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Abstract—Executing large test suites is time and resource
consuming, sometimes impossible, and such test suites typically
contain many redundant test cases. Hence, test case (suite)
minimization is used to remove redundant test cases that are
unlikely to detect new faults. However, most test case mini-
mization techniques rely on code coverage (white-box), model-
based features, or requirements specifications, which are not
always (entirely) accessible by test engineers. Code coverage
analysis also leads to scalability issues, especially when applied
to large industrial systems. Recently, a set of novel techniques
was proposed, called FAST-R, relying solely on test case code
for test case minimization, which appeared to be much more
efficient than white-box techniques. However, it achieved a
comparable low fault detection capability for Java projects, thus
making its application challenging in practice. In this paper,
we propose ATM (AST-based Test case Minimizer), a similarity-
based, search-based test case minimization technique, taking a
specific budget as input, that also relies exclusively on the source
code of test cases but attempts to achieve higher fault detection
through finer-grained similarity analysis and a dedicated search
algorithm. ATM transforms test case code into Abstract Syntax
Trees (AST) and relies on four tree-based similarity measures
to apply evolutionary search, specifically genetic algorithms, to
minimize test cases. We evaluated the effectiveness and efficiency
of ATM on a large dataset of 16 Java projects with 661 faulty
versions using three budgets ranging from 25% to 75% of test
suites. ATM achieved significantly higher fault detection rates
(0.82 on average), compared to FAST-R (0.61 on average) and
random minimization (0.52 on average), when running only 50%
of the test cases, within practically acceptable time (1.1 − 4.3
hours, on average, per project version), given that minimization
is only occasionally applied when many new test cases are
created (major releases). Results achieved for other budgets were
consistent.

Index Terms—Test case minimization, Test suite reduction,
Tree-based similarity, AST, Genetic algorithm, Black-box testing

I. INTRODUCTION

Software testing is a widely used verification mechanism to
detect faults in software releases. However, test suites tend to
grow in size as software evolves, making the execution of all
test cases time and resource consuming [1], if not infeasible.
Such test suites are prone to similar and redundant test cases
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Canada Co., Ltd, as well as by the Mitacs Accelerate Program, the Canada
Research Chair and Discovery Grant programs of the Natural Sciences
and Engineering Research Council of Canada (NSERC). The experiments
conducted in this work were enabled in part by support provided by the
Digital Research Alliance of Canada (https://alliancecan.ca).

that are unlikely to detect different faults and, if not removed,
are repeatedly executed many times on many versions, such as
in continuous integration contexts. This can lead to a massive
waste of time and resources [1], especially for large industrial
systems, thus warranting systematic and automated strategies
to eliminate redundant test cases, known as test case (suite)
minimization.

Though many test case minimization techniques exist [2],
most of them rely on analyzing the test coverage of the system
production code (white-box), model-based features, or require-
ments specifications. Despite their benefits in minimizing test
suites, such information is not always (entirely) accessible or
available to test engineers, making them not easy to apply in
practice. Further, analyzing production code entails many scal-
ability and practicality issues, especially when applied to large
industrial systems [3, 4]. One exception is the recent and novel
work of Cruciani et al. [5], called FAST-R, that relies solely on
the source code of test cases. Though much more efficient than
white-box techniques, FAST-R achieved a comparable low
fault detection capability for Java test cases. Unlike test case
selection and prioritization, test case minimization is typically
performed on an occasional basis [6], that is not for every
code change but rather at certain milestones, such as major
releases when many new test cases are created. Therefore, a
technique that is more time-consuming than FAST-R but runs
within practical time and achieves higher fault detection rates
would often be a better trade-off in practice.

In this paper, we propose ATM (AST-based Test case
Minimizer), a test case minimization technique based on tree-
based test code similarity and evolutionary search. ATM is
black-box as it relies exclusively on test code, thus requiring
no access to the production code of the system under test.
ATM achieves significantly higher fault detection rates than
FAST-R and runs within practical time through a finer-grained
analysis of test cases and search-based optimization. ATM pre-
processes and normalizes test case code, transforms it into
Abstract Syntax Trees (AST), and then compares test case
ASTs using four tree-based similarity measures: top-down,
bottom-up, combined (merging the first two), and tree edit
distance. Finally, ATM employs Genetic Algorithm (GA) and
its multi-objective counterpart, Non-Dominated Sorting Ge-
netic Algorithm II (NSGA-II), to minimize test cases using the
above similarity measures as fitness, individually or combined.
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We evaluated ATM compared to baseline techniques:
FAST-R and random minimization (a standard baseline). In
contrast to Cruciani et al. [5], our evaluation was performed
on a large set of Java test cases, extracted from 16 Java
projects with many versions, each of which with a single
real fault associated with one or more test case failures.
Moreover, while FAST-R was evaluated at the level of Java
test classes, our evaluation is finer-grained as it focuses on
Java test methods, where each method is considered a test
case. This was motivated by the fact that a fault may be
detected by only a subset of test methods rather than a
whole test class. Therefore, performing minimization at the
method level enables the removal of unnecessary test cases
in a more precise manner [7, 8], which has been shown
to achieve better results than those at the class level [9]–
[11]. We used the Fault Detection Rate (FDR) and execution
time as metrics to respectively evaluate the effectiveness and
efficiency of ATM using three minimization budgets, ranging
from 25% to 75%, covering most of the practical budget
range as test engineers usually want to preserve significant
test suite fault detection power. We compared the results of
all alternative ATM configurations among themselves and, by
also accounting for the time of similarity calculations, we
identified the best one and compared it to baseline techniques.
Specifically, we addressed the following research questions.

• RQ1: How does ATM perform under different configura-
tions in terms of test case minimization?
For a 50% minimization budget, ATM achieved high
fault detection rates (0.82 on average) and ran within
practically acceptable time (1.1 − 4.3 hours on average
across configurations), with combined similarity using
GA being the best configuration when considering both
effectiveness (0.80 FDR) and efficiency (1.2 hours). Such
results were consistent for other budgets (25% and 75%).

• RQ2: How does ATM compare to state-of-the-art black-
box test case minimization techniques?
The best configuration of ATM outperformed other tech-
niques in terms of effectiveness, by achieving signifi-
cantly higher FDR results than FAST-R (+0.19 on aver-
age) and random minimization (+0.28 on average), while
running within practically acceptable (though longer)
time (1.2 hours on average).

Overall, this paper makes the following contributions.

• A black-box, AST-similarity- and search-based test case
minimization technique, called ATM, that offers a better
trade-off between effectiveness and efficiency than exist-
ing work, in many practical contexts. This includes (a) a
finer-grained technique that considers test cases to be Java
test methods, pre-processes them, and transforms their
code into ASTs; (b) a tree-based similarity measure that
merges two complementary similarity measures that have
not been used for test case similarity, thus capturing more
information about test case commonalities.

• A large-scale test case minimization experiment on 16
projects with 661 versions comparing several configura-

tions of ATM and baseline techniques, taking approx-
imately three months of calendar time and 23 years
of computation time on a cluster of 1, 304 nodes with
80, 912 available CPU cores. This is the largest test case
minimization experiment to date in the research literature.

The rest of this paper is organized as follows. Section II
presents our proposed technique for test case minimization.
Section III presents the experiment design, reports experi-
mental results, and discusses their practical implications. Sec-
tion IV discusses the validity threats to our results. Section V
reviews and contrasts our technique with related work. Finally,
Section VI concludes the paper and suggests future work.

II. ATM: BLACK-BOX TEST CASE MINIMIZATION

This section describes our black-box technique, called ATM,
for test case minimization relying on tree-based test code
similarity and evolutionary search. Figure 1 gives an overview
of the main steps of ATM. We first describe how we pre-
process the source code of test cases (Section II-A) and
transform them into ASTs (Section II-B). Then, we describe
the algorithms we employed for measuring the similarity
between these ASTs (Section II-C). Finally, we describe the
search-based algorithms we used to minimize test cases using
similarity measures as fitness (Section II-D).

A. Test Case Code Pre-processing

The source code of test cases, which is in our context Java
test methods, may contain information that is irrelevant to
the testing rationale, such as comments and variable names,
and code statements that do not exercise the system under
test, such as logging statements and test oracles (assertions).
Given that we aim to compare test cases with respect to how
they exercise the system, the information above is not only
irrelevant but could introduce noise in our analysis. Therefore,
we pre-process the source code of test cases as follows.
• We removed test case names from method declarations,

since they are typically different among test cases.
• We removed Javadoc, single- and multi-line comments,

since they are simply used to document test case code.
• We removed logging or printing statements, since they

are simply used to record test case execution.
• We removed test oracles, i.e., assertions, similar to Silva

et al. [12], since they do not exercise the system under
test but rather focus on verifying the test case outcome for
a given input. This includes all JUnit assertion methods1,
including their parameters.

• Similar or even identical test cases can use different
identifiers. Therefore, we normalized variable identifiers,
rather than removing them, and retained their data types
to maintain the data flow and logic of test cases. This was
done by keeping track of variable and object identifiers
according to their order of appearance in the test case
code and then normalizing them in the form of id 1,
id 2, and so on.

1https://junit.org/junit4/javadoc/4.13/org/junit/Assert.html

https://junit.org/junit4/javadoc/4.13/org/junit/Assert.html
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Fig. 1: An overview of the main steps of ATM to perform test case minimization

Listing 1 and 2 show a sample test case code before and
after pre-processing, respectively.

1 /**
2 * Confirm that the equals method can distinguish

all the required fields.
3 */
4 public void testEquals(){
5 DefaultTableXYDataset d1=new

DefaultTableXYDataset();
6 DefaultTableXYDataset d2=new

DefaultTableXYDataset();
7 assertTrue(d1.equals(d2));
8 assertTrue(d2.equals(d1));
9 d1.addSeries(createSeries1());

10 assertFalse(d1.equals(d2));
11 d2.addSeries(createSeries1());
12 assertTrue(d1.equals(d2));
13 }

Listing 1: Test case before pre-processing

1 public void test_case() {
2 DefaultTableXYDataset id_1=new

DefaultTableXYDataset();
3 DefaultTableXYDataset id_2=new

DefaultTableXYDataset();
4 id_1.addSeries(createSeries1());
5 id_2.addSeries(createSeries1());
6 }

Listing 2: Test case after pre-processing

B. Transforming Test Case Code into AST
Processing test case code as natural language using text-

based or token-based techniques does not capture its syntac-
tical information [13], thus making similarity measurement
less accurate. To address this issue, we used Abstract Syntax
Trees (AST) to preserve the syntactic structure of test case
code [14]. To do this, we used an AST parser, provided by the
Eclipse JDT library2, to statically traverse any given test case
code and transform it into a corresponding AST. Comparing
the ASTs of test cases helps identify differences between
them more precisely, such as differences in method calls, their
number of parameters, or parameter values. AST is composed
of labeled nodes, where the order of AST nodes is important
as it represents the structure of test case code. Therefore, ASTs
are considered labeled, ordered trees.

C. Similarity Measures
We used different algorithms to perform tree-based similar-

ity measurement of test cases. Depending on the way trees

2https://www.eclipse.org/jdt

are traversed, algorithms may capture different information
from each other. Given the variety of coding conventions and
practices according to which test cases are developed, a single
similarity measure for test case minimization might perform
inconsistently across projects. Therefore, we employed four
similarity measures, namely top-down similarity (based on the
top-down maximum ordered common subtree isomorphism
algorithm), bottom-up similarity (based on the bottom-up
maximum ordered common subtree isomorphism algorithm),
a combined measure (merging the first two), and tree edit
distance (based on the standard tree edit distance algorithm).

Both top-down and bottom-up similarity measures focus
on identifying the longest common branch of the code of
test cases, but in two distinct ways. Specifically, top-down
similarity is structure-oriented, thus starting the analysis at
the high-level structure of test case code, e.g., iterative or
conditional blocks, followed by lower-level details in a step-
by-step manner. Hence, structural differences in the code
of test cases can significantly impact top-down similarity.
Bottom-up similarity, on the other hand, is detail-oriented, in
which low-level details of the test case code, e.g., parameters
to method calls, are analyzed first, thus making it less impacted
by structural differences. Given that bottom-up complements
top-down, we further considered merging the information
obtained by both of them into a new, combined similarity
measure to capture both structural and detailed aspects of test
cases. Different from the above the similarity measures, tree
edit distance focuses on scattered code differences between
test cases rather than a common code branch and aims to
capture all code changes that can make one test case similar
to another. We describe below each of the similarity measures
and point to the book of Valiente [15] for more details.

1) Top-down similarity measure: This measure is based on
the top-down maximum common subtree isomorphism algo-
rithm [15]. Tree isomorphism determines whether the nodes
of one tree has a bijective correspondence with the nodes of
another tree. Given that AST represents structured source code,
in which the order and type of code statements is important,
we considered labeled, ordered tree isomorphism. A top-down
maximum common subtree isomorphism between two labeled,
ordered trees is obtained by traversing them simultaneously
using preorder traversal. Preorder traversal ensures that the
parent of each node is included in the subtree, since they
are visited first, thus resulting in a top-down subtree. Top-

https://www.eclipse.org/jdt


down similarity does not capture similar subtrees with different
parent nodes. Typical examples include the same block of code
but with a different loop, such as for and while, or calls
to two different methods with the same parameters.

2) Bottom-Up similarity measure: This measure is based
on the bottom-up maximum common subtree isomorphism al-
gorithm [15]. A bottom-up maximum ordered common subtree
isomorphism between two labeled, ordered trees is obtained by
first partitioning tree nodes into equivalence classes, and then
finding nodes in both trees belonging to the same equivalence
class with the largest size. The size of an equivalence class is
equal to the size of the bottom-up subtree rooted at a specific
node. Two nodes belong to the same equivalence class if and
only if the bottom-up ordered subtrees rooted at them are
isomorphic [15]. A postorder traversal is then performed on
T1 and T2 to partition children nodes into equivalence classes,
starting with one tree to populate a dictionary of equivalence
classes, followed by the second tree with the same dictionary
shared. The equivalence class of a visited node is obtained
from the dictionary if its label and the equivalence classes of
its children nodes already exist. Once equivalence classes are
assigned to all nodes of the two trees, the maximum bottom-
up common subtree is obtained based on the nodes sharing
the same equivalence class and having the largest bottom-
up subtree rooted at them. The bottom-up similarity measure
can capture information that the top-down maximum common
subtree algorithm might not. For example, in contrast to top-
down similarity, if two test cases call two different methods
with the same parameters, then the matching parameters of
method calls are included in the bottom-up maximum common
subtree. Also, if some children of the nodes in the bottom-
up ordered subtrees do not match, then these nodes are not
included as part of the common subtree.

3) Combined similarity measure (top-down+bottom-up):
Given that top-down and bottom-up common subtrees capture
different and complementary information in the test case code,
we also considered merging their resulting subtrees into a
single, combined common subtree. Combining top-down and
bottom-up maximum common subtrees was performed by
taking the union of nodes in both subtrees, while eliminating
overlapping nodes. For each node of one subtree, we checked
whether it is present in the other subtree by considering its
label and the labels of its parent, siblings, and children nodes.
If there is a match, then an overlap is identified and thus not
included as part of the combined common subtree. The size of
the combined common subtree is equal to the sum of the size
of the unique nodes of the top-down and bottom-up common
subtrees, where overlapping nodes are discarded.

4) Tree edit distance similarity measure: This measure is
based on the edit distance algorithm, which calculates the
total number of elementary edit operations, i.e., insertion,
deletion, and substitution of nodes, required to convert one
tree into another tree [15], which is commonly used for
tree comparison. To do this, a sequence of elementary edit
operations are applied to one tree until the other tree is

obtained. Tree edit distance is not expected to be efficient when
compared to previous similarity measures, especially for large
ASTs, but is nevertheless an option.

5) Similarity score calculation: Similarity scores for the
top-down, bottom-up, and combined similarity measures were
calculated the same way, but differently from tree edit distance,
as described below.
• For top-down, bottom-up, and combined similarity mea-

sures, after identifying their maximum ordered common
subtrees, a similarity score was calculated as follows.

SimMaxCommonSubtree(T1, T2) =
2× |Vm|
|V1|+ |V2|

(1)

where T1 and T2 are two trees with a total number of |V1|
and |V2| nodes, respectively. Vm is the number of nodes
included in the maximum ordered common subtree.

• For tree edit distance, the similarity score was calculated
as follows.

SimTreeEditDistance(T1, T2) =
|V1|+ |V2| − d

|V1|+ |V2|
(2)

where T1 and T2 are two trees with a total number of
|V1| and |V2| nodes, respectively, and d is the number of
tree edit operations.

6) Similarity measurement implementation: We used an
open-source library, called simpack3 for implementing the
algorithms for top-down and bottom-up maximum ordered
common subtree isomorphism and tree edit distance. However,
for the bottom-up maximum ordered common subtree isomor-
phism, we extended the library to support labeled trees [15]
(available in our replication package [16]). We did so by
assigning unique integers to node labels, which are then used
to assign equivalence classes for identifying the maximum
bottom-up common subtree of two labeled, ordered trees.

D. Search-based Test Case Minimization

Considering that test case minimization is an NP-hard
problem, we employed meta-heuristic search algorithms to
help find near-optimal, feasible solutions for this problem.
Meta-heuristic techniques enable us to efficiently explore the
search space of minimized test suites. Given that ATM relies
on test case similarity, a search algorithm can help identify
and eliminate most redundant test cases, thus producing a more
diverse subset of the test suite for a given budget. We employed
two search algorithms: Genetic Algorithm (GA) and its multi-
objective counterpart, namely Non-Dominated Sorting Genetic
Algorithm II (NSGA-II) [17].

1) Genetic Algorithm (GA): This is the most widely used
search algorithm in search-based software testing, inspired
by evolutionary theory. Applying GA requires to properly
define (a) individuals or chromosomes referring to the possible
solutions, which are minimized test suites in our context, and
(b) a fitness or objective function to assess the quality of each
individual with respect to an optimization problem, which is

3https://files.ifi.uzh.ch/ddis/oldweb/ddis/research/simpack
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test case minimization in our context, where test cases with
higher similarity are eliminated. To tailor GA to our problem,
we re-formulated the optimization problem as a fixed-size
subset selection problem. To do this, we represented a test
suite as a binary vector whose length equals the total number
of test cases before minimization, where 1 means a test case
is included and 0 means otherwise. We selected the following
three genetic operators: (1) selection, for which we used a
binary tournament selection to select the test subset with the
lower fitness among two subsets; (2) crossover, for which we
used a customized crossover operator [18] that keeps only
test cases belonging to both parent test subsets, then proceed
with the remaining test cases, and repeats this process until a
certain number of test cases is reached; and (3) mutation, for
which we used a permutation inversion operator to randomly
select a segment of an individual and reverse its order [18]
to ensure fixed-size offspring. The parameters used for our
GA are consistent with what is recommended in published
guidelines4. Specifically, we used a population size of 100, a
mutation rate of 0.01, and a crossover rate of 0.90. The GA
evolution process is repeated until a termination criterion is
satisfied, which is in our case when the fitness value improves
by less than 0.0025 with a minimum of 30 generations. Once
the termination criterion is reached, minimization stops and
the final minimized test suite is expected to contain diverse
test cases.

2) Non-Dominated Sorting Genetic Algorithm II (NSGA-
II): This is a multi-objective alternative of GA that is based
on the Pareto dominance theory [17]. We used NSGA-II to
consider two similarity measures at once in our test subset
selection, where each objective consists in minimizing a
distinct similarity measure. Individual A Pareto dominates
individual B if individual A is at least as good as individual
B in all objectives, and superior to individual B in at least
one objective [19]. To do this, all individuals are sorted into
several Pareto non-dominated fronts and a Pareto front rank
is assigned to each individual. We used a binary tournament
selection operator, which selects test cases based on (a) the
Pareto non-domination front ranks of individuals, and (b) the
crowding distance measuring the density of individuals around
a particular individual. When two individuals have the same
Pareto front rank, the one with the highest crowding distance is
selected. We used the same operators and termination criterion
as for GA. We considered two alternative pairs of similarity
measures as fitness: (1) top-down & bottom-up, to determine
whether considering them as independent fitness functions
leads to better results than combining their subtrees into a
single similarity score (combined), and (2) combined & tree
edit distance to assess whether the latter complements the
longest common subtrees in identifying test case similarity.

III. VALIDATION

This section reports on the experiments we conducted to
evaluate the effectiveness and efficiency of ATM. As men-

4https://www.obitko.com/tutorials/genetic-algorithms/recommendations.php

tioned in the introduction, the focus here is on Java projects
given the unsatisfactory results obtained by previous work,
as discussed in related work. We discuss below the research
questions we addressed, the experimental design and dataset,
and the results achieved with their practical implications.

A. Research Questions

RQ1: How does ATM perform under different configurations
in terms of test case minimization?
Test case minimization aims to remove redundant test cases
with a minimal fault detection loss within practically rea-
sonable time. However, its performance can be influenced
by the similarity measure used to compare test cases to
each other. In this RQ, we assess the performance, in terms
of both effectiveness and efficiency, of ATM under various
configurations, each with a different combination of similarity
measures, either individually (using GA) or together (using
NSGA-II). We evaluated the alternative ATM configurations
on each Java project using three minimization budgets (25%,
50%, and 75%) widely covering the minimization range. Our
choice of minimization budgets was constrained by both the
very large computation time of our experiments and the fact
that test engineers, according to our discussion with industry
partners, usually want to preserve significant fault detection
power, knowing that prioritization and selection techniques
can ultimately be used to further reduce testing time. In
addition, we analyzed the trade-off between effectiveness and
efficiency of the alternative ATM configurations. Specifically,
we addressed the following sub-RQs.
• RQ1.1: How effectively can ATM minimize test cases?

A similarity measure determines what information about
test cases should be used to compare them. However, such
information varies widely from one similarity measure
to another, which can in turn affect the fault detection
capability of a test case minimization technique. In this
RQ, we assess the effectiveness of ATM in terms of fault
detection capability for the tree minimization budgets.

• RQ1.2: How efficiently can ATM minimize test cases?
Test case minimization should be practically scalable
to projects with large test suites. However, given that
similarity algorithms traverse test case ASTs differently,
their execution time can vary, thus affecting the overall
time required to minimize test cases. In this RQ, we
assess the efficiency of ATM in terms of preparation time
(taken for transforming the code of test cases into ASTs
and calculating similarity scores) and minimization time
(taken for running search algorithms).

RQ2: How does ATM compare to state-of-the-art black-box
test case minimization techniques?
Selecting test cases arbitrarily can indeed reduce test suites, but
is not a viable option as it does not take test case similarity
and fault detection capability into consideration. To address
this issue, many test case minimization techniques [2], both
white-box and black-box, were proposed to remove redundant
test cases that are likely to detect the same faults. However,

https://www.obitko.com/tutorials/genetic-algorithms/recommendations.php


white-box techniques rely on production code, which is not
always (entirely) accessible or available to test engineers and
entails scalability and practicality issues in many contexts.
Further, as described in Section V, despite the high efficiency
of some existing black-box techniques, their fault detection
loss was observed to be relatively high for Java test cases,
thus making them ineffective in practice. In this RQ, we assess
the performance of ATM compared to two baseline techniques:
(a) random test case minimization, a standard baseline, and (b)
FAST-R, a set of of novel black-box test case minimization
techniques, whose efficiency was shown to be much higher
than white-box techniques while achieving a comparable low
fault detection capability for Java test cases. Further, given
that both efficiency and effectiveness are important factors in
selecting minimization techniques in practice, we discuss the
trade-offs between fault detection rate and execution time.

B. Experimental Design and Dataset

We performed a series of experiments to evaluate the
performance of ATM and assess the most effective and effi-
cient configurations across various combinations of similarity
measures and search algorithms, and compared the best con-
figuration to baseline techniques. Each technique was applied
to each project version, independently, and was thus run 6, 610
times (661 projects’ versions × 10 runs). We considered all
projects’ versions to increase the number of instances in our
experimental evaluation. However, in practice, minimization
is expected to be applied only when required, i.e., many new
test cases are created. All experiments were performed on a
cluster of 1, 304 nodes with 80, 912 available CPU cores, each
with a 2x AMD Rome 7532 with 2.40 GHz CPU, 256M cache
L3, 249GB RAM, running CentOS 7. Overall, our experiments
took approximately three months of calendar time and 23 years
of computation time. Moreover, to mitigate randomness in the
obtained results, we ran each experiment 10 times, each with a
different random number generator seed, ranging from 1 to 10,
to enable the reproduction of our results. The reported results
are summarized for all runs using descriptive statistics.

1) Minimization budgets: For experimental purposes, the
minimization budgets were set at 25%, 50%, and 75% of
the test suites, for the reasons mentioned above. We focus
our analysis and discussion on the results obtained for the
50% minimization budget as such a percentage is sufficiently
large to challenge the minimization algorithms and to show the
practical significance of ATM compared to other techniques.
Results for the other two minimization budgets were consistent
in terms of observations and conclusions, and can be found in
our replication package [16].

2) Baseline techniques:

Random minimization. We used random minimization of test
cases as a standard baseline in our evaluation. It is considered
the simplest technique and is commonly used as a baseline of
comparison for more sophisticated search algorithms [20]. It
randomly generates subsets of test cases for any given mini-
mization budget. Similar to other techniques, we ran random

minimization 10 times, using fixed seeds ranging from 1 to 10
to enable the reproduction of results. We then calculated the
average fault detection rate (FDR) across projects’ versions.
FAST-R. We compared ATM to FAST-R, a set of four novel
black-box test case minimization techniques proposed by
Cruciani et al. [5], namely FAST++, FAST-CS, FAST-pw, and
FAST-all. All FAST-R alternatives rely solely on the code
of test cases. FAST++ and FAST-CS convert test case code
into vectors using term frequency [21], and based on these
vectors, test cases are then clustered using k-means++ [22]
(FAST++) and constructed coresets [23] (FAST-CS). FAST-pw
and FAST-all, however, use minhashing and locality-sensitive
hashing [24] to identify diverse test cases based on Jaccard
distance and random sampling, respectively.

While FAST-R performed very efficiently, it achieved rel-
atively low median FDR results when evaluated on Java
projects, ranging from 0% to 22% for minimization budgets
from 1% to 30%. This motivated us to compare the per-
formance of ATM to FAST-R on test cases collected from
a larger set of Java projects with many versions. Though
ATM uses finer-grained information from test case code, which
is likely to require longer time to execute, we aim to investigate
whether it can achieve significantly higher FDR results within
practical execution time. We compared ATM to FAST-R using
the three minimization budgets indicated above and the same
evaluation procedures and metrics. We relied on the publicly
available implementation of FAST-R5 provided by its authors.
Though FAST-R was originally evaluated on Java test classes,
it could easily be adapted to Java test methods, since it takes
as input (a) test code, regardless of its granularity, and (b)
a mapping of faults and test cases, the former being easily
mapped to test methods rather than test classes.

Note that we did not compare with white-box techniques,
since analyzing code coverage for all test cases of all project
versions would be computationally challenging and is unnec-
essary given that the FDR results of FAST-R have been shown
to be comparable to white-box techniques.

3) Dataset: We evaluated ATM compared to the baseline
techniques on 16 Java projects collected from a public dataset,
called DEFECTS4J6, the same source of Java projects used
to evaluate FAST-R. Only one project from DEFECTS4J was
left out as it was far too large to consider for running our
experiments, which already undertook months of computa-
tions. While FAST-R was evaluated on five Java and five
C projects, each with a single version, it achieved relatively
lower fault detection rates on Java projects compared to C
projects, where Java test cases are test classes and C test cases
are command lines. Therefore, in this paper, we focused the
implementation of ATM on Java projects and assessed it on a
much larger dataset of Java projects and versions. Each project
has multiple (faulty) versions, ranging from 4 to 112, with
many test cases each, ranging from 152 to 3, 916. Each project
version contains a single real fault associated with one or more

5https://github.com/ICSE19-FAST-R/FAST-R
6https://github.com/rjust/Defects4J

https://github.com/ICSE19-FAST-R/FAST-R
https://github.com/rjust/Defects4J


test case failures, and was fixed by modifying the production
code. We acknowledge that minimization should ideally be
evaluated on project versions with multiple faults to achieve
higher realism, but there exist no such public datasets with
real faults. Further, with multiple faults per version, some
faults may mask other faults and it becomes very hard to
determine which test case detects which fault, thus making
experiments rather complicated. Though our dataset is much
larger in terms of systems and test cases than any previous test
case minimization experiment, we fully realize that industrial
systems can be much larger. They would, however, be unusable
in our experiment as they would take far too much time.
The scalability issue is further discussed in Section III-D. It
is therefore easy to determine whether a test suite detects a
particular fault in a given version: at least one test case fails.
We used this dataset to evaluate ATM and baseline techniques.

Different from the FAST-R’s original study, we performed
our evaluation on all faulty project versions. In addition, the
evaluation of FAST-R on Java projects was performed at the
class level where test cases are Java test classes, each of which
group test methods exercising similar functionalities. This
makes it impossible to identify redundant test methods within
the same test class. Further, removing a whole test class can
be misleading as one fault may be detected by only a subset
of test methods in the test class. Thus test case minimization
at the method level helps remove unnecessary test cases in a
more precise manner [7, 8], which has been shown to achieve
better results than those at the class level [9]–[11]. Therefore,
our evaluation of ATM is finer-grained as each test case is
considered to be a Java test method.

We extracted the source code of test methods for each
version of the projects and mapped each fault to its corre-
sponding failing test method(s). Then, we transformed the test
case code into ASTs, which were saved in XML format. After
that, we calculated the similarity scores for each pair of test
cases using the similarity measures described in Section II-C.
To reduce the time required for similarity calculation in each
version during our computationally intensive experiments, we
calculated the similarity scores for all test cases in the first
version of each project. Then, for subsequent versions, we
calculated similarity scores for only test cases in changed or
newly added test files, whereas similarity scores for unchanged
ones were obtained from previous versions.

4) Evaluation metrics:
Fault Detection Rate (FDR). Test case minimization aims
to remove redundant test cases for a given budget while
maintaining high FDR. Therefore, we used FDR to assess the
effectiveness of ATM. FDR was calculated for each project as
follows.

FDR =

∑m
i=1 fi
m

(3)

where m refers to the total number of versions (system faults).
For each version i, fi equals to 1 if at least one failing (or
fault-triggering) test case is included in the minimized test
suite, or 0 otherwise.

Fisher’s exact test. We used Fisher’s exact test [25], a non-
parametric statistical hypothesis test, to assess how significant
is the difference in proportions of detected faults between the
alternative ATM configurations.
Odds ratio. We used the odds ratio [26] as an effect size
measure of the magnitude of improvement of one ATM con-
figuration over another. An odds ratio of 1 indicates no
difference between two techniques, whereas an odds ratio
of > 1 indicates a higher chance for one technique to perform
better than the other.
Execution time. Execution time has significant practical im-
plications for large systems and test suites. Therefore, we
assessed the efficiency of ATM by computing (1) the prepa-
ration time, taken to transform the code of test cases into
ASTs and calculate similarity between all pairs of test cases,
and (2) the minimization time, taken to run search algorithms.
Note that, when reporting execution time results, we did not
consider the savings in execution time that can be achieved
by only calculating similarity between new pairs of test
cases but rather accounted for all test cases in each project
version independently from other versions. This, of course,
makes ATM look worse in terms of execution time. For each
ATM configuration, we computed the average execution time
for each project version. We also computed the execution times
taken by baseline techniques.

5) Similarity measures as fitness: Our fitness functions add
up similarity scores for all test case pairs, normalize the
summation by the number of test case pairs in a [0−1] range,
and thus quantify how similar overall test cases are in a given
test suite regardless of its size. However, we could consider
a test case to be redundant if it is highly similar to at least
one other test case, thus making it unnecessary to consider the
other test cases. Therefore, taking the pair with the maximum
similarity score for each test case as a fitness value could
better distinguish highly redundant test cases. Moreover, in a
similar vein, we could consider that only very high similarity
scores truly matter in terms of test cases being redundant
and that simply summing up similarity scores among pairs
is not the best measurement for minimization. Therefore, we
could give more weight to test cases with higher similarity
scores by squaring or exponentiating such scores. For example,
though 0.9 and 0.8 scores have the same difference (0.1) as 0.4
and 0.3 scores, their relative difference significantly increases
after taking their squares (0.17 vs. 0.07) or exponentials (0.23
vs. 0.14). As a result, removing a test case with a higher
similarity score leads to a greater reduction in fitness. Finally,
for the reasons invoked above, we could also take into account,
for each test case, only the pair with the maximum squared
or exponentiated similarity score, thus focusing on highly
redundant test cases. In our experiments, we considered all the
above alternatives for fitness and results showed that using the
maximum of squared similarity scores, shown below, achieves
the highest FDR.



Fitness =

∑
i,ti∈Mn

Maxi,j,ti,tj∈Mn,i6=j Sim(ti, tj)
2

n
(4)

where Mn is a minimized test suite of n test cases, and
Sim(ti, tj) is the similarity score for each pair of test cases
ti and tj .

C. Results

We focus our discussion on the results achieved using the
maximum of squared similarity scores as fitness for the 50%
minimization budget (results for other budgets lead to identical
conclusions and are available in our replication package [16]).

1) RQ1 results: Table I reports the FDR and total execution
time (in minutes) for ATM using GA and NSGA-II using the
four similarity measures, individually and combined, for the
50% minimization budget.
RQ1.1 results. Table I shows that all ATM configurations
achieved high FDR results (mean ≥ 0.74 and median ≥ 0.72
across projects, for a 50% minimization budget). The highest
average FDR was achieved by NSGA-II with combined &
tree edit distance (mean and median = 0.82), and ranging
from 0.70 to 0.92 across projects. The difference in FDR
between projects needs further investigation, as it may be
attributed to variability in numbers of faults, test suite sizes,
or test coding conventions, tentative explanations that remain
to be confirmed. Overall, detecting over 80% of faults when
executing 50% of test cases is encouraging and, as discussed
below, significantly outperforms baseline techniques.

Moreover, ATM using GA achieved a higher FDR with top-
down (+0.04 on average) than bottom-up across projects’ ver-
sions, except for the JacksonXml project where the former
achieved 0.25 lower average FDR than the latter. One possible
explanation is that, unlike other projects, failing test cases
in JacksonXml have higher maximum top-down similarity
scores than other test cases, which indicates high redundancy
among them, thus leading to the removal of some of them.

Our results also show that ATM using GA with combined
similarity yielded an even higher FDR (mean = 0.80, me-
dian = 0.79) than with top-down, only 0.01 and 0.02 lower
than GA with tree edit distance and NSGA-II with combined
& tree edit distance, respectively. This suggests that taking
the union of the top-down and bottom-up common subtrees
helped capture additional, relevant information about test case
commonalities. Further, ATM using GA with combined simi-
larity achieved a higher FDR than NSGA-II with top-down &
bottom-up (0.78), thus suggesting that a simpler minimization
algorithm (GA) with a single similarity measure (combined
similarity) outperforms a more sophisticated and expensive
algorithm (NSGA-II) relying on two similarity measures.

Fisher’s exact test results revealed no significant FDR differ-
ences between ATM using GA with combined similarity and
both GA with tree edit distance and NSGA-II with combined
& tree edit distance (p−value > 0.05). More details about the
results of Fisher’s exact test can be found in our replication
package [16]. In other words, even though GA with combined
similarity yielded a slightly lower (0.01− 0.02 less) FDR on

average, there is no evidence that this difference is statistically
significant as results vary across projects’ versions. Compared
to GA with tree edit distance, GA with combined similarity
achieved a higher FDR for four projects (Collections, Csv,
JacksonDatabind, and Time) and the same FDR for four
projects (Cli, Compress, Jsoup, and JxPath).

Overall, our results suggest that, when accounting only for
FDR, ATM alternatives using either GA or NSGA-II, with tree
edit distance and/or combined similarity as fitness, are roughly
equivalent for all minimization budgets.

RQ1.2 results. Execution time results in Table I combines
both preparation time and minimization time for each project
version (see detailed results in our replication package [16]).
We observe that the average execution time for the whole
ATM process using GA, with all configurations, ranges from
1.1 to 1.4 hours on average per project version (with a much
lower median of 7.8 − 16.6 minutes due to two relatively
larger projects). Given the application context of test case
minimization, where redundant test cases are removed on an
occasional basis when many new test cases are created for
major releases, such execution times are acceptable in practice,
as further discussed below. However, the execution time of
ATM using NSGA-II was nearly three times longer than that
of GA (mean = 3.9−4.3 hours and median = 37 minutes). This
result suggests that ATM using NSGA-II with two similarity
measures fares much worse in terms of execution time, while
offering no significant improvement in terms of FDR.

Preparation Time. We found that the time ATM took for
transforming test case code into ASTs was negligible (< 1% of
total time), whereas the time for calculating similarity scores
was much longer. Specifically, the average execution time
for calculating top-down, bottom-up, and combined similarity
scores for each pair of test cases across project versions was
3.42e−06s, 4.93e−05s, and 1.75e−04s, respectively. In sharp
contrast, though achieving the highest FDR when using GA,
we found that tree edit distance, as expected, took at least an
order of magnitude longer to calculate than other similarity
measures (an average of 35 minutes per each project version,
compared to 3 minutes for combined similarity). Therefore,
on larger projects with much larger test suites and ASTs,
such as those commonly found in the industry, the absolute
computation time difference between tree edit distance and
other similarity measures is expected to be large and probably
crucial in terms of applicability. Hence, in terms of preparation
time, ATM with combined similarity is more scalable and a
better alternative than tree edit distance in practice.

Minimization Time. We found that the time ATM took
for minimizing test cases using NSGA-II with both top-
down & bottom-up and with combined & tree edit distance
(mean = 3.7 − 3.9 hours and median = 31 − 37 minutes)
was about three times longer than that of GA with combined
similarity. In addition, we found that, though took much longer
to calculate similarity, tree edit distance took less minimization
time, since it converged faster, than combined similarity using
GA. However, when considering the execution time for the



TABLE I: Descriptive statistics of FDR and total execution time (in minutes) of ATM across project versions for the 50%
minimization budget. The highest FDR and shortest execution time are highlighted in bold

Statistic
Technique

GA NSGA-II

Top-Down Bottom-Up Combined Tree Edit Top-Down & Combined &
Distance Bottom-Up Tree Edit Distance

FDR Time FDR Time FDR Time FDR Time FDR Time FDR Time
Min 0.53 0.42 0.56 0.28 0.58 0.46 0.70 0.66 0.60 1.11 0.70 1.38
25% Quantile 0.75 1.95 0.68 1.33 0.75 2.18 0.76 3.79 0.74 5.67 0.78 7.12
Mean 0.78 70.87 0.74 67.05 0.80 72.75 0.81 82.23 0.78 235.41 0.82 258.44
Median 0.79 12.53 0.72 7.76 0.79 13.86 0.82 16.61 0.79 37.01 0.82 37.15
75% Quantile 0.84 57.88 0.81 40.27 0.88 63.01 0.88 77.77 0.82 187.74 0.88 208.38
Max 0.93 642.31 0.90 706.31 0.97 641.42 0.93 491.52 0.97 2295.20 0.92 2384.56

whole process, ATM ran faster when using GA with combined
similarity for all projects, except for Time. As a result,
ATM using GA with combined similarity is more scalable than
with tree edit distance and far more efficient than using NSGA-
II, while achieving comparable FDR results, thus making it the
best configuration. This can be particularly important on large
projects and test suites.

RQ1 summary. ATM achieved high FDR results (0.82
on average) and ran within practically acceptable time
(1.1 − 4.3 hours on average) when running 50% of test
cases, with combined similarity using GA being the best
configuration when considering both effectiveness (0.80
FDR on average) and efficiency (1.2 hours on average).
Results were consistent for other minimization budgets
(25% and 75%).

2) RQ2 results: Table II compares, in terms of FDR and
total execution time for the 50% minimization budget, the
best ATM configuration (GA with combined similarity) to the
baseline techniques: FAST-R (FAST++, FAST-CS, FAST-pw,
and FAST-all) and random minimization.

FDR results. We observe that ATM using GA with com-
bined similarity systematically outperformed random mini-
mization with a significantly higher FDR (+0.28 on aver-
age). In addition, all FAST-R alternatives, except FAST-pw,
outperformed random minimization, with FAST++ being the
best FAST-R alternative (0.61 on average), followed by FAST-
CS (0.60 on average). However, compared to ATM (GA with
combined similarity), all FAST-R alternatives achieved signifi-
cantly lower FDR results across projects, with an average FDR
difference of −0.19 between FAST++ and ATM, thus making
ATM much more effective in practice.

Execution time results. We observe that all FAST-R alter-
natives ran much faster than ATM, in terms of both preparation
and minimization, with an average total execution time of
0.20 − 4.14 seconds across projects’ versions (FAST-CS was
the fastest technique, with 0.20 seconds). However, given its
considerably low FDR, i.e., missing about 40% of faults when
executing 50% of test cases, FAST-R is not a practically
viable option in many contexts.7 Test case minimization is

7As a side note, though out of the scope of this work, FAST-R achieved lower
average FDR results (up to 0.56, achieved by FAST++) and took slightly
longer (0.23 − 5.75 seconds) when evaluated at the class level (Java test
classes), as in the original FAST-R study.

typically performed on an occasional basis [6], usually at
certain milestones, such as new major releases when many
new test cases are created. Therefore, given that ATM achieves
much higher FDR and runs within practically acceptable
(though longer) time, it is the most advantageous choice in
many practical contexts.

RQ2 summary. ATM outperformed baseline techniques
by achieving significantly higher FDR results than
FAST-R (+0.19 on average) and random minimization
(+0.28 on average), while running within practically ac-
ceptable (though longer) time (1.2 hours on average) given
the application context.

D. Discussion

Effective test case minimization with easily accessible infor-
mation. Our results showed that ATM performs significantly
better than baseline techniques, thus enabling test engineers to
run test suites for a desired budget while being more likely to
maintain an acceptable FDR. This is done without requiring
production code analysis, a significant practical advantage in
many contexts. While ATM achieved high FDR result using
similarity measures, both individually and combined, there is
still room for improvement in terms of FDR, which could
be achieved by considering additional similarity measures,
thus capturing various and complementary aspects relevant
to test case commonalities. Also, similarity measurement in
ATM considered a variety of potentially relevant information
in test case code. For example, similarity between method calls
considers their names, number of parameters, and parameter
values. Disregarding some of these details could result in a
higher similarity and better results. The importance of these
details may also differ from one project to another, which
suggests that test engineers might need to tailor the definition
of similarity to their needs and context.

Effective versus efficient test case minimization. Our re-
sults showed that GA with combined similarity is the best
configuration for ATM, given its effectiveness and efficiency
compared to other configurations. Specifically, it achieved a
high FDR that is comparable to GA with tree edit distance
and NSGA-II alternatives, while taking much less time to
calculate. However, despite the considerably longer time taken
to calculate tree edit distance compared to combined simi-



TABLE II: Descriptive statistics of FDR and total execution time (in seconds) for the 50% minimization budget, across projects’
versions, of ATM using GA with combined similarity compared to FAST-R and random minimization. The highest FDR and
shortest execution time are highlighted in bold

Statistic
Technique ATM FAST++ FAST-CS FAST-pw FAST-all Random

GA/Combined minimization
FDR Time FDR Time FDR Time FDR Time FDR Time FDR Time

Min 0.58 27.58 0.51 0.06 0.48 0.06 0.25 0.45 0.38 0.42 0.17 0.0012
25% Quantile 0.75 130.83 0.57 0.10 0.57 0.08 0.38 0.97 0.54 0.90 0.44 0.0013
Mean 0.80 4,364.76 0.61 0.44 0.60 0.20 0.47 4.14 0.59 2.78 0.52 0.0021
Median 0.79 831.71 0.60 0.19 0.60 0.14 0.47 2.21 0.62 1.82 0.50 0.0017
75% Quantile 0.88 3,780.37 0.65 0.63 0.64 0.29 0.54 6.37 0.66 4.27 0.57 0.0025
Max 0.97 38,485.15 0.72 2.17 0.71 0.63 0.72 17.11 0.70 9.10 1.00 0.0056

larity, it took relatively less time to minimize test cases as
it converges faster on all projects. Still, when accounting
for the total execution time, ATM using GA with combined
similarity ran faster than tree edit distance on the majority of
the projects, thus making it the best configuration. Moreover,
though very efficient, random minimization and FAST-R al-
ternatives performed significantly worse than ATM in terms
FDR. Given that test case minimization is typically performed
on an occasional basis, such as major releases with many new
test cases, even if ATM takes much longer than FAST-R due to
its finer-grained similarity measures and search algorithms, it
still runs in practical time (1.2 hours on average) and achieves
much higher FDR, thus making it a better choice in many
practical contexts.

Scalability. On the largest project in our dataset, Time, which
has nearly 4k test cases, ATM took more than 10 hours, on
average, per version, largely due to the search producing an
optimal minimized test suite. Though our test case minimiza-
tion experiment is the largest to date, industrial systems can be
much larger than the ones in our dataset. Overall, we observed
that the execution time of the search algorithm increases
quadratically with the number of test cases, regardless of the
similarity measure. As a result, there is obviously a limit,
in terms of system and test suite sizes, to any minimization
technique. Therefore, future research should devise ways of
pushing the scalability boundary of ATM further while pre-
serving high FDR results. For instance, similarity and search
fitness computations can be easily parallelized to significantly
improve scalability. Indeed, all similarity computations of test
case pairs and fitness values of minimized sets in a population
are independent and can be run on different cores [27, 28].
Other search algorithms [19] should also be investigated in
the future to identify better trade-offs between efficiency and
effectiveness.

Application of test case minimization in practice. In practice,
when there is a major release with many new test cases created
and a testing budget is set, similarity scores of new test case
pairs are calculated. Then, search is performed to find a subset
of the test suite that minimizes the similarity between test
cases within the given test budget. The resulting minimized
test suite is later used for regression testing in the subsequent
code versions.

IV. THREATS TO VALIDITY

Construct Validity Construct threats to validity are concerned
with the degree to which our analyses measure what we
claim to analyze. Test cases may contain information that is
irrelevant to the testing rationale, which could introduce noise
when measuring similarity between test cases. To mitigate this
threat, ATM pre-processed test cases and transformed their
code into ASTs.
Internal Validity Internal threats to validity are concerned
with the ability to draw conclusions from our experimental
results. Compared to FAST-R, ATM was evaluated on finer-
grained data: test cases were considered to be Java test meth-
ods instead of test classes. However, given that FAST-R was
originally evaluated based on Java test classes, its performance
on test methods could be inconsistent in our experiments. To
mitigate this threat, we evaluated all techniques on the same
finer-grained data. We observe that FAST-R’s performance was
consistent with what was originally reported [5], in terms
of both effectiveness and efficiency, and even worse when
evaluated at the class level. Moreover, to mitigate randomness
in the obtained results, we ran each experiment 10 times, with
fixed seeds to enable the reproduction of our results. Finally,
we removed all assertions, including their parameters as we
assume they do not include any method calls that exercise the
system under test (with side effects) as their main goal is to
verify the test case outcome. Calling methods with side effects
inside assertions is not considered a good testing practice. Test
cases may become similar in our context when assertions are
removed, meaning they exercise the same behavior, resulting
in excluding one of them. However, assertions might still
contain relevant information regarding test case similarity and
retaining them might increase FDR. Future research should
further investigate this point.
External Validity External threats are concerned with the
ability to generalize our results. Our evaluation was performed
on a large dataset extracted from 16 Java projects collected
from DEFECTS4J, including 661 faulty versions. However,
unlike FAST-R, we did not evaluate ATM on C projects,
though it can a priori be applied to test cases written in other
languages provided the availability of tools for transforming
test case code into ASTs. Future research should assess ATM’s
performance on test cases written in other programming lan-
guages to devise more general conclusions.



V. RELATED WORK

Test case minimization is an NP-hard problem, hence there
are many techniques that have been proposed [1, 2] to find
near-optimal, feasible solutions to address it. Such techniques
can be classified into three categories: greedy heuristics-based,
clustering-based, and search-based.

Greedy heuristics-based test case minimization. Miranda
et al. [29] used greedy heuristics [30] to perform test case
minimization that iteratively selects test cases based on their
code coverage until all the target program entities, e.g., state-
ments, for a given testing input are covered. This technique
achieved fault detection rates ranging from 0.52 to 0.69 for
running 2.6% to 11.3% of test cases. Noemmer et al. [6] also
used greedy heuristics to perform test case minimization using
statement coverage. Mutation testing was used to evaluate
this technique, which obtained a loss in mutation scores
ranging from 3.5% to 21% for running 7% to 50% of test
cases. However, these techniques require to analyze production
code, i.e., white-box, and do not enable targeting specific
minimization budgets, thus having scalability and applicability
issues in practice.

Clustering-based test case minimization. Cruciani et al. [5]
recently proposed a novel technique, called FAST-R, to per-
form test case minimization by relying solely on test case
code (black-box), which is converted into vectors using a term
frequency model [21]. Based on these vectors, clustering was
used to partition test cases into clusters, where the centroids of
the clusters were selected as the minimized set of test cases.
It was evaluated on five Java and five C projects, each with
a single version. Though it was more efficient than white-box
techniques, it achieved relatively low median fault detection
rates on Java projects, ranging from 0.18 to 0.22 for min-
imization budgets ranging from 1% to 30%. In addition, the
experiment considered Java test classes to be test cases, where
test methods exercising similar functionalities are grouped
together, thus making it impossible to identify redundant test
methods within the same test class. Similarly, Coviello et
al. [31] and Viggiato et al. [32] proposed clustering-based test
cases minimization techniques relying on code coverage or
test cases written in natural language, thus making them not
easy to apply in practice as such information are not always
accessible by test engineers.

Search-based test case minimization. Hemmati et al. [33]
used a search algorithm that relies on test case similarity
calculated using model-based features to perform test case
minimization. This technique was evaluated on two relatively
small industrial systems and achieved average fault detection
rates ranging from 0.60 to 1.00 for running 4% to 14% of
test cases. Similarly, Zhang et al. [34] and Wang et al. [35]
proposed model-based test case minimization techniques
relying on multi-objective search algorithms, such as NSGA-
II, MOCell [36], SPEA2 [37]. However, the information
required by the above techniques is not always available to
test engineers.

Summary. In contrast to the above techniques, except for
FAST-R, ATM relies exclusively on test case code and can
help test engineers target any pre-set minimization budget,
thus making it more applicable in practice. Compared to
FAST-R, ATM achieved significantly higher (+0.19) fault de-
tection rates within practically acceptable (though significantly
longer) execution time. Moreover, ATM was evaluated on a
larger, finer-grained dataset of 16 Java projects with 661 faulty
versions, thus making it by far the largest experiment to date
for test case minimization.

VI. CONCLUSION

In this paper, we proposed ATM, a black-box test case
(suite) minimization technique based on the Abstract Syntax
Tree (AST) similarity of test code and evolutionary search
algorithms. We investigated four tree-based similarity mea-
sures, namely top-down, bottom-up, combined (merging the
first two), and tree edit distance. We employed Genetic Al-
gorithms (GA) and its multi-objective counterpart (NSGA-II),
to perform test case minimization using the above similarity
measures to define alternative fitness functions. We evaluated
various configurations of ATM on a large dataset of 16 Java
projects with 661 (faulty) versions collected from DEFECTS4J.
We used the Fault Detection Rate (FDR) and execution time
evaluation metrics to respectively assess the effectiveness and
efficiency of ATM, using three practical minimization budgets
ranging from 25% to 75%. We identified the best ATM con-
figuration and compared it to FAST-R, a recently proposed set
of black-box test case minimization techniques, and random
minimization, a standard baseline. For a minimization budget
of 50%, we observed that all ATM configurations achieved
significantly higher FDR results (0.82 on average) compared
to FAST-R (0.61 on average) and random minimization (0.52
on average). In addition, all ATM configurations ran within
practically acceptable time (1.1− 4.3 hours on average), with
combined similarity using GA being the best configuration
when considering both effectiveness and efficiency (1.2 hours
on average). Results were consistent for other budgets (25%
and 75%).

Future work. We aim to extend ATM in the future to use
additional similarity measures, such as Normalized Compres-
sion Distance (NCD) [38], and other code representation
techniques using language models, such as CodeBERT [39]
and TreeBERT [40]. We also aim to expand our evaluation
to consider projects using other programming languages and
larger industrial systems.

VII. DATA AVAILABILITY

The replication package of our experiments, including the
data, code, results for other minimization budgets, and de-
tailed FDR and execution time results of ATM and baseline
techniques, is available on Zenodo [16].
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David, Regina Braga, Fernanda Campos, and Victor Ströele. Test case
prioritization: a systematic review and mapping of the literature. In
Proceedings of the 31st Brazilian Symposium on Software Engineering,
pages 34–43, 2017.

[12] Lucas Pereira da Silva and Patrı́cia Vilain. LCCSS: A similarity metric
for identifying similar test code. In Proceedings of the 14th Brazilian
Symposium on Software Components, Architectures, and Reuse, pages
91–100, 2020.

[13] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang,
and Xudong Liu. A novel neural source code representation based on
abstract syntax tree. In 2019 IEEE/ACM 41st International Conference
on Software Engineering (ICSE), pages 783–794. IEEE, 2019.

[14] Robert E Noonan. An algorithm for generating abstract syntax trees.
Computer Languages, 10(3-4):225–236, 1985.

[15] Gabriel Valiente. Algorithms on trees and graphs. Springer Science &
Business Media, 2002.

[16] ATM: Black-box Test Case Minimization based on Test Code Similarity
and Evolutionary Search – Replication Package. https://doi.org/10.5281/
zenodo.7455766.

[17] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan.
A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

[18] J. Blank and K. Deb. Pymoo: Multi-objective optimization in Python.
IEEE Access, 8:89497–89509, 2020.

[21] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector
space models of semantics. Journal of artificial intelligence research,
37:141–188, 2010.

[19] Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013.
Available at http://cs.gmu.edu/∼sean/book/metaheuristics/.

[20] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder Kaur
Panesar-Walawege. A systematic review of the application and empirical
investigation of search-based test case generation. IEEE Transactions
on Software Engineering, 36(6):742–762, 2009.

[22] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of
careful seeding. Technical report, Stanford, 2006.

[23] Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k-means
clustering via lightweight coresets. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining, pages 1119–1127, 2018.

[24] Anand Rajaraman and Jeffrey David Ullman. Mining of massive
datasets. Cambridge University Press, 2011.

[25] Michel Raymond and François Rousset. An exact test for population
differentiation. Evolution, pages 1280–1283, 1995.

[26] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability, 24(3):219–250, 2014.
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