
FROM FORMAL SMOOTHINGS TO GEOMETRIC SMOOTHINGS

ALESSANDRO NOBILE

ABSTRACT. Let X be a projective, equidimensional, singular scheme over an al-
gebraically closed field. Then the existence of a geometric smoothing (i.e. a fam-
ily of deformations ofX over a smooth base curve whose generic fibre is smooth)
implies the existence of a formal smoothing as defined by Tziolas. In this paper
we address the reverse question giving sufficient conditions on X that guaran-
tee the converse, i.e. formal smoothability implies geometric smoothability. This
is useful in light of Tziolas’ results giving sufficient criteria for the existence of
formal smoothings.
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1. INTRODUCTION

Let X be a proper k-scheme of finite type over an algebraically closed field k of
characteristic 0. A geometric smoothing of X is a Cartesian diagram

(1)
X X

Spec k C

p

c

where C is a smooth curve, c ∈ C is a closed point and p is a flat, proper mor-
phism such that p−1(ηC) =: Xgen is smooth, where ηC is the generic point of C.
We say that X is geometrically smoothable if it has a geometric smoothing. Fol-
lowing [Tzi10, Definition 11.6], we define a formal smoothing of X to be a formal
deformation

X X

Spf k Spf kJtK

p

such that there exists a b ∈ N with Ib ⊂ FittdimX(Ω1
X/ Spf kJtK), where I is an ideal of

definition of X and Fitta(Ω
1
X/ Spf kJtK) is the ath Fitting sheaf of ideals (see [Stacks,

Tag 0CZ3]). We say that X is formally smoothable if it admits a formal smooth-
ing. Note that if X is smooth then it is geometrically (hence formally) smooth-
able. Furthermore, Tziolas proved that geometrical smoothability implies formal
smoothability. The main result of this paper is the following:

Theorem A. If X is a projective, equidimensional and singular scheme over k
such that one of the following assumptions hold:

(1) H2(X,OX) = 0,
(2) if X Gorenstein, then either the dualising sheaf ωX or its dual ω∨X is ample,

then the formal smoothability of X is equivalent to its geometrical smoothability.

The above theorem also extends Grothendieck’s algebraisation theorem, see
[Stacks, Tag 089A], since we have found a way to enlarge the parameter space
from the spectrum of a local complete k-algebra to an affine curve.

1.1. Motivation. This result is motivated by the study of moduli spaces of sur-
faces of general type and their higher-dimensional analogues.

Moduli spaces of surfaces of general type are well studied and it is known that
stable surfaces lie within the compactification of these moduli spaces.

A stable surface, see [KAK], is a proper two-dimensional reduced connected
scheme satisfying one local and one global condition. The local condition bounds
the badness of singularities that such surfaces can have, requiring them to be
semi-log-canonical (see [KAK, Definition 1.40]). The global condition requires
the dualising sheaf to be ample.

Since stable surfaces appear as points on the boundary of the moduli space of
surfaces of general type, it is of great interest to understand which stable surfaces
are geometrically smoothable.

In order to understand which surfaces can be smoothed, it is important to know
which singularities among the semi-log-canonical ones can be smoothed. The

https://stacks.math.columbia.edu/tag/0CZ3
https://stacks.math.columbia.edu/tag/089A


FROM FORMAL SMOOTHINGS TO GEOMETRIC SMOOTHINGS 3

class of such singularities is very broad since it admits both isolated and non-
isolated singularities. If X has isolated singularities, it is known [Ser07, Proposi-
tion 2.4.6] that H2(X, TX) is an obstruction space to the extension of local smooth-
ings to global ones.

The study of non-isolated singularities is not so easy. In [PP83], they gave ex-
amples of non-smoothable singularities with normal crossing divisors, showing
that not all non-isolated singularities are smoothable. Another difficulty that one
has to face studying non-isolated singularities is that the Schlessinger’s cotangent
sheaf T 1 (and its higher analogues), which is a sheaf supported on the singular
locus, is difficult to describe and sometimes not finite dimensional, as shown in
[FM17]. An application to Godeaux surfaces of Theorem A is given in [FFP21].

1.2. Structure of the paper. This paper is an expository article on formal schemes,
formal deformation and smoothing. It organized in four sections: in the first one
it is collected an introduction to formal schemes, following the treatment of Il-
lusie in [FGA-Ill] and of Alonso, Jeremı́as and Pérez in [AJP07] and [AJP09]. The
second section contains a discussion on formal deformation theory with, what we
hope, a clear treatment on the differences between the various type of definition
of deformations. We decide to add this information in order fix the terminol-
ogy and better clarify what is the main point of this article. This section ends
with a discussion of two different notions of smoothing of a scheme; in partic-
ular, in there we motivate the definition of formal smoothing as given by Tzio-
las in [Tzi10]. The third section is an overview of the Gorenstein condition and
its behaviour under deformation, mostly following [Stacks]. Since we were not
able to find a reference in the literature, in this section we include a proof of a
classical result on good behaviour of the Gorenstein property under infinitesimal
deformations. The fourth and last part contains the main result, its proof and an
example of application to a real moduli problem.

1.3. Conventions. All schemes are defined over an algebraically closed field k
of characteristic 0. We will assume that all schemes will be of finite type and
separated and we will denote by FTSk (or simply by FTS) the category whose ob-
jects are separated, finite type k-schemes and whose morphisms are morphisms
of k-schemes.

1.4. Acknowledgment. I would like to thank the algebraic geometry group at
SISSA for useful mathematical discussions and precious suggestions. A very spe-
cial thanks is due to my PhD advisor, prof. Barbara Fantechi, for her constant
patience, support and precious advices.
I would also like to thank the algebraic geometry group at Universté du Luxem-
bourg.

2. LOCALLY NOETHERIAN FORMAL SCHEMES

We recall for the reader’s convenience some basic results on formal schemes.
We follow Illusie’s and Grothendieck’s language and presentation in [FGA-Ill]
and [EGA1] respectively. At some points we will also refer to articles [AJP07] and
[AJP09] by Alonso, Jeremı́as and Pérez.
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2.1. The category of locally Noetherian formal schemes.

Definition 2.1. An adic (or I-adic) Noetherian ring is a topological Noetherian ring
A that admits an ideal I , called an ideal of definition, such that

• {In}n∈N is a fundamental system of neighbourhoods of 0 in A;
• the topology induced on A turns A into a separated and complete topo-

logical space.

In general an ideal of definition is not unique. Indeed for another ideal J to be
an ideal of definition it is necessary and sufficient that there are two non-negative
integers n,m such that J ⊃ Im ⊃ Jn.

We remark that A is an I-adic Noetherian ring if and only if A = lim←−nA/I
n =:

Â, where Â denotes the formal completion of A along the ideal I .
Examples of adic Noetherian rings are the ring of formal power series and the

ring of restricted power series, see [AJP07, Example 1.6], in the following denoted
respectively by kJtK and A{T1, . . . , Tn}, with A an I-adic Noetherian ring and t,
T1, . . . , Tn indeterminates.

We wish to introduce the notion of an affine formal scheme, needed for the
definition of a formal scheme. If A is an I-adic Noetherian ring A and n a non-
negative integer, we denote by An the quotient A/In+1 and by Xn the affine
scheme SpecAn. We then have a chain of closed subschemes

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ · · ·
and all these subschemes have the same underlying topological space | SpecA/I|.

Definition 2.2. LetA be an adic Noetherian ring with I an ideal of definition. The
affine formal spectrum of A is the topologically ringed space (Spf A,OSpf A) where

• the topological space is

Spf A := {p ∈ SpecA : I ⊂ p}
which is naturally homeomorphic to | SpecA/I|. Equivalently, we could
have defined Spf A to be the topological space made by open primes ideals
of A;
• the structure sheaf is

OSpf A := lim←−
n

OXn

and is a sheaf of topological rings. Its topology is given by

Γ(U,OSpf A) = lim←−
n

Γ(U,OXn)

for every open subset U of Spf A, where Γ(U,OXn) has the discrete topology.

The definition above does not depend on the ideal of definition. Indeed if a
prime ideal p of A contains I it also contains all of its powers, in particular it
contains Im and hence Jn. Since p is prime, it follows that it contains also J .

Since the topology of Spf A admits a base of neighbourhoods made by quasi-
compact open subsets, it is enough to require that for every quasi-compact open
subset U of Spf A,

Γ(U,OSpf A) = lim←−
n

Γ(U,OXn),

where Γ(U,OXn) has the discrete topology (see [EGA1, (1.10.1.1)]).
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Remark 2.3. For an I-adic Noetherian ring A, the canonical morphism A → Â is
an isomorphism and it induces a morphism of ringed spaces from Spf Â = Spf A
to SpecA.

We can now define what are affine Noetherian formal schemes and locally Noe-
therian formal schemes.

Definition 2.4. An affine Noetherian formal scheme is a topologically ringed space
isomorphic to an affine formal spectrum as in Definition 2.2.

Definition 2.5. A locally Noetherian formal scheme is a topologically ringed space
(X,OX) such that every point has an open neighbourhood which is isomorphic to
an affine Noetherian formal scheme.

A Noetherian formal scheme is a quasi-compact locally Noetherian formal schemes.

Since affine formal schemes are locally topologically ringed spaces, locally Noe-
therian formal schemes are locally topologically ringed spaces.

As in the classical case, we denote the locally Noetherian formal scheme (X,OX)
by X.

Notation 2.6. For the rest of the article we will abbreviate “locally Noetherian
formal scheme” by LNFS.

Example of locally Noetherian formal schemes, which are in particular affine
Noetherian formal schemes, are Spf kJtK and Spf A{T1, . . . , Tn}. In what follows,
we will denote the formal scheme Spf A{T1, . . . , Tn} by An

Spf A and we will call it
the formal affine n-space. Observe that the underlying topological space of An

Spf A

is Spec ((A/I)[T1, . . . , Tn]).

Notation 2.7. In what follows we will denote Spf kJtK by S and, for every non-
negative integer n, Sn will denote Spec kJtK

(tn+1)
= Spec k[t]

(tn+1)
.

Now we define morphisms between LNFSs.

Definition 2.8. Let X and Y be two LNFSs. A morphism of LNFSs is a morphism
f : X → Y of locally ringed spaces such that for every open subset V of Y the
induced map

Γ(V,OY)→ Γ(f−1(V),OX)

is continuous.

As in the classical case of schemes, there is an equivalence of categories be-
tween adic Noetherian rings and affine Noetherian formal schemes, for more see
[EGA1, (1.10.2.2)]. Furthermore, the classical adjunction holds also in the case of
LNFSs.

Proposition 2.9 ([EGA1, (1.10.4.6)]). Let X be a LNFS and let A be a Noetherian
adic ring. Then there is a natural bijection between morphisms of locally Noe-
therian formal schemes from X to Spf A and continuous ring homomorphisms
from A to Γ(X,OX).

As a further example of formal schemes, we can consider the completion of a
scheme along a closed subscheme.
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Example 2.10. Suppose that X is a locally Noetherian scheme and consider a
closed subscheme Y of X with sheaf of ideals given by I. Then we can con-
sider the schemes Xn := (Y,OX/In+1), for every n ∈ N, which gives rise to the
sequence of thickenings

X0 ↪→ X1 ↪→ · · ·Xn ↪→ · · ·
Taking now the colimit we get a LNFS, denoted by X̂/Y and called the formal
completion of X along Y .

We point out that, if Y = X , then X̂/X = X . Therefore the category of LNFSs
contains the category of Noetherian schemes.

However, Hironaka and Matsumura in [HM68, Theorem (5.3.3) page 81] and
independently Hartshorne in [Har06, Example 3.3 page 205] constructed two ex-
amples showing that not all formal schemes appear as the completion of a single
scheme along a closed subscheme. This consideration motivates the following
definition.

Definition 2.11. A LNFS X is called algebraisable if there are a scheme X and a
closed subscheme Y of X such that X = X̂/Y .

2.2. Sheaves on LNFSs. We now define the notion of a coherent formal sheaf on
a LNFS. In the classical case of affine Noetherian schemes there is the functor (̃−)
that associates to any finitely generated module its coherent sheaf. Similarly, in
the formal case there is the functor (−)∆ which associates to any finitely generated
module its formal coherent sheaf.

Note that if A is an adic Noetherian ring, then every A-module M has an in-
duced I-adic topology where a system of fundamental neighbourhoods of 0 is
given by {In ·M}n∈N.

Notation 2.12. If A is a Noetherian I-adic ring and M and N are finitely gener-
ated A-modules that are separated and complete in the induced I-adic topology,
then, by [EGA1, (0.7.8.1)] it follows that every A-module homomorphism is auto-
matically continuous. Therefore, in what follows, we will write HomA(M,N) in
place of HomA−cont(M,N).

Furthermore, by [EGA1, (0.7.8.2)] we have a canonical isomorphism

HomA(M,N)
∼=→ lim←−

n

Hom A
In+1

(
M

In+1M
,

N

In+1N

)
.

From this we conclude that, if A is a Noetherian I-adic ring and M is a finitely
generated A-module, then

M∨ := HomA(M,A) = lim←−
n

Hom A
In+1

(
M

In+1M
,
A

In+1

)
= lim←−

n

(
M

In+1M

)∨
.

Definition 2.13. Let A be an I-adic Noetherian ring and let M be a finitely gen-
erated A-module. Then we define the coherent formal sheaf M∆ on Spf A to be the
completion of M̃ along the ideal sheaf Ĩ of the closed embedding SpecA/I ↪→
SpecA:

M∆ := lim←−
n

M̃

Ĩn · M̃
.
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The functor (−)∆ satisfies similar properties of the functor (̃−), for more see
[EGA1, (1.10.10.2)].

Definition 2.14. An ideal of definition of a LNFS X is a formal coherent sheaf of
ideals I of OX such that for any point x ∈ X there exists a formal affine neigh-
bourhood Spf A of x in X and there exists an ideal of definition I of A such that
I|Spf A = I∆.

A formal coherent sheaf I on a LNFS X is an ideal of definition if and only
if (X, OX

I
) is a scheme. Actually, for any LNFS X there exists a maximal ideal of

definition I which is the unique ideal of definition such that (X, OX

I
) is a reduced

scheme. In a Noetherian formal scheme the ideal of definition is not unique;
indeed, any other formal coherent sheaf of ideals J on the LNFS X is an ideal
of definition if and only if there are positive integers m,n such that the chain of
inclusions J ⊃ Im ⊃ Jn holds.

Remark 2.15. As in the affine formal case, it is also possible to define LNFSs as a
collection of all of their infinitesimal neighbourhoods (or thickenings).

More precisely, let X be a LNFS and let I be an ideal of definition. For every
n ∈ N, define (Xn,OXn) to be the ringed space (|X|,OX/I

n+1) which is a locally
Noetherian scheme. This induces a sequence of closed embeddings

X0 ↪→ X1 ↪→ X2 ↪→ · · · ↪→ Xn ↪→ · · ·
whose ideals of definition are nilpotent and all the maps on the underlying topo-
logical spaces are the identity. Then X can be recovered from the above sequence
of thickenings by passing through the direct limit in the category of locally Noe-
therian topologically ringed spaces, i.e.

X = lim−→
n

Xn.

In particular there are natural morphisms of ringed spaces

αn : Xn → X,

where αn is the identity on the underlying topological space and the map of
sheaves of topological rings is just the quotient map

α\n : OX → OXn =
OX

In+1
.

Conversely, see [EGA1, (1.10.6.3)], given a collection {Xn}n∈N of locally Noether-
ian schemes satisfying:

(i) for every n, there are morphisms of schemes ψn+1,n : Xn → Xn+1 such
that they are homeomorphisms on the underlying topological spaces and
induce surjective morphisms of sheaves OXn+1 → OXn ;

(ii) if Jn := ker(OXn → OX0), then ker(OXn → OXm) = Jm+1
n , for m ≤ n;

(iii) J1 ∈ Coh(X0);
then the topologically ringed space X := lim−→n

Xn obtained by taking the direct
limit is a LNFS. Moreover, denoting by I := ker(OX → OX0), then I is an ideal of
definition of X and satisfies the following properties

I = lim←−
n

Jn and In+1 = ker(OX → OXn).



8 ALESSANDRO NOBILE

Definition 2.16. A coherent formal sheaf on a LNFS X is a sheaf F such that, for
every open Noetherian formal affine subset U = Spf A of X, there exists a finitely
generated A-module M with F|U = M∆.

Next we give an interpretation of coherent formal sheaves on a LNFS as the
limit of coherent sheaves on all thickenings.

Remark 2.17. Let X be a LNFS, let I be an ideal of definition and let F be a co-
herent formal sheaf of OX-modules. For every n, let us denote by Xn the locally
Noetherian scheme as defined in Remark 2.15. If, for every n, we define

Fn :=
F

In+1F
,

then we have that Fn ∈ Coh(Xn) and we recover F by considering lim←−n Fn. Con-
versely, see [EGA1, (1.10.11.3)]), let X be a locally Noetherian scheme and I and
ideal of definition of X. Let {Xn}n∈N be a collection of locally Noetherian schemes
defining X as in Remark 2.15 and, for m ≤ n, let ψn,m : Xm → Xn denote the
canonical maps. Suppose that for every n ∈ N, Fn is a coherent sheaf on Xn

together with morphisms, for m ≤ n

φn,m : Fm → (ψn,m)∗Fn,

such that for every l ≥ m ≥ n we have φn,m ◦ φm,l = φn,l
1. Then the limit F :=

lim←−n Fn is a coherent formal sheaf on X.

Definition 2.18. Let X be a LNFS and r ∈ N. We say that a formal coherent sheaf F
on X is locally free of rank r if for every open Noetherian affine subset U = Spf A
of X, the finitely generated A-module M (which exists since F is coherent) is free
of rank r.

We can give an equivalent definition of formal coherent sheaf on a LNFS based
on the infinitesimal thickening description of LNFSs. It is done as follows: a
formal coherent sheaf F on a LNFS X is locally free of finite rank r if each sheaf
Fn := F

In+1F
is locally free of the same rank r, for all natural numbers n, where I

is an ideal of definition of the formal scheme X.

2.3. Adic morphisms between LNFSs. In order to give a description in terms of
thickenings for morphisms of formal schemes, we need to restrict our interest to
a particular kind of morphisms: the adic morphisms.

Definition 2.19. A morphism f : X → Y of LNFSs is called an adic morphism if
there exists an ideal of definition J of Y such that f∗J · OX is an ideal of definition
of X.

The definition of an adic morphism does not depend on the choice of the ideal
of definition; indeed one could equivalently ask that the condition f∗J · OX holds
for all ideals of definition of Y (see [EGA1, (1.10.12.1)]). Observe that if f : X→ Y
is an adic morphism bethween LNFSs, then the topology on OY determines the
topology on OX.

1The conditions listed here are equivalent to requiring that the system {Fn, φm,n}n,m∈N be a
projective system.
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Remark 2.20. Suppose that f : X→ Y is an adic morphism of LNFSs and let J and
I := f∗J · OX be ideals of definition of Y and X respectively.

Then we can consider the sequences of thickenings

X0 ↪→ X1 ↪→ · · ·Xn ↪→ · · · and Y0 ↪→ Y1 ↪→ · · ·Yn ↪→ · · ·
as in Remark 2.15. Since the morphism was supposed to be adic, we get that for
every n ∈ N, f∗(Jn+1) · OX = In+1. Therefore we have induced morphisms

fn : Xn → Yn

such that all the squares

(2)
Xn Yn

Xn+1 Yn+1

fn

fn+1

are Cartesian. Then f can be recovered by the collection of morphisms {fn}n∈N by
considering the colimit, i.e. f = lim−→n

fn.
Conversely (see [FGA-Ill, (8.1.5)]), any system of morphisms of locally Noe-

therian schemes {fn : Xn → Yn}n∈N such that all squares eq. (2) are Cartesian
induces an adic morphism of LNFSs by considering the colimit.

2.4. Properties of adic morphisms. Now we introduce the notions of finite type,
properness and flatness for a morphism of formal schemes.

Definition 2.21. Let X and Y be LNFSs. A morphism f : X → Y is said to be of
finite type if f is an adic morphism and the induced morphism f0 : X0 → Y0 is of
finite type.

Definition 2.22. A morphism f : X → Y of LNFSs is proper if it is of finite type
and f0 : X0 → Y0 is proper.

Definition 2.23. Let f : X → Y be a morphism of LNFSs. We say that f is flat if it
is adic and for every x ∈ X, OX,x is a flat OY,f(x)-module.

Proposition 2.24. Let f : X → Y be an adic morphism of LNFSs, let {fn : Xn →
Yn}n∈N be a compatible collection associated to f and P be one of the following
properties of morphisms: of finite type, proper, flat. Then the following condi-
tions are equivalent:

(1) f has P ;
(2) fn has P , for every n ∈ N.

We point out that we could have defined a flat morphism of LNFSs f : X → Y
without assuming it to be adic. However, with that choice, we would not be able
to deduce the flatness of f from the flatness of all {fn}n≥0 and vice versa. See
[AJP09, Proposition 3.3] for the local criterion of flatness for formal schemes, and
[AJP09, Example 3.2] gives a counter example.

We conclude the section by presenting one result needed in the proof of the
main result.

Theorem 2.25 ([Har77, II - Ex. 9.6(c)]). Let X be a LNFS, let I be an ideal of def-
inition of X and, for each n ∈ N, let us denote by Xn the scheme (X,OX/I

n).
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Suppose that, for every n ∈ N, we are given invertible sheaves Ln on Xn together
with isomorphisms Ln+1 ⊗OXn+1

OXn
∼= Ln. Then the sheaf

L := lim←−
n

Ln

is an invertible sheaf on X.

3. ON DEFORMATIONS AND SMOOTHINGS

In this section we introduce various definitions of deformations of a scheme
and we discuss their relationship. Then we present and explain the two different
definitions of smoothing of a scheme used in this paper.

3.1. Introducing formal deformations.

Definition 3.1. LetX be a scheme and let (R,m) be a complete local ring. A formal
deformation of X over R is a Cartesian diagram

(3)

X X

Spf(R
m

) Spf R

f

with f a flat morphism.

Notation 3.2. In the future, in order to ease the notation, we will denote any
deformation (either classical or formal) by its flat morphism. For example, we
will refer to the formal deformation of eq. (3) only by f : X→ Spf R.

As we have seen before in Remark 2.15, formal schemes can be equivalently
described as compatible collection of infinitesimal thickenings. A similar descrip-
tion can be given for formal deformations.

Remark 3.3. Fix a formal deformation of a scheme X as in eq. (3) and, for any
non-negative integer n, let us denote by Rn the quotient ring R/mn+1. Then, for
any n ≥ 0, we have diagrams

X

SpecRn Spf R.

f

Pulling back f along the closed immersion SpecRn ↪→ Spf R, we obtain a collec-
tion of deformations {fn : Xn → SpecRn}n≥0 of X over SpecRn. Moreover, by
construction, all these deformations of X are compatible, i.e. for every non nega-
tive integer n, we have Cartesian diagrams

Xn Xn+1

SpecRn SpecRn+1.

fn fn+1

The converse also holds true, as stated in the following proposition.
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Proposition 3.4 ([Har09, Proposition 21.1]). Let (R,m) be an adic local Noetherian
ring with residue field k, letX be a scheme and define and, for every non-negative
integer n, let Rn := R/mn+1. Suppose that for every n ∈ N we are given a family
{fn : Xn → SpecRn}n≥0 of infinitesiaml deformations such that X0 = X , the mor-
phisms fn are flat, of finite type and the following compatibility condition holds:
for all n ≥ 0, the diagrams

(4)
Xn Xn+1

SpecRn SpecRn+1

fn fn+1

are all Cartesian.
Then there exists a (Noetherian) formal scheme X, flat over Spf R, such that

Xn ∼= X×Spf R SpecRn, for every natural number n.

Concluding, Remark 3.3 together with Proposition 3.4 imply that a formal de-
formation f : X→ Spf R is uniquely determined by a family of infinitesimal defor-
mations {fn : Xn → SpecRn}n≥0 satisfying the compatibility condition expressed
by asking that all diagrams of eq. (4) must be Cartesian.

Next we explain how to construct a formal deformation starting from a defor-
mation over the spectrum of an algebra essentially of finite type.

Remark 3.5. Let X be a scheme, let (A,m) be a k-algebra essentially of finite type,
i.e. a localisation of a k-algebra of finite type. Consider a deformation of X over
A

X X

Spec k SpecA.

f

Let Â be the formal completion of A at m; for every n ≥ 0, define An to be the
quotient ring A/mn+1 and note that we have canonical isomorphisms Â/mn+1Â ∼=
An (see [Eis95, Theorem 7.1 b)]). Now, for every natural number n, consider the
following diagram of solid arrows

Xn X

SpecAn SpecA

fn f

and complete it to a Cartesian one. For every non-negative integer n, we have
that fn : Xn → SpecAn is a deformation of X and all these deformations satisfy
the compatibility condition of eq. (4). By applying Proposition 3.4 we have con-
structed a formal deformation f : X→ Spf Â.

We call the formal deformation f constructed in remark 3.5 the formal deforma-
tion associated to f .

3.2. Relations among different types of deformations. It is now a good time to
exploit the relationships among the deformations we will find in this article. We
start by recalling a few definitions taken from [Ser07].
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Definition 3.6. Let X be a proper scheme over an algebraically closed field k and
consider the following Cartesian diagram of schemes

(5)
X X

Spec k B

f

b

with f flat, proper and surjective morphism, b ∈ B a closed point inducing the
closed embedding b : Spec k ↪→ B. We say eq. (5) is

(a) a family of deformations of X iff B is a connected k-scheme;
(b) an algebraic deformation of X iff B is a k-scheme (essentially) of finite type;
(c) a local deformation of X iff B is the affine spectrum of a local Noetherian

k-algebra with residue field k;
(d) an infinitesimal deformation of X iff B = SpecA with A a local Artinian

k-algebra with residue field k;
(e) a first-order deformation of X iff B = Spec k[ε]/(ε2).
(f) We say that a Cartesian diagram

X X

Spec k Spf A

f

of formal schemes is a formal deformation iff A is a local complete Noe-
therian k-algebra with residue field k and f is a flat proper morphism of
finite type of formal schemes. As we have shown, this is equivalent to
give a collection of infinitesimal deformations {fn : Xn → Bn}n∈N, where
Bn := SpecA/mn+1

A , such that the following diagram is Cartesian

Xn Xn+1

Bn Bn+1.

fn fn+1

We remark that in cases (c), (d), (e) and (f) the underlying topological spaces of
X and X (respectively X) are the same and what is changing is the scheme (re-
spectively formal scheme) structure. In particular it follows that the properness
condition of X is equivalent to f (respectively f) being proper.

In the same hypotheses and notations used in the previous definition, we have
the following properties:

(1) any algebraic deformation induces a local one by taking the closed point
b ∈ B and considering the pull-back of f : X → B along the closed embed-
ding SpecOB,b ↪→ B;

(2) any infinitesimal deformation is in particular a local deformation since
every Artinian ring is Noetherian too;

(3) any first order deformation is an infinitesimal one because the ring of dual
numbers k[ε]/(ε2) is an example of Artinian ring;
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(4) since, by definition, a formal deformation is a (numerable) collection of
infinitesimal deformations, we get that any formal deformation induces
countably many infinitesimal deformation;

(5) on the other hand, any local deformation induces a formal one. To see this,
let mb denotes the maximal ideal of the local ring OB,b and, for any n ∈ N,
consider the following diagram made by Cartesian faces

X

Xn X

Spec k

Spec
OB,b

mn+1
b

SpecOB,b.

πn π

Doing this for every n ∈ N we get a collection of compatible deformations
of X , which defines a formal deformation.

In this work there are more steps to be aware of. To explain them, let us con-
sider the following diagram of deformations of a k-scheme X (this simply means
that each vertical arrow is a deformation of X):

Y X T

SpecC Spf A SpecA

Z Y X

SpecD SpecE B

l f f

g h w

where B is a k-scheme of finite type, E is a k-algebra (essentially) of finite type
(essentially of finite type means that it is the localization of a k-algebra of finite
type), D is a k-algebra which is also a DVR, A is a local complete Noetherian
k-algebra and C is a local Artinian k-algebra.

We will say that a morphism defining a deformation is induced by another
if the second deformation is isomorphic (as deformations, see [Ser07, page 21])
to the pull-back of the first along the closed embedding on the base. We point
out that, in general, there is not a natural arrow from f to g, hence the dashed
arrow, unless A is taken to be the completion of the DVR D along its maximal
ideal. Now, h is induced by w since the closed embedding b : Spec k → B factors
through the spectrum of a k-algebra (essentially) of finite type. Passing from h to
f can be done as follows: since E is the localization of a k-algebra of finite type,
it has a maximal ideal mE and we can complete E along such maximal ideal.
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Similarly, from g we can deduce f by considering the completion of the DVR
along the powers of its maximal ideal. f induces f since the formal spectrum has
a natural map to the affine spectrum. Since the quotient of a DVR by powers of its
maximal ideal is an Artinian ring, it follows that g induces l. Similarly, f induces
l. Lastly, the formal deformation f induces a infinitesimal deformation l since the
quotient of a local complete Noetherian ring by a power of the maximal ideal is
an Artinian ring.

3.3. Reversing some constructions on deformation. Reversing some construc-
tions above is usually a hard problem and without further hypotheses on the
scheme X is a very hard one. For example, passing from a formal deformation of
a k-scheme X to a deformation of the same scheme over an affine spectrum of a
k-algebra (essentially) of finite type means to find “an algebraisation of the formal
deformation”. By an algebraisable formal deformation we mean the following:

Definition 3.7. Let X be a scheme and let (A,m) be a complete local Noetherian
ring. A formal deformation f : X→ Spf A is called algebraisable if there exist

• a k-algebra essentially of finite type (R, n),
• a deformation g : Y → SpecR of X ,
• an isomorphism A ∼= R̂n,
• an isomorphism between f and the formal deformation g : Y → Spf R̂ as-

sociated to g.
The deformation g : Y → SpecA is called an algebraisation of f.

The existence of an algebraisation is a very difficult problem. To solve it, Artin
introduced in [Art69] a weaker condition than algebraisation, “effectivity of a
formal deformation”, which we introduce next.

Definition 3.8. Let X be a scheme and let (A,m) be a complete local Noether-
ian ring. A formal deformation f : X → Spf A is called effective if there exists a
deformation

X X

Spec k SpecA

f

with f a flat morphism of finite type such that X = X̂/X .

The idea of Artin was to split the problem of algebraisation in two subprob-
lems:

(i) to prove the effectivity of the formal deformation: in other words, using
notations above, find conditions on X to extend the formal deformation f
to the deformation f ;

(ii) to find hypotheses on the formal deformation to extend it to the spectrum
of an (essentially) of finite type k-algebra.

For step (ii), a sufficient criterion was given by Artin in [Art69] and goes by
the name of Artin algebraisation theorem, see [Ser07, Theorem 2.5.14]. In there,
under the hypotheses that the central fibreX is a projective scheme, Artin showed
that if the formal deformation is versal, see [Ser07, Definition 2.2.6], and effective
then it is algebraisable.
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However, step (i) above can not be always achieved: for instance, the universal
formal deformation of a K3 surface is not effective, see [Ser07, Example 2.5.12].

Recall from Definition 2.11 that a LNFS X is called algebraizable if there are
a scheme Y and a closed subscheme X of Y such that X = Ŷ/X . It also makes
sense to define algebraisable schemes in the relative setting. For this, suppose we
have a formal scheme X over the affine formal scheme Spf A, with A a local adic
Noetherian k-algebra A with residue field k.

Definition 3.9. We say that X is algebraisable over Spf A if there exists a scheme
X over SpecA such that X is isomorphic to the formal completion X̂/X0 , where
X0 := X×Spf A Spec A

I
.

When the formal scheme X is proper over Spf A, we say that it is algebraisable
if there exists a proper scheme X over SpecA such that X ∼= X̂/X0 , where again
X0 := X×Spf A Spec A

I
.

Note that the ring A is left fixed but we are changing the locally ringed space
structure induced by it.

At this point one wonders if there are conditions to ensure algebraisability of a
formal scheme and, in the case an algebraisation exists, how unique it is. We first
address the latter problem. Assume we have found an algebraisation of a locally
Noetherian formal scheme; then in general it is not unique and a counterexam-
ple is given in [FGA-Ill, Remark 8.4.8.]. However, in [FGA-Ill, Corollary 8.4.7.],
Illusie proved that if we restrict to proper formal schemes then an algebraisation
is unique up to a unique isomorphism inducing the identity on X.

Theorem 3.10 ([EGAIII1, (3.5.4.5)] or [FGA-Ill, Theorem 8.4.10]). Let A be a Noe-
therian I-adic ring, let T = SpecA, T := Spf A, let f : X→ T be a proper morphism
of formal schemes. For any l ∈ N, let Tl := Spec(A/I l+1), Xl := X×T Tl. Suppose
that there is an invertible formal sheaf L such that L0 := L/IL is an ample invert-
ible sheaf on X0. Then X is algebraisable. Furthermore, if X is its algebraisation,
which is proper over T since f was supposed proper, then there exists a unique
ample invertible sheafM on X such that L ∼= M̂/X0 .

We present now a few remarks on the above theorem. The first one is that the
hypotheses f proper, which is equivalent to X0 proper over k, and L0 ample on
X0 together imply that X0 is projective over T0. Furthermore, since f was proper,
the algebraisation of X is proper over T by the above definition; in particular it is
unique up to a unique isomorphism inducing the identinty on the formal scheme.
We also remark that the existence of an ample invertible sheafM on X together
with the fact that X is proper, imply that X is projective over T .

A corollary of the above theorem, is the classical result by Grothendieck:

Theorem 3.11 ([Gro60, Théorème 4]). Let A be a local adic Noetherian ring with
residue field k, let X be a proper formal scheme over Spf A and suppose that

(1) the local rings of OX are flat A-modules (in other words f is flat);
(2) X0 := X⊗A k satisfies H2(X0,OX0) = 0;
(3) X0 is projective.

Then X is algebraisable and its algebraisation is projective over SpecA.
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We can interpret Theorem 3.11 as a theorem on deformations; it says that, in the
same notations as above, if the structure morphism f : X→ Spf A is proper and a
formal deformation of a projective scheme X0 with H2(X0,OX0) = 0, then the for-
mal deformation f is effective. Therefore Theorem 3.11 gives sufficient conditions
to achieve step (i) above.

The difference between the algebraisation of a formal scheme over a formal
affine scheme, say Spf A with A as above, and the algebraisation of a formal de-
formation over Spf A with proper central fibre lies in the base affine scheme: in
the algebraisation of the formal scheme, the k-algebra is required to be complete,
while in the algebraisation of the formal deformation the k-algebra is required to
be (essentially) of finite type.

Examples of formal schemes that are not algebraizable (resp. formal deforma-
tions that are not effective) are K3 surfaces and Abelian varieties, see [Ser07, Ex-
ample 2.5.12 ] or [FGA-Ill, Remark 8.5.24(b) and remark 8.5.28(a)]. Even though
in both cases we are able to extend (resp. deform) the scheme at all infinitesi-
mal neighbourhoods, there are ample line bundles that do not lift to the whole
formal scheme. This is the consequence of the fact that the space of all defor-
mation of pairs Abelian variety together with an ample line bundle on it (or K3
surface together with an ample line bundle) is a proper subspace of the space of
all deformations of Abelian varieties (or of K3 surfaces).

3.4. Motivating formal smoothness. In the next part we introduce two defini-
tions of smoothing that will be relevant in the following. In particular we mo-
tivate why the definition of formal smoothing given by Tziolas in [Tzi10] is the
most natural and, in some sense, the only one possible in our framework.

This section was motivated by the following result of Tziolas, which is key to
our argument.

Proposition 3.12 ([Tzi10, Proposition 11.8]). Let Y be a proper, equidimensional
scheme and let A be a k-algebra which is a DVR. Let g : Y → SpecA also be a de-
formation of Y overA and let g : Y→ Spf Â be the associated formal deformation.
Then g is a smoothing if and only if g is a formal smoothing.

The importance of the above result is that it gives a criterion to recognise if a
one-parameter deformation is a smoothing by checking if the associated formal
deformation is a formal smoothing. Let us first introduce the two definitions of
smoothings.

Definition 3.13. Let Y be a proper, equidimensional scheme and let A be a k-
algebra which is a DVR. We say that a deformation g : Y → SpecA of Y over A is
a smoothing if the generic fibre Ygen := Y ×SpecA Specκ(A) is smooth.

Following [Tzi10], we now recall the notion of formal smoothing. Such defi-
nition requires the knowledge of the sheaf of Fitting ideals, which can be found
either in [Eis95, Chapter 20.2] or in [Stacks, TAG 0C3C]. We will not introduce it
but we will just give an interpretation of what the Fitting ideal is. Let X be a for-
mal scheme, let F be a formal coherent sheaf and let a ∈ N; we denote by Fitta(F)
the ath Fitting ideal sheaf of F. This ideal measures the obstructions for the sheaf
F to be locally generated by a elements. For example, F is locally generated by a
elements if and only if Fitta(F) = OX.

https://stacks.math.columbia.edu/tag/0C3C
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Definition 3.14. Let X be a proper, equidimensional scheme. A formal deforma-
tion of X over S

X X

Spf k S

π

is called a formal smoothing ofX if and only if there exists a natural number a such
that Ia ⊂ FittdimX(Ω1

X/S), where I is an ideal of definition of X and FittdimX(Ω1
X/S)

is the Fitting sheaf of ideals.
We say that X is formally smoothable if it admits a formal smoothing.

We point out that Proposition 3.12 establishes an equivalence among two dif-
ferent notions of smoothing that, apparently, are very different. Indeed, in Defi-
nition 3.13, the condition uses strongly the existence of a generic point, while in
Definition 3.14 the same condition is “forced” to be algebraic since there is not a
generic point in Spf kJtK.

As mentioned above the two notions differ only apparently as we are going to
explain next.

First observe that any DVR which is a k-algebra is a local Noetherian ring; in
particular we have that its completion with respect to the adic topology induced
by its maximal ideal is isomorphic to the formal power series in one variable, kJtK.
We also remark that the (classical) spectrum of a DVR contains two points: the
closed and the generic one. On the other hand, the formal spectrum of the formal
power series ring is made of one point only. Therefore it is natural to define the
notion of smoothing of a scheme over a DVR as a deformation ofX whose general
fibre, i.e. the fibre over the open generic point, is smooth. On the other hand, in
the case of formal deformation over Spf kJtK such idea is not possible. However,
Tziolas come up with a definition of formal smoothing that does not need the
generic point, as we are going to explain now. Let us suppose that π : X → B is a
locally of finite type, flat of relative dimension r morphism of schemes and define

Ur = {x ∈ X : π is smooth at x of relative dimension r} .

By [Stacks, TAG 02G2], it is an open subset of X and by [Eis95, p. 407] or [Stacks,
TAG 0C3K] we have that

Ur = X \ V(Fittr(Ω
1
π)) and Singr(π) = V(Fittr(Ω

1
π)).

If we assume that π is proper, then π(Ur) ⊂ B is open too and π|Ur : Ur → Ar is
smooth of relative dimension r, where Ar := B \ π(V(Fittr(Ω

1
π))). Doing a base

change, we can always find a smoothing from the family over B if and only if Ar
is not empty.

Suppose that B is affine smooth curve over k, let p ∈ B be a closed point and
let R := OB,p; it is known that R is a DVR with residue field k. π : X → B is a
smoothing (according to Definition 3.13) if and only if the pullback deformation
XR → SpecR along the localization morphism SpecR→ B is a smoothing (again

https://stacks.math.columbia.edu/tag/02G2
https://stacks.math.columbia.edu/tag/0C3K
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in the sense of Definition 3.13). We then have following diagram:

Xn XR̂ XR X

Sn Spec R̂ SpecR B

π|Xn
π|X

R̂

β

π|XR
π

α

where all squares are Cartesian, R̂ denotes the completion of OB,p along its max-
imal ideal mp and, for every n ∈ N, Rn := kJtK

(tn+1)
= k[t]

(tn+1)
and Sn := SpecRn. As

previously mentioned, the completion ofOB,p along the maximal ideal is isomor-
phic to kJtK.

In order to lighten the notation, let us denote πn := π|Xn , π̂ := π|X
R̂

, π̃ := π|XR
.

Observe now that α is a homeomorphism, hence β is at least a bijective function
on the sets; by [Eis95, Corollary 20.5] we have that

Singr(π̂) = β−1(Singr(π̃)).

Therefore, π̃ is smooth of relative dimension r along π̃−1(η) if and only if π̂ is
smooth of relative dimension r along π̂−1(η̂), where η and η̂ are the generic points
of SpecR and Spec R̂ respectively. Now SpecR has only two points: the closed
one, Y with ideal sheaf IY/SpecR = (t), and the open one, η. Let Cr := Singr(π̃).
Now π̃(Cr) ⊂ Y as schemes if and only if there exists a structure of closed SpecR-
subscheme Ỹ on Y with Ỹred = Y and such that π̃(Cr) ⊂ Ỹ as sets. We are then
reduced to classify all closed subscheme structures on Spec kJtK. These are given
by Yk := V((tk+1)), for every k ∈ N. In particular we have a chain of closed
subschemes

Y = V((t)) = Y0 ⊂ Y1 = V((t2)) ⊂ Y3 ⊂ · · · .
Hence, Ỹ is a closed SpecR-subscheme structure on Y satisfying Ỹred = Y and
π̃(Cr) ⊂ Ỹ if and only if there exists a non-negative integer k such that Ỹ = Yk.
Concluding, we have proven that the following statements are equivalent:

(a) π : X → B is smooth of relative dimension r;
(b) π̃ : XR → SpecR is smooth of relative dimension r;
(c) π̂ : XR̂ → Spec R̂ is smooth of relative dimension r;
(d) there is a closed subscheme Ỹ of SpecR such that Ỹred = Y and π̃(Cr) ⊂ Ỹ ;
(e) there exist a k ∈ N such that π̃(Cr) ⊂ Yk;
(f) there exists a k ∈ N such that Cr ⊂ π̃−1(Yk);
(g) there exists a k ∈ N such that

Fittr(Ω
1
π̃) = ICr/X ⊇ π̃−1((tk+1)) = π̃−1(IYk/ SpecR).

Observing that the condition we have found is independent of the ideal of def-
inition, we have reached the definition of formal smoothing as given in [Tzi10,
Definition 11.6].

4. GORENSTEIN SCHEMES, MORPHISMS AND THEIR DEFORMATIONS

In this part we will review, following [Stacks, Tag 08XG] and [Stacks, Tag
0WDE], the notions of dualising complexe and of Gorenstein morphisms. We
then discuss how the Gorenstein property behaves under infinitesimal deforma-
tions. The main result of this section is that the relative dualising sheaf extends to

https://stacks.math.columbia.edu/tag/08XG
https://stacks.math.columbia.edu/tag/0DWE
https://stacks.math.columbia.edu/tag/0DWE
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every infinitesimal deformation. In the way to prove this result, we also present
a proof of the classical result that deformation of a Gorenstein morphism is still
Gorenstein, for which we were not able to find a proof in the literature.

4.1. Gorenstein schemes and morphisms. We start the section introducing the
notions of dualising sheaf, Gorenstein scheme and Gorenstein morphism.

Definition 4.1. Let A be a Noetherian ring. A dualising complex is a complex of A
modules ω•A such that

(1) ω•A has finite injective dimension;
(2) Hi(ω•A) is a finite A-module, for every i;
(3) A → RHomA(ω•A, ω

•
A) is a quasi-isomorphism in the derived category of

A-modules.

We remark that the dualising complex thus defined is not unique. Indeed, ac-
cording to [Stacks, TAG 0A7F], if ω•A and ν•A are two dualising complexes for A,
then there exists an invertible object L• ∈ D(A) such that ν•A is quasi-isomorphic
to ω•A ⊗L

A L
•.

Definition 4.2. LetA be a local Noetherian ring. We say thatA is a Gorenstein local
ring if A[0] is a dualising complex.

Definition 4.3. A scheme X is called Gorenstein if it is locally Noetherian and for
every x ∈ X , Ox,X is a Gorenstein local ring according to Definition 4.2.

Definition 4.4. Let f : X → Y be a morphism of schemes such that for every
y ∈ Y , the fibre Xy is a locally Noetherian scheme.

(1) Let x ∈ X and y := f(x). We say that f is Gorenstein at x if f is flat at x and
OXy ,x is a Gorenstein local ring.

(2) We say that f is Gorenstein if it is Gorenstein at x, for all x ∈ X .

Lemma 4.5 ([Stacks, Tag 0C12]). Let f : X → Y be a flat morphism of locally
Noetherian schemes. If X is Gorenstein, then f is Gorenstein.

Proposition 4.6 ([Stacks, Tag 0C07]). Let f : X → Y be a morphism of schemes
such that for every y ∈ Y the fiber Xy is locally Noetherian and let g : Y ′ → Y be
a locally of finite type morphism of schemes. Consider the following Cartesian
diagram

(6)
X ′ X

Y ′ Y.

f ′

g′

f

g

If f ′ is Gorenstein at x′ ∈ X ′ and f is flat at g′(x′), then f is Gorenstein at g′(x′).

From this it follows that being a Gorenstein is local in the flat topology on the
category of schemes.

4.2. Right adjoint to the pushforward and relative dualising complex. Now we
introduce the derived pushforward functor and its right adjoint. This machinery
will be used to define a relative dualising complex and to show that it behaves
well under pullbacks.

https://stacks.math.columbia.edu/tag/0A7F
https://stacks.math.columbia.edu/tag/0C12
https://stacks.math.columbia.edu/tag/0C07
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Definition 4.7. Let f : X → Y be a morphism of scheme with Y quasi-compact.
By [Stacks, Tag 0A9E], Rf∗ : DQCoh(X)→ DQCoh(Y ) admits a right adjoint and we
denote it by Ψ: DQCoh(Y )→ DQCoh(X).

Definition 4.8. Let Y be a quasi-compact scheme, let f : X → Y be a proper, flat
morphism of finite presentation and let Ψ be the right adjoint for Rf∗. We define
the relative dualising complex ω•f of f (or of X over Y ) as follows

ω•f := Ψ(OY ) ∈ DQCoh(X).

The following proposition explains the behaviour of the relative dualising com-
plex under base change.

Proposition 4.9 ([Stacks, Tag 0AAB]). Let X be a scheme, let Y and Y ′ be quasi-
compact schemes, let g : Y ′ → Y also be any morphism and let f : X → Y be
a proper, flat morphism of finite presentation. Consider the fibre diagram as in
eq. (6). Then we have a canonical isomorphism

ω•f ′
∼= L(g′)∗ω•f ∈ DQCoh(X ′),

where X ′ := X ×Y Y ′.

4.3. Upper shriek functor and Gorenstein morphisms. We now introduce the
upper shriek functor and explain its relationships with the right adjoint functor
for the derived pushforward functor and with Gorenstein morphisms.

Remember from Section 1.3 that FTS is the category whose objects are sepa-
rated, algebraic schemes over the field k and whose morphisms are morphisms
of k-schemes.

Definition 4.10. Let f : X → Y be a morphism in the category of FTS schemes.
We define the upper shriek functor

f ! : D+
QCoh(OY )→ D+

QCoh(OX)

as follows. We choose a compactification X → X̄ of X over Y . Such a compactifi-
cation always exists by [Stacks, Tag 0F41] and [Stacks, Tag 0A9Z]. Let denote by
f̄ : X̄ → Y the structure morphism and consider its right adjoint functor Ψ̄; we
then let f !K := Ψ̄(K)|X for K ∈ D+

QCoh(OY ).

According to [Stacks, Tag 0AA0], the definition of the upper shriek functor is,
up to canonical isomorphism, independent of the choice of the compactification
of X .

Remark 4.11. We point out that if f : X → Y is a proper morphism in the category
FTS, then Ψ̄ = Ψ, implying that the upper shriek functor is the restriction to
DQCoh(OY ) of Ψ, the right adjoint functor of Rf∗ (see [Stacks, Tag 0AU3]).

We are now ready to present the link between the Gorenstein condition and the
upper shriek functor.

Proposition 4.12 ([Stacks, Tag 0C08]). Consider f : X → Y a flat morphism of
schemes in FTS and let x ∈ X . Then the following conditions are equivalent:

(1) f is Gorenstein at x;
(2) f !OY is isomorphic to an invertible object (of the derived category) in a

neighbourhood of x.

https://stacks.math.columbia.edu/tag/0A9E
https://stacks.math.columbia.edu/tag/0AAB
https://stacks.math.columbia.edu/tag/0F41
https://stacks.math.columbia.edu/tag/0A9Z
https://stacks.math.columbia.edu/tag/0AA0
https://stacks.math.columbia.edu/tag/0AU3
https://stacks.math.columbia.edu/tag/0C08
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In particular the set {x ∈ X : f is Gorenstein at x} is open in X .

If we assumed that f were proper, then {y ∈ Y : f is Gorenstein at x ∈ f−1(y)}
is open in the target.

4.4. Relative dualising sheaf and dualising complex. The aim of this subsec-
tion is to show that all the definitions given until now, under mild hypotheses,
converge. In particular, the next proposition introduces the notion of relative du-
alising sheaf for a morphism in the category FTS and describes its relationships
with the relative dualising complex and with the Gorenstein morphisms.

Proposition 4.13 ([Stacks, Tag 0BV8]). Let X and Y be separated schemes and let
f : X → Y be a Gorenstein morphism of schemes. Then there exists a coherent,
invertible sheaf, called the relative dualising sheaf of f and denoted by ωf , which
is flat over Y and satisfies

f !OY ∼= ωf [−d],

where d is the locally constant function on X which gives the relative dimension
of X over Y .

If f is also proper, flat and of finite presentation, then ω•f = ωf [−d].

If Y = Spec k, then we denote the relative dualising sheaf of X over k by ωX .

Proposition 4.14. Let X be a Gorenstein scheme and let A be an Artinian local
k-algebra with residue field k. Consider now a deformation of X over A; that is a
Cartesian diagram

X X

Spec k SpecA

f

with f flat (see [Ser07]). Then f is a Gorenstein morphism.

Proof. Since X is Gorenstein and X → Spec k is flat, by Lemma 4.5 it follows
that X → Spec k is Gorenstein. Applying now Proposition 4.6, we deduce that
f : X → SpecA is Gorenstein. �

Remark 4.15. The result can be improved to obtain that the scheme X is Goren-
stein. This is true as soon as we require that the affine base scheme SpecA is the
spectrum of a local, Artinian, Gorenstein k-algebra A. This result and its proof
can be found in [Nob22].

Now we present the first result that will help us to deduce the existence of a
geometric smoothing.

Proposition 4.16. Let X be a proper, Gorenstein scheme. If f : X → S is a formal
deformation of X , then there exists a unique invertible formal sheaf L on X such
that L ⊗OX

OX ∼= ωX and L ⊗OX
OXn

∼= ωfn , for every n ∈ N, where ωfn is the
relative dualising sheaf. In particular, every morphism fn is Gorenstein.

https://stacks.math.columbia.edu/tag/0BV8
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Proof. By Proposition 3.4, the formal deformation f is equivalent to a collection of
deformations {fn : Xn → Sn}n∈N satisfying the compatibility condition of Equa-
tion (4), with fn flat, proper morphisms. Since X is Gorenstein, applying Propo-
sition 4.14 we deduce that for every natural number n, the morphism fn is Goren-
stein. Now consider the following Cartesian diagram

Xn Xn+1

Sn Sn+1;

fn

jn

fn+1

we have, for every natural number n, the following chain of equalities and natural
isomorphisms

j∗nωfn+1 = H−dimX(j∗nωfn+1 [− dimX]) (Proposition 4.13)

= H− dimX(Lj∗nω
•
fn+1

)

∼= H− dimX(ω•fn) (Proposition 4.9)

= H− dimX(ωfn [− dimX]) (Proposition 4.13)

= ωfn .

Theorem 2.25 then implies that there exists an invertible formal sheaf L on X such
that L⊗OX

OX ∼= ωX . �

As a consequence of this last proposition, we get that if X is a proper, local
complete intersection scheme over a field k and we have a formal deformation
f : X→ Spf kJtK, then the relative dualising sheaf ωX always extends to the formal
deformation f. To see this, it is enough to observe that l.c.i. schemes/morphisms
are in particular Gorenstein schemes/morphisms and then apply the previous
proposition.

This result for l.c.i. schemes can be achieved only by using properties of the
naive cotangent complex; this second way is described in length in [Nob22].

5. FROM FORMAL SMOOTHING TO GEOMETRIC SMOOTHING

In this last section we use all the previous results to show how pass from a
formal smoothing to a geometric one. We start by recalling the definition of geo-
metric smoothing.

Definition 5.1. Let X be a proper scheme. A geometric smoothing is a Cartesian
diagram

(7)

X X

Spec k = Spec
Oc,C

mc
C

π

where C is a smooth curve, c ∈ C is a closed point and π is a flat and proper
morphism, such that π−1(ηC) =: Xgen is smooth, where ηC is the generic point of
C. We say that X is geometrically smoothable if it has a geometric smoothing.
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We remark that, ifX is smooth over Spec k, thenX is geometrically smoothable
in a trivial way by considering the trivial family pr2 : X ×k C → C of deforma-
tions.

We now present some results that will be needed in the proof of the main the-
orem.

Lemma 5.2 ([Kem93, Lemma 7.2.1 page 87]). Let X be a scheme, let U be an open,
dense subset of X and let p ∈ X be a closed point. Then there exists an affine
curve C in X such that C intersects U and passes through p.

Remark 5.3. Let C be a smooth curve over k and let c ∈ C(k) be a closed point.
Denote by l a local parameter of the maximal ideal mc in OC,c. Then there is a
isomorphism of topological rings

ÔC,c ∼= kJtK

such that l is sent to t.

Proposition 5.4. Let f : X → Y be a morphism of schemes such that X is reduced
and irreducible. Then there exists an irreducible and reduced component Y ′ of Y
such that f factors trough Y ′, i.e. the following diagram commutes

X Y

Y ′

f

.

Proof. Since X is irreducible, by [Stacks, Tag 0379], f(X) is an irreducible subset
of Y . Then Y ′ := f(X) is an irreducible component of Y and f factors through
Y ′ by construction. By [Har77, II-Ex. 2.3(c)], we can always assume Y ′ to be a
reduced scheme. �

Notation 5.5. From now on, we will denote by S the formal scheme Spf kJtK and
by S the scheme Spec kJtK. Moreover, for any non-negative integer n, we denote
by Sn the scheme Spec kJtK

(tn+1)
.

The next lemma shows that geometrical smoothability implies formal smootha-
bility.

Lemma 5.6. Let X be a projective, equidimensional scheme. If X is geometrically
smoothable, then it is also formally smoothable.

Proof. Suppose X has a geometric smoothing like eq. (7), where c is the closed
point of C such that the fibre of π over c is X . Consider the pullback π̃ of π along
the composite morphism Spec ÔC,c → SpecOC,c → C; since π is a smoothing of
X , so is π̃. By Remark 5.3 we have that the completion of the regular local ring
OC,c is continuously isomorphic to S. Now using Remark 3.5, we can construct
the associated formal deformation p : X → S. We end the argument by invoking
Proposition 3.12. �

At this point we are ready to restate and prove our main result.

https://stacks.math.columbia.edu/tag/0379
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Theorem 5.7. Let X be a projective, equidimensional scheme such that one of the
following hypotheses hold:

(1) H2(X,OX) = 0,
(2) if X Gorenstein, then either the dualising sheaf ωX or its dual ω∨X is ample.

Then X is formally smoothable if and only if X is geometrically smoothable.

Proof. One implication is proved in Lemma 5.6
Suppose we are given a formal smoothing p : X→ S. Now,

(1) if H2(X,OX) = 0, then by [Ser07, Theorem 2.5.13], we get that every formal
deformation of X is effective; that is to say that there exists a deformation
of schemes p : X → S such that X ∼= X̂/X . In particular, from the proof, we
also deduce that the morphism p is projective.

(2) By Proposition 4.16 the dualising sheaf ωX (or ω∨X) extends to an invertible
formal sheaf L on the formal scheme X. Theorem 3.10 then gives us a de-
formation p : X → S of X such that the completion of X along the central
fibre is X. Moreover, as bonus point of the aforementioned theorem, we
deduce that X is projective over S.

Concluding, from either hypothesis, if we start with a formal deformation

X X

Spf k S

p

then we can construct a deformation of schemes

(8)
X X

Spec k S

p

such that X ∼= X̂/X . Since p is assumed to be a formal smoothing and since kJtK
is a DVR, we use Proposition 3.12 to conclude that eq. (8) is a smoothing of X .
Moreover, in eq. (8), the scheme X is projective over S; i.e. there is a non-negative
integer d such that p factors as a closed embedding ι : X ↪→ PdS = S×kPdk followed
by the first projection pr1 : PdS → S.

Now we use the fact that the Hilbert functor HilbPd is representable to deduce
the existence of an isomorphism

αS : HilbPd(S)→ Hom(Sch)(S,HilbPd) := hHilbPd
(S).
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Therefore there exists a unique morphism ψ : S → HilbPd such that both the fol-
lowing diagrams are Cartesian

X S ×k Pdk S

UnivPd HilbPd ×k Pdk HilbPd

p

ι

(Id×ψ)|X

pr1

ψ×Id ψ

pr1

pr1

.

Recall that UnivPd is by definition a closed subscheme of Pdk ×k HilbPd . Inside the
Hilbert scheme we consider the smooth locus, defined as follows

Hsmooth := {[Z] ∈ HilbPd(Spec k) : Z is smooth }
By [Stacks, Tag 01V5], Hsmooth is an open subset of the Hilbert scheme HilbPd .

Now we study the map ψ : S → HilbPd . To do so, we first observe that, since
kJtK is a DVR, its spectrum S is made of two points: the closed point, q, and the
generic point, η. According to our results so far we have that

• ψ(η) = [Xgen] ∈ Hsmooth, since (eq. (8)) is a smoothing;
• ψ(q) = [X] ∈ HilbPd \Hsmooth, since X was singular.

Since S is connected, there exists a polynomial Φ ∈ Q[m] such that the image
of ψ is contained in the connected component HilbΦ

Pd of the Hilbert scheme. By
Proposition 5.4 there exists a reduced, irreducible component Y of HilbΦ

Pd such
that ψ factors through it:

S HilbΦ
Pd

Y

ψ̃

ψ

i .

Observe now that if we define Ysmooth := Y ∩ Hsmooth and denote Ysmooth the
schematic closure of Ysmooth, then ψ̃(η) ∈ Ysmooth and ψ̃(q) ∈ Ysmooth. Since Ysmooth is
a non-empty open, and therefore dense, subset of Ysmooth and ψ̃(q) ∈ Ysmooth, then
we can apply Lemma 5.2 concluding that there exists a curveC inside Ysmooth such
that ψ̃(q) ∈ C and C ∩ Ysmooth 6= ∅.

Now let ν : C̃ → C be the normalisation morphism, and p̃ : X̃ → C̃ be the
pullback under the normalisation morphism ν of the universal family over Y .
Since ν is surjective, let c̃ ∈ C̃ be such that ν(c̃) = ψ̃(q). This completes the proof
since we have that the fibre p̃−1(c̃) is isomorphic to X and X̃ is smooth. �

5.1. Applications of the theorem. In this section we present an application of
our result: smoothability of local complete intersection schemes. We start by
recalling the definitions of local complete intersection (l.c.i.) schemes and of com-
plete intersection morphisms.

Definition 5.8. Let f : X → Y be a morphism of schemes. We say that f is a local
complete intersection morphism, or l.c.i. morphism for short, if it is of finite type

https://stacks.math.columbia.edu/tag/01V5
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and for every point x ∈ X there are an open neighbourhood x ∈ U ⊂ X , a scheme
P together with a regular immersion i : U → P , a smooth morphism of finite type
s : P → Y such that f |U = s ◦ i. We say that a k-scheme X is a l.c.i. scheme if the
structure morphism X → Spec k is a l.c.i. morphism.

The first remark is that the definition of l.c.i. morphisms does not depend on
the factorisation chosen, see [Stacks, Tag 069E].

Moreover, if f : X → Y is any morphism of schemes, then the locus Xl.c.i. of
points of X such that f is a l.c.i. morphism at x, is open in X . If we further
assume that f is proper, then the locus of points

Yl.c.i. := {y ∈ Y : f is l.c.i. at x,∀x ∈ f−1(y)}
is open in Y .

Definition 5.9. We say that the morphism f : X → Y is a complete intersection
morphism if there exists a scheme P together with a global factorisation s ◦ i of f ,
with i : X → P a regular immersion and s : P → Y a smooth morphism. We also
say that a scheme X is a complete intersection scheme if the structure morphism
X → Spec k is a complete intersection.

We now present a theorem of Tziolas [Tzi10, Theorem 12.5] which gives a suf-
ficient condition for the existence of a formal smoothing. We start by introducing
the following notation.

Notation 5.10. Let f : X → Y be a morphism of schemes. We denote the relative
tangent sheaf by TX/Y := Hom OX

(Ω1
X/Y ,OX) and for i ∈ N, the ith relative cotan-

gent sheaf in the sense of Schelessinger, see [LS67], by T iX/Y := Ext iOX
(Ω1

X/Y ,OX).
In case Y is the spectrum of the ground field k, we let TX := TX/k and T iX := T iX/k
be the tangent sheaf and the ith cotangent sheaf respectively.

Theorem 5.11 ([Tzi10, Theorem 12.5]). Let X be a proper, reduced, pure dimen-
sional scheme. If the following conditions hold

(a) X has complete intersection singularities;
(b) H2(X, TX) = 0;
(c) H1(X, T 1

X) = 0;
(d) T 1

X is finitely generated by its global sections;
then X is formally smoothable, i.e. it admits a formal smoothing.

As a corollary we would like to mention the following result that can be found
in [Tzi10, Corollary 12.9].

Corollary 5.12. Let X be a projective, lci scheme such that there exists a regular
embedding in a smooth scheme Y . If the normal sheaf NX/Y is finitely gener-
ated by its global sections, H1(X, T 1

X) = H2(X, TX) = 0, then X admits a formal
smoothing.

Putting together Corollary 5.12 and Theorem 5.7 we get the following.

Proposition 5.13. Let X be a singular, projective, l.c.i. variety (i.e. an integral
Noetherian scheme of finite type over k) over k satisfying conditions (a), (b) and
(c) of Theorem 5.11 and such that either its dualising sheaf or its dual is ample.
Then X is geometrically smoothable.

https://stacks.math.columbia.edu/tag/069E
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The above result can be used to get information about points on the moduli
space in the following sense.

Theorem 5.14. Let X be a projective, l.c.i. variety with ωX (respectively ω∨X) am-
ple. Assume thatX satisfies also hypotheses (b), (c) and (d) of theorem 5.11. Then
we have that

(1) X represents a point in closure of the open subset of the (algebraic) moduli
stackM of all projective smooth Gorenstein varieties with ample canoni-
cal (respectively anti-canonical) sheaf;

(2) the general point of the unique irreducible component ofM containing X
is smooth.

Proof. The hypothesis of theorem 5.11 and of theorem 5.7 are satisfied; hence X
is geometrically smoothable. In other words, X represents a point that lies in
the closure of the open subset of the moduli stack of projective l.c.i. varieties
with ample canonical (respectively anticanonical) sheaf. This proves (1) and (2)
above. �

The above theorem has been proved in [FFP21] for the specific case of Godeaux
stable surfaces. More precisely, in there the authors verified the hypotheses of Tzi-
olas’ Theorem 5.11 and then apply theorem 5.7 to show that stable semi-smooth
complex Godeaux surfaces appear in the closure of the smooth locus of the mod-
uli stack of stable surfaces of general type and such moduli stack at the point
representing the surface has dimension equal to the expected dimension.
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[Har06] Robin Hartshorne. Ample subvarieties of algebraic varieties. Vol. 156. Springer,
2006.

[Har09] Robin Hartshorne. Deformation Theory. Graduate Texts in Mathemat-
ics. Springer New York, 2009. ISBN: 9781441915955.

[Har77] Robin Hartshorne. Algebraic Geometry. Graduate Texts in Mathemat-
ics. Springer, 1977. ISBN: 9780387902449.

[HM68] Heisuke Hironaka and Hideyuki Matsumura. “Formal functions and
formal embeddings”. In: Journal of the Mathematical Society of Japan
20.1-2 (1968), pp. 52–82.

[KAK] János Kollár, Klein Altmann, and Sandor Kóvacs. Families of varieties of
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Fonte, L-4364 Esch-sur-Alzette, Luxembourg


	1. Introduction
	1.1. Motivation
	1.2. Structure of the paper
	1.3. Conventions
	1.4. Acknowledgment

	2. Locally Noetherian formal schemes
	2.1. The category of locally Noetherian formal schemes
	2.2. Sheaves on LNFSs
	2.3. Adic morphisms between LNFSs
	2.4. Properties of adic morphisms

	3. On deformations and smoothings
	3.1. Introducing formal deformations
	3.2. Relations among different types of deformations
	3.3. Reversing some constructions on deformation
	3.4. Motivating formal smoothness

	4. Gorenstein schemes, morphisms and their deformations
	4.1. Gorenstein schemes and morphisms
	4.2. Right adjoint to the pushforward and relative dualising complex
	4.3. Upper shriek functor and Gorenstein morphisms
	4.4. Relative dualising sheaf and dualising complex

	5. From formal smoothing to geometric smoothing
	5.1. Applications of the theorem

	References

