in the output of a model by averaging the differences in predictions over all possible orderings of 8 
all input features based on precise solutions to create SHAP values (43, 53). This method allows obtaining the 9 
magnitude of the contributions of the predictors in the prediction of delayed trips, 10 

In order to obtain the SHAP values, suppose an ML model where a group 𝑁𝑁 (with 𝑛𝑛 features) is used to 11 
predict an output 𝑁𝑁, then the contribution 𝜙𝜙𝑖𝑖 of the feature 𝑖𝑖 on the model output 𝑣𝑣(𝑁𝑁) is assigned based on its 12 
marginal contribution. Based on numerous axioms to help assign the contribution of each variable, SHAP values 13 
are calculated as presented in Equation (2), where a linear function of binary variables 𝑔𝑔 is defined based on the 14 
additive variable attribution method presented in Equation (3), where 𝑧𝑧′ ∈ {0,1}𝑀𝑀 is 0 when a variable is not 15 
observed, otherwise is 1, 𝑀𝑀 represents the number of simplified input variables, and 𝜙𝜙𝑖𝑖 ∈ ℝ (53).  16 

 17 

𝜙𝜙𝑖𝑖(𝑣𝑣) = �
|𝑆𝑆|! (𝑛𝑛 − |𝑆𝑆| − 1)!

𝑛𝑛!
[𝑣𝑣(𝑆𝑆⋃{𝑖𝑖}) − 𝑣𝑣(𝑆𝑆)]

𝑆𝑆⊆𝑁𝑁\{𝑖𝑖}

 (2) 

 18 

g(𝑧𝑧′) = 𝜙𝜙0 + �𝜙𝜙𝑖𝑖𝑍𝑍𝑖𝑖′
𝑀𝑀

𝑖𝑖=1

 (3) 

 19 
 20 
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RESULTS 1 
 2 
In this section we present the results of the trained ML models in order to identify the major predictors of 3 
disruptions and their subsequent delays in the rail intermodal operations. This section involves two stages: (a) the 4 
results of the trained ML models in order to achieve the best performing predictive model based on the evaluation 5 
metrics: AUC, recall, and F1-score; and (b) the identification of major predictors of disruptions in rail intermodal 6 
operations using the SHAP method, in order to analyze the causality of the predictors in the output of the best ML 7 
model. 8 
 9 
ML models 10 
Several combinations of features were tested in order to identify the combination that achieves better results in the 11 
ML models, where the final composition of the dataset is presented in Table 2.  12 

 13 
TABLE 2 Composition of the final dataset 14 

Feature (type) Description Categories Distribution of the feature in the dataset 

TARGET: arrived Delayed or non-delayed (thresholds: (a) 15 
min, (b) 30 min). 2 (a) delayed: 47.8%; non-delayed: 52.2%. (b) 

delayed: 39.0%; non-delayed: 61.0%. 
month_arrival Month of arrival 12 min: May: 4.4%; max: March:15.6% 
Train_Length Train length [m] numerical range: 136.0 - 704.0; median: 544.0 

Train_Weight Train weight, including train tare and 
freight weight [t] numerical range: 272.7 - 2121.0; median: 1278.1 

wagon_count Number of wagons numerical range: 4 - 34; median: 16 
weight_wagon Average weight per wagon [t] numerical range: 20.8 - 100.7; median: 76.7 
Train_Distance_KM Distance of the TOTAL trip [km] numerical range: 84.5 - 1197.9; median: 648.6 

Number of observations: 7,969. 15 
 16 
Then, after implementing the ML models previously mentioned using the two scenarios (thresholds of 15 17 

and 30 minutes) to define whether the trip between a pair of control stations is delayed or not using the stratified 18 
K-fold cross-validation method (with K=10), we obtained the initial results presented in Table 3, where the 19 
evaluation metrics are presented. Then, considering that the Random Forest (RF), the Extra Trees (ET), and the 20 
CatBoost models have the best performance in terms of the evaluation metrics for both scenarios, the random 21 
search method was implemented in order to tune their parameters and improve their performance. The results of 22 
the evaluation metrics for each class of the best ML models after tuning their parameters are presented in Table 4 23 
for initial and tuned models, and their learning curves are presented in Figure 2, where it is possible to observe a 24 
convergence trend between both curves (training and cross-validation scores) across the full range of models, 25 
suggesting that adding more observations to train these models is likely enhance their performance, reducing the 26 
risks of overfitting and underfitting problems. 27 

 28 
TABLE 3 Initial results 29 

 15-minutes (delayed trips: 47.8%) 30-minutes (delayed trips: 39.0%) 
Model AUC  Recall  F1-score AUC  Recall  F1-score 
Random Forest (RF) 0.771 0.691 0.691 0.800 0.671 0.666 
Extra Trees (ET) 0.758 0.629 0.669 0.785 0.604 0.639 
CatBoost  0.729 0.644 0.649 0.766 0.662 0.641 
K-Nearest Neighbors (KNN) 0.705 0.637 0.639 0.744 0.661 0.626 
Gradient Boosting (GB) 0.684 0.620 0.615 0.716 0.615 0.596 
Ada Boost (AB) 0.648 0.578 0.580 0.674 0.617 0.561 
Gaussian Process (GP) 0.637 0.637 0.596 0.672 0.664 0.573 
MLP Classifier 0.626 0.605 0.582 0.669 0.646 0.568 
SVM - Radial Kernel 0.594 0.706 0.607 0.618 0.659 0.538 
Logistic Regression (LR) 0.579 0.622 0.569 0.606 0.643 0.534 
Linear Discriminant Analysis (LDA) 0.579 0.623 0.569 0.606 0.645 0.535 
Naïve Bayes (NB) 0.574 0.737 0.609 0.594 0.713 0.548 
Quadratic Discriminant Analysis (QDA) 0.525 0.675 0.535 0.512 0.672 0.459 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 2 Learning curves of (a) tuned RF (threshold 15-min), (b) tuned RF (threshold 30-min, (c) tuned ET 1 
(threshold 15-min), (d) tuned ET (threshold 30-min), (e) tuned CatBoost (threshold 15-min), (f) tuned 2 
CatBoost (threshold 30-min) 3 

 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 



J. Pineda-Jaramillo, W. McDonald, W. Zheng and F. Viti 

9 
 

TABLE 4 Results of the best ML models after tuning their parameters using the random search method 1 
 Model Class AUC  Recall F1-score AUC  Recall F1-score 

Initial RF delayed train 0.790 0.708 0.710 0.780 0.659 0.644 
non-delayed train 0.790 0.737 0.735 0.780 0.752 0.763 

Tuned RF delayed train 0.760 0.673 0.678 0.760 0.658 0.636 
non-delayed train 0.760 0.717 0.711 0.760 0.737 0.753 

Initial ET delayed train 0.780 0.644 0.689 0.770 0.578 0.613 
non-delayed train 0.780 0.793 0.749 0.770 0.803 0.775 

Tuned ET delayed train 0.700 0.701 0.655 0.710 0.622 0.586 
non-delayed train 0.700 0.599 0.640 0.710 0.679 0.707 

Initial CatBoost delayed train 0.760 0.669 0.673 0.740 0.660 0.626 
non-delayed train 0.760 0.708 0.704 0.740 0.713 0.739 

Tuned CatBoost delayed train 0.800 0.714 0.714 0.780 0.656 0.647 
non-delayed train 0.800 0.738 0.738 0.780 0.762 0.769 

 2 
From Table 4 and Figure 2 it is possible to see that the tuned CatBoost model (a specific framework of 3 

the gradient boosting model) outperforms in terms of the evaluation metrics for predicting if the trip in rail 4 
intermodal operations is delayed or not considering both scenarios. Therefore, this model is selected to evaluate 5 
the impact of the input features on the output of the model, and, furthermore, to analyze causality of disruptions 6 
and their subsequent delays. 7 

The gradient boosting model is a tree-based ensemble model that incorporates many weak-learner-models 8 
in order to establish a strong-learner model. Hence, a single weak-learner model might not achieve high accuracy 9 
for the entire dataset, but it can perform well enough for a subset of the dataset, which means that each weak-10 
learner model improves the performance of the entire model (54, 55). On the other hand, the CatBoost model is a 11 
high-performance open-source library for gradient boosting models that has become popular due to demonstrated 12 
superiority in performance in different attributes (e.g., minor probability of overfitting, native handling for 13 
categorical features and speed of execution) compared to other gradient boosting implementations (44, 56). 14 

To the best of our knowledge, this is the first study in which the gradient boosting model has been used in 15 
rail intermodal operation research, more specifically the CatBoost implementation. Other studies that have 16 
obtained acceptable results using different ML models in rail operations, but mainly for passenger trains and 17 
without studying gradient boosting machines—for instance, implementing stochastic model to predict the 18 
propagation of train delays based on Bayesian networks (11), and using a support vector machine model to 19 
examine the relationship between passenger train delays and some characteristics of railway systems (14). 20 
Moreover, some studies have explored the use of artificial neural networks to predict delays in passenger trains 21 
(15, 57–59) and in freight trains (29), including some explorations using deep neural networks for large-scale 22 
railway networks (5, 60). 23 
 24 
Major predictors of rail intermodal operation disruptions and their subsequent delays 25 
Figure 3 provides the SHAP summary plot that represents an ordered list of the most important features for 26 
identifying delayed trips for both scenarios. Although the order of importance of the features for both thresholds 27 
varies somewhat, in essence we can observe that the composition of the train affects the results of the ML model. 28 
From Figure 3 (a) it is possible to observe that higher values of train weight and lower number of wagons 29 
correspond to a higher probability of a delayed trip, while the behavior of train distance, weight per wagon, and 30 
train length does not allow to visibly identify a trend in their values. On the other hand, Figure 3 (b) shows that 31 
higher values of train length and weight per wagon correspond to a higher probability of a delayed trip, while it is 32 
not possible to visibly recognize a trend in the remaining features, because the high and low values of them are 33 
completely mixed. The results also suggest that the operations carried out in some months have a great incidence 34 
in operational delays for both scenarios. 35 

 36 
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(a) 

 

 
(b) 

Figure 3 SHAP summary plot for both scenarios, using thresholds of (a) 15 minutes, and (b) 30 minutes 1 
 2 

DISCUSSION 3 
 4 
The SHAP values allow the identification of train- and operational-related features (e.g., the train weight, train 5 
length, number of wagons, weight per wagon, and the month of operation) that explain the disruptions and their 6 
subsequent delays in the intermodal operations of the studied rail network. Overall, the greater the train weight, 7 
length and weight per wagon, and the lower the number of wagons, the greater the probability that the trip will be 8 
delayed, and this delay probability is dependent on the month of the year (Figure 4). These interaction plots 9 
suggest that if the weight of the freight carried by the train is distributed over a larger number of wagons in an 10 
averaged way, the probability that the trip will be delayed will decrease. 11 

 12 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4 Interaction effects between the major predictors of the rail intermodal operations: (a) month and 1 
train length; (b) month and train weight; (c) month and wagon number; (d) month and weight per wagon 2 

 3 
Figure 5 presents an in-depth analysis of the relationship between the weight per wagon and the month 4 

of operation in the delays in intermodal operations on the studied rail network. In general, most of the intermodal 5 
operations carried out by trains with less weight per wagon (<60 t) tend to be non-delayed trips, but as the wagons 6 
are heavier, the percentage of delayed trips increases. Besides, the results suggest that there is a greater difference 7 
between the number of delayed and non-delayed trips according to the month of operation, where the months of 8 
April to August tend to be more efficient months in terms of the number of non-delayed trips, while months like 9 
January, February, October and November tend to be more inefficient. At this point it is important to highlight 10 



J. Pineda-Jaramillo, W. McDonald, W. Zheng and F. Viti 

12 
 

that the data used in the study comprise 17 months, where the months between April and October have less data 1 
than the others. Hence, to draw more trustworthy conclusions on this feature, additional data is needed. 2 

 3 

 
(January) 

 
(February) 

 
(March) 

 
(April) 

 
(May) 

 
(June) 

 
(July) 

 
(August) 

 
(September) 

 
(October) 

 
(November) 

 
(December) 

Figure 5 Delayed and non-delayed trains considering their weight per wagon for each month 4 
 5 

This study analyzes the relationship between the train and the operational features with the disruptions 6 
and their subsequent delays in intermodal rail operations, and the main contributions of this study can be 7 
summarized as follows: 8 
• The analysis of the effect of train- operational- and station-related features on the disruptions in the intermodal 9 

operations of the studied rail network, from which a reliable predictive ML model was developed, 10 
demonstrating for the first time in rail intermodal operations research that the CatBoost model outperforms 11 
other ML models. 12 
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• The use of the SHAP method to understand the causality of the ML model developed, examining the 1 
contribution of each feature in the output of the model in order to identify the major predictors in the 2 
disruptions and their subsequent delays of the intermodal operations of the studied rail network. In addition, 3 
an in-depth analysis of the relationship of the major predictors was carried out to comprehend the interaction 4 
effects between them. 5 

• The predictive model developed in this study can be used as a tool by the National Railway Company of 6 
Luxembourg to evaluate future operational interventions with the aim of reducing disruptions and their 7 
subsequent delays in its intermodal operations. For instance, a better distribution of the weight of the freight 8 
carried by the trains will likely to reduce the probability of a delayed trip. 9 

CONCLUSIONS  10 
 11 
This paper has presented an approach to examine the effect of train- operational- and station-related features on 12 
disruptions and their subsequent delays in rail intermodal operations. Previous studies including models to predict 13 
rail disruptions have been focused on passenger trains, while studies focused on freight trains are scarce and have 14 
focused on analyzing the impact at the network design level, rather than train-, operational- and station features. 15 
Most critically, these studies have failed to analyze causal relationships between these features within a complex 16 
network. 17 

After training a set of ML models for predicting the disruptions and their subsequent delays in the 18 
intermodal operations of the studied rail network, a gradient boosting machine model using the CatBoost 19 
implementation has been shown to be the most suitable approach to develop a predictive ML model, since it 20 
outperforms the other ML models in terms of the predefined evaluation metrics (AUC, recall and F1-score).  21 

The train- and operational- related features that most impact the disruptions in the intermodal operations 22 
of the studied rail network are the train weight, train length, number of wagons, weight per wagon and the month 23 
of operation, where, in general, the greater the train’s weight, length and weight per wagon, and the lower the 24 
number of wagons, the greater the probability that the trip will be delayed, suggesting that a better distribution of 25 
the weight of the freight carried by the trains will likely to reduce the probability of a delayed trip. 26 

The limitations of the present study include the use of data from only 17 months, which be inadequate to 27 
analyze the behavior reflected in the greater difference between the number of delayed and non-delayed trips 28 
according to the month of operation. Similarly, some underlying effects due to the global crisis that COVID-19 29 
has unleashed since the first months of 2020 (61) may be hidden within the data, which could be identified with 30 
novel records for the analysis dataset. In any case, considering the learning curve presented in Figure 2, adding 31 
new data to the model should improve its performance. 32 
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