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SPECTRAL SYNTHESIS FOR FLAT ORBITS

IN THE DUAL SPACE OF WEIGHTED GROUP ALGEBRAS

OF NILPOTENT LIE GROUPS

J. LUDWIG, C. MOLITOR-BRAUN, AND D. POGUNTKE

Abstract. Let G = exp(g) be a connected, simply connected, nilpotent Lie
group and let ω be a continuous symmetric weight on G with polynomial
growth. We determine the structure of all the two-sided closed ideals of the
weighted group algebra L1

ω(G) which are attached to a flat co-adjoint orbit.

1. Introduction

Let A be a Banach algebra. In order to understand the structure of A it is
important to be able to determine the space of its two-sided closed ideals. A
particular role is played by the primitive ideal space Prim(A) and its Fell topology.
For a given closed subset C of Prim(A), one tries to understand the set IC of the
two-sided closed ideals I of A with hull C. Here as always the hull h(I) of I is the
closed subset h(I) = {J ∈ Prim(A), I ⊂ J} of Prim(A). We say that a closed
subset C of Prim(A) is spectral or of spectral synthesis if ker(C) =

⋂
J∈C J is the

only closed two-sided ideal of A with hull C. We say that a two-sided closed ideal I
is primary if its hull consists of a single point in Prim(A). One important problem
is, given an irreducible representation π of A, to compute the space I{π} of all the
primary ideals with hull {π}.

In this paper we study the weighted L1 algebra of a nilpotent simply connected
connected Lie group G = exp(g). For these groups the exponential mapping exp :
g → G is a diffeomorphism of the vector space g onto the group G and the Haar
measure dg of G is the pullback of Lebesgue measure on the vector space g. We say
that a function p : G → C is polynomial if the function p ◦ exp : g → C is so. Let
ω : G → R∗

+ be a continuous symmetric polynomial weight, i.e. ω is a continuous
strictly positive function defined on G, such that

ω(x) = ω(x−1), ω(xy) ≤ ω(x)ω(y), ω(x) ≥ C > 0, ω(x) ≤ P (x), x, y ∈ G,

where C is a constant and P : G → R is some polynomial function on G.
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We consider the involutive Banach algebra L1
ω(G) of integrable functions with

respect to the measure ωdx on G. The product in this algebra is given by convolu-
tion,

a ∗ b(x) =

∫
G

a(u)b(u−1x)du, x ∈ G, a, b ∈ L1
ω(G),

and its norm by

‖a‖1,ω =

∫
G

|a(x)|ω(x)dx, a ∈ L1
ω(G).

Then ‖a∗ b‖1,ω ≤ ‖a‖1,ω‖b‖1,ω. This algebra has an isometric involution ∗ given by

a∗(x) := a(x−1), x ∈ G, a ∈ L1
ω(G).

One fundamental question in non-commutative harmonic analysis consists in
looking for relationships between geometric structures on one side and properties
of representations, as well as ideals associated to them, on the other side. The most
famous example in this respect is, of course, Kirillov’s orbit theory (see [Co-Gr] and

[Le-Lu]) which gives us a homeomorphism K : Ĝ → g∗/G from the dual space Ĝ
of G onto the space of co-adjoint orbits g∗/G of G in the real dual space g∗ of the
Lie algebra g of G.

The link with ideal theory of group algebras is the following: The primitive
ideal space Prim(L1

ω(G)) of our algebra L1
ω(G) is homeomorphic to the dual space

Ĝ of G and hence to the co-adjoint orbit space g∗/G (see [Al-Lu]). So, for a
closed G-invariant subset S of the linear dual g∗ of g, we shall now denote by
IS
ω = IS the set of all closed two-sided ideals I of L1

ω(G), for which the hull

h(I) := {π ∈ Ĝ, π(I) = {0}} is the set of all irreducible unitary representations π
of G, whose Kirillov orbit Ωπ is contained in S.

A special property of the algebra L1
ω(G) is the existence of minimal ideals, due to

the fact that a connected nilpotent locally compact group has polynomial growth.
This means that given any closed subset C ⊂ Ĝ, there exists a minimal closed
two-sided ideal j(C) ⊂ L1

ω(G) with hull C, i.e. j(C) is contained in every two-sided
closed ideal I with hull h(I) equal to C (see [Dz-Lu-Mo]).

This naturally leads to the following fundamental problem: Given a polynomial
weight on G and an irreducible unitary representation π of G, is it possible to
deduce the properties of the algebra ker(π)/j({π}) from the geometric structure of
the Kirillov orbit Ωπ = K(π) and the weight ω? It has already been shown in [Lu1]
that, for a flat orbit Ωπ, the one-point set {π} is spectral for the constant weight.
But what about other weights?

As a matter of fact, non-trivial weights appear quite naturally in this type of
problem. In the paper [Lu2] the space of ideals I{π} has been computed for every
irreducible representation π and any three step group G again for the constant
weight. It turned out that for every co-adjoint orbit Ω = K(π) in g∗ of such a group,
there exists for � ∈ Ω a certain weight ω = ωΩ on the stabilizer G(�) = exp(g(�))
of � such that the set I{π} is in an inclusion preserving bijection with the set of

ideals I{�|g(�)}
ω , and this set was easy to compute. Hence, in order to understand

the fundamental algebra L1(G), one is led to study weighted group algebras, their
representations and ideal theory, for more complicated weights, but easier groups
and co-adjoint orbits.
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Another situation where weights occur is the following: In the course of the
study of bounded topologically irreducible representations of the group algebras of
exponential solvable Lie groups ([Lu-Mo-1], [Po]), weighted group algebras of the
type L1(Rn, ω) appear. Even though the group is just Rn, the weight ω may be
complicated and the non-unitary topologically irreducible representations of such
algebras are not yet completely characterized. This fact stresses the importance of
weighted group algebras in representation theory.

The problem of a link between the geometric structure of a co-adjoint orbit
Ωπ and a weight ω with the algebra ker(π)/j({π}) is very complex and certainly
constitutes an ambitious program. In the present paper we start this program by
determining the sets IΩ

ω for a flat co-adjoint orbit Ω and any polynomial weight
ω. An orbit is flat if it has the form Ω = � + g(�)⊥ for some � ∈ g∗. In [Lu-Mo-2]
the closed two-sided ideals in IΩ

ω which are invariant by multiplication with func-
tions from L∞(G/G(l)), where G(l) = exp(g(l)), are completely determined. The
purpose of this paper is to drop the L∞(G/G(l))-invariance condition and to de-
scribe all of IΩ

ω . It turns out that the space IΩ
ω is not completely determined by

the restriction of the weight ω to the stabilizer G(�) of �. A member I of IΩ
ω is

finitely generated modulo an L∞(G/G(l))-invariant ideal. See Theorem 5.5. Fi-
nally, in section 7, we show that the algebra S(G)/S(G) ∩ j(πl) admits rank one
projectors q such that the two-sided, closed ideals of S(G)/S(G)∩ j(πl), and hence
also of L1

ω(G)/j(πl), are in bijection with the set of two-sided ideals in the finite-
dimensional algebra q∗S(G)/S(G)∩j(πl)∗q. This is done via the theory of twisted
convolution algebras. At the end of the paper we explicitly determine the set IΩ

ω

for the free nilpotent step two Lie algebra with 3 generators and a weight of degree
one. For the 4-dimensional threadlike group, we determine one- or two-parameter
families of ideals in IΩ

ω , if ω is of degree one or two.
To finish this introduction, let us just give examples of possible weights

([Lu-Mo-2]). Let P be a finite-dimensional space of polynomial functions on G,
which is invariant by left translations. Let lP denote the representation of G on P
defined by

(lP(x)P )(g) := P (x−1g), ∀x, g ∈ G.

Let ‖·‖ be any norm on P (as P is finite-dimensional, all the norms are equivalent).
Then the symmetric weights ω and ω1 defined by

ω(x) := ‖lP(x)‖op + ‖lP(x−1)‖op

= sup
P∈P

‖lP(x)P‖
‖P‖ + sup

P∈P

‖lP(x−1)P‖
‖P‖

and

ω1(x) := max(‖lP(x)‖op, ‖lP(x−1)‖op)
have polynomial growth.

2. Notation

For a mapping F : G → E from G into some set E, we denote by l(g)F (resp.
r(g)F , resp. c(g)F ) the left (resp. the right) translation (resp. the conjuga-
tion) of F by g ∈ G, i.e. l(g)F (u) := F (g−1u), r(g)F (u) := F (ug), c(g)F (u) :=
F (g−1ug), u ∈ G.
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We denote by L∞
ω (G) the Banach space of all measurable functions ϕ : G → C,

for which ‖ϕ‖∞,ω := ess supg∈G|
ϕ(g)
ω(g) | < ∞. This space L∞

ω (G) is in a natural way

the Banach space dual of L1
ω(G).

By C(G) (resp. Cc(G), resp. C∞
c (G)) we denote the space of all continuous

functions (resp. continuous functions with compact support, resp. C∞-functions
with compact support) ϕ : G → C. For an element X ∈ g and for ϕ ∈ C∞(G),
define the left (resp. right) partial derivative X ∗ ϕ (resp. ϕ ∗X) in the direction
X by

X ∗ ϕ(g) := d

dt
ϕ(exp(−tX)g)|t=0 resp. ϕ ∗X(g) :=

d

dt
ϕ(g exp(tX))|t=0, g ∈ G.

We extend the left and right partial derivatives in the usual way to the enveloping
algebra U(g) of g. For a closed G-left and right invariant subspace W ⊂ L∞

ω (G) we
denote by W∞ the space consisting of all C∞-functions ϕ : G → C contained in
W , for which a ∗ ϕ ∗ b ∈ W for all a, b ∈ U(g). We denote the space (L∞

ω (G))∞ by
the symbol C∞

ω (G).
Similarly, for a closed two-sided ideal I of L1

ω(G), we denote by I∞ the subspace
of I consisting of all the C∞ functions f contained in I, for which a ∗ f ∗ b ∈ I for
all a, b ∈ U(g).

Clearly, the subspace I∞ of I (resp. W∞ of W ) are G-left and right-invariant.
The following considerations can be found in [Lu-Mo-2].
Let N = exp(n) be a closed normal connected subgroup of G.
We say that the closed two-sided ideal I ∈ IΩ is L∞(G/N)-invariant if for every

f ∈ I and ϕ ∈ L∞(G/N), the function ϕf is also in I.
We now consider the restriction I|N of a closed two-sided ideal in L1

ω(G) to N ,

i.e., I|N is the closure in L1
ω|N

(N) of the subspace generated by the functions f ∗β|N ,

β ∈ Cc(G), f ∈ I. We recall that I|N is a closed two-sided G-invariant ideal of the

algebra L1
ω|N

(N). It is easy to see that for any dense subspace I ′ of I we also have

that

I|N = span{f ∗ α|N , f ∈ I ′, α ∈ C∞
c (G)}‖‖1,ω|N ,

where span{·} denotes the vector subspace generated by {·}. The converse construc-
tion is the extension eG(L) of a closed two-sided and G-invariant ideal L ⊂ L1

ω|N
(N)

to G. By definition,

eG(L) := span{β ∗ a, a ∈ L, β ∈ Cc(G)}‖‖1,ω

= span{a ∗ β, a ∈ L, β ∈ Cc(G)}‖‖1,ω
.

Then eG(L) is a closed two-sided ideal in L1
ω(G). Furthermore it is the only one

which is L∞(G/N)-invariant and whose restriction to N equals L.
We denote by (I⊥)∞ the functions ϕ ∈ C∞

ω (G), which are contained in the
orthogonal space of I, i.e. for which∫

G
f(g)ϕ(g)dg = 0, f ∈ I.

Also let (I⊥)|N be the weak-∗ closure in L∞
ω|N

(N) of the vector space generated by

the functions ϕ|N , ϕ ∈ (I⊥)∞.
An important tool in the proofs made in this paper will be the Schwartz algebra

S(G) of G.
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Definition 2.1. The Schwartz algebra S(G) is the Fréchet sub-algebra of L1
ω(G)

consisting of all the C∞ functions f : G → C for which all partial derivatives are
rapidly decreasing, i.e. they are decreasing faster than the functions 1

1+|P | for any

polynomial function P on G (see [Lu-Mo] for the properties of S(G)).

Remark 2.2. (i) Let I|N be as previously defined. We define IN by

IN := I ∩ S(G)|N
‖‖1,ω|N ,

where I ∩ S(G)|N denotes the set of all the usual restrictions of the functions of
I ∩ S(G) to N . We then have IN ⊂ I|N . In fact, let (βj)j be an approximate
identity of the Schwartz algebra S(G), consisting of elements of C∞

c (G) ([Lu-Mo]).
Let f ∈ I∩S(G). Then f|N ∈ S(N) and f ∗ βj |N ∈ I|N for all j. Moreover, (f ∗βj)j
converges to f in every Schwartz norm. This implies that (f ∗ βj |N )j converges to

f|N in every Schwartz norm of S(N). As a matter of fact, if we build the Schwartz
norms thanks to the supremum, restrictions to N are possible. As the weight ω has
polynomial growth, we then deduce that (f ∗ βj |N )j converges to f|N in L1

ω|N
(N),

and f|N ∈ I|N . This shows that

IN ⊂ I|N .

(ii) We have

IN = I|N , provided I = I ∩ S(G)
‖‖1,ω

.

Indeed, I|N is then generated by elements of the form f ∗ α|N with f ∈ I ∩ S(G)
and α ∈ C∞

c (G). For such f, α, f ∗ α ∈ I ∩ S(G) and f ∗ α|N ∈ IN . This proves
that I|N ⊂ IN .

(iii) If I = I ∩ S(G)
‖‖1,ω

, then

I|N = IN = IN ∩ S(N)
‖‖1,ω|N .

In fact IN is generated by the elements of I ∩ S(G)|N . But these are Schwartz
functions on N .

(iv) Now let M and N be two closed connected normal subgroups of G such
that N ⊂ M ⊂ G and let I be a closed two-sided ideal in L1

ω(G) such that I =

I ∩ S(G)
‖‖1,ω

. Then

(IM )N = IN and
(
(I⊥)|M

)
|N = (I⊥)|N .

In fact, IM is generated by I ∩ S(G)|M ⊂ S(M) and so (IM )N is generated by(
(I ∩ S(G)|M ) ∩ S(M)

)
|N = (I ∩ S(G)|M )|N = I ∩ S(G)|N , which shows that

(IM )N = IN . The fact that
(
(I⊥)|M

)
|N = (I⊥)|N is obvious from the definition of

these spaces.

In order to study the relationship between (I|N )⊥ and (I⊥)|N , let us make the
following decomposition of the Lie algebra g: We take a subspace s ⊂ g such that
g = s⊕ n, such that the mapping

s×N → G, (U, n) �→ exp(U)n

is a polynomial diffeomorphism and such that∫
G

ϕ(g)dg =

∫
S

∫
N

ϕ(sn)dnds,
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where S = exp(s) and where ds denotes Lebesgue measure on S � s. Such sub-
spaces s always exist (see [Co-Gr]): In fact, if we take a strong Malcev basis
Z = {Z1, · · · , Zn} of the Lie algebra g (i.e. the subspaces gj =

∑n
i=j RZi are

ideals of g (j = 1, · · · , n)), which passes through n, i.e. n = gm for some m, then it

suffices to take s :=
∑m−1

j=1 RZj .

Proposition 2.3. (1) The subspace (I|N )⊥ is contained in (I⊥)|N .

(2) A two-sided closed ideal I ⊂ L1
ω(G) is L∞(G/N)-invariant if and only if

(I|N )⊥ = (I⊥)|N .

Proof. (1) Let q ∈ ((I|N )⊥)∞. Define a function ϕ : G → C by the rule

ϕ(sn) := α(s)q(n), s ∈ S, n ∈ N,

where α is an element of C∞
c (S) such that α(e) = 1. Then ϕ ∈ C∞

ω (G) and
ϕ|N = q. Let us show that ϕ ∈ I⊥. We have for f ∈ I, β ∈ Cc(G),

〈ϕ, f ∗ β〉 =

∫
G

ϕ(g)f ∗ β(g)dg

=

∫
S

α(s)(

∫
N

q(n)f ∗ β(sn)dn)ds

=

∫
S

0ds

= 0,

since the function n �→ f ∗β(sn) is contained in I|N for every s ∈ S. Hence

ϕ ∈ (I⊥)∞ and q ∈ (I⊥)|N . Now if q is any element of (I|N )⊥, then we can

replace q by functions of the type qα,β := α ∗ q ∗ β ∈ (I|N )⊥)∞, with α, β ∈
C∞

c (N). Since by the preceding argument we know that qα,β ∈ (I⊥)|N for

all α, β, it follows that q is contained in (I⊥)|N .

(2) If I is L∞(G/N)-invariant, then for every ϕ ∈ (I⊥)∞ and β ∈ C∞
c (S) we

have that∫
S

∫
N

f(sn)β(s)ϕ(sn)dnds = 0, f ∈ I ∗ Cc(G).

Therefore
∫
N
f(sn)ϕ(sn)dn = 0, s ∈ S, and so ϕ|N ∈ (I|N )⊥. Hence

(I⊥)|N is contained in (I|N )⊥, and so by point (1) of this proposition

(I⊥)|N = (I|N )⊥. If conversely (I|N )⊥ = (I⊥)|N , then for f ∈ I∗Cc(G), ϕ ∈
(I⊥)∞, g ∈ G, we have that

l(g−1)f ∈ I, l(g−1)ϕ ∈ (I⊥)∞,

and hence ∫
N

f(sn)ϕ(sn)dn = 0, s ∈ S.

We deduce from this that
∫
S

∫
N
β(s)f(sn)ϕ(sn)dnds = 0 for any β ∈

Cc(G/N) � Cc(S). This tells us that βf ∈ I. Since Cc(G/N) is weak∗-
dense in L∞(G/N) and since I ∗ Cc(G) is norm dense in I, the assertion
follows. �
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3. Ideals whose hull is a flat orbit

In this paper, we shall determine the space IΩ of all two-sided closed ideals in
L1
ω(G) with hull Ω, where Ω is a flat co-adjoint orbit of G.
Let us recall that a co-adjoint orbit Ω = Ad∗(G)� is flat if and only if the radical

g(�) := {U ∈ g, 〈�, [U, g] = {0}〉} of � is an ideal in g and if and only if Ω = �+g(�)⊥

(see [Lu]).
In the sequel we shall fix the element � whose orbit is flat and write n = g(�), N =

exp(n), which is a closed connected normal subgroup of G. Let p = �|n, which is
G-invariant as n is the stabilizer of l in g, which is an ideal by assumption. The
function

χp = χ�|n : N → C, χ�|n(n) := e−i�(log(n)), n ∈ N,

defines a unitary character of N , which is hence also G-invariant, i.e. χp(gng
−1) =

χp(n) for every g ∈ G,n ∈ N .

In the case where � is a homomorphism of g, the space I{�} has been determined
in [Al-Lu]: We denote by Pω(G) the complex finite-dimensional vector space of all
polynomial functions P : G → C contained in L∞

ω (G) and by PIω(G) the set of all
left and right translation invariant subspaces of Pω(G). For every V ∈ PIω(G), let

JV := {f ∈ L1
ω(G),

∫
G

f(g)P (g)χ�(g)dg = 0, ∀P ∈ V }.

Then JV is a closed two-sided ideal of the algebra L1
ω(G) and the mapping PIω(G) �

V �→ JV ∈ I{�} is an order reversing bijection.
If � is not a homomorphism, i.e. if the G-orbit Ω of � is not reduced to a

single point in g∗, the problem of determining the space IΩ is very difficult (see for
instance [Lu2], where IΩ is determined for ω = 1 and g of step 3). In this paper
we consider the case of flat orbits. Then for the trivial weight ω = 1, the orbit
Ω ∈ g∗/G is of spectral synthesis (see [Lu1]).

Definition 3.1. Let Pω|N (N) be the complex vector space of all polynomial func-
tions P : N → C, which are dominated by ω|N .

Let PIω|N (N)G be the space of G-conjugation invariant and N translation-

invariant subspaces of Pω|N (N). For every V ∈ PIω|N (N)G, we define JV ⊂
L1
ω|N

(N) as previously.

The following theorem proved in [Lu-Mo-2] determines the space of L∞(G/N)-
invariant ideals in IΩ for a flat co-adjoint orbit Ω ⊂ g∗.

Theorem 3.2. Suppose that Ω is a flat co-adjoint orbit. The mapping

PIω|N (N)G → IΩ, V �→ IV := eG(JV )

is order reversing and a bijection between PIω|N (N)G and the space of L∞(G/N)-

invariant ideals contained in IΩ.

Remark 3.3. Since IV is an L∞(G/N)-invariant ideal, it follows that

IV = {f ∈ L1
ω(G),

∫
S

∫
N

ϕ(s)p(n)χl(n)f(sn)dnds = 0, ϕ ∈ Cc(G/N), p ∈ V }.

In this paper we prove a structure theorem for every two-sided closed ideal
I ⊂ L1

ω(G) with hull Ω; see Theorem 5.5.
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Definition 3.4. For P ∈ Pω |N (N) write

l(m)P (n) := P (m−1n), r(m)P (n) := P (nm), σ(g)P (n) := P (g−1ng),

m, n ∈ N, g ∈ G, for left and right translation by m ∈ N and conjugation by g ∈ G.
For Z ∈ N,X ∈ g, we have that

l(exp(Z)) =

d∑
j=0

dl(Z)j

j!
, r(exp(Z)) =

d∑
j=0

dr(Z)j

j!
,(3.1)

and

σ(exp(X)) =
d∑

j=0

dσ(X)j

j!
, X ∈ g,

where d = dim(Pω|N (N)), since r, l and σ are unipotent representations of N (resp.

G) on Pω|N (N).

It had been shown in [Lu-Mo-2] that the minimal ideal j(Ω) = j(π�) is the
extension of the minimal ideal j(χp) ⊂ L1

ω|N
(N).

Since

j({p}) = j(χp) = {f ∈ L1
ω|N

(N),

∫
N

f(n)χp(n)P (n)dn = 0, ∀P ∈ Pω|N (N)}

= JPω|N (N)

by [Al-Lu], the minimal ideal j(Ω) being the extension to G of j(χp), we have that
(3.2)

j(Ω)=j(π�)={f ∈ L1
ω(G),

∫
N

f ∗ β(n)P (n)χp(n)dn = 0, β ∈ Cc(G), P ∈Pω|N (N)}.

Remark 3.5. Let d be the dimension of the vector space L1
ω|N

(N)/j(χp), i.e. d =

dim(Pω|N ). Then (ker(πl))
d ⊂ j(χp).

Indeed, by [Lu-Mo-2], we know that ker(π)j is the extension of (ker(χp))
j , j =

1, 2, · · · . But since ker(χp)/j(χp) is nilpotent, it follows that ker(χp)
d ⊂ j(χp).

Hence (ker(π�))
d ⊂ e(ker(χp)

d) ⊂ e(j(χp)) = j(πl).

Now if I ∈ IΩ, then I contains the minimal ideal j(Ω). Therefore, for any
ϕ ∈ (I⊥)∞, g ∈ G, the function

ϕ(g) : N → C, n �→ ϕ(gn)

is contained in j(χp)
⊥ = χpPω|N (N). Hence the functions ϕ̃(g), g ∈ G, defined by

ϕ̃(g)(n) = χp(n)ϕ(gn), n ∈ N,

are polynomial and bounded by ω|N (N), if ϕ ∈ (I⊥)∞, by [Lu-Mo-2].

The set of all these polynomial functions ϕ̃(g), g ∈ G,ϕ ∈ (I⊥)∞, generates a
G×N -invariant subspace of Pω|N (N), which we denote by V (I). This means that

(I⊥)|N = χpV (I).

Let I be a closed two-sided ideal of L1
ω(G) with hull Ω. Hence j(πl) ⊂ I and

I⊥ ⊂ j(πl)
⊥. As j(πl) is L

∞(G/N)-invariant, by [Lu-Mo-2], Proposition 2.3 implies
that (

j(πl)
⊥)

|N =
(
j(πl)|N

)⊥
=

(
j(χl|n)

)⊥
.
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Hence

W (I) := χp · (I|N )⊥(3.3)

⊂
V (I) := χp · (I⊥)|N

⊂
χp ·

(
j(χp)

)⊥
= Pω|N (N).

Remark 3.6. By definition of V (I) and W (I),

IV (I) ⊂ I ⊂ IW (I)

and W (I) = V (I) if and only if I is L∞(G/N)-invariant, by Proposition 2.3. If
I is L∞(G/N)-invariant, then I = IV (I) = IW (I), by Theorem 3.2. This will be
specified further in Theorem 5.5.

Moreover, IV (I) is the largest L∞(G/N)-invariant ideal contained in I with hull
Ω and IW (I) is the smallest L∞(G/N)-invariant ideal containing I with hull Ω.

In fact, let us assume that Ĩ is an L∞(G/N)-invariant ideal with hull Ω such

that Ĩ ⊂ I. Then V (I) ⊂ V (Ĩ) and Ĩ = IV (Ĩ) ⊂ IV (I), which completes the proof

of the first statement. The second one is proved similarly.

Remark 3.7. Let (pj)
d
j=1 be a basis of the (finite-dimensional) vector space Pω|N (N).

Let us take this basis to be a Jordan-Hölder basis for the (unipotent) action of G×N
on Pω|N (N). For a function ϕ ∈ (j(Ω)⊥)∞ we can express the map ϕ̃ in the basis
P :

χp(n)ϕ̃(g)(n) = ϕ(gn) =

d∑
j=1

ϕj(g)pj(n)χp(n), g ∈ G,n ∈ N.

It is obvious that the functions ϕj are C∞.

Lemma 3.8. The complex functions ϕj are then contained in C∞
ω (G).

Proof. Indeed, choose a family of Schwartz functions (δj)
d
j=1 ⊂ S(N) such that∫

N

pj(n)χp(n)δi(n)dn = δij , i, j = 1, · · · , d.

Then

|ϕj(g)| = |
∫
N

ϕ̃(g)(n)χp(n)δj(n)dn|

≤
∫
N

|ϕ̃(g)(n)||δj(n)|dn

=

∫
N

|ϕ(gn)||δj(n)|dn

≤ ‖ϕ‖∞,ω

∫
N

ω(g)ω(n)|δj(n)|dn

≤ ‖ϕ‖∞,ω‖δj‖1,ω|Nω(g).

Hence

‖ϕj‖∞,ω ≤ ‖ϕ‖∞,ω‖δj‖1,ω|N .
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We have to prove similar bounds for u ∗ ϕ ∗ v, u, v ∈ U(g). Let us first notice
that yϕ, ϕy ∈ (j(Ω)⊥)∞ for all y ∈ G, where yϕ(g) := ϕ(y−1g) and ϕy(g) = ϕ(gy).
We then have

(̃yϕ)(g)(n) = ϕ̃(y−1g)(n) =

d∑
j=1

ϕj(y
−1g)pj(n) =

d∑
j=1

y(ϕj)(g)pj(n),

and hence

(yϕ)j = y(ϕj), for all j.

This implies that

(X ∗ ϕ)j = X ∗ (ϕj), X ∈ g,

and even

(u ∗ ϕ)j = u ∗ (ϕj), u ∈ U(g).
Hence for any u ∈ U(g) the function u ∗ (ϕj) is contained in L∞

ω (G) as

‖X ∗ (ϕj)‖∞,ω = ‖(X ∗ ϕ)j‖∞,ω

≤ ‖X ∗ ϕ‖∞,ω‖δj‖1,ω|N

< +∞.

We have similar bounds if X is replaced by u ∈ U(g) because of the assumptions
on ϕ.

Before dealing with the action of X on the right, let us notice the following: As
Pω|N (N) is G-invariant and admits (pk) as a basis,

pj(y
−1ny) =

d∑
k=1

ρjk(y)pk(n), ∀y ∈ G, ∀n ∈ N,

where the ρjk’s are polynomial functions. For the unit y = e one has ρjk(e) = δjk
because of the unicity of the decomposition in the basis (pk)

d
k=1. For y = exp(tX),

we put rjk(t) := ρjk(exp(tX)). Then the rjk’s are polynomial functions in t such
that rjk(0) = ρjk(e) = δjk. One easily checks that for g ∈ G,

(
ϕexp(tX)

)
j
(g) =

d∑
i=1

rij(t)(ϕi)exp(tX)(g),

and hence

d∑
j=1

(ϕ ∗X)j(g)pj(n) = χp(n) · (ϕ ∗X)(gn)

=
d∑

j=1

( d∑
i=1

r′ij(0) · ϕi(g) +
d∑

i=1

rij(0) · (ϕi ∗X)(g)
)
pj(n).

So

(ϕ ∗X)j(g) =
d∑

i=1

(
r′ij(0) · ϕi(g) + rij(0)(ϕi ∗X)(g)

)

=

d∑
i=1

r′ij(0) · ϕi(g) + (ϕj ∗X)(g)
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and

(ϕj ∗X)(g) = (ϕ ∗X)j(g)−
d∑

i=1

r′ij(0)ϕi(g).

The previous bounds imply that

‖ϕj ∗X‖∞,ω ≤ ‖(ϕ ∗X)j‖∞,ω +

d∑
i=1

|r′ij(0)| ‖ϕi‖∞,ω

≤ ‖ϕ ∗X‖∞,ω‖δj‖1,ω|N +

d∑
i=1

|r′ij(0)| ‖ϕ‖∞,ω‖δi‖1,ω|N .

For any u, v ∈ U(g), we then get a bound of the form

‖u ∗ ϕj ∗ v‖∞,ω = ‖(u ∗ ϕ)j ∗ v‖∞,ω

≤
d∑

i=1

(
ci‖u ∗ ϕ‖∞,ω +

Ni∑
k=1

‖u ∗ ϕ ∗ vik‖∞,ω

)
‖δi‖1,ω|N

< +∞

by assumption on ϕ, for some vik ∈ U(g) and some non-negative constants ci. This
proves that ϕj ∈ C∞

ω (G), for all j. �

Definition 3.9. For any closed two-sided ideal I ⊂ L1
ω(G), we let

IS = I ∩ S(G)(3.4)

be the intersection of I with S(G).

Remark 3.10. It follows from [Lu2] and [Lu-Mo] that the hulls of I and of

I ∩ S(G)
L1

ω(G)
coincide. As a matter of fact, the minimal ideal j(h(I)) is generated

by Schwartz functions. Hence h(I ∩ S(G)) = h(I).

The next theorem will be an important step in the proof of Theorem 5.5.

Theorem 3.11. Let Ω be a flat G-orbit in g∗. Let I ∈ IΩ be a closed two-sided

ideal in L1
ω(G). Then I = IS, the closure being taken in L1

ω(G). Moreover, every
f ∈ I∞ is in S(G) modulo j(Ω).

In order to prove Theorem 3.11, we first establish the following lemma:

Lemma 3.12. Let (pj)
d
j=1 be a Jordan-Hölder basis of Pω|N (N) = χp · j(χp)

⊥

for the action of G × N , where d = dim(j(χp)
⊥). We extend the functions pj to

polynomial functions defined on all of G by letting

Pj(sn) := pj(n), n ∈ N, s ∈ S.

Then there exists a function q ∈ C∞
ω (S) ≡ C∞

ω (G/N) such that 0 < qω ≤ C for
some constant C > 0 and such that all the right and left partial derivatives of the
functions

rj := qPj , j = 1, . . . , d,

are dominated by ω.
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Proof. Let ω′ be a symmetric continuous polynomial weight on S ≡ G/N such that

ω′(s) ≥ C2ω
2(s) ≥ C1 > 0, s ∈ S,

for some strictly positive constants C1, C2. Such a weight exists as G/N is a locally
compact group of polynomial growth on which every polynomially bounded function
is bounded by a polynomial weight ([Di], [Lu4]). We define ω′ on all of G by
ω′(sn) := ω′(s), for all s ∈ S, n ∈ N . For any non-negative functions α, β ∈ Cc(G),
we have

α ∗ ω′ ∗ β(x) =

∫
G

∫
G

α(y)ω′(y−1xu−1)β(u)dudy

≤ ω′(x)
( ∫

G

α(y)ω′(y)dy
)( ∫

G

β(u)ω′(u)du
)
.

Now let α ∈ C∞
c (G), α ≥ 0, such that

∫
G
α(g)ω′(g)dg = 1. We define a C∞-

function μ by μ := α ∗ ω′ ∗ α and we put q = 1
μ . Hence

( ∫
G

α(y)

ω′(y)
dy

)2 · ω′(x) ≤
∫
G

∫
G

α(y)α(u)ω′(y−1xu−1)dydu(3.5)

= μ(x)

≤ ω′(x)

for all x ∈ G, i.e. there exist strictly positive constants C3, C4 such that

0 < C3 ≤ C4 · ω′(g) ≤ μ(g) ≤ ω′(g), ∀g ∈ G.

For j = 1, · · · , d, we have

|Pj(sn)| = |pj(n)|
≤ C5ω(n)

≤ C5ω(s)ω(sn)

≤ C6ω(s)
2ω(sn)

≤ C7ω
′(s)ω(sn)

= C7ω
′(sn)ω(sn)

for some strictly positive constants C5, C6, C7. Hence Pj ∈ Pω′ω(G). Similarly
for u ∗ Pj , for all u ∈ U(g), for all j, with the constants depending on u. For all
u ∈ U(g), we have

|u ∗ μ| = |(u ∗ α) ∗ ω′ ∗ α| ≤ |u ∗ α| ∗ ω′ ∗ |α| ≤ C8 · ω′ ≤ C9 · μ
for new constants C8, C9 (depending on u). For X ∈ g and j ∈ {1, · · · , d},

|X ∗ rj | = |X ∗ (Pjq)|
= |(X ∗ Pj)q + Pj(X ∗ q)|

≤ C10ωω
′q + |Pj(X ∗ 1

μ
)|

≤ C10ωω
′ 1

μ
+ C10ωω

′ |X ∗ μ|
μ2

≤ C10ω
ω′

μ
+ C10ωω

′C9μ

μ2

≤ C11ω
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for new constants C10, C11. Hence X ∗ rj is dominated by ω. Similarly for rj ∗X.
The same is true for derivatives of higher order. One also shows that all the right
and left derivatives of q are bounded by ω. Finally,

qω(s) = q(s)ω(s)

=
ω(s)

μ(s)

≤ C12ω
2(s)

μ(s)

≤ C13ω
′(s)

μ(s)

≤ C

for new constants C12, C13, C. It is clear that the function 1
q = μ has the desired

properties. �

Remark 3.13. (i) Let l ∈ g∗, p(l) be a polarization at the point l, P (l) = exp(l),

πl = indGP (l)χl the corresponding induced representation, Hl the Hilbert space of

the representation πl and B(Hl) the Banach space of all bounded endomorphisms
of Hl. Then B(Hl) is a G×G-module, the action of G×G being given by

(g, g′)a := πl(g) ◦ a ◦ πl((g
′)−1), a ∈ B(Hl), g, g

′ ∈ G.

Let B(Hl)
∞ denote the space of C∞-vectors for this action. Then

πl(L
1(G)∞) ⊂ B(Hl)

∞.

In fact, for all u ∈ U(g), the operator dπl(u) acts on the representation space as a
differential operator with polynomial coefficients, and conversely. This means that
for all differential operators with polynomial coefficients P,Q on the representation
space H∞

l (identified with a space S(Rs)), there are u, v ∈ U(g) such that P =
dπl(u), Q = dπl(v) and

‖P ◦ πl(f) ◦Q‖op = ‖πl(u ∗ f ∗ v)‖op
≤ ‖u ∗ f ∗ v‖L1(G)

< +∞

for all f ∈ L1(G)∞.
(ii) By [Ho], the map

S(G) → B(Hl)
∞,

f �→ πl(f)

is surjective. So, for every k ∈ L1(G)∞, there exists f ∈ S(G) such that πl(k) =
πl(f).

Proof of Theorem 3.11. We define a mapping Φ : L1
ω(G) → (B(H�))

d by the rule

Φ(f) := (π�(rjf))
d
j=1, f ∈ L1

ω(G).
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Then, since ker(π�) = ker(indGNχp) (see [Lu-Mo-2]), it follows that

ker(Φ) = {f ∈ L1
ω(G), π�(rif) = 0, i = 1, · · · , d}

(3.6)

= {f ∈ L1
ω(G),

∫
N

χp(n)q(s)Pi(sn)f(sn)dn = 0, i = 1, · · · , d,

for almost all s ∈ S}

= {f ∈ L1
ω(G),

∫
N

χp(n)pi(n)f(sn)dn = 0, i = 1, · · · , d,

for almost all s ∈ S}

= {f ∈ L1
ω(G),

∫
N

ψ(n)f(ns)dn = 0,

for almost all s ∈ S, for all ψ ∈ j(χp)
⊥}

= {f ∈ L1
ω(G),

∫
N

ψ(n)f ∗ β(n)dn = 0, for all β ∈ Cc(G),

for all ψ ∈ j(χp)
⊥}

= {f ∈ L1
ω(G), f ∈ eG(j(χp))}

= j(Ω)(= j(π�)) by formula (3.2).

Let S(G/N,χ�) be the convolution algebra

S(G/N,χ�) ={f : G → C, f smooth, f ◦ exp ∈ S(s),
f(gn) = χp(n)f(g), g ∈ G,n ∈ N}.

The mapping

Ψ : S(G) → S(G/N,χ�); Ψ(f)(g) :=

∫
N

f(gn)χp(n)dn, g ∈ G, f ∈ S(G),

is a surjective homomorphism. By Remark 3.13, we can map S(G/N,χ�) bijectively
onto B(Hπ�

)∞ using the mapping

π̃�(f) :=

∫
G/N

f(g)π�(g)dġ.

As in Remark 3.7, we choose for every j = 1, · · · , d a function δj ∈ S(N), such that∫
N
pi(n)δj(n)χp(n)dn = δij , i = 1, · · · , d. If we take any Aj ∈ B(Hπ�

)∞, then we
can find by [Ho] an fj ∈ S(G/N,χl), such that π̃�(fj) = Aj , j = 1, · · · , d. Let αi

be the Schwartz function on G defined by

αi(sn) := q(s)−1 fi(s)δi(n) = μ(s)fi(s)δi(n), s ∈ S, n ∈ N(i = 1, · · · , d).
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It follows for the function k :=
∑d

i=1 αi ∈ S(G) that

π�(rjk) = π�(

d∑
i=1

rjαi)

=

d∑
i=1

∫
S

∫
N

π�(sn)rj(sn)αi(sn)dnds

=

d∑
i=1

∫
S

∫
N

π�(s)χp(n)q(s)pj(n)q(s)
−1fi(s)δi(n)dnds

=
d∑

i=1

∫
S

π�(s)fi(s)

∫
N

pj(n)δi(n)χp(n)dn

=

∫
S

π�(s)fj(s)ds

= π̃�(fj)

= Aj .

Hence Φ maps S(G) onto the space (B(H�)
∞)d.

Now take f ∈ I∞. The function f may for instance be of the form f = α ∗ k ∗ β
for k ∈ I and α, β ∈ C∞

c (G). Since the functions u ∗ rj and rj ∗ u (u ∈ U(g))
are bounded by ω by Lemma 3.12, the functions rjf are in L1(G)∞, and therefore
π�(rjf) ∈ B(H�)

∞, j = 1, · · · , d. Hence Φ(f) ∈ (B(H�)
∞)d and so there exists

f ′ ∈ S(G) such that Φ(f ′) = Φ(f). Hence f ′−f ∈ ker(Φ) = j(π�). Since I ⊃ j(π�),
it follows that f ′ ∈ I, and so f ′ ∈ IS . Because j(π�) is the minimal ideal with hull
{π�}, we also have that j(π�)∩S(G) is dense in j(π�), and hence for any ε > 0 there
exists fε ∈ j(π�) ∩ S(G) ⊂ IS such that ‖f − f ′ − fε‖1,ω < ε. But f ′ + fε ∈ IS .

This shows that f ∈ IS and finally I = IS . �

Remark 3.14. Let J ⊂ L1
ω|N

(N) be a two-sided G-invariant closed ideal such that

J = JS . Then it is easy to see that the two-sided closed ideal I = eG(J) has

the same property, i.e. I = IS . Indeed, an element f ∈ I can be approximated
by functions of the form a ∗ β, a ∈ J, β ∈ C∞

c (G), and we can approximate the
function a by Schwartz functions b ∈ JS ; hence f is approximated by the b ∗ β’s in
IS .

4. The G×G-module S(G/N,χ�)

The Hilbert space L2(G/N,χ�) is a G×G-module for the presentation λ of G×G,
where λ is defined by

λ(g, g′)ξ(x) := ξ(g−1xg′), x, g, g′ ∈ G, ξ ∈ L2(G/N,χ�).

Let h be a polarization at � and let H := exp(h). Then the mapping

S(G/N,χ�) → S(G2/H2, χ�,−�)

f �→ U(f) :=f� given by f�(g, g
′) :=

∫
H/N

f(gh(g′)−1)χ�(h)dḣ, g′, g ∈ G,
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respects the L2 norms since by [Lu3], for f ∈ S(G/N,χ�),∫
G/H×G/H

|f�(u, v)|2du̇dv̇ = ‖π�(f)‖2HS =

∫
n⊥

|f̂(�+ p)|2dp =

∫
G/N

|f(x)|2dẋ.

Hence the mapping U extends to an isometric intertwining operator for the rep-
resentations λ and π� × π−� of G × G, and therefore the representation λ is itself
irreducible (see [Lu3]).

Proposition 4.1. Let Ω be a flat G-orbit in g∗. Let (π�,H�) be the irreducible
unitary representation of G associated with Ω. Then the Fréchet space S(G/N,χp)
is a simple S(G×G)-module under left and right convolution.

Proof. Since the orbit Ω is flat, we have that

ker(π�) ∩ S(G) = {f ∈ S(G),

∫
N

f(xn)χ�(n)dn = 0, ∀x ∈ G}.

On the other hand, denoting by HS� the Hilbert space of the Hilbert-Schmidt
operators on H� , it follows from [Ho] that the map

S(G) → (HS�)
∞,

f �→ πl(f)

is surjective and the S(G×G)-module HS∞
� is simple. Hence the algebra S(G×G)

acting by left and right convolution on S(G)/(ker(π)l ∩ S(G)) gives us a simple
module which is equivalent to the module S(G/N,χ�). �

Remark 4.2. Let n ∈ N∗ and f1, · · · , fn, g1, · · · , gn ∈ S(G) such that the func-
tions Ψf1, · · · ,Ψfn ∈ S(G/N,χ�) are linearly independent. Then there exists F ∈
S(G×G) such that∫

N

gj(xn)χ�(n)dn=

∫
G×G

∫
N

F (u, v)fj(u
−1xvn)χ�(n)dndudv, x∈G, j = 1, · · · , n.

This follows immediately from the simplicity of the S(G×G)-module S(G/N,χ�)
and hence from the n-transitivity of the S(G×G)-module S(G/N,χ�).

Definition 4.3.

(1) Let us write for an F ∈ S(G × G) and a measurable bounded function h
on G:

F · h(g) := λ(F )(h)(g) =

∫
G×G

F (u, v)h(u−1gv)dudv.(4.7)

(2) We do the same for A ∈ U(g × g) and a smooth function ϕ on G. We let
A ·ϕ denote the differential of the natural action of G×G on the functions
on G.

(3) Using the cross section introduced in section 2, we introduce the coordinates
τ (g) and η(g) on G:

g = τ (g)η(g),

where τ (g) denotes the S-component of g and η(g) its N -component.
(4) For a polynomial function p : N → C, p ∈ Pω|N , let

Ψp(f)(x) :=

∫
N

p(n)f(xn)χ�(n)dn, f ∈ S(G), x ∈ G.
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Again take a Jordan-Hölder basis (pj)
d
j=0 of Pω|N (N) for the G × N -action. Also

let

W0 = C ⊂ W1 ⊂ · · · ⊂ Wd = Pω|N (N)

be the corresponding composition series of the G×N -module Pω|N (N). For one of
the basis polynomials pj , j = 0, · · · , d, we simply write

Ψj instead of Ψpj
.

If we express the left translation of p in the basis (pj)j , i.e. if we put

l(m)pj(n) =
d∑

i=0

li,j(m)pi(n), n,m ∈ N, j = 1, · · · , d,

and similarly, for g ∈ G let

σ(g)pj =

j∑
i=0

σi,j(g)pi, j = 1, · · · , d,

then we obtain the relations

Ψj(f)(xm) =

∫
N

pj(n)f(xmn)χ�(n)dn(4.8)

=

∫
N

pj(m
−1n)f(xn)χ�(m

−1n)dn

=

j∑
i=0

li,j(m)χ�(m
−1)Ψi(f)(x).

In the following proposition, we use the notation IV introduced in Theorem 3.2
and IS introduced in Definition 3.9.

Proposition 4.4. Let j ∈ {1, · · · , d} and f ∈ ISWj−1
. Then for any F ∈ S(G×G),

we have that

F ·Ψj(f) = Ψj(F · f), Ψi(F · f) = 0, i = 1, · · · , j − 1.

In particular, the mapping Ψj : ISWj−1
→ S(G/N,χ�) is an S(G × G)-equivariant

surjection with kernel ISWj
and the S(G×G)-module ISWj−1

/ISWj
is equivalent to the

module S(G/N,χ�) and is therefore simple.
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Proof. Now take f ∈ ker(π�) ∩ S(G). Then:

Ψj(F · f)(x) =
∫
N

pj(n)F · f(xn)χ�(n)dn

(4.9)

=

∫
N

pj(n)

∫
G×G

F (u, v)f(u−1xnv)dudvχ�(n)dn

=

∫
G×G

(∫
N

pj(vnv
−1)f(u−1xvn)χ�(n)dn

)
F (u, v)dudv

=

j∑
i=1

∫
G×G

(∫
N

pi(n)f(u
−1xvn)χ�(n)dn

)
σi,j(v

−1)F (u, v)dudv

=

j∑
i=1

Fi,j ·Ψi(f)(x), x ∈ G,

where Fi,j(u, v)=σi,j(v
−1)F (u, v), u, v∈G, i≤j. Now suppose that f ∈ISWj−1

\ISWj
.

Then we have that

0 =

∫
N

pi(n)f(u
−1xvn)χ�(n)dn, i = 1, · · · , j − 1, x, u, v ∈ G,

and therefore, for F ∈ S(G×G),

Ψj(f) ∈ S(G/N,χ�) and F · (Ψjf) = Ψj(F · f),
as σj,j ≡ 1. �

5. The structure of primary ideals with a flat hull

Let I ∈ Iπ� such that W (I) � V (I). Let us recall that the notation W (I) and
V (I) were introduced in the relation of Remark 3.3 and that the strict inclusion
means that I is not L∞(G/N)-invariant, by Proposition 2.3. Choose a composition
series W0 = W (I) ⊂ · · · ⊂ Wr = V (I) for the action of G×N on Pω|N (N), going

through W (I) and V (I). Since the action of G × N is unipotent on Pω|N (N) it

follows that dim(Wj/Wj−1) = 1 for every j. Furthermore,

IV (I) = IWr
� IWr−1

� · · · � IW0
= IW (I).

Choose a basis B := {p1, · · · , pr} of V (I) modulo W (I), which is adapted to the

sequence (Wj)
r
j=1, i.e., Wj =

∑j
i=1 Rpi + W (I), j = 1, · · · , r. Also let (qj)

s
j=1 be

a Jordan-Hölder basis of the G × N -module W (I) and similarly a Jordan-Hölder
basis (rj)

t
j=1 of the G×N -module Pω|N (N)/V (I).

Definition 5.1. Define for a function h ∈ S(S) and a function δ ∈ S(N) the
Schwartz function fh,δ = h⊗ δ on G by

fh,δ(x) = h⊗ δ(x) := h(τ (x))δ(η(x)), x ∈ G.

Proposition 5.2. Let W ⊂ V be two G × N-invariant subspaces in Pω|N (N).

Choose for every j = 1, · · · , r a function δj ∈ S(N) such that∫
N

pi(n)δj(n)χ�(n)dn = δij , i, j = 1, · · · , r,∫
N

p(n)δj(n)χ�(n)dn = 0, p ∈ W,
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where {p1, · · · , pr} is a Jordan-Hölder basis of V mod W for the action of G×N .
Then for every j = 1, · · · , r we have that

I∞W =

r∑
j=1

S(S)⊗ δj + I∞V .

Let f ∈ I∞W and as before let

Ψj(f)(x) =

∫
N

f(xn)pj(n)χ�(n)dn, x ∈ G, j = 1, · · · , r.

Define for j = 1, · · · , r the Schwartz function fj(x) := Ψj(f)(τ (x))δj(η(x)), x ∈ G.
Then

f =

r∑
j=1

fj mod IV .

Proof. The ideal IV := eG(JV ) (see Theorem 3.2) is determined by the condition

IV = {f ∈ L1
ω(G),

∫
S

∫
N

ϕ(s)p(n)χ�(n)f(sn)dnds = 0, ϕ ∈ Cc(G/N), p ∈ V }.

Hence

ISV = IV ∩ S(G) = {f ∈ S(G) ∩ IW ; Ψj(f) = 0, j = 1, · · · , r}.
Moreover, by Theorem 3.11, I∞W is contained in S(G) modulo j(Ω). Hence we
may use Schwartz functions in the following arguments. By the definition of the
functions fj , we have for k = 1, · · · , r that∫

N

(f(xn)−
r∑

j=1

fj(xn))pk(n)χ�(n)dn

=

∫
N

f(xn)pk(n)χl(n)dn−
r∑

j=1

Ψj(f)(τ (x))

∫
N

δj(η(x)n)pk(n)χ�(n)dn

= Ψk(f)(x)−
r∑

j=1

Ψj(f)(τ (x))χ�(η(x)
−1)

∫
N

δj(n)pk(η(x)
−1n)χ�(n)dn

= Ψk(f)(x)−
r∑

j=1

Ψj(f)(τ (x))χ�(η(x)
−1)

∫
N

δj(n)(
r∑

i=1

li,k(η(x))pi(n))χ�(n)dn

= Ψk(f)(x)−
r∑

j=1

lj,k(η(x))Ψj(f)(τ (x))χl(η(x)
−1)

= Ψk(f)(x)−
∫
N

f(τ (x)η(x)η(x)−1n)pk(η(x)
−1n)χl(η(x)

−1n)dn

= Ψk(f)(x)−Ψk(f)(x)

= 0.

Hence Ψk(f −
∑

j fj) = 0 and therefore f =
∑

j fj modulo IV , as f −
∑

j fj ∈
S(G) ∩ IW . �

Remark 5.3. It is easy to see that there exists for j = 1, · · · , r an element f ∈
I ∩ S(G) such that the function Ψjf is linearly independent from the functions
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Ψif, i = j − 1, · · · , 1. Indeed consider for p ∈ V (I) the linear functional p ∈ (I ∩
S(G))′ defined by

〈p, f〉 :=
∫
N

f(n)p(n)χ�(n)dn.

Then the kernel of the functional pj does not contain the intersection of the kernels

of the functionals pi, j = 1, · · · , j − 1, since otherwise, pj =
∑1

i=j−1 αipi for some

coefficients αi ∈ C. But this would imply that pj −
∑1

i=j−1 αjpi ∈ W (I), i.e.

pj ∈ Wj−1. We now take a function f ∈ I ∩ S(G) such that 〈pi, f〉 = 0 for all
i = 1, · · · , j − 1 and 〈pj , f〉 = 1. Then

Ψjf(e) = 1, Ψif(e) = 0, i = 1, · · · , j − 1,

and so Ψjf is not contained in span{Ψ1f, · · · ,Ψj−1f}.

Definition 5.4. (1) For a function f ∈ S(G), let

〈f〉 := {F · f, F ∈ S(G×G)}.
(2) Let I be a closed two-sided ideal in Iπ� such that V (I) �= W (I), and let

C := {W (I) = W0 ⊂ W1 ⊂ · · · ⊂ Wr = V (I)}
be a composition series of V (I)/W (I) for the G×N -action. We define the
index set

ιIC = ιI := {1 ≤ i ≤ r; I ∩ IWi
� I ∩ IWi−1

}
= {j1 < · · · < jm}.

(3) We denote by I∞ the space of the smooth vectors (for the action of G×G)
of I ⊂ L1(G,ω).

Theorem 5.5. Let Ω = Ad∗(G)� = �+ g(�)⊥ be a flat orbit in the dual space g∗ of
the Lie algebra of the simply connected connected nilpotent Lie group G. Let ω be
a continuous symmetric polynomial weight on G. Then for every two-sided closed
ideal I in the Banach algebra L1

ω(G) whose hull is the set {Ω}, we have that I is
L∞(G/N)-invariant if and only if V (I) = W (I). If V (I) � W (I), then

IV (I) � I � IW (I).

Furthermore, for every composition series

C = {W (I) = W0 ⊂ W1 ⊂ · · · ⊂ Wr = V (I)}
of the G × N-module V (I)/W (I), the index set ιIC is contained in {1, · · · , r − 1}
and contains the number 1.

If we choose for any i ∈ ιI an element fi ∈ IS ∩ IWi−1
\ IWi

, then we have that

I∞ =
∑
i∈ιI

〈fi〉+ IV (I)
∞.

In particular, if for two ideals I1, I2 ∈ Iπ� such that V (I1) = V (I2) and W (I1) =
W (I2) the index sets ιI1 = ιI2 coincide and if I1 ⊂ I2, then I1 = I2.

Proof. We have that

IV (I) = IWr
⊂ I ∩ IWr−1

⊂ · · · ⊂ I ∩ IW1
⊂ I ∩ IW0

= I ⊂ IW (I).
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Also choose for every i ∈ ιI an element fi ∈ IS ∩ IWi−1
\ IWi

. Hence by Proposition
4.4, we have that

{F · fi, F ∈ S(G×G)}+ (IWi
)S = (IWi−1

)S , i ∈ ιI .

Hence for every g ∈ IS , we have an Fj1 ∈ S(G×G) such that g−Fj1 ·fj1 ∈ I∩IWj1
.

Continuing in this way we find Fi ∈ S(G×G), i ∈ ιI , such that

g −
∑
i∈ιI

Fi · fi ∈ (IWr
)S = (IV (I))

S .

Therefore

IS = I ∩ S(G) =
∑
i∈ιI

〈fi〉+ (IV (I))
S.

Now recall that every C∞-vector f ∈ I is contained in IS modulo j(π�)
∞. Hence

I∞ =
∑
i∈ιI

〈fi〉+ IV (I)
∞.

Let us show that the index set ιIC is contained in {1, · · · , r − 1}.
According to Remark 3.7, we have for every ϕ ∈ I⊥ ∩ C∞

ω (G) the expression

ϕ(sn) =
r∑

j=1

ϕj(s)pj(n)χ�(n), s ∈ S, n ∈ N, modulo W (I).

Now if jm = r, then for g ∈ IWr−1
we have our Fg ∈ S(G×G) and our fm = fjm ∈

I ∩ ISWr−1
\ ISWr

, such that g = Fg · fjm mod IWr
= IV (I). Hence, by Proposition

4.4, Ψr(g) = Fg ·Ψr(fm), Ψj(g) = 0 for j < r, and therefore for ϕ ∈ I⊥ ∩ C∞
ω (G),

〈ϕ, g〉 =

∫
S

∫
N

ϕ(sn)g(sn)dnds

=

∫
S

r∑
j=1

ϕj(s)Ψj(g)(s)ds

=

∫
S

ϕr(s)Ψr(g)(s)ds

=

∫
S

ϕr(s)Fg ·Ψr(fm)(s)ds

=

∫
S

ϕr(s)Ψr(Fg · fm)(s)ds (by Proposition 4.4)

=

∫
S

r∑
j=1

ϕj(s)Ψj(Fg · fm)(s)ds

= 〈ϕ, F · fm〉
= 0.

Hence IWr−1
⊂ I and IV (I) = IWr

� IWr−1
⊂ I contradicts the fact that IV (I) is

the largest L∞(G/N)-invariant ideal with hull Ω contained in I. This contradiction
tells us that jm < r.

Now if j1 �= 1, then I = I ∩ IW (I) = I ∩ IW1
, and therefore I ⊂ IW1

. But then
W1 ⊂ W (I), a contradiction. �
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6. The case of a central stabilizer

Lemma 6.1. Let Ω be a flat G-orbit. Let V be a G × N invariant subspace of
Pω|N (N). Let I be a closed two-sided ideal in L1

ω(G) such that the hull of I is the

set Ω and such that V (I) ⊂ V . If IV � I then there exists a function f ∈ S(G)∩ I
such that f �∈ IV , but such that (u+ i�(u)) ∗ f ∈ IV for every u ∈ n. In particular,
for any p ∈ V , we have that∫

N

p(mn)f(gnv)χ�(n)dn =

∫
N

p(n)f(gnv)χ�(n)dn, for every g, v ∈ G,m ∈ N.

Proof. Take a Jordan-Hölder sequence

W (I) = V0 ⊂ V1 ⊂ · · · ⊂ Vi = V (I) ⊂ · · · ⊂ Vr = V

for the action of G×N on Pω|N (N). As IV � I, W (I) � V , and hence W (I) � V1.

Let f ∈ S(G) ∩ I and p ∈ V1 \W (I). For u ∈ n we see that∫
N

p(n)(u+ i�(u)) ∗ f(gnv)χ�(n)dn = −
∫
N

(Ad(g−1)(u) ∗ p)(n)f(gnv)χ�(n)dn

= 0,

since Ad(g−1)(u) ∗ p ∈ W (I), because u acts as a nilpotent endomorphism on
Pω|N (N). Continuing in this way, we see that we can find for f ∈ IS \ IV an

element A ∈ U(n) such that A ∗ f �∈ IV , but such that (u+ i�(u)) ∗ A ∗ f ∈ IV for
every u ∈ n. Hence replacing f with A ∗ f , we can in this way produce an element
f ∈ S(G) ∩ I, which is not contained in IV , but such that (u+ i�(u)) ∗ f ∈ IV for
every u ∈ n. Hence for any p ∈ V , for any g, v ∈ G, u ∈ n,∫

N

u ∗ p(n)f(gnv)χ�(n)dn

=
d

dt

∫
N

p(exp(−tu)n)f(gnv)χl(n)dn|t=0

=

∫
N

p(n)
(
−Ad(g)(u)

)
∗ f(gnv)χl(n)dn− il(u)

∫
N

p(n)f(gnv)χl(n)dn

= −
∫
N

p(n)
(
Ad(g)(u) + il(Ad(g)(u))

)
∗ f(gnv)χl(n)dn

= 0,

as l(Ad(g)(u)) = l(u). Now for m ∈ N, p ∈ V (I), we have that p(mn) = p(n) +
qm(n) for some polynomial qm, which is obtained from p via some derivatives by
elements of n. It then follows that∫

N

p(mn)f(gnv)χ�(n)dn =

∫
N

(p(n) + qm(n))f(gnv)χ�(n)dn

=

∫
N

p(n)f(gnv)χ�(n)dn, g, v ∈ G.

�

Proposition 6.2. Let Ω = Ad∗(G)� = � + g(�)⊥ be a flat orbit in the dual space
g∗ of the Lie algebra of the simply connected connected nilpotent Lie group G. Let
ω be a continuous symmetric polynomial weight on G. Let W ⊂ V be two G×N-
invariant subspaces in Pω|N (N). Let IV ⊂ I ⊂ IW be a two-sided closed ideal I in
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the Banach algebra L1
ω(G). If the G-action on V/W is trivial, then the ideal I is

L∞(G/N)-invariant.

Proof. Since IV ⊂ I ⊂ IW , we have that W ⊂ W (I) ⊂ V (I) ⊂ V , and hence the G-
action on V (I)/W (I) is also trivial. We can therefore assume that V = V (I),W =
W (I). If I = IV (I), then I is L∞(G/N)-invariant. So let us assume that IV (I) � I.
Then W (I) � V (I) by the relation in Remark 3.3. Also let

(I0)
∞ = {f ∈ I∞, (u+ il(u)) ∗ f ∈ IV (I), ∀u ∈ g}

and let I0 be the closure of (I0)
∞ in L1

ω(G). Then I0 is a closed two-sided ideal
contained in I and containing IV (I) properly by Lemma 6.1. The inclusions IV (I) ⊂
I0 ⊂ I imply that V (I) ⊂ V (I0) ⊂ V (IV (I)) = V (I), i.e. V (I) = V (I0). Moreover,
I0 ⊂ I shows that W (I) ⊂ W (I0) ⊂ V (I0) = V (I).

If W (I0) = V (I0), then I0 is L∞(G/N)-invariant and I0 = IV (I0) = IV (I), a
contradiction.

So let us now assume that W (I0) � V (I0). Let {p1, · · · , pr} be a basis of V (I0)
modulo W (I0). Because of the assumption on the G-action and because of the
inclusions W = W (I) ⊂ W (I0) ⊂ V (I0) = V (I) = V , the G-action on V (I0)/W (I0)
is also trivial. Moreover, let us notice that for any p ∈ V (I0) = V (I),

p(munu−1) = p(n) + qm,u(n), n,m ∈ N, u ∈ G,(6.10)

where qm,u is an element of W (I0). In fact, conjugation is taken care of by the
triviality of the G-action. Translation by elements of N is taken care of by Lemma
6.1. This means that {p1, · · · , pr} is a Jordan-Hölder basis for the G × N -action,
for any order of the basis vectors.

As before, let us use the notation

Ψj(f)(s) :=

∫
N

f(sn)pj(n)χ�(n)dn, s ∈ S, f ∈ IW (I0).

Using the fact that the G-action on V (I0)/W (I0) is trivial, an easy computation
shows that

F ·Ψj(f) = Ψj(F · f), f ∈ I0, j ∈ {1, · · · , r}, F ∈ S(G×G).

Let us now show that I0 = IV (I). By Remark 5.3 and by the fact that the order
of the basis vectors p1, . . . , pr does not matter, there exists for every j ∈ {1, · · · , r}
an element fj ∈ I0, for which the function Ψj(fj) is linearly independent from the
family {Ψi(fj), i ∈ {1, · · · , r, i �= j}}. Finally, the fact that F · Ψj(f) = Ψj(F · f)
for all f ∈ I0, F ∈ S(G×G), j ∈ {1, · · · , r}, and Remark 4.2 allow us to construct,
for every j ∈ {1, · · · , r}, a function kj ∈ IS0 such that Ψi(kj) = 0 for i �= j and
Ψj(kj) �= 0. In fact, as the Ψk(fj)’s are independent, there exists by Remark 4.2

an F̃j ∈ S(G×G) such that

Ψk(F̃j · fj) = F̃j ·Ψk(fj) = 0 if j �= k,

Ψj(F̃j · fj) = F̃j ·Ψj(fj) �= 0.

Put kj = F̃j · fj . Now if h ∈ I∞W (I0)
, then there exists for each j ∈ {1, · · · , r} an

Fj ∈ S(G × G) such that h =
∑r

j=1 Fj · kj modulo IV (I0) by Theorem 5.5. But
this means that h ∈ I0, since IV (I0) ⊂ I0 and since the kj ’s are all contained in I0.
So IW (I0) ⊂ I0 and hence IV (I0) = I0 = IW (I0), which means that I0 is L∞(G/N)-
invariant. But then IV (I) = IV (I0) = I0, a contradiction. This contradiction shows
that IV (I) = I, and hence that I is L∞(G/N)-invariant. �
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Theorem 6.3. Let Ω = Ad∗(G)� = � + g(�)⊥ be a flat orbit in the dual space g∗

of the Lie algebra of the simply connected connected nilpotent Lie group G such
that the stabilizer g(�) is the centre of g. Let ω be a continuous symmetric polyno-
mial weight on G. Then for every two-sided closed ideal I in the Banach algebra
L1
ω(G) whose hull is the set {Ω}, we have that I is L∞(G/N)-invariant, and so

I = eG(I|N ). In particular, the mapping: V → eG(JV ) defines an inclusion revers-

ing bijection between the space PIω|N (N)G of the G-invariant and N-translation

invariant subspaces V of Pω|N (N) and the space IΩ of two-sided closed closed ideals
I with hull Ω.

Proof. We have that IV (I) ⊂ I ⊂ IW (I) and that V (I)/W (I) is a trivial G-module
since n is central. Hence it suffices to apply Proposition 6.2. �

7. An algebraic view to some of the previous results

In this section we consider in particular (the ideal theory in) the topological
algebra S(G)/S(G) ∩ j(πl), which is dense in L1

ω(G)/j(πl). It turns out that
S(G)/S(G) ∩ j(πl) is a Noetherian S(G×G)-module, for the action of S(G×G);
see the beginning of section 4. An important tool will be the existence of an idem-
potent q ∈ S(G)/S(G) ∩ j(πl) of finite rank, i.e., q ∗ q = q, and q ∗ S(G)/S(G) ∩
j(πl) ∗ q is finite-dimensional. This latter space generates the S(G × G)-module
S(G)/S(G) ∩ j(πl). Actually, q ∗ S(G)/S(G) ∩ j(πl) ∗ q is, as a space, isomor-
phic to S(N)/S(N) ∩ j(χp) ∼= L1

ω|N (N)/j(χp). The two-sided closed ideals in

S(G)/S(G) ∩ j(πl) are in one-to-one correspondence to the two-sided ideals in the
algebra q ∗ S(G)/S(G) ∩ j(πl) ∗ q. Finally, the obtained insights will be applied to
the ideal theory of L1

ω(G)/j(πl).
We start with an elementary lemma on finite-dimensional nilpotent associative

algebras.

Lemma 7.1. Let R be a d-dimensional associative algebra over the complex number
field (or any other field) with unit η. Let rd = R ⊃ rd−1 ⊃ · · · ⊃ r1 ⊃ r0 = {0} be a
sequence of two-sided ideals with dim(rj) = j and rd−1rj ⊂ rj−1 and rjrd−1 ⊂ rj−1

for j = 1, · · · , d − 1. Then each proper two-sided ideal in R is contained in rd−1,
i.e., rd−1 is the unique maximal ideal. Moreover, R = Cη ⊕ rd−1.

Remark 7.2. If m := rd−1, then the assumptions tell that md = 0. In turn, if there
is a one-codimensional ideal with this property in some d-dimensional algebra with
unit, then there always exists a Jordan-Hölder sequence with the above properties:
Refine, if necessary, the sequence m ⊃ m2 ⊃ m3 ⊃ · · · . If d ≥ 2, then besides the
unique maximal ideal m there is a canonical “relatively small” ideal a := {r ∈ R

∣∣
mr = rm = 0} which has the property that a ∩ b �= 0 for any non-zero two-sided b

in R.

Proof. (Induction on d) The case d = 1 being trivial, assume that d > 1. Let
μ : R → R/r1 be the quotient map, and let J be a proper two-sided ideal in R.
If μ(J) � R/r1 we are done by induction, so assume that μ(J) = R/r1. Then
R = J ⊕ r1; in particular, there exists h ∈ J and r ∈ r1 such that η = h + r. As
r2 = 0, we have hr = ηr = r, and likewise rh = r. The equation h+r = η = η2 leads
to h2 = h, 2r = r; hence h = η ∈ J , a contradiction. The equation R = Cη ⊕ rd−1

is obvious. �
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Proof of Remark 7.2. If b �= 0, then choose l ≥ 0 such that mlb �= 0, but ml+1b = 0
(if l = 0, then ml is meant to be R). Similarly choose k ≥ 0 such that mlbmk �= 0,
but mlbmk+1 = 0. Then a ∩ b ⊃ mlbmk �= 0. �

As in previous sections let N = G(l), l ∈ g∗, be a member of the flat orbit Ω.
As we remarked earlier the minimal ideal j(χp) ⊂ L1

ω|N (N) is the annihilator for

the pairing

〈f,Φ〉 =
∫
N

f(x)χp(x)Φ(x)dx,

f ∈ L1
ω|N (N),Φ ∈ Pω|N (N). If we denote by A the algebra L1

ω|N (N)/j(χp), the

above pairing induces a non-degenerate duality A × Pω|N (N) → C between the
d-dimensional spaces A and Pω|N (N). The algebra A has a unique element η with
the property 〈η,Φ〉 = Φ(e) for all Φ ∈ Pω|N (N); this element η is the unit in A.
Also the other properties of Lemma 7.1 are satisfied. There is a sequence of ideals
ad = A ⊃ ad−1 ⊃ · · · ⊃ a1 ⊃ a0 = {0}, where ad−1 = ker(χp)/j(χp), such that
dim(aj) = j and ad−1aj ⊂ aj−1 and ajad−1 ⊂ aj−1 for j = 1, · · · , d − 1. We shall
often use m for the unique maximal ideal ad−1.

The right and left translations on L1
ω|N (N) with elements of N induce actions

ρ and λ, resp., of N on A, and the two-sided ideals in A are just the λ-ρ-invariant
subspaces. The dual action λ∗ of N on Pω|N (N) is given by (λ∗(n)Φ)(x) =

χp(n)
−1Φ(n−1x), n, x ∈ N , Φ ∈ Pω|N (N), i.e., we have the relation

〈λ(n)f,Φ〉 = 〈f, λ∗(n−1)Φ〉.
Likewise

(ρ∗(n)Φ)(x) = χp(n)Φ(xn).

Taking annihilators with respect to the pairing A × Pω|N (N) → C, the (proper)
two-sided ideals in A correspond, in an antitone manner, to the (non-zero) N -
biinvariant subspaces of Pω|N (N). For example, m = ker(χp)/j(χp) corresponds to
the space of constant functions.

Conjugation by elements in G induces an action κ of G on A. Here the dual
action κ∗ on Pω|N (N) is again conjugation, i.e., (κ∗(a)Φ)(x) = Φ(a−1xa), a ∈ G,
x ∈ N , Φ ∈ Pω|N (N); observe that χp is invariant under conjugation. Hence
the G-invariant ideals in A correspond to N -bi-invariant, G-invariant subspaces of
Pω|N (N).

Consider two-sided ideals a and b inA such that b ⊂ a ⊂ m and dim(a/b) = 1 (for
instance two consecutive members of the above Jordan-Hölder sequence). Then a/b
is an A- (or L1

ω|N (N)-)bimodule. As the maximal ideal m (or ker(χp)) annihilates

a/b, we find that

uf ≡ fu ≡ χp(f)u mod b

for u ∈ a, f ∈ A (or f ∈ L1
ω|N (N)). From this we conclude that the action of x ∈ N

on a/b, induced from λ, is given by multiplication with χp(x). If, in addition, a
and b are G-invariant (under the conjugation κ), then the induced G-action on a/b
is trivial.

Moreover, there exist Jordan-Hölder sequences ad, · · · , a1, a0 in A with the ad-
ditional property that the aj ’s are G-invariant. If necessary one can realize (addi-
tionally) that the aj ’s are invariant under the involution on A, induced from the
involution on L1

ω(G).
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Convention 7.3. In the sequel, ad ⊃ ad−1 = m ⊃ · · · ⊃ a1 ⊃ a0 will always denote
a Jordan-Hölder sequence with all these properties.

The dense embedding S(N) → L1
ω|N (N) induces a map from S(N) onto the

finite-dimensional space A = L1
ω|N (N)/j(χp). Hence A is canonically isomorphic

to the algebra S(N)/S(N) ∩ j(χp).
The closed two-sided ideals in L1

ω(G) containing the minimal ideal j(πl), which
is extended from j(χp) ⊂ L1

ω|N (N), correspond to the closed two-sided ideals in

the quotient algebra L1
ω(G)/j(πl). The embedding S(G) → L1

ω(G) induces a
dense embedding S(G)/S(G) ∩ j(πl) → L1

ω(G)/j(πl). To describe the quotient
S(G)/S(G) ∩ j(πl) it is convenient to view S(G) as a twisted covariance alge-
bra. For the following see also [Lue-Po], where the case of L1-algebras is treated
in a similar fashion. Given the normal subgroup N of G define the twist l of
N (l = left translation) on S(N) by (l(n)f)(x) = f(n−1x), and the action c
of G on S(N) by (caf)(x) = f(a−1xa). Then one can form the twisted covari-
ance algebra S(G/N,S(N), c, l), or S(G/N, l) for short, which consists of functions
ϕ : G → S(N) such that

ϕ(ax) = l(x)−1ϕ(a), a ∈ G, x ∈ N,

and that ϕ is a Schwartz function on an appropriate cross section S of G → G/N .
The multiplication is given by

(ϕ ∗ ψ)(a) =
∫

G/N

cb(ϕ(ab
−1)) ∗ ψ(b)d

�
b,

where the “∗” on the right hand side means convolution in S(N). Observe that the
integrand, a function of b ∈ G, is in fact constant on N -cosets. The involution is
given by

ϕ∗(a) = ca−1(ϕ(a−1)∗).

So far, this is just a complicated way to write the algebra S(G). Actually, if for

f ∈ S(G) we define f̃ : G → S(N) by f̃(a)(x) = f(ax), then the map f �→ f̃ yields
an isomorphism from S(G) onto S(G/N,S(N), c, l). The ideal j(πl)∩S(G) consists

exactly of those f ∈ S(G) such that f̃(x) ∈ j(χp) ∩ S(N) for all x ∈ G, i.e., to
the subspace S(G/N, j(χp) ∩ S(N), c, l) of S(G/N,S(N), c, l). Hence the quotient
S(G)/S(G) ∩ j(πl) – and this is the advantage of this approach – can be realized
as the twisted covariance algebra

S(G/N,A, c, τ ), or simply S(G/N, τ ).

Here A = S(N)/S(N) ∩ j(χp), the action c of G is the action induced by c on
S(N), while the twist τ on A is induced by left translation with elements in N . The
multiplication and the involution on S(G/N, τ ) are given by the above formulae. As
a Fréchet space, S(G/N, τ ) can be identified with the tensor product S(G/N)⊗A.

The product G×G acts on S(G) via translations, (β(a, b)f)(x) = f(a−1xb) for
a, b, x ∈ G, f ∈ S(G). Under the identification with S(G/N,S(N), c, l), this action
transforms into

(β(a, b)ϕ)(x) = cb(ϕ(a
−1xb)).

If I is any Fréchet closed two-sided G-invariant ideal in S(N), for instance I =
S(N)∩j(χp), then this action yields an action of G×G, denoted by the same letter
β, on the quotient S(G/N,S(N)/I, c, τ ) which is given by the above formula, where,
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of course, the above “cb” has to be replaced by the appropriate cb, i.e., the induced
action of G of S(N)/I. All these actions of G × G integrate to representations of
the Schwartz algebra S(G×G) on G×G, also denoted by β.

The easiest way to construct ideals in S(G/N, τ ) is to take a G-invariant ideal a
in A, i.e. a = I/S(N)∩j(χp) for some G-invariant two-sided ideal I in S(N), closed
and of finite codimension, and to form the extended ideal, which in the present ap-
proach means to form the collection S(G/N, a, c, τ ) of all f ∈ S(G/N,A, c, τ ) such
that f(x) ∈ a for all x ∈ G. If b is another G-invariant ideal in A such that b ⊂ a ⊂
m and dim(a/b) = 1, then, as we remarked earlier, the action c of G on a/b is trivial
and the twist τ of N on a/b is multiplication by χp. Identifying a/b with C we find
S(G/N, a, c, τ )/S(G/N, b, c, τ ) ∼= S(G/N, a/b, c, τ ) ∼= S(G/N,χp), where (cf. sec-
tion 4) S(G/N,χp) consists of all functions f : G → C with f(ax) = χp(x)

−1f(a),
a ∈ G, x ∈ N , and f is a “Schwartz function modulo N”. The space S(G/N,χp)
is also an algebra, but the above identification is not an isomorphism of algebras:
The multiplication on S(G/N, a/b, c, τ ) is identically zero (as the multiplication on
a/b is trivial). However, if we replace a by A and b by m, then it is still true
that S(G/N,A/m, c, τ ) is isomorphic to S(G/N,χp), and this is an isomorphism of
algebras. As the actions of m on a/b are trivial (from both sides), we observe the
following remark.

Remark 7.4. The actions of S(G/N,A, c, τ ) on S(G/N, a/b, c, τ ) reduce to actions of
the quotient S(G/N,A/m, c, τ ). Identifying, as above, the spaces S(G/N, a/b, c, τ )
and S(G/N,A/m, c, τ ) with S(G/N,χp), these actions yield the multiplication on
the algebra S(G/N,χp).

A (Fréchet-)closed subspace of S(G/N,A, c, τ ) is a two-sided ideal if and only if
it is invariant under β(G×G) or under β(S(G×G)). It turns out that in fact any
β(S(G×G))-invariant subspace of S(G/N,A, c, τ ) is automatically closed.

Proposition 7.5. Each S(G×G)-submodule U of S(G/N, τ ) is closed.

Proof. Recall, from Convention 7.3, that 0 = a0 ⊂ a1 ⊂ · · · ⊂ m = ad−1 ⊂ ad = A
is a Jordan-Hölder sequence consisting of (self-adjoint) G-invariant two-sided ideals
in A. We proceed by finite induction on k = dim(ak). Suppose first that U is
contained in S(G/N, a1, c, τ ), which is isomorphic to S(G/N,χp). As c is trivial
the action of G is given just by ordinary translations, (β(a, b)f)(x) = f(a−1xb),
and by Proposition 4.1 S(G/N,χp) is a simple S(G×G)-module. Therefore, U = 0
or U = S(G/N,χp). Now suppose that U is contained in S(G/N, ak+1, c, τ ), but
not in S(G/N, ak, c, τ ). By induction, we know that U ∩ S(G/N, ak, c, τ ) is closed.
Consider the exact sequence

0 → S(G/N, ak, c, τ ) → S(G/N, ak+1, c, τ )
ν→S(G/N, ak+1/ak, c, τ ) → 0.

The image ν(U) is a non-zero S(G × G)-submodule of S(G/N, ak+1/ak, c, τ ) ∼=
S(G/N,χp). Hence ν maps U onto the latter space.

Choose any u0 ∈ U such that ν(u0) �= 0. This element ν(u0) is used as a
“generator” of S(G/N, ak+1/ak, c, τ ), i.e., the map

S(G×G) → S(G/N, ak+1/ak, c, τ );

ϕ �→ β(ϕ)(ν(u0)) is surjective (and open). Let (uj) be any sequence in U with
limit f in S(G/N, ak+1, c, τ ). We write ν(uj) = β(ϕj)(ν(u0)), ν(f) = β(ϕ)(ν(u0))
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with ϕj , ϕ ∈ S(G×G), and we may assume that (ϕj) converges to ϕ. As ν(uj) =
ν(β(ϕj)u0) we see that uj −β(ϕj)u0 ∈ U ∩S(G/N, ak, c, τ ). Therefore, the limit of
this sequence, namely f − β(ϕ)u0, is in U , which shows f ∈ U . �

Among others we will show later that each S(G × G)-submodule of S(G/N, τ )
is finitely generated (with at most d = dim(A) generators). To this end, we use
idempotents in the algebra S(G/N, τ ) whose existence is established first.

Lemma 7.6. Let q be a projection of rank 1 in the algebra S(G/N,χp), i.e., q
∗ = q,

q ∗ q = q, q ∗ S(G/N,χp) ∗ q = Cq �= 0. There exists a q ∈ S(G/N, τ ) such that
q∗ = q, q ∗ q = q, μ(q) = q, where μ denotes the canonical map

S(G/N,A, c, τ )
μ→S(G/N,S(N)/ker(χp)) = S(G/N,A/m, c, τ ) ∼= S(G/N,χp).

Proof. First we note that there are plenty of such q’s. By [Ho], to each smooth
vector ξ �= 0 for the representation πl there exists f = f∗ ∈ S(G) such that
πl(f) is the orthogonal projection onto Cξ. Let q ∈ S(G/N,χp) be the element
corresponding to πl(f) under the canonical identification S(G/N,χp) ∼= πl(S(G)).

Given q choose any h = h∗ in S(G/N, τ ), which is mapped onto q, for instance
the image of the above f under the canonical surjection S(G) → S(G/N, τ ). Since
h(1− h) ∈ ker(μ), ker(μ) ∼= S(G)∩ ker(πl)/S(G)∩ j(πl), and (ker(πl))

d ⊂ j(πl) by
Remark 3.5, it follows that 0 = (h(1− h))d = hd(1− h)d.

The polynomials td and (1 − t)d are relatively prime in Q[t]. Hence there exist
Φ,Ψ ∈ Q[t] with 1 = tdΦ(t) + (1 − t)dΨ(t). Actually, a possible pair Φ, Ψ can be
constructed explicitly: From

1 = (t+ (1− t))2d−1

=

2d−1∑
k=d

(
2d− 1

k

)
tk(1− t)2d−1−k +

d−1∑
k=0

(
2d− 1

k

)
tk(1− t)2d−1−k

= td
2d−1∑
k=d

(
2d− 1

k

)
tk−d(1− t)2d−1−k + (1− t)d

d−1∑
k=0

(
2d− 1

k

)
tk(1− t)d−1−k

one can read Φ and Ψ. In the quotient algebra Q[t]/td(1 − t)d the polynomials
tdΦ(t) and (1−tdΨ(t) yield idempotents ((tdΨ(t)))2−tdΦ(t) = tdΦ(t)(tdΨ(t)−1) =
−tdΦ(t)(1−t)dΨ(t) ≡ 0 mod td(1−t)d). As the homomorphism Q[t] � F �→ F (h) ∈
S(G/N, τ ) factors through Q[t]/td(1− t)d, the element q := hdΦ(h) of S(G/N, τ ) is
idempotent as well. Also the other two claimed properties of q are satisfied. Since
tdΦ(t) has real coefficients, q is selfadjoint. Finally, from 1 = tdΦ(t)+(1−t)dΨ(t) we
conclude Φ(1) = 1, i.e.,

∑
j≥0

ϕj = 1 if Φ(t) =
∑
j≥0

ϕjt
j . Hence μ(q) = μ(hdΦ(h)) =

qd
∑
j≥0

ϕjq
j = (

∑
j≥0

ϕj)q = q. �

An idempotent q as in the lemma is fixed for a while. We consider the evalua-
tion map Ev at the unit element in G for functions ϕ ∈ S(G/N,A, c, τ ), and for
subquotients S(G/N, ak+1/ak, c, τ ) as well.

Proposition 7.7. Ev : q ∗ S(G/N,A, c, τ ) ∗ q → A is a linear isomorphism; in
particular, dim(q ∗ S(G/N,A, c, τ ) ∗ q) = d.
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Proof. By induction we prove that Ev gives a linear isomorphism from
q ∗ S(G/N, ak, c, τ ) ∗ q onto ak. For k = 1 we have, as before, S(G/N, a1, c, τ ) ∼=
S(G/N,χp), and the action of S(G/N, τ ) leads (cf. Remark 7.4) to the action
of S(G/N,χp) from both sides. Hence we find that q ∗ S(G/N, a1, c, τ ) ∗ q can
be identified as q ∗ S(G/N,χp) ∗ q = Cq. It remains to observe that q(e) =∫
G/N

q(x)q(x−1)dx =
∫

G/N

q(x)q(x)d
�
x is different from zero.

For the induction step consider the commutative diagram

0 �� q � S(G/N, ak, c, τ) � q

Ev′

��

�� q � S(G/N, ak+1, c, τ) � q

Ev

��

�� q � S(G/N, ak+1/ak, c, τ) � q

Ev′′

��

�� 0

0 �� ak �� ak+1
�� ak+1/ak �� 0

with exact lines where Ev,Ev′, and Ev′′ denote the various evaluation maps at the
unit in G. The map Ev′ is a linear isomorphism by induction. As above, in the case
k = 1, one sees that Ev′′ is a linear isomorphism between these one-dimensional
spaces. Therefore, Ev has to be a linear isomorphism. �

Remark 7.8. For any k, j, 0 ≤ k < j ≤ d, one also has a linear isomorphism

R : aj/ak → q ∗ S(G/N, aj/ak, c, τ ) ∗ q

given by

aj/ak � u �→ fu, fu(x) =

∫
G/N

cy{q(xy) ∗ u} ∗ q(y−1)d
�
y .

The proof for this fact proceeds along the same lines as the previous one.
Next we consider the closed two-sided ideals in S(G/N,A, c, τ ). Recall that the

latter algebra is isomorphic to S(G)/S(G)∩j(πl) so that those ideals correspond to
the closed two-sided ideals of S(G) containing S(G) ∩ j(πl). For the special ideals
S(G/N, ak, c, τ ) we first observe the following

Lemma 7.9. For each k, 1 ≤ k ≤ d, S(G/N,A, c, τ ) ∗ (q ∗ S(G/N, ak, c, τ ) ∗ q) ∗
S(G/N,A, c, τ ) is total in S(G/N, τ ), i.e., the S(G×G)-module, for the action β
(see above), generated by q ∗ S(G/N, ak, c, τ ) ∗ q is equal to S(G/N, ak, c, τ ). In
particular q ∗ S(G/N,A, c, τ ) ∗ q generates the whole space S(G/N, τ ).

Proof. The easy proof (by induction) follows the usual lines and is omitted.

Theorem 7.10. Any S(G × G)-submodule J of S(G/N,A, c, τ ), i.e., any closed
two-sided ideal, is finitely generated. Actually, it is generated (in an algebraic sense)
by q ∗ J ∗ q, whose dimension doesn’t exceed d; cf. Proposition 7.7. The map
J �→ q ∗ J ∗ q is an inclusion preserving bijection from the set of closed two-sided
ideals in S(G/N, τ ) onto the set of two-sided ideals in the finite-dimensional algebra
q ∗ S(G/N,A, c, τ ) ∗ q.

Proof. Write S = S(G/N,A, c, τ ) for short. As S ∗ (q ∗ J ∗ q) ∗ S ⊃ (S ∗ (q ∗ S ∗
q) ∗ S) ∗ J ∗ (S ∗ (q ∗ S ∗ q) ∗ S), and S ∗ (q ∗ S ∗ q) ∗ S is total in S by the previous
lemma, we conclude that S ∗ (q ∗ J ∗ q) ∗ S is total in J . The rest of the theorem
follows more or less immediately. �
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Above, in Proposition 7.7 and Remark 7.8, we have seen two linear isomorphisms,
Ev and R, between q∗S(G/N,A, c, τ )∗q and A. In the case where J is an extended
ideal J = S(G/N, a, c, τ ) for some two-sided G-invariant ideal a in A, it is natural
to ask how R and Ev relate q ∗ J ∗ q to a. One obtains the expected answer.

Remark 7.11. One has R(a) = q ∗ J ∗ q and Ev(q ∗ J ∗ q) = a.

Proof. Clearly, the functions in R(a) take their values in a; thus R(a) ⊂ J ∩ q ∗
S(G/N,A, c, τ ) ∗ q = q ∗ J ∗ q. On the other hand, Ev(q ∗ J ∗ q) ⊂ a. As R and
Ev are linear isomorphisms, for dimensional reasons the above inclusions have to
be equalities. �

For the transition to the ideal theory in B = L1
ω(G)/j(πl) it is convenient to view

S(G/N,A, c, τ ) ∼= S(G)/S(G)∩ j(πl) as a dense subalgebra, say BS of B. From the
previous discussion we observe two facts:

(i) q ∗ B ∗ q = q ∗ BS ∗ q ⊂ BS (as BS is dense in B and q ∗ BS ∗ q is finite-
dimensional); in particular, q ∗ J ∗ q ⊂ q ∗ BS ∗ q for any closed two-sided
ideal J in B.

(ii) BS ∗ q ∗ BS ∗ q ∗ BS is total in B.
Using these facts one easily concludes.

Theorem 7.12. The map J �→ q∗J ∗q ⊂ q∗BS ∗q establishes an order preserving
bijection from the set of closed two-sided ideals in B = L1

ω(G)/j(πl), i.e., the set of
closed two-sided ideals in L1

ω(G) containing j(πl), onto the set of two-sided ideals
in q ∗ BS ∗ q ∼= q ∗ S(G/N,A, c, τ ) ∗ q. In particular, any closed two-sided ideal J in
B is generated, as a closed two-sided ideal, by the finite-dimensional space q ∗ J ∗ q
sitting in BS .

One would like to know more about the set of ideals in q∗S(G/N,A, c, τ )∗q, or,
even better, to “know” this algebra itself. This d-dimensional algebra has a unit,
namely q; moreover it has a Jordan-Hölder sequence

q ∗ S(G/N, ak, c, τ ) ∗ q, 0 ≤ k ≤ d.

Briefly, q ∗ S(G/N,A, c, τ ) ∗ q has all the properties as described in Lemma 7.1.
Since the dimension of this algebra equals dim(A), it is plausible, at first glance, to
guess that q ∗S(G/N,A, c, τ ) ∗ q is isomorphic (as an algebra) to A. However, with
a second glance, it is no longer plausible because q ∗S(G/N,A, c, τ ) ∗ q depends, at
least implicitly, on the action c of G on A, while the algebra A does not “know”
this action. But, if N is central in G (compare section 6), which implies that A is
commutative and that the action c of G on A is trivial, then in fact A is isomorphic
to q ∗ S(G/N,A, c, τ ) ∗ q.

Proposition 7.13. If N = G(l) is central in G, then the map

R : A → q ∗ S(G/N,A, c, τ ) ∗ q
of Remark 7.8, i.e.,

(Ru)(x) =

∫
G/N

cy(q(xy) ∗ u) ∗ q(y−1)d
�
y,

is an isomorphism of algebras.
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Proof. In the case at hand the map R simplifies to (Ru)(x) = q(x)u. One easily
computes

(Ru ∗Rv)(x) =

∫
G/N

Ru(xy)Rv(y
−1)d

�
y

=

∫
G/N

q(xy)uq(y−1)vd
�
y =

∫
G/N

q(xy)q(y−1)uvd
�
y

= q(x)uv as q is an idempotent

= (R(uv))(x).

�
There are many choices for the self-adjoint idempotent q, and it is natural to ask

to which extent the algebra q ∗ S(G/N,A, c, τ ) ∗ q depends on this choice.

Proposition 7.14. Again write S = S(G/N,A, c, τ ) for short. Suppose that q1

and q2 are two self-adjoint idempotents in S such that, for the canonical map μ :
S → S(G/N,A/m, c, τ ) ∼= S(G/N,χp), one has that qj := μ(qj) is a projector of
rank 1; cf. Lemma 7.6. Then there exists v ∈ q1 ∗ S ∗ q2 such that q1 = v ∗ v∗,
q2 = v∗ ∗ v. Moreover, the map q1 ∗ S ∗ q1 → q2 ∗ S ∗ q2, given by f �→ v∗ ∗ f ∗ v, is
an isomorphism of algebras.

Proof. Denote by μk, 1 ≤ k ≤ d, the natural homomorphism

S = S(G/N,A, c, τ ) → S(G/N,A/ad−k, c, τ ),

especially μ1 = μ. We prove, by induction on k, that there exists vk ∈ μk(q1) ∗
S(G/N,A/ad−k, c, τ )∗μk(q2) such that v∗k∗vk = μk(q2), vk∗v∗k = μk(q1). For k = 1
take any non-zero w in the one-dimensional space q1 ∗S(G/N,A/m, c, τ )∗q2. Then
one has w ∗w∗ = z1q1 and w∗ ∗w = z2q2 with some constants z1, z2. Applying the
representation πl of S(G)/ker(πl) ∼= S(G/N,A/m, c, τ ) one sees that z1 = z2, and
this number is positive. Denote this common constant by z and put v1 = ( 1z )

1/2w.
To proceed from k, 1 ≤ k < d to k + 1, take vk as above and take any w in

μk+1(q1) ∗ S(G/N,A/ad−k−1, c, τ ) ∗ μk+1(q2) such that w is mapped onto vk for
the canonical map

S(G/N,A/ad−k−1, c, τ ) → S(G/N,A/ad−k, c, τ ).

Then one has

w
∗ ∗w = μk+1(q2) + ϕ,

w ∗w∗ = μk+1(q1) + ψ

with some self-adjoint elements ϕ and ψ in the (one-dimensional) spaces

μk+1(q2) ∗ S(G/N, ad−k/ad−k−1, c, τ ) ∗ μk+1(q2)

and μk+1(q1)∗S(G/N, ad−k/ad−k−1, c, τ )∗μk+1(q1), respectively. From the identity
w ∗ (w∗ ∗w) = (w ∗w∗) ∗w one concludes

w ∗ (μk+1(q2) + ϕ) = w+w ∗ ϕ
= (μk+1(q1) + ψ) ∗w
= w+ ψ ∗w,

hence w ∗ ϕ = ψ ∗w.
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Likewise the identity (w∗ ∗w) ∗w∗ = w∗ ∗ (w ∗w∗) yields ϕ ∗w∗ = w∗ ∗ ψ.
This equation also follows from the previous one by applying the involution and

using ϕ = ϕ∗, ψ = ψ∗.
Now put vk+1 = w − 1

2w ∗ ϕ = w − 1
2ψ ∗ w. The above relations tell us that

vk+1 has the required properties. Finally v := vd gives an element as claimed in
the proposition. Moreover, it is easy to see that f �→ v∗ ∗ f ∗ v is an algebra
homomorphism, the inverse being given by g �→ v ∗ g ∗ v∗. �

8. Two examples

To build the following examples, we use the method developed in sections 5 and
6.

8.1. The step 2 case.

8.1.1. Let g = span {A,B,C, U, V,W} be the free nilpotent step two Lie algebra
with three generators, i.e. with the brackets

[A,B] = U, [B,C] = V, [C,A] = W.

Let G = (g, ·) be the simply connected Lie group with Lie algebra g equipped with
the Baker-Campbell-Hausdorff multiplication. This means that

X · Y = X + Y +
1

2
[X,Y ], X, Y ∈ g.

We take coordinates of the first kind on G, i.e.

aA+ bB + cC + uU + vV + wW � (a, b, c, u, v, w).

Let � = U∗. This gives us g(�) = n = span(C,U, V,W ).
We take a weight ω on G which allows only polynomials of degree one inside

Pω|N (N). One possibility is the following: We define ω on G by ω(a, b, c, u, v, w) :=

1 + |a| + |c| + |w|. Then ω|N (0, 0, c, u, v, w) = 1 + |c| + |w|. This shows that
Pω|N (N) = span(p2, p1, 1) with p1(c, u, v, w) = c and p2(c, u, v, w) = w. One checks
that

dσ(A)p2 = p1, dσ(B)p2 = 0.

Let I be a two-sided closed ideal of L1
ω(G) belonging to Iπ� . As G is step 2,

Y ·X · Y = X + 2Y for all X,Y ∈ G ≡ g. Hence the ideal I is invariant by abelian
translation and by partial derivation, i.e. if f ∈ I, then t(Y )f ∈ I where t(Y )f is
defined by

(
t(Y )f

)
(X) := f(X + Y ). Conversely, it is easy to check that a closed

subset of L1
ω(G) which is invariant by abelian translation and by usual conjugation

in the group G is also invariant by right and left translations in the group, i.e. is
an ideal.

Let

ϕ(a, b, c, u, v, w) = (ϕ2(a, b)w + ϕ1(a, b)c)e
−iu

be a C∞-function in I⊥. We may omit a possible term ϕ0(a, b)e
−iu in the expression

of ϕ, as ϕ0(a, b)e
−iu ∈ C · χl and as I ⊂ ker(πl) = eG(ker(χl)). Then for f ∈ IS ,

we have that∫
G

ϕ(rA+sB)(X)f(X)dX =

∫
G

ϕ(X + [rA+ sB,X])f(X)dX = 0, r, s ∈ R,
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where ϕ(rA+sB)(X) := ϕ((rA+ sB) ·X · (−rA− sB)). Hence, for r, s ∈ R,

0 =

∫
R6

(ϕ2(a, b)(w − rc) + ϕ1(a, b)c)e
−iue−i(rb−sa)f(a, b, c, u, v, w)dadbdcdudvdw.

Therefore, by integration by parts,

0 =

∫
R6

(wϕ2(a, b) + c(ϕ1(a, b) + i∂2(ϕ2)(a, b)) f(a, b, c, u, v, w)

+ic(∂2)(f)(a, b, c, u, v, w)ϕ2(a, b)) e
−iue−i(rb−sa)dadbdcdudvdw,

where ∂2 denotes the partial derivative with respect to the variable b. Hence, the
Fourier inversion theorem implies that

0 =

∫
R4

(wϕ2(a, b) + c(ϕ1(a, b) + i∂2ϕ2(a, b))f(a, b, c, u, v, w)

+ic∂2(f)(a, b, c, u, v, w)ϕ2(a, b))e
−iudcdudvdw, a, b ∈ R.

As f may be changed by arbitrary abelian translations (which commute with partial
derivations), we even obtain

0 =

∫
R4

(wϕ2(a1, b1) + c(ϕ1(a1, b1) + i∂2ϕ2(a1, b1))f(a, b, c, u, v, w)

+ic∂2(f)(a, b, c, u, v, w)ϕ2(a1, b1))e
−iudcdudvdw, a, b, a1, b1 ∈ R.

We denote in this subsection the mapping Ψ̃j : S(G) → C∞(G) by

Ψ̃j(f)(x) :=

∫
N

f(x+ n)pj(n)χ�(n)dn, x ∈ G.

One checks that for f ∈ Kerπl ∩ S(G) and for n ∈ N ,

Ψ̃j(f)(x+ n) = χl(n)Ψ̃j(f)(x), j = 1, 2, x ∈ G.

Moreover,

KerΨ̃1 ∩KerΨ̃2 ∩Kerπl = j(πl) ∩ S(G).

Let us now take δi ∈ S(N), i = 1, 2, such that∫
N

δj(n)χ�(n)dn = 0,

∫
N

pi(n)δj(n)χ�(n)dn = δij , i, j = 1, 2.

Let us consider functions of the form f = h1 ⊗ δ1 + h2 ⊗ δ2 with h1, h2 ∈ S(R2)
arbitrary. Then ∫

N

f |N (n)χl(n)dn = 0

by choice of δ1, δ2. So f |N ∈ Kerχl|n , and hence f ∈ Kerπl. We then have

Ψ̃j(f)(s+ n) = χl(n)Ψ̃j(f)(s) = χl(n)hj(s), j = 1, 2.

Now let I ∈ Iπ� such that j(πl) � I � Kerπl and let us assume that I is not
L∞(G/N)-invariant. By Theorem 5.5 and by considerations on the dimensions, we
have ιI = {1} and I∞ = 〈f〉 + j(πl)

∞ for some f ∈ S(G). By Proposition 5.2, f
may be written in the form

f = h1 ⊗ δ1 + h2 ⊗ δ2

for some h1, h2 ∈ S(R2).
We now have to distinguish two cases.
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8.1.2. First case: Let ϕ ∈ I⊥ be of the form

ϕ(a, b, c, u, v, w) = ϕ1(a, b)ce
−iu, a, b ∈ R,

with ϕ1 �≡ 0, i.e. let us assume that ϕ2 ≡ 0. Then, for all f ∈ IS ,

0 = ϕ1(a, b)

∫
R4

cf(a, b, c, u, v, w)e−iudcdudvdw, a, b ∈ R,

or even, as ϕ1 �≡ 0 and as f may be changed by abelian translation,∫
R4

f(a, b, c, u, v, w)ce−iudcdudvdw = 0, a, b ∈ R,

i.e. Ψ̃1(f) = 0. In particular, if f is of the form f = h1 ⊗ δ1 + h2 ⊗ δ2, then h1 = 0,
f = h2 ⊗ δ2 and

I∞ = 〈h2 ⊗ δ2〉+ j(πl)
∞.

Conversely, let us assume that I∞ = 〈h2 ⊗ δ2〉 + j(πl)
∞ and let ϕ ∈ I⊥ be of the

form

ϕ(a, b, c, u, v, w) = (ϕ2(a, b)w + ϕ1(a, b)c)e
−iu

arbitrary. Then∫
cf(a, b, c, u, v, w)e−iudcdudvdw = h2(a, b)

∫
N

p1(n)δ2(n)χl(n)dn = 0

and, by the computations of section 8.1.1,

0 =

∫
R6

(
ϕ2(a, b)(w − rc) + ϕ1(a, b)c

)
× e−iue−i(rb−sa)h2(a, b)δ2(c, u, v, w)dadbdcdudvdw

=

∫
R6

ϕ2(a, b)we
−iue−i(rb−sa)h2(a, b)δ2(c, u, v, w, )dadbdcdudvdw

=

∫
R2

ϕ2(a, b)h2(a, b)e
−i(rb−sa)dadb, r, s ∈ R.

As I and I⊥ are invariant by abelian translation and as h2 �≡ 0, the Fourier in-
version theorem implies that ϕ2 ≡ 0 and that ϕ is of the form ϕ(a, b, c, u, v, w) =
ϕ1(a, b)ce

−iu.
Hence, in the first case, I is the closure of I∞ = 〈h2 ⊗ δ2〉 + j(πl)

∞ for some
0 �= h2 ∈ S(R2). It is then easy to check that (I⊥)|N = (I|N )⊥ = span{1, c} · χl|N .
Hence I is L∞(G/N)-invariant by Proposition 2.3, a contradiction. So this first
case does not occur.

8.1.3. Second case: Let us now assume that any ϕ ∈ I⊥ of the form

ϕ(a, b, c, u, v, w) =
(
ϕ2(a, b)w + ϕ1(a, b)c

)
e−iu

is such that ϕ2 �≡ 0. Hence there exists (a0, b0) ∈ R2 such that ϕ2(a0, b0) �= 0. Put

α :=
ϕ1(a0, b0) + i∂2ϕ2(a0, b0)

ϕ2(a0, b0)
.

By section 8.1.1, we have for all f ∈ IS ,

0 =

∫
R4

(
(w + αc)f(a0, b0, c, u, v, w) + ic∂2f(a0, b0, c, u, v, w)

)
e−iudcdudvdw.
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As f may be changed by arbitrary abelian translations (which commute with deriva-
tions), we obtain that

(8.11) 0 =

∫
R4

(
(w + αc)f(a, b, c, u, v, w) + ic∂2f(a, b, c, u, v, w)

)
e−iudcdudvdw,

for all a, b ∈ R. As translations in the directions of N are also possible, this may
be written as

Ψ̃2(f) + αΨ̃1(f) + i∂2Ψ̃1(f) = 0.(8.12)

This means that for the given I ∈ Iπ� , there exists α ∈ C such that (8.12) is
satisfied for all f ∈ I. In particular, for f of the form f = h1 ⊗ δ1 + h2 ⊗ δ2, this
implies that h2 = −αh1 − i∂2h1. Moreover, (8.12) is satisfied identically by the
elements of j(πl)

∞. If one also assumes that for ϕ̃ ∈ I⊥ of the form

ϕ̃(a, b, c, u, v, w) =
(
ϕ̃2(a, b)w + ϕ̃1(a, b)c

)
e−iu,

with ϕ̃2(a1, b1) �= 0 for some (a1, b1) ∈ R2, one may do the same reasoning as before
for

β =
ϕ̃1(a1, b1) + i∂2ϕ̃2(a1, b1)

ϕ̃2(a1, b1)
.

One then has

Ψ̃2(f) + βΨ̃1(f) + i∂2Ψ̃1(f) = 0, for all f ∈ IS .

If α �= β, this implies that Ψ̃1(f) = Ψ̃2(f) = 0, i.e.

IS ⊂ KerΨ̃1 ∩KerΨ̃2 ∩Kerπl = j(πl) ∩ S(G),

a contradiction. This shows that in the second case, α is uniquely determined and
is valid for every ϕ ∈ I⊥ of the given form.

It is easy to check that the set of solutions of (8.12) in Kerπl is invariant by
conjugation and by abelian translation. Hence its closure is invariant by left and
right group translations, and it is an ideal Iα contained in Kerπl. In particular, if
f is a solution of (8.12), then the same is true for all F · f , with F ∈ S(G×G). By
the definition of α and the previous arguments, I is contained in one and only one
ideal Iα. Moreover, Iα is strictly contained in Kerπl. In fact, a function of the form
f = h1 ⊗ δ1 + h2 ⊗ δ2 with h1, h2 ∈ S(R2) such that h2 �= −αh1 − i∂2h1 belongs to
Kerπl, but not to Iα. For any h ∈ S(R2), let us define

fh,α = h⊗ δ1 + (−αh− i∂2h)⊗ δ2.

We have shown that there exists exactly one α ∈ C and a function h ∈ S(R2) such
that

I∞ = 〈fh,α〉+ j(πl)
∞.(8.13)

We will now show that the function 0 �= h ∈ S(R2) in (8.13) may be chosen
arbitrarily and that I = Iα. In order to use the results of Remark 4.2 and Proposi-

tion 4.4, we first have to replace the elements Ψ̃j(f) of S(G/N,χl) by the Ψj(f)’s
defined in section 4 by

Ψj(f)(x) :=

∫
N

f(xn)pj(n)dn, j = 1, 2,
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for all f ∈ S(G). An easy computation shows that

Ψ̃1(f) = Ψ1(f),

Ψ̃2(f)(a, b, c, u, v, w) = Ψ2(f)(a, b, c, u, v, w)−
1

2
aΨ1(f)(a, b, c, u, v, w),

for all (a, b, c, u, v, w) ∈ G ≡ R6 and equation (8.12) is equivalent to

Ψ2(f)(a, b, c, u, v, w)−
1

2
aΨ1(f)(a, b, c, u, v, w) + αΨ1(f)(a, b, c, u, v, w)

+ i∂2Ψ1(f)(a, b, c, u, v, w) = 0,

for all (a, b, c, u, v, w) ∈ R6. In particular,

KerΨ1 ∩KerΨ2 ∩Kerπl = KerΨ̃1 ∩KerΨ̃2 ∩Kerπl = j(πl) ∩ S(G).

In order to use Proposition 4.4, let us recall that a Jordan-Hölder series for the
action of G×N on Pω|N (N) is given by

W0 = C ⊂ W1 = span{1, p1} ⊂ W2 = span{1, p1, p2} = Pω|N (N),

and hence

j(πl) = IW2
⊂ IW1

⊂ IW0
= Kerπl.

Let us notice that for f, g ∈ Kerπl ∩ S(G) arbitrary with Ψ1(f) �= 0, there exists
F ∈ S(G×G) such that

Ψ1(g) = F ·Ψ1(f) = Ψ1(F · f),

by Remark 4.2 and Proposition 4.4. Hence F ·f−g ∈ KerΨ1. If, moreover, f, g ∈ Iα,
i.e. f, g satisfy (8.12), then

g − F · f ∈ KerΨ1 ∩KerΨ2 ∩Kerπl = j(πl) ∩ S(G).

This shows that

〈g〉+ j(πl)
∞ ⊂ 〈f〉+ j(πl)

∞

and conversely, by exchanging the roles of f and g. Hence

I = 〈fh,α〉+ j(πl)
∞

for any 0 �= h ∈ S(R2). The same procedure may be applied to the ideal Iα, which
is then shown to be of the same type as I. Hence I = Iα.

We then have the following proposition:

Proposition 8.2. Let V = Pω|N (N) and W = C. There exists for every α ∈ C a
unique closed two-sided ideal Iα ∈ Iπ� such that

Iα �= Iβ if α �= β and j(π�) = IV � Iα � IW = ker(π�).

These ideals Iα are not L∞(G/N)-invariant. Furthermore, for every ideal I ∈ Iπ�

which is not L∞(G/N)-invariant, there exists a unique α ∈ C such that I = Iα.
The ideal Iα is the closure of

I∞α = 〈fh,α〉+ j(πl)
∞

for any 0 �= h ∈ S(R2), where fh,α = h⊗ δ1 + (−αh− i∂2h)⊗ δ2.
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8.3. The threadlike case. Let g = fad4, g = span{T,X, Y, Z} with the brackets

[T,X] = Y, [T, Y ] = Z.

On the group Fad4 we take the coordinates

(t, x, y, z) ≡ exp(tT )exp(xX)exp(yY + zZ).

Let � ∈ g∗, �(Y ) = 1, �(Z) = �(T ) = �(X) = 0. Then g(�) = n = span{Y, Z}.

8.3.1. Degree one weight. Let ω be a polynomial weight on Fad4, such that ω|N is
a polynomial weight of degree 1 on N . One may for instance take ω(t, x, y, z) =
1 + |t|+ |x|+ |y|+ |z|+ 1

2 t
2, which gives ω|N (0, 0, y, z) = 1 + |y|+ |z|.

Let I ∈ Iπ� . Suppose that W (I) = C, V (I) = span{1, z, y} = Pω|N (N).
This gives us the Jordan-Hölder basis {p1 = y, p2 = z} of the G × N -module
V (I)/W (I) and ιI = {1}. As I ⊂ Kerπl, we have for all f ∈ IS , for all t, x ∈ R,

exp(−tT )fexp(xX)|N ∈ Kerχl|n , and hence∫
R2

f(t, x, y, z)e−iydydz = 0, t, x ∈ R.(8.14)

Let ϕ ∈ (I⊥)∞ and let us write

ϕ(t, x, y, z) = χl(t, x, y, z)ψ(t, x, y, z)

where ψ(t, x, y, z) = ψ0(t, x)z + ψ1(t, x)y

and χl(t, x, y, z) = e−iy, t, x, y, z ∈ R.

As in the step 2 case, we don’t need to consider any possible term of the form
ψ00(t, x) ·χl(t, x, y, z) in the expression of ϕ, since I ⊂ ker(πl) = eG(ker(χl)). After
conjugating ϕ with exp(sX) we get, by Fourier inversion,

0 =

∫
R3

ϕ(t, x, y, z)f(t, x, y, z)dxdydz, f ∈ IS , t ∈ R,

and conjugating ϕ with exp(sT ) we get the identity

0 =

∫
R3

ϕ(t, x, y + sx, z + sy +
s2

2
x)f(t, x, y, z)dxdydz, f ∈ IS , t, s ∈ R.

Hence, for t = 0, relation (8.14) implies that

0=

∫
R3

(ψ0(0, x)z+(ψ1(0, x)+sψ0(0, x)y))f(0, x, y, z)e
−iye−isxdxdydz, s∈R, f ∈IS .

Finally, integration by parts and a Fourier inversion theorem give, at x = 0,

0 =

∫
R2

(ψ0(0, 0)z + (ψ1(0, 0)− i∂xψ0(0, 0)y))f(0, 0, y, z)e
−iydydz

−i

∫
R2

ψ0(0, 0)y∂xf(0, 0, y, z)e
−iydyds, f ∈ IS .
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If we replace f by its right translates with exp(xX) and its left translates with
exp(tT ), we finally have that

0 = ψ0(0, 0)

∫
R2

ze−iyf(t, x, y, z)dydz

+(ψ1(0, 0)− i∂xψ0(0, 0))

∫
R2

ye−iyf(t, x, y, z)dydz

−iψ0(0, 0)

∫
R2

ye−iy∂xf(t, x, y, z)dydz, f ∈ IS , t, x ∈ R.

We now have to distinguish two cases:

First case. For all such ϕ’s and ψ’s, ψ0 ≡ 0, i.e. all such ϕ’s are of the form

ϕ(t, x, y, z) = ψ1(t, x)ye
−iy.

We proceed as in the previous example (section 8.1.2) and conclude that in this
case the ideal I is L∞(G/N)-invariant.

Second case. Let us assume that there exist ϕ, ψ such that ψ0 �≡ 0. As we may
translate to the left by exp(tT ) and to the right by exp(xX), we may assume that
ψ0(0, 0) �= 0. Let us then put

α =
ψ1(0, 0)− i∂xψ0(0, 0)

ψ0(0, 0)
.

As in section 8.1.3, we define Ψj(f) by

Ψj(f)(x) :=

∫
N

f(xn)pj(n)dn, j = 1, 2.

Because f may be translated to the right by any element of N , equation (8.15) may
be written as

Ψ2(f) + αΨ1(f)− i∂xΨ1(f) = 0, f ∈ IS ,(8.15)

with ∂xΨ1(f) = Ψ1(∂xf). We may then conclude as in the step two case (with the

simplification that we don’t need to distinguish between Ψj and Ψ̃j):

Proposition 8.4. There exists for every α ∈ C exactly one ideal Iα ∈ Iπ� which is
a solution to equation ( 8.15) and which is not L∞(G/N)-invariant. All the ideals
I ∈ Iπ� which are not L∞(G/N)-invariant are of that form.

8.4.1. Degree two weight. As before let � ∈ g∗ with �(Y ) = 1, �(Z) = �(T ) = �(X) =
0. Let ω be a polynomial weight on Fad4 such that Pω|N (N) admits polynomials
of degree ≤ 2. This case is far more complex, and we will thus limit ourselves to
proving the existence of one family of ideals, indexed by C2, contained in Iπ� and
which are not L∞(G/N)-invariant.

Let W = C + span{y, z} and V = span{z2, zy, y2, z, y, 1}. We will show in the
following that there exist ideals I ∈ Iπ� such that W (I) = W and V (I) = V . Let
us assume that such I’s exist. We have the Jordan-Hölder basis {p1 = y2, p2 =
yz, p3 = z2} of V (I)/W (I). We assume that I is not L∞(G/N)-invariant. Hence
IV (I) � I � IW (I) and I|N is annihilated by span{1, y, z} · χl|n .
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It is therefore enough to consider ϕ’s in I⊥ of the following form:

ϕ(t, x, y, z) = χ(t, x, y, z)ψ(t, x, y, z)

where ψ(t, x, y, z) = ψ0(t, x)z
2 + ψ1(t, x)zy + ψ2(t, x)y

2

and χ(t, x, y, z) = e−iy, t, x, y, z ∈ R.

Suppose that ψ0 �≡ 0. As we may translate to the left by exp(tT ) and to the
right by exp(xX), we may assume that ψ0(0, 0) �= 0, and even that ψ0(0, 0) = 1.

By conjugating ϕ with exp(sX) and using the previous remark about the anni-
hilation of elements of I|N , we see that

0 =

∫
R3

ϕ(t, x, y, z)f(t, x, y, z)dxdydz, f ∈ IS , t ∈ R.(8.16)

By conjugating ϕ with exp(sT ) and using the same remark about annihilation, we
obtain the identity

(8.17) 0 =

∫
R3

ϕ(t, x, y + sx, z + sy +
s2

2
x)f(t, x, y, z)dxdydz, f ∈ IS , t ∈ R.

Hence, for t = 0,

0 =

∫
R3

f(0, x, y, z)(ψ0(0, x)(z + sy +
s2

2
x)2 + ψ1(0, x)(z + sy +

s2

2
x)y

+ ψ2(0, x)y
2)e−iy−isxdxdydz

=

∫
R3

f(0, x, y, z)(ψ0(0, x)(z+sy)2+ψ1(0, x)(z+sy)y+ψ2(0, x)y
2e−iy−isxdxdydz

=

∫
R3

f(0, x, y, z)(ψ0(0, x)z
2 + (2sψ0(0, x) + ψ1(0, x))zy

+ (s2ψ0(0, x) + sψ1(0, x) + ψ2(0, x))y
2)e−iy−isxdxdydz, s ∈ R, f ∈ IS .

Therefore we get the equation

0 =

∫
R2

f(0, x, y, z)(ψ0(0, x)z
2 + ψ1(0, x)zy + ψ2(0, x)y

2e−iydydz

−2i

∫
R2

∂x(f(0, x, y, z))ψ0(0, x)zye
−iydydz

−2i

∫
R2

f(0, x, y, z)∂xψ0(0, x)zye
−iydydz

−i

∫
R2

∂xf(0, x, y, z)ψ1(0, x)y
2e−iydydz

−i

∫
R2

f(0, x, y, z)∂xψ1(0, x)y
2e−iydydz

−
∫
R2

∂2
xf(0, x, y, z)ψ0(0, x)y

2e−iydydz

−2

∫
R2

∂xf(0, x, y, z)∂xψ0(0, x)y
2e−iydydz

−
∫
R2

f(0, x, y, z)∂2
xψ0(0, x)y

2e−iydydz, f ∈ IS .
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Hence, putting first t = x = 0 and then, in a second step, translating f again by
exp(tT ) on the left and by exp(xX) on the right, we get

0 =

∫
R2

f(t, x, y, z)z2e−iydydz

+(ψ1(0, 0)− 2i∂xψ0(0, 0))

∫
R2

f(t, x, y, z)zye−iydydz

+(ψ2(0, 0)− i∂xψ1(0, 0)− ∂2
xψ0(0, 0))

∫
R2

f(t, x, y, z)y2e−iydydz

−2i

∫
R2

∂xf(t, x, y, z)zye
−iydydz

−i(−2i∂xψ0(0, 0) + ψ1(0, 0))

∫
R2

∂xf(t, x, y, z)y
2e−iydydz

−
∫
R2

∂2
xf(t, x, y, z)y

2e−iydydz, f ∈ IS .

As, moreover, f may be translated to the right by any element of N , this gives us
for f ∈ IS the relations

(8.18) Ψ3(f) + a2Ψ2(f) + a1Ψ1(f)− 2iΨ2(∂xf)−Ψ1(∂
2
xf)− ia2Ψ1(∂xf) = 0,

where the constants a1, a2 ∈ C are obtained by a2 = ψ1(0, 0) − 2i∂xψ0(0, 0), a1 =
ψ2(0, 0)− i∂xψ1(0, 0)−∂2

xψ0(0, 0). The functions Ψj ’s are defined as in section 8.1.
By definition of the Ψj ’s,

KerΨ1 ∩KerΨ2 ∩KerΨ3 ∩ IW (I) ∩ S(G) = IV (I) ∩ S(G).

Now choose f =
∑3

j=1 hj ⊗ δj ∈ IS , where as before δj ∈ S(N) and

0 =

∫
N

δj(n)χ�(n)dn,

∫
N

δk(n)qk(n)χl(n)dn = 0,∫
N

δj(n)pi(n)χ�(n)dn = δij , 1 ≤ i, j ≤ 3, 1 ≤ k ≤ 2,

for q1(y, z) = y, q2(y, z) = z. Then equation (8.18) tells us that

h3 + a2h2 + a1h1 − 2i∂xh2 − ∂2
xh1 − ia2∂xh1 = 0.

Conversely, two independent solutions of equation (8.18) may be obtained in the
following way: Choose a function h �= 0 in S(R) and let

f1 = h⊗ δ1 − (a1h− ∂2
xh− ia2∂xh)⊗ δ3, f2 = h⊗ δ2 − (a2h− 2i∂xh)⊗ δ3.

We obtain the ideal Ia1,a2
as closure of the space

I∞a1,a2
= 〈f1, f2〉+ I∞V (I),

where V (I) = span{1, y, z, y2, yz, z2}. For this ideal we have ιIa1,a2 = {1, 2} and
IV (I) � Ia1,a2

� IW (I). In particular, Ia1,a2
∈ Iπ� and it is not L∞(G/N)-invariant.

We hence have:

Proposition 8.5. For every (a1, a2) ∈ C2, there exists an ideal Ia1,a2
∈ Iπ� , which

is not L∞(G/N)-invariant. The elements f of I∞a1,a2
satisfy

(8.19) Ψ3(f) + a2Ψ2(F ) + a1Ψ1(f)− 2iΨ2(∂xf)−Ψ1(∂
2
xf)− ia2Ψ1(∂xf) = 0.
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