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Abstract
Given the clear role of GBA in the pathogenesis of Parkinson’s disease (PD) and its impact on phenotypical characteristics, 
this review provides an overview of the current knowledge of GBA-associated PD with a special focus on clinical trajectories 
and the underlying pathological mechanisms. Importantly, differences and characteristics based on mutation severity are 
recognized, and current as well as potential future treatment options are discussed. These findings will inform future strate-
gies for patient stratification and cohort enrichment as well as suitable outcome measures when designing clinical trials.
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Introduction

Over the last decades, research in genetically defined forms 
of Parkinson’s disease (PD) led to the identification of spe-
cific pathways underlying the pathophysiology of the dis-
ease. Next to defects in vesicular trafficking, mitochondrial 
and importantly lysosomal dysfunction represent the most 
relevant pathways (Jankovic and Tan 2020). Studying these 
early events provide entry points to develop novel therapeu-
tic targets for stratified patient groups as an important step 
towards precision neurology. The present article exempli-
fies such strategies focusing on PD patients with different 

variants in the glucocerebrosidase (GBA) gene  (PDGBA). 
Also, obstacles of translational research into patient cohorts 
and study designs for clinical trials are discussed.

 * Kathrin Brockmann 
 kathrin.brockmann@uni-tuebingen.de

1 Department of Neurology, Hannover Medical School, 
30625 Hannover, Germany

2 German Center for Neurodegenerative Diseases (DZNE), 
Munich, Germany

3 Department of Neurodegeneration and Hertie-Institute 
for Clinical Brain Research, Center of Neurology, University 
of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany

4 German Center for Neurodegenerative Disease (DZNE), 
Tuebingen, Germany

5 Parkinson-Klinik Ortenau, Wolfach, Germany
6 Department of Neurology, Rostock University, Gehlsheimer 

Str. 20, 18147 Rostock, Germany

7 German Center for Neurodegenerative Diseases (DZNE) 
Rostock/Greifswald, Gehlsheimer Str. 20, 18147 Rostock, 
Germany

8 Department of Neurology, St. Josef-Hospital, Katholische 
Kliniken Ruhrhalbinsel, Contilia Gruppe, Essen, Germany

9 Transversal Translational Medicine, Luxembourg Institute 
of Health (LIH), Strassen, Luxembourg

10 Translational Neuroscience, Luxembourg Centre for Systems 
Biomedicine (LCSB), University of Luxembourg, 
Esch-sur-Alzette, Luxembourg

11 Parkinson Research Clinic, Centre Hospitalier de 
Luxembourg (CHL), Luxembourg, Luxembourg

12 Department of Neurology, Faculty of Medicine, University 
Hospital Carl Gustav Carus and Carl Gustav Carus, 
Technische Universität Dresden, 01307 Dresden, Germany

http://orcid.org/0000-0002-7515-8596
http://crossmark.crossref.org/dialog/?doi=10.1007/s00702-022-02511-7&domain=pdf


1220 G. Höglinger et al.

1 3

GBA and Parkinson

GBA variants are the most important genetic risk 
factor for PD

Biallelic variants in the GBA gene cause Gaucher’s dis-
ease (GD), the most common lysosomal storage disorder 
with tissue accumulation of glucosylceramides due to 
deficiency of the lysosomal enzyme glucocerebrosidase 
(GCase). Interestingly, about 25% of GD patients report a 
first- or second-degree relative to present with PD (Goker-
Alpan et al. 2004; Halperin et al. 2006). This important 
clinical observation was the hint to the fact that heterozy-
gous variants in the GBA gene are associated with PD. 
Subsequently, a large multi-centre study across four conti-
nents analysed 5691 PD patients of different ethnic origin 
compared to 4898 controls and confirmed that with an 
overall odds ratio (OR) of 5.43, heterozygous variants in 
the GBA gene represent the most important genetic risk 
factor for PD (Sidransky et al. 2009). This has now been 
confirmed across different ethnic populations with Cau-
casian, Asian (Japanese, Chinese, Taiwanese), Hispanic, 
and African ancestry (den Heijer et al. 2020; Neumann 
et al. 2009; Lesage et al. 2011; Chen et al. 2014; Mahungu 
et al. 2020).

To date, more than 100 different variants have been 
associated with the risk of PD. However, the pathogenicity 
of different variants varies largely (Table 1). Whereas vari-
ants classified as severe variants (e.g. p.L444P) show an 
odds ratio of 10–15 for developing PD and mild variants 
(e.g. p.N370S) have an odd ratio of ≤ 5 for PD, some vari-
ants that are non-pathogenic for GD have been proven to 
increase the risk for PD e.g. p.E326K and p.T369M (Iwaki 
et al. 2019; Zhang et al. 2018; Straniero et al. 2020). These 
variants show the lowest odds ratios and are thus classi-
fied as risk variants. Consequently, GBA-subgroup classi-
fication for PD patients is often based on variant severity 
according to established genotype risks reported for PD 
 (PDGBA_severe,  PDGBA_mild,  PDGBA_risk). Interestingly, we 
see a huge variability of variant distribution among dif-
ferent ethnicities. About 20% of PD patients with Ashke-
nazi Jewish ancestry carry a GBA variant, with the large 
majority harbouring the mild p.N370S (> 70%), whereas 
the severe p.L444P variant is identified in about 5%. 
Together, the two variants account for about 80% of vari-
ants in Ashkenazi Jewish PD patients. In non-Ashkenazi 
Jewish PD patients, p.L444P is detected in about 30–40% 
of patients and p.N370S in about 20%, together accounting 
for 50–60% of variants (Sidransky et al. 2009), indicating 
that about 40% of variants could be missed if focusing 
solely on p.N370S and p.L444P. These findings high-
light the need for full-gene sequencing and stratification 

according to variant severity. Moreover, penetrance and 
disease risk in  PDGBA are age-dependent (Anheim et al. 
2012; Straniero et al. 2020) and further modified by the 
composite PD-associated polygenetic risk score (PRS) 
and single-nucleotide polymorphisms in SNCA, CSTB and 
TMEM175, the two latter genes encoding proteins asso-
ciated with lysosomal homeostasis and protein clearance 
(Blauwendraat et al. 2020b).

PDGBA: severe clinical trajectories with early 
cognitive decline

Detailed investigation of the phenotypical spectrum, lon-
gitudinal trajectories, and rate of progression of motor and 
non-motor symptoms is of utmost importance to estimate 
effect sizes and design clinical trials for disease-modifying 
therapies (duration, sample sizes, progression rates, expected 
spectrum of symptoms, etc.).

In general,  PDGBA show an earlier age at onset com-
pared to PD patients without GBA variants  (PDGBA_wildtype) 
with a median onset in the early 50s (Sidransky et al. 2009; 
Blauwendraat et al. 2019). Of note, this effect is not only 
attributable to GBA variants per se, but is driven by GBA 
variant severity and variant burden with severe variants as 
well as homozygous and compound heterozygous variants 
predisposing to the youngest age at onset (Malek et al. 2018; 
Thaler et al. 2017). Moreover, age at onset is further reduced 
in  PDGBA by non-coding variants in SNCA and TMEM175 
(Blauwendraat et al. 2020b). Although younger,  PDGBA pre-
sent with a higher prevalence of cognitive impairment and 
more frequently suffer from additional non-motor symptoms 
including neuropsychiatric disturbances (depression, anxi-
ety, and hallucination), autonomic dysfunction and sleep 
disturbances such as REM-sleep-behaviour disorder (RBD) 
when compared to  PDGBA_wildtype, (Brockmann et al. 2011; 
Barrett et al. 2014). These findings have been replicated 
consistently over the following years in other PD cohorts 
worldwide, the latest large clinical genome-wide association 
study in 4093 PD patients (Iwaki et al. 2019). Importantly, 
GBA variants that are classified as severe  (PDGBA_severe) have 
been associated with a more aggressive clinical phenotype 
suggesting a relevant effect depending on GBA variant sever-
ity (Cilia et al. 2016; Thaler et al. 2018; Petrucci et al. 2020; 
Lerche et al. 2021a).

Data from longitudinally investigated cohorts of  PDGBA 
confirm findings from cross-sectional evaluations and 
revealed that  PDGBA, although younger in age and age at 
onset, present with an accelerated disease progression in 
terms of motor impairment and cognitive decline as com-
pared to  PDGBA_wildtype. Moreover, survival rates are shorter 
when compared to  PDGBA_wildtype (Brockmann et al. 2015b; 
Cilia et al. 2016). In a British cohort, after 10 years of dis-
ease duration, 46% of  PDGBA remained dementia-free in 



1221GBA-associated PD: chances and obstacles for targeted treatment strategies  

1 3

Table 1  Excerpt of variants in the GBA gene detected in PD patients stratified by mutation severity

Variant Legacy name Suggested PD severity References

p.S5N S(-35)N VUS PMID: 26000814
p.R8T R(-32)T VUS PMID: 26296077
p.P12S P(-28)S VUS PMID: 26296077
p.K13R K(‐27)R VUS PMID: 18160183 PMID: 17059888
p.I20V I(-20)V VUS PMID: 26422360
p.L25V L(-15)V VUS PMID: 23225227
c.84dupG Severe PMID: 15525722 PMID: 16185900
p.G39R G(-1)R VUS PMID: 27397011
c.115+1G>A IVS2+1G>A Severe PMID: 18434642 PMID: 16185900
p.K46E K7E VUS PMID: 19286695
c.149_150insGTAT Severe PMID: 28890071
p.V56F V17F VUS PMID: 29140481
p.C62W C23W Mild/severe PMID: 29140481 PMID: 24434810
p.G74A G35A VUS PMID: 28361101
p.R78H R39H VUS PMID: 20425034
p.Y79C Y40C VUS PMID: 29140481
p.R83C R44C VUS PMID: 20425034
c.307+1G>A IVS3+1G>A Mild/severe PMID: 28830825
c.334_338del Severe PMID: 25518742 PMID: 32764102
p.V117A V78A Mild/severe PMID: 28030538 PMID: 18338393
p.G119R G80R VUS PMID: 20947659
p.L144R L105R Mild PMID: 22803570 PMID: 19793665
p.G152A G113A Mild/severe PMID: 20947659 PMID: 18338393
p.I158L I119L VUS PMID: 20947659
p.R159W R120W Severe PMID: 17702778 PMID: 16185900
p.R159Q R120Q Severe PMID: 34779914 PMID: 16185900
p.M162T M123T Mild PMID: 22173904 PMID: 17059888
p.S164N S125N Severe PMID: 20947659 PMID: 12838552
p.R170C R131C Severe PMID: 19286695 PMID: 16185900
p.R170S R131S VUS PMID: 18541817
p.T173P T134P Mild/severe PMID: 26296077 PMID: 16185900
p.D179H D140H Mild PMID: 20425034 PMID: 16185900
p.L183V L144V VUS PMID: 22173904
p.R202* R163X Severe PMID: 20425034 PMID: 16185900
p.R202Q R163Q VUS PMID: 18541817
p.Q205* R166X Severe PMID: 29140481
p.V211L V172L VUS PMID: 23225227
p.S212* S173X Severe PMID: 20947659 PMID: 16185900
c.636_637insTTTC Severe PMID: 29140481
p.L213P L174P VUS PMID: 17462935
p.S216T S177T VUS PMID: 23225227
p.W223R W184R Severe PMID: 23225227 PMID: 10679038
p.K225R K186R VUS PMID: 19945510
p.N227S N188S Severe PMID: 19433656 PMID: 12204005
p.N227K N188K Severe PMID: 28890071 PMID: 10649495
p.V230G V191G Severe PMID: 19433656 PMID: 20729108
p.G232W G193W Severe PMID: 19433656 PMID: 27042680
p.G232E G193E VUS PMID: 19286695
p.G234W G195W Severe PMID: 28030538 PMID: 16185900
p.G234E G195E Severe PMID: 27717005 PMID: 15967693
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Table 1  (continued)

Variant Legacy name Suggested PD severity References

p.S235P S196P Severe PMID: 26296077 PMID: 10649495
p.L236F L197F Severe PMID: 21856586 PMID: 16185900
p.K237T K198T VUS PMID: 14728994
p.P240H P201H Severe PMID: 22387070 PMID: 20729108
p.G241R G202R Severe PMID: 20947659 PMID: 16185900
p.Y244C Y205C Severe PMID: 27294386 PMID: 11933202
p.F252I F213I Severe PMID: 19433656 PMID: 16185900
p.F252V F216V VUS PMID: 28030538
p.F255Y F216Y Mild PMID: 20425034 PMID: 16185900
p.L256P L217P VUS PMID: 23225227
p.Y283* Y244X Severe PMID: 29140481
p.F285L F246L VUS PMID: 22282650
p.H294Q H255Q Severe PMID: 19383421 PMID: 16185900
p.R296Q R257Q Severe PMID: 19286695 PMID: 16185900
p.I299T I260T Severe PMID: 22173904 PMID: 15967693
p.R301C R262C VUS PMID: 28030538
p.R301H R262H VUS PMID: 18987351
p.L303I L264I Mild/severe PMID: 25518742 PMID: 29625627
p.G304S G265S VUS PMID: 28030538
c.914delC Severe PMID: 26296077 PMID: 16185900
p.P305L P266L Severe PMID: 27717005 PMID: 11783951
p.S310G S271G Mild PMID: 18541817 PMID: 21779299
p.R316C R277C Mild PMID: 22387070 PMID: 22375149
c.953delT Severe PMID: 22968580 PMID: 16185900
p.T336S T297S VUS PMID: 27094865
p.Y343C Y304C Severe PMID: 20947659 PMID: 16185900
p.W351R W312R Severe PMID: 28030538 PMID: 22429443
p.L353V L314V VUS PMID: 25518742
p.F355I F316I VUS PMID: 26296077
p.T362I T323I Mild PMID: 20425034 PMID: 1301953
p.L363P L324P Mild/severe PMID: 23588557 PMID: 16185900
p.E365K E326K Risk PMID: 14728994 PMID: 27648471
p.R368C R329C Mild PMID: 14728994 PMID: 17059888
p.R368H R329H VUS PMID: 19383421
p.L375P L336P Mild/severe PMID: 20425034 PMID: 16185900
p.S378L S339L VUS PMID: 21856586
p.G383S G344S VUS PMID: 20425034
p.F386L F347L VUS PMID: 22387070
p.L393P L354P VUS PMID: 23225227
p.W396R W357R VUS PMID: 28830825
p.R398* R359X Severe PMID: 21779299 PMID: 16185900
p.S403N S364N Mild/severe PMID: 20947659 PMID: 11259172
p.I407T I368T VUS PMID: 28361101
p.T408M T369M Risk PMID: 14728994 PMID: 27648471
p.T408= T369T VUS PMID: 28399184
p.N409S N370S Mild PMID: 14728994 PMID: 16185900
p.N409K N370K Mild/severe PMID: 20425034 PMID: 16185900
p.L410I L371I VUS PMID: 20425034
p.V414L V375L Mild PMID: 25518742 PMID: 16185900
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Table 1  (continued)

Variant Legacy name Suggested PD severity References

p.V414G V375G Mild/severe PMID: 23225227 Farah P Daniel P 
El Khoury G El Rachkidi RTohme 
A. Early onset, but late diagnosis 
of a rare disease. Intern Med Open 
J. 2019; 3(1): 1–3

p.G416S G377S Severe PMID: 20947659 PMID: 22429443
p.G416D G377D VUS PMID: 28830825
p.W417G W378G Severe PMID: 21856586 PMID: 32764102
p.D419N D380N Severe PMID: 20425034 PMID: 21982627
p.D419A D380A Severe PMID: 19286695 PMID: 16185900
p.D419V D380V VUS PMID: 22812582
c.1263_1317del RecΔ5 Severe PMID: 19286695 PMID: 16185900
p.N425K N386K Severe PMID: 24997549 PMID: 33176831
p.P426L P387L Mild/severe PMID: 28361101 PMID: 8937765
p.E427K E388K VUS PMID: 20947659 PMID: 22820396
p.P430L P391L Mild/severe PMID: 25957717 PMID: 16185900
p.N431S N392S VUS PMID: 22812582
p.W432R W393R Mild PMID: 22173904 PMID: 18847161
p.W432* W393X Severe PMID: 24126159
p.V433L V394L Severe PMID: 18434642 PMID: 16185900
p.N435T N396T Mild PMID: 18160183 PMID: 16185900
p.V437I V398I Mild PMID: 22968580 PMID: 17059888
c.1309delG Severe PMID: 24997549
p.D448H D409H Severe PMID: 17462935 PMID: 16185900
p.F465V F426V VUS PMID: 28030538
p.P467S P428S VUS PMID: 24997549
c.1439_1445del Severe PMID: 22968580 PMID: 22429443
p.K480N K441N VUS PMID: 28361101
p.D482N D443N VUS PMID: 19286695
c.1447-1466delinsTG Severe PMID: 24126159 PMID: 16185900
p.L483P L444P Severe PMID: 14728994 PMID: 16185900
p.L483R L444R Severe PMID: 27717005 PMID: 16185900
p.A485T A446T VUS PMID: 28030538
p.A485A A446A VUS PMID: 20947659
p.V486E V447E Mild/severe PMID: 28834018 PMID: 22344629
p.L488L L449L VUS PMID: 28030538
p.P491L P452L VUS PMID: 20947659
p.D492N D453N VUS PMID: 28030538
p.G493D G454D VUS PMID: 30363439
p.V496A V457A VUS PMID: 28830825
p.V496D V457D VUS PMID: 28030538
p.V499L V460L VUS PMID: 26296077
p.V499M V460M Mild/severe PMID: 20425034 PMID: 16185900
p.N501K N462K Severe PMID: 23413260 PMID: 16185900
p.R502C R463C Severe PMID: 19286695 PMID: 16185900
p.R502P R463P Mild/severe PMID: 27717005 PMID: 16185900
p.R502H R463H Severe PMID: 20947659 PMID: 22429443
c.1505+1G>T IVS10+1G>T Mild/severe PMID: 25249066 PMID: 23430543
c.1506-1G>A IVS10-1G>A Severe PMID: 21745757 PMID: 7694727
p.S504P S465P VUS PMID: 23225227
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comparison to 68% of  PDGBA_wildtype. After 15 years, 64% of 
the surviving  PDGBA_wildtype remained dementia-free. At that 
time point, all  PDGBA had developed dementia or already 
died. Mean time to dementia was 8.3 years in  PDGBA com-
pared to 13.7 years in  PDGBA_wildtype. Similarly, at 5 year dis-
ease duration, 67.5% of  PDGBA had reached HY stadium 3, 
compared to 43% of  PDGBA_wildtype. Mean time to Hoehn and 
Yahr staging 3 was 4.7 years in  PDGBA compared to 6.8 years 
in  PDGBA_wildtype (Stoker et al. 2020). Similar results were 
reported in a large longitudinal cohort of Italian patients 
with a clearly more aggressive pattern depending on GBA 
variant severity (Cilia et al. 2016). Interestingly, a recent 
study reports that  PDGBA who are treated with deep brain 
stimulation (DBS) in the subthalamic nucleus (STN) showed 
an even more rapid cognitive decline compared to  PDGBA 
without DBS as well as  PDGBA_wildtype with and without 
DBS. This finding suggests that the additive effect of GBA 
variants and STN-DBS negatively impact cognition and 
that presurgical genetic screening should be considered (Pal 
et al. 2022). Further studies are needed for replication and 
to evaluate the underlying pathophysiological mechanisms.

The typical motor manifestation of PD is preceded by a 
prodromal phase that is characterized by a variety non-motor 
and early motor signs (Berg et al. 2015). Non-motor symp-
toms include among others hyposmia, autonomic dysfunc-
tion, and neuropsychiatric symptoms, whereas reduced arm 
swing and bradykinesia indicate early motor signs. However, 
type, prevalence, time of occurrence, and rate of progression 
of these prodromal symptoms are variable between patients. 
Given the findings from the manifest disease phase in  PDGBA 
with the pronounced non-motor profile and more rapid 
disease progression, we retrospectively assessed patient’s 
perception of their individual prodromal phase before PD 

diagnosis. Comparing  PDGBA and  PDGBA_wildtype, we could 
show that: (i)  PDGBA demonstrate a higher prevalence of 
prodromal symptoms and a shorter prodromal phase with 
almost parallel beginning of non-motor and early motor 
signs before PD diagnosis. Contrary,  PDGBA_wildtype show 
a long prodromal interval starting with non-motor symp-
toms long before early motor signs manifested. (ii)  PDGBA 
with severe variants reported the highest total amount of 
prodromal signs. These findings suggest that complexity of 
symptoms known from the manifest disease might be pre-
sent already in the prodromal phase (Zimmermann et al. 
2018). Similarly, prospective studies found that prodromal 
GBA variant carriers present with more pronounced dete-
rioration of motor and non-motor symptoms, specifically 
cognitive decline and hyposmia when compared to healthy 
controls without GBA variant (Avenali et al. 2019; Beavan 
et al. 2015; Mullin et al. 2019). Another study in patients 
with REM-sleep behaviour disorder (RBD) reports that GBA 
variants are associated with accelerated phenoconversion to 
PD and/or dementia in this specific cohort (Honeycutt et al. 
2019).

GBA variants are an important genetic risk factor 
for Dementia with Lewy Bodies (DLB)

The important finding that  PDGBA shows pronounced and 
early development of dementia prompted the community to 
perform a large multicenter analysis across 11 centres evalu-
ating GBA variants in 721 cases with DLB, which represents 
a clinico-pathological continuum to PD. With an even higher 
OR than seen in PD, GBA variants are also strongly associ-
ated with DLB (8.28). Similar to PD, GBA variants predis-
pose to an earlier age at onset, more pronounced disease 

Table 1  (continued)

Variant Legacy name Suggested PD severity References

p.K505K K466K VUS PMID: 22387070
p.T521K T482K Mild/severe PMID: 20425034 PMID: 32547927
p.S527T S488T VUS PMID: 22173904
p.I528V I489V VUS PMID: 24126159
p.H529R H490R VUS PMID: 27397011
p.R535C R496C Mild PMID: 19433656 PMID: 16185900
p.R535H R496H Mild PMID: 15525722 PMID: 16185900
p.Q536R Q497R VUS PMID: 17462935
[p.L483P;p.A495P] RecA456P (L444P + A456P) Severe PMID: 19286695 PMID: 9279145
[p.L483P;p.A495P;p.V499=] RecNciI (L444P + A456P + V460V) Severe PMID: 16261622 PMID: 16185900
[p.D448H;p.L483P;p.A495P;p.

V499=]
RecTL 

(D409H + L444P + A456P + V460V)
Severe PMID: 18434642 PMID: 16185900

Variant position based on NM_001005742. Suggested PD severity mainly based on reported GD severity. Additionally, frameshift and non-
sense variants were categorized as "severe". Variants described as pathogenic in GD, but with unknown GD severity were categorized as "mild/
severe". Variants described as not pathogenic in GD, but have been detected as risk factors for PD were categorized as "risk". Missense and 
splice site variants not described in GD and of unknown significance for PD were categorized as "VUS" = variants of unknown significance
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severity/progression and rather “pure” form of DLB without 
concomitant Alzheimer’s profile as defined by CSF p-tau/
Aβ1-42 ratio (Nalls et al. 2013; van der Lee et al. 2021). This 
study further supports GBA variants as a significant genetic 
risk factor for synucleinopathies and confirmed the overall 
impression that GBA-associated Parkinsonism predisposes 
to an increased incidence of dementia (Fig. 1).

Pathomechanisms in  PDGBA

Experimental evidence from cell models suggests that GBA 
variants result in disrupted protein folding of GCase in the 
endoplasmic reticulum (ER), impaired trafficking of GCase 
from the ER to Golgi and ultimately in lower lysosomal 

GCase enzyme activity. This in turn causes a build-up of 
glucosylceramides (GlcCer) and glucosylsphingosines 
(GlcSph) (Beutler 1992) and impairs lysosomal function 
and thereby the degradation of α-synuclein (Mazzulli et al. 
2011).

GBA variants predispose to accelerated α‑synuclein 
aggregation and Lewy‑body pathology

Post-mortem studies show enhanced aggregation and 
propagation of α-synuclein not only in the substantia nigra 
and putamen but also wide-spread neocortical Lewy-body 
pathology in brain tissue of  PDGBA and  DLBGBA (Neumann 
et al. 2009; Gundner et al. 2019).

Fig. 1  Pathogenic mechanisms underlying  PDGBA. Loss of lysoso-
mal GCase activity results in impaired autophagy affecting the deg-
radation of both physiological (red dot) and misfolded α-synuclein 
(red dot complex) resulting in the aggregation of α-synuclein (red 
strains). GBA variants also cause the GCase protein to misfold in the 
ER (brown enzyme) with impaired trafficking to the lysosome which 
also affects α-synuclein degradation. Accumulation of GCase sub-
strates (GlcCer and GlcSph, yellow) also causes α-synuclein misfold-
ing and aggregation, as may changes in the lipid homeostasis (both 

sphingolipids and phospholipids) of cellular membranes (yellow) due 
to decreased lysosomal function. In  PDGBA_wildtype, the trafficking of 
wild-type GCase (green enzyme) can be inhibited by increased levels 
of α-synuclein (red dot complex) and α-synuclein fibrils (red strains), 
and contribute GCase deficiency (brown enzyme) irrespective of a 
GBA mutation. This figure was adapted from “Brainstem with Call-
out” and “Structural Overview of an Animal Cell”, by BioRender.
com (2022). Retrieved from https:// app. biore nder. com/ biore nder- 
templ ates

https://app.biorender.com/biorender-templates
https://app.biorender.com/biorender-templates
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The field of PET imaging markers to assess the cerebral 
load of α-synuclein in-vivo is difficult. However, this month 
[03(2022)] first positive results were reported at the AD/PD 
Conference for a new PET tracer developed by AC Immune 
to distinguish multiple system atrophy (MSA) from healthy 
controls and patients with other forms of α-synuclein (PD, 
DLB). Therefore, research in PD has focused on CSF. Yet, 
it is unclear whether CSF profiles of α-synuclein species 
reflect brain pathology. Cross-sectional and longitudi-
nal analyses in  PDGBA_wildtype and  PDGBA demonstrated 
decreased CSF levels of total α-synuclein compared to 
healthy controls with the highest decrease in  PDGBA patients 
carrying severe variants (Malek et al. 2014; Mollenhauer 
et al. 2019; Lerche et al. 2020, 2021a). Correspondingly, 
the same pattern was also reported in patients with  DLBGBA 
(Lerche et al. 2019a). However, a substantial inter-individual 
variability and overlap with healthy controls is seen, so that 
CSF levels of total α-synuclein are not ideal. Recently, the 
ultrasensitive assays real‐time quaking‐induced conversion 
(RT‐QuIC) and protein misfolding cyclic amplification 
(PMCA) have been successfully implemented. These assays 
exploit the seeding capacities of prion or prion-like proteins 
as an amplification strategy to reveal minute amounts of dis-
ease-specific protein aggregates in CSF (Fairfoul et al. 2016; 
Shahnawaz et al. 2017). Both methods are highly sensitive 
(88–96%) and specific (83–98%) for α-synuclein aggregates 
and Lewy-body pathology in PD and DLB as assessed in 
matched CSF/brain samples compared to healthy controls 
and other forms of dementia and parkinsonism (Rossi et al. 
2020; Kang et al. 2019). However, histopathological find-
ings in some genetic forms of PD are remarkably variable. 
While  PDGBA show extensive Lewy-body pathology, most 
PD patients with bi-allelic mutations in the recessive gene 
PRKN  (PDrecessive_bi-allelic) show nigral degeneration without 
Lewybodies (Schneider and Alcalay 2017). Also, histopa-
thology in PD patients with LRRK2 mutations  (PDLRRK2) is 
variable, including typical Lewy-body pathology, misfolded 
tau deposition, or nigral degeneration without Lewy-body 
(Zimprich et al. 2004; Heckman et al. 2016; Kalia et al. 
2015). This prompted us to evaluate CSF α-synuclein seed-
ing capacities with RT-QuIC in two large cohorts of PD 
and DLB patients enriched for genetic forms. Remarkably, 
 PDGBA (93%) and  DLBGBA (100%), especially those carrying 
severe variants, showed the highest percentage of positive 
α-synuclein seeding and the most pronounced α-synuclein 
seeding kinetics. In contrast,  PDrecessive_bi-allelic did not show 
CSF α-synuclein seeding at all, whereas those carrying het-
erozygous mutations in these recessive genes showed less 
α-synuclein seeding than  PDwildtype (91%) with a reduced 
positivity rate of 59%. Also,  PDLRRK2 showed a reduced 
rate of α-synuclein seeding (78%) compared to  PDwildtype 
(Brockmann et al. 2021). The heterogeneity in α-synuclein 
seeding activity among the different genetic forms mirrors 

histopathological findings in these cases and highlight the 
value of α-synuclein seeding activity as an in-vivo marker 
of Lewy-body pathology.

The accelerated cognitive decline  PDGBA makes this sub-
group of PD a good model to study CSF profiles that are 
associated with cognitive impairment. In general, limbic 
and/or cortical Lewy-body pathology is hypothesized to be 
the main substrate forcing driving cognitive decline in PD 
(Aarsland et al. 2005). In more recent years, it became clear 
that a considerable proportion of PD patients who developed 
dementia in their disease course show concomitant amyloid-
beta and tau pathology at autopsy in addition to the typical 
Lewy-body pathology (Halliday et al. 2008; Compta et al. 
2011). Correspondingly, reduced CSF levels of Amyloid-
beta1-42 (Aβ1-42) and/or elevated CSF levels of total-Tau 
(t-Tau) and phospho-Tau (p-Tau) have been reported to be 
associated with cognitive impairment in PD (Brockmann 
et al. 2015a, 2017; Lerche et al. 2019b; Kang et al. 2016). 
However, this seems not to be the case in  PDGBA as CSF 
levels of Aβ1-42, t-Tau, and p-Tau are similar to those seen 
in healthy control individuals. In light of the CSF profiles 
of reduced total levels of α-synuclein and the prominent 
α-synuclein seeding activity, the pronounced cognitive 
decline in  PDGBA is driven by α-synuclein aggregation and 
cortical Lewy-body pathology.

Taken together, these histopathological and CSF charac-
teristics of predominant and accelerated α-synuclein-driven 
Lewy-body pathology make  PDGBA and  DLBGBA a role 
model to study pathways leading to α-synuclein aggrega-
tion and highlight these patient cohorts as prime candidates 
for clinical trials targeting α-synuclein.

GCase deficiency and α‑synuclein aggregation

Heterozygous variants in the GBA gene are associated with 
a reduction of GCase protein levels and GCase enzyme 
activity in cell and animal models as well as in a variety of 
patient-derived biomaterials (Lerche et al. 2021a; Alcalay 
et al. 2015, 2020; Schondorf et al. 2014; Paciotti et al. 2019). 
Again, the degree of reduction is dependent from variant 
severity. Interestingly, GCase activity is also reduced in 
 PDGBA_wildtype, albeit to a lesser degree (Parnetti et al. 2017).

There is reasonable evidence from different cell models 
including induced pluripotent stem (IPS) cell-derived human 
dopaminergic midbrain neurons and human midbrain orga-
noids that deficiency of the GCase enzyme is paralleled by 
increased levels of intracellular α-synuclein, specifically 
α-synuclein species susceptible to aggregation such as 
high molecular weight and decreased tetramer/monomer 
ratio (Schondorf et al. 2014; Kim et al. 2018; Magalhaes 
et al. 2016; Aflaki et al. 2016; Mazzulli et al. 2016; Jo et al. 
2021). Correspondingly, post-mortem studies in  PDGBA and 
 DLBGBA and to a lesser degree also in  PDGBA_wildtype and 
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 DLBGBA_wildtype revealed that reduced GCase protein levels 
and reduced GCase enzyme activity are accompanied by 
increased levels of intracellular α-synuclein. Notably, these 
findings are not restricted to the substantia nigra and puta-
men but also identified in cortical regions (Murphy et al. 
2014; Gegg et al. 2012; Moors et al. 2019; Gundner et al. 
2019).

More specifically, it is suggested that lysosomal GCase 
and α-synuclein are linked in a bidirectional pathogenic loop 
as shown in cell cultures and IPS cell-derived dopaminer-
gic midbrain neurons: (I) functional loss of GCase activ-
ity compromises lysosomal degradation of α-synuclein and 
promotes its aggregation. (II) α-Synuclein itself inhibits the 
activity of GCase (Mazzulli et al. 2011; Schondorf et al. 
2014). Consequently,  PDGBA fulfill both conditions of this 
bidirectional loop in parallel leading to a self-reinforcing 
mechanism. Thereby, α-synuclein aggregation and propaga-
tion might be accelerated which possibly explains the wide-
spread neocortical Lewy-body pathology and rapid clinical 
progression.

However, this bidirectional loop between GCase and 
α-synuclein might be oversimplified, since we have clear evi-
dence for a more complex impairment of the autophagy–lys-
osomal pathway including disrupted macroautophagy with 
reduced fusion of autophagosomes with lysosomes and 
decreased expression/activity of other proteolytic lysoso-
mal enzymes such as cathepsin B and D (Aflaki et al. 2020; 
Blauwendraat et al. 2020a; Lerche et al. 2021b).

Disturbance in sphingolipid homeostasis 
and α‑synuclein aggregation

Adding to the complexity of the underlying pathophysiol-
ogy are additional alterations of intracellular and membrane-
associated sphingolipid homeostasis. In GD patients, GD 
post-mortem brain studies, and IPS cell-derived human 
dopaminergic midbrain neurons with bi-allelic and heterozy-
gous GBA variants, GCase deficiency results in accumula-
tion of the GCase substrates GlcCer and GlcSph.  PDGBA 
patients, specifically  PDGBA with severe variants, show not 
only elevated levels of the GCase substrates GlcCer and 
GlcSph in CSF and plasma but also increased CSF lev-
els of downstream-products (Cer) and by-products (SPA, 
S1P) when compared to healthy controls and  PDGBA_wildtype 
(Lerche et al. 2021a; Surface et al. 2022). Assessments in 
plasma from  PDGBA_wildtype as well as in aging mouse models 
further support findings that with decreasing GCase, activity 
levels of downstream/by-products are also elevated in addi-
tion to upstream substrates (Hallett et al. 2018; Mielke et al. 
2013). In GD with pronounced GCase deficiency, GlcCer 
are alternatively processed to GlcSph and exit the lysosome 
into the cytosol (Hein et al. 2007; Elleder 2006; Ferraz et al. 
2016). Cytosolic GlcSph is further hydrolyzed to ceramides, 

sphingosine, and sphingosine-1-phosphate. Recent studies 
highlight the role of ceramides and sphingosine-1-phosphate 
as key players in the regulation of cell death and survival 
with involvement in ER stress, autophagy, protein and 
lipid transport, exosome secretion with neurotoxic protein 
spreading, neuroinflammation, and mitochondrial dysfunc-
tion (Wang and Bieberich 2018). Data from α-synuclein/
GBA transgenic mice and HEK cell cultures show that Glc-
Cer, GlcSph, sphingosine, and sphingosine-1-phosphate 
promote the formation of oligomeric α-synuclein (Taguchi 
et al. 2017). Expanding these findings, recent data in human 
dopaminergic midbrain neurons suggest that conformational 
changes of α-synuclein towards an aggregation-prone pat-
tern can be even induced by the presence of glycosphingolip-
ids alone irrespective of GCase deficiency due to variants in 
the GBA gene (Zunke et al. 2018). Post-mortem studies show 
increased levels of GlcCer, GlcSph and ceramides in the 
substantia nigra and frontal cortex of  PDGBA_wildtype (Rocha 
et al. 2015a; Huebecker et al. 2019; Kurzawa-Akanbi et al. 
2021). However, no differences were seen in the putamen of 
 PDGBA and  PDGBA_wildtype compared to controls (Gegg et al. 
2012). More post-mortem studies with uniformly assessed 
brain regions and cell types as well as stratification accord-
ing to GBA variant severity are needed to shed light on these 
seemingly discrepancies.

Enhanced activation of phosphocholine cytidyltransferase 
resulting in increased synthesis of phosphatidylcholine as 
major component of phospholipid cell membranes was 
reported in GD (Bodennec et al. 2002). Interestingly, altera-
tions in the lipid bilayer composition of membranes cause 
impaired α-synuclein membrane binding and enhance aggre-
gation-prone fibril formation (Piccinini et al. 2010). Com-
bined 1H and 31P magnetic resonance spectroscopic imaging 
revealed that  PDGBA patients display a disturbed membrane 
phospholipid metabolism in the putamen and midbrain with 
reduced levels of the precursor choline and increased levels 
of the membrane-related phospholipid degradation product 
glycerophosphoethanolamine. These changes were accom-
panied by neuronal loss in these brain regions as measured 
by reduced levels of the neuronal marker N-acetyl-aspartate 
(Brockmann et al. 2012).

Therapeutic targets in GBA‑associated PD

Based on the knowledge of the molecular mechanisms 
underlying  PDGBA, pathway-specific treatment options are 
beginning to emerge.

GCase

The significant reduction of GCase protein levels and GCase 
enzyme activity offer a plausible therapeutic rational to 
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either increase GCase protein levels or enhance enzyme 
activity. Unfortunately, intravenous enzyme replacement 
therapy is not possible due to insufficient central nervous 
system penetration.

Gene therapy with adeno-associated virus (AAV)-based 
vectors promoting GBA overexpression. This approach 
reduced α-synuclein accumulation, improved lysosomal 
function and lipid turnover, and attenuated deficits in work-
ing memory and fine motor performance in α-synuclein 
mutant/overexpressing wild-type and GD rodent models 
(Rocha et al. 2015b; Glajch et al. 2021; Sardi et al. 2011). 
The AAV9-based vector PR001 increased GCase activity, 
reduced glycolipid substrate accumulation, and improved 
motor deficits in two mouse models of GCase deficiency 
(Abeliovich et al. 2021). Based on these results, a phase 1/2a 
non-randomized clinical trial with a single administration 
of PR001 into the cisterna magna is currently under inves-
tigation in PD patients with at least one pathogenic GBA 
variant. The study duration is 5 years. During the first year, 
patients will be evaluated for safety, tolerability, immuno-
genicity, biomarkers, and clinical efficacy measures. Patients 
will continue to be followed for an additional 4 years to 
monitor safety and selected biomarker and efficacy measures 
(NCT04127578).

GCase-enhancing small-molecule chaperones refold 
misfolded GCase in the ER and promote proper trafficking, 
thereby increasing lysosomal GCase protein levels. Interest-
ingly, experimental data in cell and animal models with GBA 
variants suggest that the expectorant Ambroxol increases 
GCase availability via such mechanism (Kopytova et al. 
2021; Ambrosi et al. 2015; Maegawa et al. 2009; Magalhaes 
et al. 2018; McNeill et al. 2014; Yang et al. 2022; Migda-
lska-Richards et al. 2016). These findings led to a proof-
of-principle phase 2 open-label study with Ambroxol in 17 
PD patients with and without GBA variants. Ambroxol was 
well tolerated and CSF GCase protein levels as well as CSF 
levels of α-synuclein increased by 35% and 13%, respec-
tively. However, CSF GCase enzyme activity decreased by 
19% which might be explained by an inhibitory effect of 
Ambroxol on GCase activity within acellular human CSF 
with a neutral pH (Mullin et al. 2020).

More strikingly, a recent publication could show that the 
small-molecule S-181 increases wild-type GCase activity in 
iPSC-derived dopaminergic neurons not only from  PDGBA 
but also from  PDwildtype as well as from patients with other 
PD-related gene mutations in LRRK2, DJ-1, and PARKN 
who also had decreased levels of GCase activity. S-181 treat-
ment of these PD iPSC-derived dopaminergic neurons par-
tially restored lysosomal function and lowered accumulation 
of oxidized dopamine, GlcCer, and α-synuclein (Burbulla 
et al. 2019). These recent findings highlight not only the 
importance of lysosomal dysfunction in the pathophysiol-
ogy of the prototype  PDGBA but also the significance of this 

pathway, possibly in concert with additional pathways such 
as mitochondrial dysfunction, for PD in general.

Substrate reduction therapy

Substrate reduction therapy to reduce GlcCer production 
with penetration into the central nervous system is available 
for oral application in GD. Venglustat has been evaluated in 
a phase 2 randomized trial (MOVES-PD, NCT02906020) in 
 PDGBA. The compound clearly reduced CSF levels of GlcCer 
in a dose-dependent manner in plasma and CSF. However, 
the study was stopped prematurely, since patients in the 
verum group showed enhanced clinical deterioration sug-
gesting an off-target effect with possible anti-dopaminergic 
activity.

Alpha‑synuclein‑targeting compounds

Targeting alpha-synuclein also seems a reasonable treatment 
option given the predominant α-synuclein aggregation and 
wide-spread Lewy-body pathology in  PDGBA.

Conclusion and outlook

GBA-associated PD is remarkable for several reasons. The 
phenotypical trajectories show a faster disease progres-
sion with pronounced early cognitive decline and a clear 
dependency based on mutation severity. Importantly, the 
development of dementia is not associated with Amyloid-β 
pathology as shown instead in a relevant proportion of 
PD without GBA variants but rather due to predominant 
α-synuclein aggregation. The identified pathophysiologi-
cal mechanisms highlight GCase deficiency and lysosomal 
dysfunction resulting in disrupted glycosphingolipid home-
ostasis and ultimately impaired α-synuclein degradation 
with enhanced aggregation. Again, these are dependent on 
mutation severity and offer different targets for individual-
ized treatment options. However, the failure of the MOVES-
PD trial (NCT02906020) demonstrates the challenges we 
are facing in translational research. Findings from GD as 
typical and clearly defined young-onset lysosomal storage 
lipid disorder due to bi-allelic mutations in GBA are not 
simply transferable into PD, a multifactorial disease of the 
elderly with possibly additional contributing factors (e.g., 
mitochondrial dysfunction and lifetime environmental expo-
sure). Specifically, the pathophysiological mechanisms of 
impaired glycosphingolipid homeostasis leading to impaired 
α-synuclein degradation need more investigation. In this 
context, longitudinal patient cohorts with repeated collec-
tions of biomaterials, ideally starting in the prodromal stage 
followed up until death with brain donation, might inform 
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us on biomarkers that reflect the underlying pathological 
processes and possible read-outs for target engagement.

Future clinical trials in  PDGBA might incorporate the 
knowledge learned over the last years: (i) Patients should 
be stratified according to GBA variant severity with those 
carrying severe mutations to be preferentially included in 
proof-of-concept trials. (ii) The early cognitive decline based 
on predominant α-synuclein-driven pathology offers the 
opportunity to address PD-associated dementia with disease-
modifying agents in a clearly defined prodromal phase pre-
ceding dementia and based on clear biological stratification.
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