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SPECTRAL SYNTHESIS FOR FLAT ORBITS
IN THE DUAL SPACE OF WEIGHTED GROUP ALGEBRAS
OF NILPOTENT LIE GROUPS

J. LUDWIG, C. MOLITOR-BRAUN, AND D. POGUNTKE

ABSTRACT. Let G = exp(g) be a connected, simply connected, nilpotent Lie
group and let w be a continuous symmetric weight on G with polynomial
growth. We determine the structure of all the two-sided closed ideals of the
weighted group algebra L} (G) which are attached to a flat co-adjoint orbit.

1. INTRODUCTION

Let A be a Banach algebra. In order to understand the structure of A it is
important to be able to determine the space of its two-sided closed ideals. A
particular role is played by the primitive ideal space Prim(A) and its Fell topology.
For a given closed subset C' of Prim(A), one tries to understand the set Z¢ of the
two-sided closed ideals I of A with hull C'. Here as always the hull h(I) of I is the
closed subset h(I) = {J € Prim(A),I C J} of Prim(A). We say that a closed
subset C of Prim(A) is spectral or of spectral synthesis if ker(C) = () ;.o J is the
only closed two-sided ideal of A with hull C'. We say that a two-sided closed ideal I
is primary if its hull consists of a single point in Prim(A). One important problem
is, given an irreducible representation m of A, to compute the space Z{™} of all the
primary ideals with hull {7}.

In this paper we study the weighted L' algebra of a nilpotent simply connected
connected Lie group G = exp(g). For these groups the exponential mapping exp :
g — G is a diffeomorphism of the vector space g onto the group G and the Haar
measure dg of G is the pullback of Lebesgue measure on the vector space g. We say
that a function p : G — C is polynomial if the function poexp : g — C is so. Let
w : G — R be a continuous symmetric polynomial weight, i.e. w is a continuous
strictly positive function defined on G, such that

wz) =w(z™), wly) <w@)w(y), w) >C >0, w(x) < P(x), z,y € G,

where C' is a constant and P : G — R is some polynomial function on G.
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We consider the involutive Banach algebra L1 (G) of integrable functions with
respect to the measure wdx on G. The product in this algebra is given by convolu-
tion,

axb(r) = / a(w)b(u'z)du, z € G,a,b € LL(G),
G
and its norm by
lallo = [ la@lelo)ds, a € LL(G).
G

Then < |la|l1,w]|b]|1,0- This algebra has an isometric involution * given by

a*(x) = a(zl), z€G,acLL(Q).

One fundamental question in non-commutative harmonic analysis consists in
looking for relationships between geometric structures on one side and properties
of representations, as well as ideals associated to them, on the other side. The most
famous example in this respect is, of course, Kirillov’s orbit theory (see [Co-Gr] and
[Le-Lu]) which gives us a homeomorphism K : G — g*/G from the dual space €
of G onto the space of co-adjoint orbits g*/G of G in the real dual space g* of the
Lie algebra g of G.

The link with ideal theory of group algebras is the following: The primitive
ideal space Prim(LL(G)) of our algebra LL(G) is homeomorphic to the dual space
G of G and hence to the co-adjoint orbit space g*/G (see [AILu]). So, for a
closed G-invariant subset S of the linear dual g* of g, we shall now denote by
Z5 = I° the set of all closed two-sided ideals I of LL(G), for which the hull
h(I) := {x € G,n(I) = {0}} is the set of all irreducible unitary representations
of G, whose Kirillov orbit €2 is contained in S.

A special property of the algebra L1 (G) is the existence of minimal ideals, due to
the fact that a connected nilpotent locally compact group has polynomial growth.
This means that given any closed subset C' C G, there exists a minimal closed
two-sided ideal j(C) C L (G) with hull C, i.e. j(C) is contained in every two-sided
closed ideal I with hull h(I) equal to C (see [Dz-Lu-Mo]).

This naturally leads to the following fundamental problem: Given a polynomial
weight on G and an irreducible unitary representation 7w of G, is it possible to
deduce the properties of the algebra ker(w)/j({n}) from the geometric structure of
the Kirillov orbit Q. = K (7) and the weight w? It has already been shown in [Lul]
that, for a flat orbit 2, the one-point set {m} is spectral for the constant weight.
But what about other weights?

As a matter of fact, non-trivial weights appear quite naturally in this type of
problem. In the paper [Lu2|] the space of ideals Z{™} has been computed for every
irreducible representation m and any three step group G again for the constant
weight. It turned out that for every co-adjoint orbit = K(7) in g* of such a group,
there exists for £ € Q a certain weight w = wq on the stabilizer G(¢) = exp(g(¥))
of ¢ such that the set Z{™ is in an inclusion preserving bijection with the set of
ideals Ij,e“’“)}, and this set was easy to compute. Hence, in order to understand
the fundamental algebra L(G), one is led to study weighted group algebras, their
representations and ideal theory, for more complicated weights, but easier groups
and co-adjoint orbits.
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Another situation where weights occur is the following: In the course of the
study of bounded topologically irreducible representations of the group algebras of
exponential solvable Lie groups ([Lu-Mo-1], [Pd]), weighted group algebras of the
type L'(R",w) appear. Even though the group is just R", the weight w may be
complicated and the non-unitary topologically irreducible representations of such
algebras are not yet completely characterized. This fact stresses the importance of
weighted group algebras in representation theory.

The problem of a link between the geometric structure of a co-adjoint orbit
Q, and a weight w with the algebra ker(w)/j({r}) is very complex and certainly
constitutes an ambitious program. In the present paper we start this program by
determining the sets I} for a flat co-adjoint orbit Q and any polynomial weight
w. An orbit is flat if it has the form Q = £ + g(¢)* for some ¢ € g*. In [Lu-Mo-2]
the closed two-sided ideals in Z{? which are invariant by multiplication with func-
tions from L>*(G/G(l)), where G(I) = exp(g(l)), are completely determined. The
purpose of this paper is to drop the L*>°(G/G(I))-invariance condition and to de-
scribe all of Z}. Tt turns out that the space Z! is not completely determined by
the restriction of the weight w to the stabilizer G(¢) of . A member I of Z¢ is
finitely generated modulo an L*°(G/G(l))-invariant ideal. See Theorem Fi-
nally, in section [7] we show that the algebra S(G)/S(G) N j(m) admits rank one
projectors g such that the two-sided, closed ideals of S(G)/S(G) N j(m;), and hence
also of L. (G)/j(m), are in bijection with the set of two-sided ideals in the finite-
dimensional algebra q*S(G)/S(G)Nj(m)*q. This is done via the theory of twisted
convolution algebras. At the end of the paper we explicitly determine the set Z¢?
for the free nilpotent step two Lie algebra with 3 generators and a weight of degree
one. For the 4-dimensional threadlike group, we determine one- or two-parameter
families of ideals in Z!, if w is of degree one or two.

To finish this introduction, let us just give examples of possible weights
([Lu-Mo-2]). Let P be a finite-dimensional space of polynomial functions on G,
which is invariant by left translations. Let [p denote the representation of G on P
defined by

(lp(x)P)(g) := P(z™"g), Ya,g € G.

Let || || be any norm on P (as P is finite-dimensional, all the norms are equivalent).
Then the symmetric weights w and w; defined by

w(@) = |llp(@)llop + 12 (z7")llop
[11p () P iz (=~ ") P|
= Ssup ——=— + Sup ———=——
per [Pl per P

and
wi(x) := max(||lp(z)lop, [lp (2™ 1) lop)

have polynomial growth.

2. NOTATION

For a mapping F : G — FE from G into some set E, we denote by I(g)F (resp.
r(g)F, resp. c¢(g)F) the left (resp. the right) translation (resp. the conjuga-
tion) of F by g € G, ie. l(g)F(u) := F(g 'u),r(g)F(u) := F(ug),c(g9)F(u) :=
F(g~lug),u € G.
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We denote by L°(G) the Banach space of all measurable functions ¢ : G — C,
for which ||¢||ec,w := ess supgeg\%| < 0o. This space L2°(G) is in a natural way
the Banach space dual of L} (G).

By C(G) (resp. C.(G), resp. C°(G)) we denote the space of all continuous
functions (resp. continuous functions with compact support, resp. C°°-functions
with compact support) ¢ : G — C. For an element X € g and for ¢ € C*°(G),
define the left (resp. right) partial derivative X % ¢ (resp. ¢ * X) in the direction
X by
(g exp(tX))t=0, 9 € G.

d d
X *p(g) = pria @(exp(—tX)g)s—o resp. @ * X(g) := prid

We extend the left and right partial derivatives in the usual way to the enveloping
algebra U(g) of g. For a closed G-left and right invariant subspace W C L (G) we
denote by W the space consisting of all C*°-functions ¢ : G — C contained in
W, for which a x ¢ xb € W for all a,b € U(g). We denote the space (LX(G))> by
the symbol C°(G).

Similarly, for a closed two-sided ideal I of L1 (G), we denote by I°° the subspace
of I consisting of all the C*° functions f contained in I, for which a * f % b € I for
all a,b € U(g).

Clearly, the subspace I of I (resp. W of W) are G-left and right-invariant.

The following considerations can be found in [Lu-Mo-2].

Let N = exp(n) be a closed normal connected subgroup of G.

We say that the closed two-sided ideal I € Z% is L°°(G/N)-invariant if for every
ferland ¢ e L*®(G/N), the function ¢f is also in I.

We now consider the restriction Ijy of a closed two-sided ideal in L} (G) to N,
i.e., Iy is the closure in L}U‘N (N) of the subspace generated by the functions f*jy,
B € Ce(G), f € I. We recall that Iy is a closed two-sided G-invariant ideal of the
algebra L}U‘N (N). Tt is easy to see that for any dense subspace I’ of I we also have
that

Iy =span{f xo, fel ac CSO(G)}HIILW‘N’

where span{-} denotes the vector subspace generated by {-}. The converse construc-
tion is the extension eg(L) of a closed two-sided and G-invariant ideal L C Lim (N)
to G. By definition,

e

eq(L) :=span{f*a, a € L,B € C.(G)}
=span{ax 3, a € L, € CC(G)}HHI’N.

Then eg(L) is a closed two-sided ideal in L} (G). Furthermore it is the only one
which is L*°(G/N)-invariant and whose restriction to N equals L.

We denote by (I1)°° the functions ¢ € C2°(G), which are contained in the
orthogonal space of I, i.e. for which

Jo fl9)e(g)dg =0, f eI

Also let (I*))n be the weak-* closure in ijf"N (N) of the vector space generated by

the functions ¢y, ¢ € (I1)*
An important tool in the proofs made in this paper will be the Schwartz algebra

S(G) of G.
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Definition 2.1. The Schwartz algebra S(G) is the Fréchet sub-algebra of L} (G)
consisting of all the C*° functions f : G — C for which all partial derivatives are
rapidly decreasing, i.e. they are decreasing faster than the functions %IP\ for any

polynomial function P on G (see [Lu-Mo] for the properties of S(G)).
Remark 2.2. (i) Let I|y be as previously defined. We define Iy by

Iy =TAS@G)N ",

where I N S(G)|n denotes the set of all the usual restrictions of the functions of
I'NS(G) to N. We then have Iy C Ijy. In fact, let (3;); be an approximate
identity of the Schwartz algebra S(G), consisting of elements of C°(G) ([Lu-Mol).
Let f € INS(G). Then fijy € S(N) and f#Bj |y € Iy for all j. Moreover, (f*Bj);
converges to f in every Schwartz norm. This implies that (f * le N)j converges to
finv in every Schwartz norm of S(N). As a matter of fact, if we build the Schwartz
norms thanks to the supremum, restrictions to N are possible. As the weight w has
polynomial growth, we then deduce that (f * leN)j converges to f|x in [/3J|1V(N)7
and f|y € I|y. This shows that
Iy C I|N.
(ii) We have

T—arAnllle

Iy = I|n, provided I =1NS(G)

Indeed, Iy is then generated by elements of the form f * a|y with f € I NS(G)
and a € CF(G). For such f,a, f*a € INS(G) and f * oy € Iny. This proves
that I‘N C In.

(i) I 7= TNS(@) "™, then
Iy = Iy = Iy N S(V) 1

In fact Iy is generated by the elements of I N S(G)|n. But these are Schwartz
functions on V.

(iv) Now let M and N be two closed connected normal subgroups of G such
that N C M C G and let I be a closed two-sided ideal in L. (G) such that I =

7n8@"" . Then
(Im)n = Iy and ((IL)IM)‘N = (Il)lN-

In fact, Ips is generated by I N S(G)|p C S(M) and so (Ip)n is generated by
(INS@)|m)NSM))y = INS(G)|m)y = INS(G)|y, which shows that
(Inr)n = In. The fact that ((I+)ar) (1)) is obvious from the definition of
these spaces.

N~

In order to study the relationship between (Ijy)* and (I')|y, let us make the
following decomposition of the Lie algebra g: We take a subspace s C g such that
g = s ® n, such that the mapping

s X N =G, (Un)—exp(U)n

is a polynomial diffeomorphism and such that

/G ©(g9)dg = /S /N ©(sn)dnds,
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where S = exp(s) and where ds denotes Lebesgue measure on S ~ s. Such sub-
spaces 5 always exist (see [Co-Gi]): In fact, if we take a strong Malcev basis
Z = {Z,--+,Zn} of the Lie algebra g (i.e. the subspaces g; = > ;" ;RZ; are

ideals of g (j =1,---,n)), which passes through n, i.e. n = g,, for some m, then it
suffices to take s := Z;’:ll RZ;.
Proposition 2.3. (1) The subspace (I|x)* is contained in (I*)|x.

(2) A two-sided closed ideal I C LL(G) is L>=°(G/N)-invariant if and only if
(Iin)" = (I)n-
Proof. (1) Let g € ((I;ny)*)>. Define a function ¢ : G — C by the rule
p(sn) = a(s)q(n),s € S;n €N,
where a is an element of C$°(S) such that a(e) = 1. Then ¢ € C(G) and
¢|n = ¢. Let us show that ¢ € I'-. We have for f € I,8 € C.(G),
(o, f#B) = /Gso(g)f * B(9)dg

- /S a(s)( [ aln) = Blsm)dn)ds

= /Ods
s

= O7

since the function n — f * 3(sn) is contained in Iy for every s € S. Hence
¢ € (I*)>® and g € (I*)|y. Now if ¢ is any element of (I;y)*, then we can
replace ¢ by functions of the type go g :=a*xg*f € (I|N)J‘)°°, with o, 8 €
C2°(N). Since by the preceding argument we know that ga,5 € (I*) 5 for
all «, 8, it follows that ¢ is contained in (IL)‘N.

(2) If I is L°°(G/N)-invariant, then for every ¢ € (I1)> and 3 € C°(S) we
have that

/ / f(sn)B(s)p(sn)dnds =0, f € IxC.(G).
sJN

Therefore [y, f(sn)¢(sn)dn =0, s € S, and so ¢|x € (Ijy)*. Hence
(I+)n is contained in (I|x)*, and so by point (1) of this proposition
(IH)n = (Ijn)*. If conversely (In)*= = (I*)n, then for f € I+xC.(G), ¢ €
(I1)>°, g € G, we have that

g Hfelllg e dH)™,
and hence

/ f(sn)p(sn)dn =0,s € S.
N

We deduce from this that [ [ 8(s)f(sn)p(sn)dnds = 0 for any § €
C.(G/N) ~ C.(S). This tells us that 8f € I. Since C.(G/N) is weak*-
dense in L*°(G/N) and since I * C.(G) is norm dense in I, the assertion
follows. O
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3. IDEALS WHOSE HULL IS A FLAT ORBIT

In this paper, we shall determine the space I of all two-sided closed ideals in
LL(G) with hull Q, where Q is a flat co-adjoint orbit of G.

Let us recall that a co-adjoint orbit = Ad*(G){ is flat if and only if the radical
g(0) :=={U € g,{(,[U,g) = {0})} of £ is an ideal in g and if and only if Q = ¢+ g(¢)~+
(see [Lul).

In the sequel we shall fix the element ¢ whose orbit is flat and write n = g(¢), N =
exp(n), which is a closed connected normal subgroup of G. Let p = £, which is
G-invariant as n is the stabilizer of [ in g, which is an ideal by assumption. The
function

Xp = Xe, 0 N = Coxep, (n) = e~ #0os() e N,
defines a unitary character of N, which is hence also G-invariant, i.e. x,(gng=!) =
Xp(n) for every g € G,n € N.

In the case where £ is a homomorphism of g, the space Z1*} has been determined
in [Al-Lu]: We denote by P, (G) the complex finite-dimensional vector space of all
polynomial functions P : G — C contained in L°(G) and by PZ,(G) the set of all
left and right translation invariant subspaces of P, (G). For every V' € PZ,(G), let

Jy = {f € I}(G), /G F(9)P(9)xe(g)dg = 0, %P € V}.

Then Jy is a closed two-sided ideal of the algebra L (G) and the mapping PZ,(G) >
V i Jy € T} is an order reversing bijection.

If ¢ is not a homomorphism, i.e. if the G-orbit 2 of ¢ is not reduced to a
single point in g*, the problem of determining the space Z% is very difficult (see for
instance [Lu2], where Z% is determined for w = 1 and g of step 3). In this paper
we consider the case of flat orbits. Then for the trivial weight w = 1, the orbit
2 € g*/G is of spectral synthesis (see [Lull).

Definition 3.1. Let Py, (N) be the complex vector space of all polynomial func-

tions P : N — C, which are dominated by wjy.
Let PZ,, v (Y )¢ be the space of G-conjugation invariant and N translation-
invariant subspaces of Py, (V). For every V € PIW‘N(N)G, we define Jy C
LY (N) as previously.

WIN

The following theorem proved in [Lu-Mo-2] determines the space of L>(G/N)-
invariant ideals in Z% for a flat co-adjoint orbit Q C g*.
Theorem 3.2. Suppose that ) is a flat co-adjoint orbit. The mapping
PL, (N = T0V = Iy == ea(Jy)

w‘N

is order reversing and a bijection between PIW‘N(N)G and the space of L°(G/N)-
invariant ideals contained in T%.

Remark 3.3. Since Iy is an L*°(G/N)-invariant ideal, it follows that
Iy ={f € LG, [ [ elslptmpn(m f(sn)dnds =0, € Co(G/N).p € V).
sJN

In this paper we prove a structure theorem for every two-sided closed ideal
I C LL(G) with hull ©; see Theorem
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Definition 3.4. For P € Py y(NN) write
I(m)P(n) := P(m~'n), r(m)P(n) := P(nm), o(g)P(n) := P(g~ 'ng),

m,n € N,g € G, for left and right translation by m € N and conjugation by g € G.
For Z € N, X € g, we have that

d . d
(3.1) I(exp(Z)) = di (,Z Y r(exp(Z)) =

Jj=0 ’ Jj=0

and

o(exp(X Z da . €9,

where d = dim(P,,, ,, (N)), since r,1 and o are unipotent representations of N (resp.

w‘N
G) on Py, (N).

It had been shown in that the minimal ideal j(Q) = j(m) is the
extension of the minimal ideal j(xp) C Lk (N).

w‘N
Since

i) =ilw) = {ferl p@fmnAm n)dn = 0,¥P € Py, (N)}
= Jp

win (V)
by [AL-Lu, the minimal ideal j(£2) being the extension to G of j(x,), we have that
(3.2)

J( Q) =j(me)={f € Li(G%/Nf*B(n)P(n)Xp(n)dn =0,8 € Ce(G), PEPy  (N)}-

Remark 3.5. Let d be the dimension of the vector space L&;W(N)/j(Xp), ie. d=
dim(Py, ). Then (ker(m))¢ C 7 (xp)-
Indeed, by [Lu-Mo-2], we know that ker(m)J is the extension of (ker(x,))’,j =

1,2,---. But since ker(x,)/j(xp) is nilpotent, it follows that ker(x,)? C 7(xp)-
Hence (ker(m,))? C e(ker(x,)?) C e(§(xp)) = 7(m).
Now if I € Z%, then I contains the minimal ideal j(2). Therefore, for any
@ € (I+)>~, g € G, the function
e(g) : N = C,n— p(gn)
is contained in j(x,)t = xpPuy (V). Hence the functions $(g), g € G, defined by

WIN

3(9)(n) = xp(n)p(gn), n € N,

are polynomial and bounded by wjn(N), if ¢ € (I*)>, by [Lu-Mo-2].
The set of all these polynomial functions ¢(g),g € G, € (I*+)>, generates a
G x N-invariant subspace of P, (IV), which we denote by V(). This means that

(IH)v = xpV ).
Let I be a closed two-sided ideal of L. (G) with hull Q. Hence j(m) C I and
It C j(m)*. As j(m) is L°(G/N)-invariant, by [Lu-Mo-2], Proposition 2.3l implies

that
(Gm)5) = G = (G0.)
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Hence
(3.3) W) = xp (In)"
C
V() = Xp-(I")n
C
Xp (.Y(XP))L = pwm(N)

Remark 3.6. By definition of V(I) and W(I),

IV(I) clcC IW(])
and W(I) = V(I) if and only if I is L°°(G/N)-invariant, by Proposition 223l If
I'is L>*(G/N)-invariant, then I = Iy 5y = Iw (), by Theorem This will be
specified further in Theorem

Moreover, Iy () is the largest L>°(G/N)-invariant ideal contained in I with hull
Q and Iy (g is the smallest L>(G/N)-invariant ideal containing I with hull Q.

In fact, let us assume that I is an L>(G/N)-invariant ideal with hull © such
that 7 € I. Then V/(I) ¢ V(I) and I = Iy 7y € Iv(r), which completes the proof
of the first statement. The second one is proved similarly.

Remark 3.7. Let (p;)?%_, be a basis of the (finite-dimensional) vector space Puoj (N).
Let us take this basis to be a Jordan-Holder basis for the (unipotent) action of G x N
on PW‘N( ). For a function ¢ € (5(Q2)1)> we can express the map ¢ in the basis

Xp(n)@(g)(n) = (gn) = Z ;(9)pj(n)xp(n), g€ G,n € N.

It is obvious that the functions ¢; are C*°.
Lemma 3.8. The complex functions ¢; are then contained in C2°(G).

Proof. Indeed, choose a family of Schwartz functions (4; ) _1 C S(N) such that

/ ()xp ()5, (n)dn = b5, irj =1, .d.

Then
os@) = / 5;(n)dn|
< /w n)|16;(n)ldn
- /W@MMMM
N
Slmuwﬁw@MMmen
< plloos851l1 e (9).
Hence

#5110 < Mllloo,wlld 11,
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We have to prove similar bounds for u x ¢ x v, u,v € U(g). Let us first notice

that , ¢, ¢, € (j(Q2))* for all y € G, where ,¢(g ) = p(y~'g) and @,(9) = @(gy)-
We then have

(y2)(9)(n) = @y g)(

Mg

(Y~ gp] u

||MQ.

Jj=1
and hence

(y); = y(ipj), for all j.
This implies that
(X xp)j = Xx(pj), X €9,
and even
(uxp)j =ux(pj),uclg)
Hence for any u € U(g) the function u * (¢;) is contained in L (G) as

[X * (@i)llcw = (X *0)jlloow
< X *@lloowll 1,0 n
<  +o0.

We have similar bounds if X is replaced by u € U(g) because of the assumptions
on .

Before dealing with the action of X on the right, let us notice the following: As
(N) is G-invariant and admits (py) as a basis,

P

w‘N

pi(y~"ny) = ijk Y)pi(n), Yy € G,¥n € N,

where the p;i’s are polynomial functions. For the unit y = e one has p;r(e) = d,i
because of the unicity of the decomposition in the basis (pi)¢_,. For y = exp(tX),
we put rj(t) := pr(exp(tX)). Then the r;;’s are polynomial functions in ¢ such
that 7;,(0) = p;jx(e) = 0. One easily checks that for g € G,

(Pexp(ex)) ;( Zru )(@3)exp(ex)(9);
and hence
d -
2 (e X)i(ps(n) = () (0 X)(gn)
" d d
PO +Z7“w (i * X)(9))ps(n).
j=1 =1
So

(pxX)i(9) = (r;(0) - i(g) + 735(0) (10s * X)(9))

-

=1

75(0) - ilg) + (05 * X)(9)

'M&

=1
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and
d

(9 * X)(9) = (9% X);(9) = D 75;(0)pi(9)-

i=1
The previous bounds imply that

d
s * Xlloow < 0% X)jlloow + D 17750 ll0illoow
i=1
d
< Nl Xlsowllilliwpy + D 1 O] 1@ lloowlGill -
i=1

For any u,v € U(g), we then get a bound of the form

lus@j*vlloow = [[(wxp)j*vlloow
d N;
< N (illux @lloow + D k@ % vinlloow ) 10110
=1 k=1
< +0o0

by assumption on ¢, for some v;, € U(g) and some non-negative constants ¢;. This
proves that ¢; € C(G), for all j. O

Definition 3.9. For any closed two-sided ideal I C L (G), we let
(3.4) I° =INS(G)
be the intersection of I with S(G).

Remark 3.10. It follows from and [Lu-Mo] that the hulls of I and of
I o &
In S(G)L“(G) coincide. As a matter of fact, the minimal ideal j(h(I)) is generated

by Schwartz functions. Hence h(I N S(G)) = h(I).
The next theorem will be an important step in the proof of Theorem

Theorem 3.11. Let Q be a flat G-orbit in g*. Let I € % be a closed two-sided
ideal in LL(G). Then I = I3, the closure being taken in LL(G). Moreover, every
f eI isinS(G) modulo j(Q).

In order to prove Theorem B.I1] we first establish the following lemma:

Lemma 3.12. Let (pj);l:l be a Jordan-Hélder basis of Py (N) = Xp - i)t
for the action of G x N, where d = dim(j(x,)%). We extend the functions p; to
polynomial functions defined on all of G by letting

Pj(sn) :=p;(n), ne N,s e S.

Then there exists a function ¢ € C°(S) = C(G/N) such that 0 < qw < C for
some constant C' > 0 and such that all the right and left partial derivatives of the
functions

T Z:qu, j:L...,d,

are dominated by w.
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Proof. Let w' be a symmetric continuous polynomial weight on S = G/N such that
W'(8) > Cow?(s) > Cy >0, s €8,

for some strictly positive constants Cy, Cy. Such a weight exists as G/N is a locally
compact group of polynomial growth on which every polynomially bounded function
is bounded by a polynomial weight ([Di], [Lud]). We define w’ on all of G by
w'(sn) :=w'(s), for all s € S, n € N. For any non-negative functions «, 8 € C.(G),
we have

axw xf(z) = // "(y"rau) B(u)dudy

W (2)( /G (s ) [ B! )

Now let a € C°(G), o > 0, such that [, a(g)w'(g9)dg = 1. We define a C>-
function p by p:= a * w’' * a and we put ¢ = l. Hence

(3.5) ( /G o‘,(y) dy)? - o/ (z) / / "y~ tru Y dydu

w'(y)
w’(w)

for all x € G, i.e. there exist strictly positive constants C5, Cy such that

0<C3<Cy-uw'(g) <plg) <W'(g), Vge@.

IA

IN

IN

For j=1,---,d, we have
[P (sn)]

I
)
.

3
=

VAN VAN VAR VAN

[
2
E\

for some strictly positive constants Cs,Cg,C7. Hence P; € Py, (G). Similarly
for u * P;, for all u € U(g), for all j, with the constants depending on u. For all
u € U(g), we have

luxp|=|(u*xa)*xw xa| <|ural*w x|a] <Cs-w < Cy-p
for new constants Cs, Cy (depending on u). For X € g and j € {1,---,d},
(X wr| = [X x (Pq)|
= (X xPj)g+ Pi(X *q)|
< Croww'q+ |Pj(X * %)|

1 X x
< Croww' = + Cloww’| 2”'
I
!
,C
S Cloww— + Cloww 92,u
1 1
< Cnw
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for new constants Cyg,C11. Hence X * r; is dominated by w. Similarly for r; x X.
The same is true for derivatives of higher order. One also shows that all the right

and left derivatives of ¢ are bounded by w. Finally,

qu(s) = qls)w(s)

IN

IN

< C

for new constants Cyo,C13,C. It is clear that the function % = p has the desired
properties. O

Remark 3.13. (i) Let I € g*, p(l) be a polarization at the point I, P(l) = exp(l),
m o= indIGp(Z)Xl the corresponding induced representation, H; the Hilbert space of

the representation m; and B(H;) the Banach space of all bounded endomorphisms
of H;. Then B(H,) is a G x G-module, the action of G x G being given by

(9.9")a=m(g)oaom((g)™), a € B(Hi),9.9' €G.

Let B(#;)*° denote the space of C'*°-vectors for this action. Then
m (LN (G)™) C B(H;)™.

In fact, for all u € U(g), the operator dm;(u) acts on the representation space as a
differential operator with polynomial coefficients, and conversely. This means that
for all differential operators with polynomial coefficients P, @ on the representation
space H>° (identified with a space S(R®)), there are u,v € U(g) such that P =
dm(u), @ = dm(v) and

[Pom(f)oQlop = lm(ux*fx*v)lop
lu* f*vlL1(a
—+0o0

ARVAN

for all f € LY (G)>.
(ii) By [Hol, the map

S(G) — B(H))>,
= mf)

is surjective. So, for every k € L*(G)>, there exists f € S(G) such that m (k) =
mi(f)-

Proof of Theorem B.I1l We define a mapping ® : LL(G) — (B(H,))¢ by the rule

®(f) = (me(r; f))§=1, f € LL(G).
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Then, since ker(m;) = ker(ind§ x,) (see [Lu-Mo-2]), it follows that
(3.6)

ker(®) = {f € LL(G),m(rif) =0,i=1,--- ,d}

= (€ LUG) [ xals) i) (onldn = 0.6 = 1.+

for almost all s € S}

=S € LLG). [ xplmpi(m) f(smydn = 0.6 = 1.+
for almost all s € S}
~ {7 € 24(G). [ v fnsyn =
for almost all s € S, for all ¢ € j(x,)*}
= {7 € L4(G). [ v(m)f + Alm)dn =0, for al 5 € C(G).

for all ¥ € j(x,) "}
={f e L,(G), f €eali(xp))}
= j()(= j(me)) by formula ([3.2)).

Let S(G/N, x¢) be the convolution algebra

S(G/N,x¢) ={f : G = C, f smooth, f oexp € S(s),

fgn) = xp(n)f(g),9 € G,n € N}.

The mapping

T S(G) = S(G/N.x0): U(f)(g) = /N F(gn)xp(n)dn.g € G, f € S(G),

is a surjective homomorphism. By Remark 313 we can map S(G/N, x) bijectively
onto B(Hr,)™ using the mapping

m(f) = f(g)me(g)dg.

G/N

As in Remark B7] we choose for every j =1, -- ,d a function §; € S(N), such that
Sy pi(n)d;(n)xp(n)dn = 6;5,i = 1,--- ,d. If we take any A; € B(Hnx,)*, then we
can find by [Ho| an f; € S(G/N, x1), such that 7,(f;) = Aj,j =1,--- ,d. Let oy
be the Schwartz function on G defined by

ai(sn) :=q(s)™* fi(s)di(n) = u(s) fi(s)di(n), s € S,n € N(i=1,--- ,d).
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It follows for the function k := 3% | a; € S(G) that
re(ryk) = m(érjai)
- z: /S /N wo(sn)rs(sn)a(sn)dnds
- i [ | s rpmateip,mats) ™ fs)a (nyands

d
— ;/S”f(s)fi(s)/vaj(”)5i(n)xp(n)dn

- /S mo(s) f;(s)ds

7e(f5)
- A,

-

Hence ® maps S(G) onto the space (B(H,)>)<.

Now take f € I°°. The function f may for instance be of the form f = axkx [
for k € I and «,B € C(G). Since the functions u* r; and r; * u (u € U(g))
are bounded by w by Lemma [3.12] the functions r; f are in L*(G)>°, and therefore
mo(rif) € B(He)>®,j = 1,--- ,d. Hence ®(f) € (B(H,)*>°)? and so there exists
f' € 8(G) such that &(f') = &(f). Hence f'— f € ker(®) = j(m;). Since I D j(my),
it follows that f’ € I, and so f' € I°. Because j(m;) is the minimal ideal with hull
{m¢}, we also have that j(m) NS(G) is dense in j(my), and hence for any e > 0 there
exists f. € j(m) NS(G) C I° such that ||f — f' — felliw < & But f'+ f. € I°.
This shows that f € IS and finally I = IS. |

Remark 3.14. Let J C L., (N) be a two-sided G-invariant closed ideal such that

W‘N
J = JS. Then it is easy to see that the two-sided closed ideal I = eg(.J) has
the same property, i.e. I = I5. Indeed, an element f € I can be approximated
by functions of the form a* 3, a € J, 8 € C°(G), and we can approximate the
function a by Schwartz functions b € J°; hence f is approximated by the b* 3’s in
I5.

4. THE G x G-MODULE S(G/N, x/)

The Hilbert space L?(G /N, ;) is a G x G-module for the presentation A of G x G,
where A is defined by

Mg, 9)é(x) = &(g " ag'), 2, 9,9 € G,€ € L*(G/N, xa).
Let b be a polarization at £ and let H := exp(h). Then the mapping

S(C;/]\f7 Xg) — S(GQ/HQ,Xg7_g)

f = U(f):=fe given by fg(g,g')::/H/N f(gh(g") " xe(h)dh, ¢',g € G,
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respects the L? norms since by [Lud|, for f € S(G/N, x¢),

/ mmw%wwwwmﬁs:u/ﬁwﬂW@:/ |f (@) |*d.
G/HxG/H nt G/N

Hence the mapping U extends to an isometric intertwining operator for the rep-
resentations A and 7wy X m_, of G X G, and therefore the representation A is itself
irreducible (see [Lu3]).

Proposition 4.1. Let Q be a flat G-orbit in g*. Let (me, H¢) be the irreducible
unitary representation of G associated with ). Then the Fréchet space S(G/N, xp)
is a simple S(G x G)-module under left and right convolution.

Proof. Since the orbit Q is flat, we have that
ker(m,)) NS(G) ={f € S(G)7/ fxn)xe(n)dn = 0,Vz € G}.
N

On the other hand, denoting by HS, the Hilbert space of the Hilbert-Schmidt
operators on Hy , it follows from [Ho| that the map
S(G) — (HS))™,
f = m(f)

is surjective and the S(G x G)-module HS;° is simple. Hence the algebra S(G x G)
acting by left and right convolution on S(G)/(ker(w); N S(G)) gives us a simple
module which is equivalent to the module S(G/N, xy). O

Remark 4.2. Let n € N* and f1, -, fu, 91, - ,9n € S(G) such that the func-
tions Wfy,--- ,Uf, € S(G/N,xy) are linearly independent. Then there exists F' €
S(G x G) such that

/ gj(zn)xe(n)dn= / / F(u,v) fj(utzon)xe(n)dndudv,x€G,j = 1,--- ,n.
N GxGJN

This follows immediately from the simplicity of the S(G x G)-module S(G/N, x¢)
and hence from the n-transitivity of the S(G x G)-module S(G/N, x¢).
Definition 4.3.

(1) Let us write for an F' € S(G x G) and a measurable bounded function h
on G:

(4.7 F-h(g) :=XF)(h)(g) = /GXG F(u,v)h(u gv)dudv.

(2) We do the same for A € U(g x g) and a smooth function ¢ on G. We let
A - ¢ denote the differential of the natural action of G x G on the functions
on G.

(3) Using the cross section introduced in section 2] we introduce the coordinates
7(g) and n(g) on G:

g=1(g9)n(9),

where 7(g) denotes the S-component of g and 7(g) its N-component.
(4) For a polynomial function p: N — C,p € P, , let

IN?

V(D)= [ s fenuindn. 1€ S(@).a eG.
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Again take a Jordan-Holder basis (p;)7_, of Pujy (N) for the G x N-action. Also
let

WOZCCW1C-~-CWd='Pw‘N(N)

be the corresponding composition series of the G x N-module P, .
the basis polynomials p;,j7 =0,--- ,d, we simply write

(N). For one of
U, instead of ¥y, .

If we express the left translation of p in the basis (p;);, i.e. if we put

d
l(m)pj(n) = ZZZ'J'(??”L)])Z'(TL)7 nmeN,j=1,---,d,
1=0

and similarly, for g € G let

J
U(g)p] = Zai,j(g)piv ] = 17 e ada
i=0
then we obtain the relations

(4.8) U, (f)(@m) = pj(n)f (zmn)xe(n)dn

pi(m~"n) f(zn)xe(m™"n)dn

I

Il
=)

Li i (m)xe(m™") Wi (f)(2).

K2

In the following proposition, we use the notation Iy, introduced in Theorem
and I° introduced in Definition [3.91

Proposition 4.4. Let j € {1,--- ,d} and f € Iﬁ,jil, Then for any F € S(G x G),
we have that

In particular, the mapping V; : I1§V,~_1 — S(G/N, x¢) is an S(G x G)-equivariant

surjection with kernel If?;,j and the S(G x G)-module Iﬁ,jil/l%j is equivalent to the
module S(G/N, x¢) and is therefore simple.
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Proof. Now take f € ker(m;) N S(G). Then:
(4.9)

V(P £)@) = [ )P - fan)xa(m)dn
:/ pj(n)/ F(u,v) f(u™tznv)dudvy,(n)dn
N GxG

/GxG (/Npj(Unv_l)f(u—lgwn)m(n)dn> F(u, v)dudv

I
I Mm

=1

|
Mm

Fi’j . \IJZ(f)(,’E), S G,

.
Il
_

where F; ;(u,v)=0; j(v"!)F(u,v),u,vEG,i<j. Now suppose that fe[ﬁ,jil \I‘?Vj.
Then we have that

0 = / pi(n)f(u_lxvn)xg(n)dn, i=1,---,j—1, z,u,v € G,
N
and therefore, for F' € §(G x G),
V;(f) € S(G/N,xe) and F - (V;f) = V;(F-f),
as 0;; = L. O

5. THE STRUCTURE OF PRIMARY IDEALS WITH A FLAT HULL

Let T € Z™ such that W(I) C V(I). Let us recall that the notation W(I) and
V(I) were introduced in the relation of Remark B3] and that the strict inclusion
means that [ is not L>(G/N)-invariant, by Proposition 233 Choose a composition
series Wy = W(I) C --- C W,. = V(I) for the action of G x N on P, , (N), going

through W (I) and V(I). Since the action of G x N is unipotent OI‘IN'PW‘N(N) it
follows that dim(W;/W;_1) =1 for every j. Furthermore,
vy =1w, Slw,_, & S Iw, = Iw(n)-

Choose a basis B := {p1,---,pr} of V(I) modulo W(I), which is adapted to the
sequence (W;)i_,, i.e, W; = 25:1 Rp; + W(I),j = 1,---,r. Also let (g;)5_; be
a Jordan-Holder basis of the G x N-module W (I) and similarly a Jordan-Holder
basis (r;)%_, of the G x N-module P,, . (N)/V(I).

Definition 5.1. Define for a function h € S(5) and a function § € S(N) the
Schwartz function fr s =h® d on G by

fns(w) = h@6(x) = h(r(x))d(n(r)),z € G.

Proposition 5.2. Let W C V be two G x N-invariant subspaces in ’Pw‘N(N).
Choose for every j =1,--- ,r a function 0; € S(N) such that

/ pz(n)éj(n)xﬁ(n)dn = 62]7 Za] = 17 S
N

/p(n)éj(n)xg(n)dn = 0, peW,
N
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where {p1,--- ,pr} is a Jordan-Hélder basis of V- mod W for the action of G x N.
Then for every j =1,--- ,r we have that

= S8(8)®6; + Iy
Let f € I}y and as before let

U,(f)(x) = /Nf(xn)pj(n)xg(n)dn, reG,j=1,---,r

Define for j =1,--- ,r the Schwartz function f;(z) = V;(f)(7(x))d;(n(z)),z € G.
Then

f = Z fj mod Iv.
j=1

Proof. The ideal Iy := eq(Jv) (see Theorem B.2)) is determined by the condition

Iy ={feLll(G // n)f(sn)dnds = 0,9 € C.(G/N),p € V}.
Hence
I§ = Iy NS(G) ={f € S(G) N Tw; Uy(f) = 0,5 =1,--- ,r}.
Moreover, by Theorem BII] Iy is contained in S(G) modulo j(€2). Hence we

may use Schwartz functions in the following arguments. By the definition of the
functions f;, we have for k =1,--- ,r that

| (rtam - 3 et

_ /fa:npk n)xi(n )dn— /6 (n)xe(n)dn

Jj=

= ‘Ifk(f)(x)—Z‘Pj(f)(T(w))Xe(n(w)fl)/N5j(n)pk(n($)’1n)><e(n)dn

= ‘Ifk(f)(x)—Z‘I’j(f)(f(x))Xe(ﬁ(x)*l)/N% lek n))xe(n)dn

= Zlm () (r(@)xaln(z) )

- / Flr@(a)n() n)ps o)~ n)xa(n(x) ~n)dn

= Up(f)(2) i)

= 0.
Hence Wy (f — >, f;) = 0 and therefore f = >, f; modulo Iy, as f — 3>, f; €
S(G)N Iy. |
Remark 5.3. It is easy to see that there exists for j = 1,--- ,r an element f €

I N S(G) such that the function ¥, f is linearly independent from the functions
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U, f,i =7—1,---,1. Indeed consider for p € V(I) the linear functional p € (I N
S(@))’ defined by

@.0) = [ fpmxnin.
N
Then the kernel of the functional p; does not contain the intersection of the kernels
of the functionals p;,j = 1,---,j — 1, since otherwise, p; = Z}ZFl «;p; for some
coefficients «; € C. But this would imply that p; — Z;ijlajpi e W), ie.

p; € W;_1. We now take a function f € I N S(G) such that (p;, f) = 0 for all
i=1,---,j—1and (p;, f) =1. Then

Wfle) =1, if(e) =0, =1, ,j— 1.
and so ¥, f is not contained in span{¥q f,--- ,¥;_1f}.
Definition 5.4. (1) For a function f € S(G), let
(f):={F-},F €8(GxG)}.
(2) Let I be a closed two-sided ideal in Z™ such that V(I) # W (I), and let
C={WI)=WoCcWyC---CW,=V(I)}

be a composition series of V/(I)/W (I) for the G x N-action. We define the
index set

W= = {1<i<nrInly, CINIw, ,}
= {j1 < <Jm}
(3) We denote by I the space of the smooth vectors (for the action of G x G)
of I ¢ L}(G,w).

Theorem 5.5. Let Q = Ad*(G){ = {+g(£)* be a flat orbit in the dual space g* of
the Lie algebra of the simply connected connected nilpotent Lie group G. Let w be
a continuous symmetric polynomial weight on G. Then for every two-sided closed
ideal I in the Banach algebra L} (G) whose hull is the set {Q}, we have that I is
L>(G/N)-invariant if and only if V(I) = W(I). If V(I) 2 W(I), then

Iy 1T € Iwpy-
Furthermore, for every composition series

cC={wWl)y=WocCcWyC---CW,=V({)}

of the G x N-module V(I)/W (I), the index set i} is contained in {1, ,r — 1}
and contains the number 1.
If we choose for any i € u! an element f; € I°N Iy, , \ Iw,, then we have that

I~ = Z<fi> + Iy~

1€LT

In particular, if for two ideals I, Iz € ™ such that V(I,) = V(I3) and W(I1) =
W (1) the index sets 1t = "2 coincide and if Iy C I, then I} = I5.

Proof. We have that

Iv(]):IWTCIﬂIWT71 C"-CIQI{/V1 CIQIWOZICIWU).
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Also choose for every i € «f an element f; € 19N Iy, , \ Iw,. Hence by Proposition
A4 we have that
{F-fi,F €S(Gx@)}+Iw,)" = (Iw,,)°, i€l

Hence for every g € I°, we have an Fj, € S(G x G) such that g—Fj, - f;, € INIy, .
Continuing in this way we find F; € S(G x G),i € ¢!, such that

9= FifieUw)® = va)®.
i€t

Therefore
I$=1n8(G) =Y () + Iy

it

Now recall that every C™-vector f € I is contained in I modulo j(m)*. Hence

1°=>"(f) + Iyy™

i€t
Let us show that the index set ¢} is contained in {1,---,r —1}.
According to Remark 3.7} we have for every ¢ € I+ N C(G) the expression
Zgoj(s)pj(n)xg(n), s € S,ne N, modulo W(I).
Now if j,, = r, then for g € Iy, , we have our F,; € S(G x G) and our f,, = f;,, €

In Iﬁ,ril \If,gv , such that g = Fy - [}, mod Iy, = Iy ). Hence, by Proposition
L4 v,.(g) = U, (fm), =0 for j < r, and therefore for ¢ € I+ N CZ(G),

(9) =
(o) = / / sn)g(sn)dnds
= /sz_:lsﬂj W;(g)(s)ds
el
[ eoF, - v () 5)as
[ @B, - £u)(s)ds (by Proposition T

/Z% JEy - fa)(5)ds

0.

Hence Iy, , C I and Iy ;) = Iw, € Iw,_, C I contradicts the fact that Iy (g is
the largest L°°(G/N)-invariant ideal with hull € contained in 7. This contradiction
tells us that j,, <r.

Now if j; # 1, then I = I N Iy ;) = I N Iyw,, and therefore I C Iy,. But then
Wy ¢ W(I), a contradiction. O
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6. THE CASE OF A CENTRAL STABILIZER

Lemma 6.1. Let Q be a flat G-orbit. Let V be a G x N invariant subspace of
Puy (N). Let I be a closed two-sided ideal in L,(G) such that the hull of I is the
set  and such that V(I) C V. If Iy C I then there exists a function f € S(G)NI
such that f & I, but such that (u+ il(u)) * f € Iy for every u € n. In particular,
for any p € V, we have that

/Np(mn)f(gnv)xg(n)dn = /Np(n)f(gnv)xg(n)dn, for every g,v € G,m € N.

Proof. Take a Jordan-Holder sequence
W) =VoCWViC-CVi=V()C-—-CV,=V
for the action of G x N on P, (N). As Iy C I, W(I) €V, and hence W () C V1.
Let f € S(G)NI and p € Vi \ W(I). For u € n we see that
[ pnd s it « flamoxetyin. = = [ (Adg™)w) #p)m) flgmopnat)dn

since Ad(g~1)(u) * p € W(I), because u acts as a nilpotent endomorphism on

Puy (N). Continuing in this way, we see that we can find for f € IS\ Iy an

element A € U(n) such that A x f & Iy, but such that (u+ il(u)) * A* f € Iy for
every u € n. Hence replacing f with A * f, we can in this way produce an element
f € 8(G)N I, which is not contained in Iy, but such that (u + il(u)) x f € I for
every u € n. Hence for any p € V, for any g,v € G,u € n,

/N“*p(”)f(gnU)Xé(n)dn
- %/Np(exp(—tu)n)f(gnv)xl(n)dn|t:0

=/ p(ﬂ)(—Ad(g)(U))*f(gm)Xz(n)dn—il(U)/ p(n) f(gnv)xi(n)dn
N

_ /N p(n) (Ad(g)(u) + il(Ad(9)(w))) * f(gnv)xa(n)dn
=0,

as [(Ad(g)(u)) = l(u). Now for m € N,p € V(I), we have that p(mn) = p(n) +
Gm(n) for some polynomial ¢,,, which is obtained from p via some derivatives by
elements of n. It then follows that

/ p(mn) f(gnv)xe(n)dn = / (p(n) + gm (n)) f (gnv) xe(n)dn
N N

= /Np(n)f(gnv)xg(n)dn, g,v € G.
O

Proposition 6.2. Let Q = Ad*(G)¢ = ( + g({)* be a flat orbit in the dual space
g* of the Lie algebra of the simply connected connected nilpotent Lie group G. Let
w be a continuous symmetric polynomial weight on G. Let W C V be two G x N-
invariant subspaces in PM‘N(N). Let Iy C I C Iy be a two-sided closed ideal I in
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the Banach algebra L. (G). If the G-action on V/W is trivial, then the ideal I is
L>(G/N)-invariant.

Proof. Since Iy C I C Iy, we have that W c W(I) C V(I) C V, and hence the G-
action on V(I)/W(I) is also trivial. We can therefore assume that V =V (I), W =
W(I). If I = Iy(y), then I is L°°(G/N)-invariant. So let us assume that Iy ;) C 1.
Then W(I) C V(I) by the relation in Remark B3l Also let

(Io)® ={f € I*®, (u+il(u)) * f € Iy(y),Yu € g}

and let Iy be the closure of (Ip)* in L}(G). Then Iy is a closed two-sided ideal
contained in I and containing Iy ;) properly by LemmaG.Il The inclusions Iy 5y C
Iy C I imply that V(I) C V(lo) C V(Iy () = V(I), i.e. V(I) =V (lp). Moreover,
Iy € I shows that W(I) ¢ W(Io) € V(Io) = V(I).

If W(lp) = V(lp), then Iy is L*°(G/N)-invariant and Iy = Iy () = Iy, a
contradiction.

So let us now assume that W (ly) C V(Iy). Let {p1,---,pr} be a basis of V(Ij)
modulo W(Iy). Because of the assumption on the G-action and because of the
inclusions W = W (I) C W(ly) C V(Ip) = V(I) =V, the G-action on V(Iy) /W (ly)
is also trivial. Moreover, let us notice that for any p € V(Ip) = V(I),

(6.10) plmunu™) = p(n) + gm,u(n),n,m € N,u € G,

where ¢y, is an element of W(Iy). In fact, conjugation is taken care of by the
triviality of the G-action. Translation by elements of N is taken care of by Lemma
This means that {p1,---,p.} is a Jordan-Hélder basis for the G x N-action,
for any order of the basis vectors.

As before, let us use the notation

(f)(s) = /N F(sm)ps(m)xe(n)dn, s € 5. f € Iyqny-

Using the fact that the G-action on V (Iy)/W (Ip) is trivial, an easy computation
shows that
F\I]J(f):\:[,](Ff)7 fEIO7j € {17 7T}7FES(GXG)'

Let us now show that Iy = Iy(;). By Remark 5.3 and by the fact that the order
of the basis vectors p1, ..., p, does not matter, there exists for every j € {1,--- ,r}
an element f; € Iy, for which the function ¥;(f;) is linearly independent from the
family {¥;(f;),7 € {1,---,r,i # j}}. Finally, the fact that F'- U,;(f) = U,;(F - f)
forall f € Iy, F € S(GxQ),je{l1,---,r}, and Remark L2 allow us to construct,
for every j € {1,---,r}, a function k; € I5 such that W;(k;) = 0 for i # j and
U;(k;) # 0. In fact, as the Uy (f;)’s are independent, there exists by Remark
an Fj; € S(G x G) such that

Uy (Fy- f) =F; - Up(f;) =0 if j#k,

W (Fj - f5) = Fj - W;(f5) # 0.
Put k; = Fj - fj. Now if h € I‘?VO(IO), then there exists for each j € {1,---,r} an
F; € S(G x G) such that h = 22:1 F; - kj modulo Iy g,y by Theorem But
this means that h € Iy, since Iy (;,) C Ip and since the k;’s are all contained in .
So Iw(1,) C Ip and hence Iy 1,y = Iy = Iw(y,), which means that Iy is L>(G/N)-

invariant. But then Iy () = Iy (1,) = Io, a contradiction. This contradiction shows
that Iy ;) = I, and hence that I is L°°(G/N)-invariant. O
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Theorem 6.3. Let Q = Ad*(G)! = £ + g({)* be a flat orbit in the dual space g*
of the Lie algebra of the simply connected connected nilpotent Lie group G such
that the stabilizer g(£) is the centre of g. Let w be a continuous symmetric polyno-
mial weight on G. Then for every two-sided closed ideal I in the Banach algebra
LL(G) whose hull is the set {Q}, we have that I is L°°(G/N)-invariant, and so
I =eq(I|n). In particular, the mapping: V — eq(Jy) defines an inclusion revers-
ing bijection between the space PIW‘N(N)G of the G-invariant and N -translation
invariant subspaces V owa‘N (N) and the space I of two-sided closed closed ideals
1 with hull Q.

Proof. We have that Iy ;) C I C Iy () and that V(I)/W(I) is a trivial G-module
since n is central. Hence it suffices to apply Proposition (Il

7. AN ALGEBRAIC VIEW TO SOME OF THE PREVIOUS RESULTS

In this section we consider in particular (the ideal theory in) the topological
algebra S(G)/S(G) N j(m), which is dense in LL(G)/j(m). It turns out that
S(@)/S(G) N j(m) is a Noetherian S(G x G)-module, for the action of S(G x G);
see the beginning of section 4. An important tool will be the existence of an idem-
potent q € S(G)/S(G) N j(m) of finite rank, i.e., g xq = q, and q * S(G)/S(G) N
j(m) * q is finite-dimensional. This latter space generates the S(G x G)-module
S(G)/S(G) N j(m). Actually, q * S(G)/S(G) N j(m) * q is, as a space, isomor-
phic to S(N)/S(N) N j(xp) = Li;|N(N)/j(Xp)' The two-sided closed ideals in
S(G@)/S(G) N j(m) are in one-to-one correspondence to the two-sided ideals in the
algebra q * S(G)/S(G) N j(m) * q. Finally, the obtained insights will be applied to
the ideal theory of LY (G)/j(m).

We start with an elementary lemma on finite-dimensional nilpotent associative
algebras.

Lemma 7.1. Let R be a d-dimensional associative algebra over the complex number
field (or any other field) with unit n. Lettgy =R Dtg_1 D--- Dty Dtg={0} bea
sequence of two-sided ideals with dim(t;) = j and tg_1t; C vj_1 and tjrg_1 C vj_1
forj=1,--- ,d—1. Then each proper two-sided ideal in R is contained in t4y_1,
i.€., ty—1 15 the unique maximal ideal. Moreover, R = Cn @ tq_1.

Remark 7.2. If m := t4_1, then the assumptions tell that m? = 0. In turn, if there
is a one-codimensional ideal with this property in some d-dimensional algebra with
unit, then there always exists a Jordan-Holder sequence with the above properties:
Refine, if necessary, the sequence m D m?> D m? O ---. If d > 2, then besides the
unique maximal ideal m there is a canonical “relatively small” ideal a := {r € R |
mr = rm = 0} which has the property that a Nb # 0 for any non-zero two-sided b
in R.

Proof. (Induction on d) The case d = 1 being trivial, assume that d > 1. Let
i R — R/t1 be the quotient map, and let J be a proper two-sided ideal in R.
If u(J) € R/vy we are done by induction, so assume that u(J) = R/vy. Then
R = J @ ty; in particular, there exists h € J and r € vy such that n = h+r. As
r?2 = 0, we have hr = nr = r, and likewise rh = 7. The equation h+r = n = n? leads
to h? = h, 2r = r; hence h = 1 € J, a contradiction. The equation R = Cn @ t4_;
is obvious. (]
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Proof of Remark 7.2. If b # 0, then choose [ > 0 such that m'b # 0, but m*1b =0
(if I = 0, then m! is meant to be R). Similarly choose k > 0 such that m'bm* # 0,
but m‘bm*+! = 0. Then anb D m'bm” # 0. O

As in previous sections let N = G(I), | € g*, be a member of the flat orbit .
As we remarked earlier the minimal ideal j(x,) C Li;| (V) is the annihilator for
the pairing

(f. ) = / F (@) xp(2)® (),
N

fe Li;\N(N)v(I) € Pyn(N). If we denote by A the algebra Li‘N(N)/j(Xp), the
above pairing induces a non-degenerate duality A x P, n(NN) — C between the
d-dimensional spaces A and P,y (NN). The algebra A has a unique element 7 with
the property (n,®) = ®(e) for all & € P,y (NN); this element 7 is the unit in A.
Also the other properties of Lemma [ZI] are satisfied. There is a sequence of ideals
ag =ADag_1 D -+ D a; D ag = {0}, where ag_1 = ker(x,)/7(xp), such that
dim(a;) = j and ag_1a; C a;_1 and ajag_; C aj_1 for j =1,--- ,d — 1. We shall
often use m for the unique maximal ideal ag_1.

The right and left translations on Li;| (V) with elements of N induce actions
p and A, resp., of N on A, and the two-sided ideals in A are just the A-p-invariant
subspaces. The dual action A\* of N on P, n(N) is given by (A*(n)®)(z) =
xp(n) " t@(n~'z), n,z € N, ® € P,y n(N), i.e., we have the relation

() f. @) = (f, A" (n1)@).
Likewise

(" (n)®)(x) = Xp(n)®(zn).
Taking annihilators with respect to the pairing A x P, x(N) — C, the (proper)
two-sided ideals in A correspond, in an antitone manner, to the (non-zero) N-
biinvariant subspaces of P, (N). For example, m = ker(x,)/j(x,) corresponds to
the space of constant functions.

Conjugation by elements in G induces an action x of G on A. Here the dual
action £* on P,y (V) is again conjugation, ie., (k*(a)®)(z) = ®(a 'za), a € G,
r € N, ® € P,yn(N); observe that x, is invariant under conjugation. Hence
the G-invariant ideals in A correspond to N-bi-invariant, G-invariant subspaces of
Pw\N(N)

Consider two-sided ideals a and b in A such that b C a C m and dim(a/b) = 1 (for
instance two consecutive members of the above Jordan-Holder sequence). Then a/b
is an A- (or Li‘N(N)—)bimodule. As the maximal ideal m (or ker(x,)) annihilates
a/b, we find that

uf = fu= xp(f)u modb
foruea feA(or fe L}u‘N(N)). From this we conclude that the action of x € IV
on a/b, induced from A, is given by multiplication with x,(z). If, in addition, a
and b are G-invariant (under the conjugation ), then the induced G-action on a/b
is trivial.

Moreover, there exist Jordan-Holder sequences ag, -« , a1, a¢ in A with the ad-
ditional property that the a;’s are G-invariant. If necessary one can realize (addi-
tionally) that the a;’s are invariant under the involution on A, induced from the
involution on L. (G).
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Convention 7.3. In the sequel, ag D ag_1 =m D --- D a; D ag will always denote
a Jordan-Holder sequence with all these properties.

The dense embedding S(N) — Li)lN(N) induces a map from S(N) onto the

finite-dimensional space A = Li}‘ ~(N)/i(xp). Hence A is canonically isomorphic
to the algebra S(N)/S(N) N j(xp)-

The closed two-sided ideals in L} (G) containing the minimal ideal j(7;), which
is extended from j(x,) C Li‘ n(&V), correspond to the closed two-sided ideals in
the quotient algebra LL(G)/j(m). The embedding S(G) — LL(G) induces a
dense embedding S(G)/S(G) N j(m) — LL(G)/j(m). To describe the quotient
S(@)/S(G) N j(m) it is convenient to view S(G) as a twisted covariance alge-
bra. For the following see also [Lue-Po], where the case of L!-algebras is treated
in a similar fashion. Given the normal subgroup N of G define the twist [ of
N (I = left translation) on S(N) by (I(n)f)(z) = f(n 'z), and the action ¢
of G on S(N) by (cof)(z) = f(a 'za). Then one can form the twisted covari-
ance algebra S(G/N,S(N),¢,l), or S(G/N,1) for short, which consists of functions
¢ : G = S(N) such that

o(ax) = I(x) 'p(a),a € G,z € N,

and that ¢ is a Schwartz function on an appropriate cross section S of G — G/N.
The multiplication is given by

(o5 )(a) = / es(p(ab™)) (B,
G/N

Wy

where the “¢” on the right hand side means convolution in S(N). Observe that the
integrand, a function of b € G, is in fact constant on N-cosets. The involution is
given by
" (a) = com1 (p(a™)").

So far, this is just a complicated way to write the algebra S(G). Actually, if for
f € 8(G) we define f : G — S(N) by f(a)(z) = f(az), then the map f — f yields
an isomorphism from S(G) onto S(G/N,S(N),¢,1). The ideal j(m;)NS(G) consists
exactly of those f € S(G) such that f(z) € j(x,) NS(N) for all z € G, ie., to
the subspace S(G/N, j(xp) NS(N),¢,1) of S(G/N,S(N),c,1). Hence the quotient
S(G@)/S(G) N j(m) — and this is the advantage of this approach — can be realized
as the twisted covariance algebra

S(G/N,A,c, ), or simply S(G/N, ).

Here A = S(N)/S(N) N j(xp), the action ¢ of G is the action induced by ¢ on
S(N), while the twist 7 on A is induced by left translation with elements in N. The
multiplication and the involution on S(G/N, 7) are given by the above formulae. As
a Fréchet space, S(G/N, 1) can be identified with the tensor product S(G/N) ® A.

The product G x G acts on S(G) via translations, (8(a,b)f)(z) = f(a"'ab) for
a,b,x € G, f € S(G). Under the identification with S(G/N,S(N), ¢, 1), this action
transforms into

(B(a,b)@)(x) = ey(p(a” ab)).

If T is any Fréchet closed two-sided G-invariant ideal in S(N), for instance I =
S(N)Nj(xp), then this action yields an action of G x G, denoted by the same letter
B, on the quotient S(G/N,S(N)/I, ¢, 7) which is given by the above formula, where,
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of course, the above “c,” has to be replaced by the appropriate ¢, i.e., the induced
action of G of S(IN)/I. All these actions of G x G integrate to representations of
the Schwartz algebra S(G x G) on G x G, also denoted by 3.

The easiest way to construct ideals in S(G/N, 7) is to take a G-invariant ideal a
in A, ie. a=1/S(IN)Nj(xp) for some G-invariant two-sided ideal I in S(IN), closed
and of finite codimension, and to form the extended ideal, which in the present ap-
proach means to form the collection S(G/N,a,c,7) of all f € S(G/N, A, ¢, T) such
that f(z) € afor all z € G. If b is another G-invariant ideal in A such that b C a C
m and dim(a/b) = 1, then, as we remarked earlier, the action ¢ of G on a/b is trivial
and the twist 7 of N on a/b is multiplication by yx,. Identifying a/b with C we find
S(G/N,a,¢,7)/S(G/N,b,c,7) = S(G/N,a/b,c,7) = S(G/N, xp), where (cf. sec-
tion @) S(G/N, x,) consists of all functions f : G — C with f(az) = x,(z) "' f(a),
a € G,z € N,and f is a “Schwartz function modulo N”. The space S(G/N, x,)
is also an algebra, but the above identification is not an isomorphism of algebras:
The multiplication on S(G/N,a/b, ¢, 7) is identically zero (as the multiplication on
a/b is trivial). However, if we replace a by A and b by m, then it is still true
that S(G/N, A/m, ¢, T) is isomorphic to S(G/N, x,), and this is an isomorphism of
algebras. As the actions of m on a/b are trivial (from both sides), we observe the
following remark.

Remark 7.4. The actions of S(G/N, A, ¢, 7) on S(G/N, a/b, ¢, ) reduce to actions of
the quotient S(G/N, A/m, ¢, 7). Identifying, as above, the spaces S(G/N,a/b,c, T)
and S(G/N, A/m,c, ) with S(G/N, x,), these actions yield the multiplication on
the algebra S(G/N, xp).

A (Fréchet-)closed subspace of S(G/N, A, ¢, T) is a two-sided ideal if and only if
it is invariant under 5(G x G) or under B(S(G x G)). It turns out that in fact any
B(S(G x G))-invariant subspace of S(G/N, A, ¢, 7) is automatically closed.

Proposition 7.5. Each S(G x G)-submodule U of S(G/N, ) is closed.

Proof. Recall, from Convention[Z3] that 0 =ay Ca; C---Cm=aq_ 1 Cag=A
is a Jordan-Hoélder sequence consisting of (self-adjoint) G-invariant two-sided ideals
in A. We proceed by finite induction on k¥ = dim(ay). Suppose first that U is
contained in S(G/N,aq,¢, 7), which is isomorphic to S(G/N, xp). As c is trivial
the action of G is given just by ordinary translations, (B(a,b)f)(x) = f(a™'zb),
and by Proposition LI S(G/N, x,) is a simple S(G x G)-module. Therefore, i =0
or Y = S(G/N, x,). Now suppose that U is contained in S(G/N, ax41,¢,7T), but
not in S(G/N, ay, ¢, 7). By induction, we know that & N S(G/N, ax, ¢, 7) is closed.
Consider the exact sequence

0 — S(G/N,a,c,7) = S(G/N, a41,¢,7) QS(G/N, ag+1/0k, ¢, 7) = 0.

The image v(U) is a non-zero S(G x G)-submodule of S(G/N,ay11/ak,¢c,7) =
S(G/N, xp). Hence v maps U onto the latter space.

Choose any uy € U such that v(ug) # 0. This element v(ug) is used as a
“generator” of S(G/N, ag41/ak,¢c,7), i.e., the map

S(G X G) — S(G/N, ak+1/ak,c,7);

@ = B(o)(v(ug)) is surjective (and open). Let (u;) be any sequence in U with
limit f in S(G/N, axy1,¢,7). We write v(u;) = B(¢;)(v(uwo)), v(f) = B(e)(v(uo))
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with ¢;, ¢ € S(G x G), and we may assume that (y;) converges to ¢. As v(u;) =
v(B(pj)uo) we see that u; — B(p;)ug € UNS(G/N, ai,c, 7). Therefore, the limit of
this sequence, namely f — B(p)ug, is in U, which shows f € Y. (]

Among others we will show later that each S(G x G)-submodule of S(G/N, 1)
is finitely generated (with at most d = dim(A) generators). To this end, we use
idempotents in the algebra S(G/N, ) whose existence is established first.

Lemma 7.6. Let q be a projection of rank 1 in the algebra S(G/N, x,), t.e., ¢* = ¢,
gxq=¢q, q*S(G/N,xp) *q=Cq #0. There exists a ¢ € S(G/N, 1) such that
q*=4q, gxq=q, u(q) = q, where i denotes the canonical map

S(G/N, A, c,7) 5 S(G/N,S(N)/ker(xp)) = S(G/N, A/m, ¢, 7) = S(G/N, x,p)-

Proof. First we note that there are plenty of such ¢’s. By [Ho|, to each smooth
vector £ # 0 for the representation m; there exists f = f* € S(G) such that
m(f) is the orthogonal projection onto C¢. Let ¢ € S(G/N, x,) be the element
corresponding to 7;(f) under the canonical identification S(G/N, xp) = m(S(G)).

Given ¢ choose any h = h* in S(G/N, 1), which is mapped onto ¢, for instance
the image of the above f under the canonical surjection S(G) — S(G/N, 7). Since
h(1—h) € ker(u), ker(n) = S(G) Nker(m;)/S(G) N j(m), and (ker(m;))? C j(m) by
Remark 3.5, it follows that 0 = (h(1 — h))¢ = h4(1 — h)%.

The polynomials t¢ and (1 — t)? are relatively prime in Q[t]. Hence there exist
@, U € Q[t] with 1 = t?®(t) + (1 — t)?¥(t). Actually, a possible pair ®, ¥ can be
constructed explicitly: From

1 = (t+1-t))*!
2d—1 d—1
- ¥ <2dk_ 1)tk(1 — PRy <2dk_ 1)tk(1 — )i
k=d k=0
2d—1 d—1
— 4l Z <2dk_ 1) tkfd(l _ t)2d717k: + (1 _ t)d Z <2dk_ 1>tk(1 _ t)dflfk
k=d k=0

one can read ® and ¥. In the quotient algebra Q[t]/t¢(1 — )¢ the polynomials
t4®(t) and (1—t?W(¢t) yield idempotents ((t?W(t)))? —td®(t) = tI®(t) (¢ (t)—1) =
—t2®(t)(1—1)4U(t) = 0 mod t(1—¢)?). As the homomorphism Q[t] > F + F(h) €
S(G/N, 1) factors through Q[t]/t(1 —t)%, the element q := h%®(h) of S(G/N,7) is
idempotent as well. Also the other two claimed properties of q are satisfied. Since
t4®(t) has real coefficients, q is selfadjoint. Finally, from 1 = t2®(¢)+(1—1)9W¥(t) we
conclude ®(1) = 1, ie., > ¢; = 1if ®(t) = > ¢;t/. Hence u(q) = u(h?®(h)) =
720 720
' Y i = (X ¢jla=q O
Jj=0 j=0

An idempotent q as in the lemma is fixed for a while. We consider the evalua-
tion map Fv at the unit element in G for functions ¢ € S(G/N, A, ¢, 7), and for
subquotients S(G/N, ag+1/ak, ¢, 7) as well.

Proposition 7.7. Ev: q* S(G/N,A,c,7) xq — A is a linear isomorphism; in
particular, dim(q+ S(G/N,A,c,7)*q) =d.
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Proof. By induction we prove that FEv gives a linear isomorphism from
q* S(G/N,ag,c,7) * q onto ag. For k = 1 we have, as before, S(G/N,ay,¢,7) =
S(G/N,x,), and the action of S(G/N,7) leads (cf. Remark [4) to the action
of S(G/N,x,) from both sides. Hence we find that q * S(G/N,a1,¢,7) * q can
be identified as ¢ * S(G/N,x,) * ¢ = Cq. It remains to observe that g(e) =

| q(@)g(z7V)dz = [ q(z)g(z)d is different from zero.
G/N G/N
For the induction step consider the commutative diagram

0—>q*S(G/N,ar,c,7)xq—=>qxS(G/N,ap411,¢,7) *q—>q*S(G/N,ait1/ai,c,7) xq—>=0

lEv/ lEv lEU”

ag 41 apy1/ap ——>0

with exact lines where Ev, Ev’, and Ev” denote the various evaluation maps at the
unit in G. The map Ev' is a linear isomorphism by induction. As above, in the case
k = 1, one sees that Ev” is a linear isomorphism between these one-dimensional
spaces. Therefore, Ev has to be a linear isomorphism. |

Remark 7.8. For any k,j,0 < k < 5 <d, one also has a linear isomorphism
R:aj/ar, — q«S(G/N,a;/ax,c,T) *q
given by
/o 3w fuful) = [ eyfalon) s u) s aty i

G/N

The proof for this fact proceeds along the same lines as the previous one.

Next we consider the closed two-sided ideals in S(G/N, A, ¢, 7). Recall that the
latter algebra is isomorphic to S(G)/S(G)Nj(m) so that those ideals correspond to
the closed two-sided ideals of S(G) containing S(G) N j(m;). For the special ideals
S(G/N,a,c,7) we first observe the following

Lemma 7.9. For each k,1 < k < d, S(G/N, A,c,7) * (q % S(G/N,ay,¢,7) % q) *
S(G/N, A,c, ) is total in S(G/N,T), i.e., the S(G x G)-module, for the action 8
(see above), generated by q * S(G/N,ax,c,7) * q is equal to S(G/N,ax,c,7). In
particular q * S(G/N, A, c, T) * q generates the whole space S(G/N,T).

Proof. The easy proof (by induction) follows the usual lines and is omitted.

Theorem 7.10. Any S(G x G)-submodule J of S(G/N, A, c, 1), i.e., any closed
two-sided ideal, is finitely generated. Actually, it is generated (in an algebraic sense)
by q x J x q, whose dimension doesn’t exceed d; cf. Proposition [  The map
J — q*J*q is an inclusion preserving bijection from the set of closed two-sided
ideals in S(G/N, T) onto the set of two-sided ideals in the finite-dimensional algebra
qxS(G/N, A, c,T)*q.

Proof. Write S = S(G/N, A,c,7) for short. As S* (qxJxq)*S D (S*(qxS x
Q*xS)*xJx(S*x(qxS*q)*S), and S (q*xS*q)*S is total in S by the previous
lemma, we conclude that S x (q J * q) * S is total in J. The rest of the theorem
follows more or less immediately. (Il

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



4462 J. LUDWIG, C. MOLITOR-BRAUN, AND D. POGUNTKE

Above, in Proposition[Z.7land Remark[7.8] we have seen two linear isomorphisms,
Ev and R, between qxS(G/N, A, ¢, 7)+q and A. In the case where J is an extended
ideal J = S(G/N, a,c, 1) for some two-sided G-invariant ideal a in A, it is natural
to ask how R and FEv relate q * J x q to a. One obtains the expected answer.

Remark 7.11. One has R(a) =qxJ xq and Fv(q* J *q) = a.

Proof. Clearly, the functions in R(a) take their values in a; thus R(a) C J N q %
S(G/N,A,c,7)*q = q*J*q. On the other hand, Fv(q* J *q) C a. As R and
FEv are linear isomorphisms, for dimensional reasons the above inclusions have to
be equalities. (Il

For the transition to the ideal theory in B = LL,(G)/j(m) it is convenient to view
S(G/N, A,c,7) 2 S(G)/S(G)Nj(m) as a dense subalgebra, say Bs of B. From the
previous discussion we observe two facts:

(i) g« B*xq=q*Bs*q C Bs (as Bg is dense in B and q * Bs * q is finite-
dimensional); in particular, q * J % q C q* Bs * q for any closed two-sided
ideal J in B.

(ii) Bs *q* Bs x qx* Bs is total in B.

Using these facts one easily concludes.

Theorem 7.12. The map J — qx*J*xq C qxBs *q establishes an order preserving
bijection from the set of closed two-sided ideals in B = LL(G)/j(m), i.e., the set of
closed two-sided ideals in L} (G) containing j(m;), onto the set of two-sided ideals
inqxBsxq = qxS(G/N, A, c,7)*q. In particular, any closed two-sided ideal J in
B is generated, as a closed two-sided ideal, by the finite-dimensional space q * J * q
sitting in Bs.

One would like to know more about the set of ideals in qxS(G/N, A, ¢, T) *q, or,
even better, to “know” this algebra itself. This d-dimensional algebra has a unit,
namely q; moreover it has a Jordan-Holder sequence

q*S(G/N,a,¢c,7)*q,0 <k <d.

Briefly, q * S(G/N, A, c,7) * q has all the properties as described in Lemma [7.1]
Since the dimension of this algebra equals dim(.A), it is plausible, at first glance, to
guess that qxS(G/N, A, ¢, 7) % q is isomorphic (as an algebra) to .A. However, with
a second glance, it is no longer plausible because q* S(G/N, A, ¢, 7) * q depends, at
least implicitly, on the action ¢ of G on A, while the algebra A does not “know”
this action. But, if N is central in G (compare section 6), which implies that A is

commutative and that the action ¢ of G on A is trivial, then in fact A is isomorphic
to g« S(G/N, A, c,T) *q.

Proposition 7.13. If N = G(l) is central in G, then the map
R:A—qxS(G/N, A ,c,7)*q
of Remark [L8 i.e.,
(Ru)@) = [ ey(alay) <)+ aly )i,
G/N

is an isomorphism of algebras.
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Proof. In the case at hand the map R simplifies to (Ru)(x) = q(z)u. One easily
computes

(Rus ko)) = [ Rulon)Roly )i
G/N
= /q(afy)uq(y‘l)vdl'/Z / a(zy)a(yHuwwd Y
G/N G/N

q(z)uv as q is an idempotent

(R(uv))(x)-

O

There are many choices for the self-adjoint idempotent ¢, and it is natural to ask
to which extent the algebra q* S(G/N, A, ¢, T) * q depends on this choice.

Proposition 7.14. Again write S = S(G/N, A, ¢, T) for short. Suppose that q;
and qo are two self-adjoint idempotents in S such that, for the canonical map u :
S = S(G/N,A/m,c,7) = S(G/N, xp), one has that g; := p(q;) is a projector of
rank 1; c¢f. Lemma [[8. Then there exists v € q1 * S * (o such that q; = v x v*,
go = v* x 0. Moreover, the map q1 *S *q1 — q2 * S * (2, given by f+— 0™ x fx0, is
an isomorphism of algebras.

Proof. Denote by pg,1 < k < d, the natural homomorphism
§=8(G/N,A,c,7) = S(G/N, A/ag—,c,T),

especially p; = p. We prove, by induction on k, that there exists vy € pg(q1) *
S(G/N, AJaq_r,c, T)*pi(qz2) such that v} vy = pk(qe), vp*0) = pi(qe). Fork =1
take any non-zero to in the one-dimensional space ¢1 *S(G/N, A/m, ¢, T) *qa. Then
one has w *tw* = 2z1¢q; and o™ *x 1w = 25¢o with some constants z1, zo. Applying the
representation m; of S(G)/ker(m;) = S(G/N, A/m,c,7) one sees that z; = z2, and
this number is positive. Denote this common constant by z and put v, = (%)1/ 2.

To proceed from k,1 < k < d to k + 1, take vy as above and take any to in
prt1(q1) * S(G/N, A/ag—r—1,¢,7) * prs+1(g2) such that to is mapped onto vy for
the canonical map

S(G/N, Alag_k_1,¢,7) = S(G/N, AJag_,c,T).

Then one has

w0 = ppyi(d2) + @,
wxw® = pppa(q) + ¢
with some self-adjoint elements ¢ and ¢ in the (one-dimensional) spaces
pkr1(a2) * S(G/N, ag—1/0q—r—1,¢,7) * prr1(d2)

and pg4+1(91)*S(G/N,ag—k/ag—k—1,¢,7)*ugp+1(q1), respectively. From the identity
 * (10* *10) = (v * to*) * 1w one concludes

W (pe41(q2) +9) = WHWHP
= (pr+1(a1) +9) x 0
0+ * to,
hence o * ¢ = ¥ * 0.
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Likewise the identity (w* * to) * ro* = 0" * (0 * 10*) yields ¢ * w0* = w* * 9.

This equation also follows from the previous one by applying the involution and
using ¢ = ", ¢ = ¢P*.

Now put vi41 = 0 — %m ¥ =10 — %¢ * t0. The above relations tell us that
v4+1 has the required properties. Finally v := v, gives an element as claimed in
the proposition. Moreover, it is easy to see that f — v* % f x v is an algebra
homomorphism, the inverse being given by g — v % g x v*. (]

8. TwWO EXAMPLES

To build the following examples, we use the method developed in sections [B] and

(6
8.1. The step 2 case.

8.1.1. Let g = span {4, B,C,U,V,W} be the free nilpotent step two Lie algebra
with three generators, i.e. with the brackets

[A,B]=U, [B,C] =V, [C,A] = W.

Let G = (g, ) be the simply connected Lie group with Lie algebra g equipped with
the Baker-Campbell-Hausdorff multiplication. This means that

1
X Y=X+Y+ §[X,Y], X, Y eg.
We take coordinates of the first kind on G, i.e.

aA+bB+ cC+ uU + oV +wW ~ (a,b, ¢, u,v,w).

Let ¢ = U*. This gives us g(¢) = n = span(C, U, V, W).

We take a weight w on G which allows only polynomials of degree one inside
Puy (N). One possibility is the following: We define w on G by w(a, b, ¢, u, v, w) :=
1+ |a| + |¢| + Jw]. Then w|§(0,0,¢,u,v,w) = 1+ |¢| + |w|. This shows that
Puy (N) = span(pa, p1, 1) with pi(c,u,v, w) = ¢ and pa(c, u, v, w) = w. One checks
that

do(A)py = p1, do(B)pe = 0.
Let I be a two-sided closed ideal of Ll(G) belonging to Z™. As G is step 2,
Y- X -Y=X+2Y forall X,Y € G =g. Hence the ideal I is invariant by abelian
translation and by partial derivation, i.e. if f € I, then ¢(Y)f € I where t(Y)f is
defined by (t(Y)f)(X) := f(X +Y). Conversely, it is easy to check that a closed
subset of L1 (G) which is invariant by abelian translation and by usual conjugation
in the group G is also invariant by right and left translations in the group, i.e. is

an ideal.
Let

90(047 b7 C,u, v, w) = (302 (a, b)w + (,01(04, b)c)e_iu

be a C>®-function in I+. We may omit a possible term ¢g(a, b)e™*" in the expression
of ¢, as po(a,b)e”™ € C-x; and as I C ker(m;) = eg(ker(x;)). Then for f € IS,
we have that

/(p(rA-i-sB)(X)f(X)dX:/ (X +[rA+sB, X)) f(X)dX =0, r,s € R,
el G
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where o("4+5B)(X) := p((rA + sB) - X - (—rA — sB)). Hence, for r,s € R,
0= /6 (ga(a,b)(w —r¢) + @1(a, b)c)e” e "5 f(a, b, ¢, u, v, w)dadbdedudvdw.
Thereﬂi’ore7 by integration by parts,

0 = / (wpa(a,b) + c(p1(a,b) +i02(v2)(a,b)) f(a,b,c,u,v,w)
R6

+ic(82)(f)(a, b, ¢, u, v, w)pz(a, b)) e e” "0~ dadbdedudvdw,

where 0y denotes the partial derivative with respect to the variable b. Hence, the
Fourier inversion theorem implies that

0 = /RAI(U)SQ2(047b)+C(901(047b)+iagsﬁz(a,b))f(a,bvc’u,v,w)

+icdo(f)(a, b, ¢, u, v, w)ps(a,b))e” “dedudvdw, a,b € R.

As f may be changed by arbitrary abelian translations (which commute with partial
derivations), we even obtain

0 = | (wpalonbi) + clp(on,br) + iOapalar,b) fa,b o, )
R
+icdy(f)(a, b, ¢, u, v, w)pa(ay, by))e” “dedudvdw, a,b,ar,b; € R.
We denote in this subsection the mapping ¥; : S(G) — C*°(G) by

V()= [ 7+ m)xendn, @€ G

One checks that for f € Kerm; NS(G) and for n € N,

U;(f)(x +n) = () (f)(x), j=1,2, x € G.
Moreover,
Ker¥; N KerWy N Kerm = j(m) NS(G).
Let us now take §; € S(N),i = 1,2, such that

/ 0j(n)xe(n)dn =0, / pi(n)d;(n)xe(n)dn =6, i,5 =1,2.
N N

Let us consider functions of the form f = hy ® &; + ha ® d with hy, hy € S(R?)
arbitrary. Then

t&fmmummm=o

by choice of 61,d2. So f|y € Keryy,, and hence f € Kerm;. We then have

T, (f)(s+n) = xa()T;(£)(s) = xa(mhy(s), j = 1,2.
Now let I € I™ such that j(m) € I € Kerm and let us assume that I is not
L>°(G/N)-invariant. By Theorem [5:5 and by considerations on the dimensions, we
have o/ = {1} and I = (f) + j(m)>™ for some f € S(G). By Proposition 5.2 f
may be written in the form
f=h1®6 +ha® 2

for some hy, hy € S(R?).
We now have to distinguish two cases.
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8.1.2. First case: Let ¢ € I+ be of the form

©(a,b,c,u,v,w) = p1(a,b)ce™™, a,b e R,
with ¢ # 0, i.e. let us assume that o = 0. Then, for all f € I,

0 = ¢1(a, b)/ cf(a, b, c,u,v,w)e "“dedudvdw, a,b € R,
R4

or even, as @1 = 0 and as f may be changed by abelian translation,

f(a,b,c,u,v,w)ce” “dedudvdw = 0, a,b € R,

R4
ie. \Tll(f) = 0. In particular, if f is of the form f = hy ® §; + ho ® do, then hy = 0,
f = hg X 52 and
I = (hy ® 02) + j(m)>.

Conversely, let us assume that I°° = (hy ® &2) + ji(m)> and let ¢ € It be of the
form

p(a,b,c,u,v,w) = (p2(a,b)w + p1(a, b)c)e™™
arbitrary. Then

/cf(a, b, c,u, v, w)e” “dedudvdw = hy(a, b)/ p1(n)da(n)xi(n)dn =0
N
and, by the computations of section B.I.1]

0 = /6 ((pg(a, b)(w —rc) + ¢1(a, b)c)
R
x e e b= b (g, b)dy (¢, u, v, w)dadbdedudvdw
= / ©a(a, bywe e M50 by (4, b)ds(c, u, v, w, )dadbdedudvdw
R6

= / w2(a,b)hs(a, b)eii(rbfsa)dadb, r,s € R.
Rz

As I and It are invariant by abelian translation and as ho # 0, the Fourier in-
version theorem implies that ¢o = 0 and that ¢ is of the form ¢(a,b,c,u,v,w) =
o1(a,b)cet.

Hence, in the first case, I is the closure of I = (hy ® d2) + j(m)> for some
0 # hy € S(R?). Tt is then easy to check that (I1)|x = (I|n)* = span{l,c} - xi|n-
Hence I is L*°(G/N)-invariant by Proposition 2.3 a contradiction. So this first
case does not occur.

8.1.3. Second case: Let us now assume that any ¢ € I+ of the form
vla,b,c,u,v,w) = ((pg(a, b)w + ¢1(a, b)c)eii“
is such that ¢y # 0. Hence there exists (ag, by) € R? such that s (ag, by) # 0. Put

o ¢1(ao, bo) + i02¢p2(ao, bo)
' p2(ao, bo) '
By section BTl we have for all f € I°,

0= / ((w + ac) f(ao, bo, ¢, u, v, w) + icda f (ag, by, ¢, u, v, w))e_i“dcdudvdw.
R4
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As f may be changed by arbitrary abelian translations (which commute with deriva-
tions), we obtain that

(8.11) 0= / ((w + ac) f(a, b, c,u,v,w) +icds f(a, b, ¢, u, v, w))eii“dcdudvdw,
R4

for all a,b € R. As translations in the directions of N are also possible, this may
be written as

(8.12) Us(f) + Wy (f) + i1 (f) = 0.

This means that for the given I € Z™  there exists « € C such that (8I2) is
satisfied for all f € I. In particular, for f of the form f = hy ® 61 + ho ® &2, this
implies that hy = —ahy — i02hy. Moreover, (BI2) is satisfied identically by the
elements of j(m;)°°. If one also assumes that for ¢ € I+ of the form

&(a, b, e, u,v,w) = ((,52(61, blw + ¢1(a, b)c)e_i“,

with Po(a1,b1) # 0 for some (a1, b1) € R?, one may do the same reasoning as before
for
@1(a1,b1) +1i02p2(a1,b1)

Pa(ay,by)

8=
One then has
Uy (f) + BUL(f) + i0, W1 (f) = 0, for all f € I°.
If a # f3, this implies that U1 (f) = Wa(f) =0, i.e.
1% C Ker¥ NKerV¥, NKerm; = j(m) NS(G),

a contradiction. This shows that in the second case, « is uniquely determined and
is valid for every ¢ € I+ of the given form.

It is easy to check that the set of solutions of ([8I2) in Kerm; is invariant by
conjugation and by abelian translation. Hence its closure is invariant by left and
right group translations, and it is an ideal I, contained in Kerm;. In particular, if
f is a solution of (812), then the same is true for all F'- f, with F € S(G x G). By
the definition of o and the previous arguments, I is contained in one and only one
ideal I,. Moreover, I, is strictly contained in Kerm;. In fact, a function of the form
f =h1 ®01+ ha ® §y with hy, he € S(R?) such that hy # —ah; — id2hy belongs to
Kerm;, but not to I,. For any h € S(R?), let us define

fra =h®8 + (—ah —i02h) @ 5s.

We have shown that there exists exactly one o € C and a function h € S(R?) such
that

(8.13) I%° = (fna) + 3 (m)>.

We will now show that the function 0 # h € S(R?) in (8I3]) may be chosen
arbitrarily and that I = I,. In order to use the results of Remark and Proposi-
tion 4] we first have to replace the elements \le(f) of S(G/N, x1) by the ¥;(f)’s
defined in section Ml by

() () = /N Flan)ps(n)dn, j=1,2,
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for all f € S(G). An easy computation shows that

Ui(f) = Wlf),
\Tlg(f)(mb,c,u,v,w) = \Ilg(f)(a,b,c,u,uw)—%a\l’l(f)(a,b,c,u,v,w),

for all (a,b, c,u,v,w) € G = R® and equation [8I2) is equivalent to

Us(f)(a,b,c,u,v,w) — %allll(f)(a,b, e, u,v,w) + a¥Wy(f)(a, b, e, u,v,w)
+i02P(f)(a,b,c,u,v,w) =0,
for all (a,b, ¢, u,v,w) € RS. In particular,
Ker¥, NKer¥, N Kerm, = Ker¥; N KerW, N Kerm; = Jj(m) NS(G).

In order to use Proposition 4] let us recall that a Jordan-Holder series for the
action of G x N on P, (N) is given by

Wo = C C Wy =span{l,p1} C Wa = span{l,p1,p2} = Py (N),

Inv
and hence
j(ﬂ'l) = IW2 C IV[/1 C IWD = Kermy.

Let us notice that for f,g € Kerm; N S(G) arbitrary with ¥y (f) # 0, there exists
F € §(G x G) such that

Vi(g) = F-Wi(f) =1 (F - f),

by Remark[.21and Proposition[d4l Hence F'-f—g € Ker¥,. If, moreover, f,g € I,
ie. f,g satisfy (812), then

g—F - feXKer¥; NKer¥s N Kerm = j(m) NS(G).
This shows that
(9) +3(m)> C {f) +j(m)*>
and conversely, by exchanging the roles of f and g. Hence
I= <fh,oc> +j(7Tl)OO

for any 0 # h € S(R?). The same procedure may be applied to the ideal I, which
is then shown to be of the same type as I. Hence I = I,.
We then have the following proposition:

Proposition 8.2. Let V =P, (N) and W = C. There exists for every a € C a
unique closed two-sided ideal I, € T™ such that

I, # Ig if a # B and j(mp) = Iv C 1o & Iw = ker(my).

These ideals I, are not L>°(G/N)-invariant. Furthermore, for every ideal I € 1™
which is not L>°(G/N)-invariant, there exists a unique o € C such that I = I,.
The ideal 1, is the closure of

I = (fna) +J(m)>
for any 0 # h € S(R?), where fro = h® 1 + (—ah — i02h) @ .

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



SPECTRAL SYNTHESIS FOR FLAT ORBITS 4469
8.3. The threadlike case. Let g = fady, g = span{T, X,Y, Z} with the brackets
[T,X|=Y, [T,Y]=Z.
On the group Fady we take the coordinates
(t,z,y,2) = exp(tT)exp(z X )exp(yY + 27).

Let £ € g*, {(Y) =1,4(Z) = 4(T) = £(X) = 0. Then g(¢) = n = span{Y, Z}.

8.3.1. Degree one weight. Let w be a polynomial weight on Fady, such that w|y is
a polynomial weight of degree 1 on N. One may for instance take w(t, z,y,z) =
1+ [t] + |z] + [y| + |2] + 3t%, which gives w|n(0,0,y,2) =1+ |y| + |z].

Let I € I™. Suppose that W(I) = C, V(I) = span{l,z,y} = Py, (N).
This gives us the Jordan-Holder basis {p1 = y,p2 = z} of the G x N-module
V(I)/W(I) and «f = {1}. As I C Kerm, we have for all f € I°, for all t,x € R,
exp(ftT)fexp(zX)‘N € Kery|,, and hence

(8.14) / ft,z,y,2)e” ¥dydz =0, t,z € R.
R2

Let ¢ € (I1)> and let us write

Sﬁ(t7$,yaz) = Xl(t,x,y,z)w(t,x,y,z)
where 1/)(15,13,%2) = ¢O(t7I)Z+1/}1(t7l‘)y
and Xl(t7m7y7z):e_iy7 taxayvzeR'

As in the step 2 case, we don’t need to consider any possible term of the form
Yoo(t, x) - xi(t, z,y, z) in the expression of ¢, since I C ker(m;) = eq(ker(x;)). After
conjugating ¢ with exp(sX) we get, by Fourier inversion,

0= [ ettty 2)dodyds, [ €10 R
R3
and conjugating ¢ with exp(sT) we get the identity
2
0= / p(t,z,y+ sz, z+ sy + 5x)f(t,x,y,z)dzdydz, fel® tseR.
R3
Hence, for ¢t = 0, relation (8I4]) implies that
0:/ (00, )24 (¢1(0, 2)+5¢0(0,2)y)) (0, z, y, 2)e~ Ve "**dadydz, s€R, fel®.
R3

Finally, integration by parts and a Fourier inversion theorem give, at x = 0,

0 = [ 00(0,0)2 4 (11(0,0) = 0,0(0,0))) (0.0, 2)e ey

R

i / 0(0,0)y0, £(0,0,y, 2)e~Wdyds, f € I°.
R2
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If we replace f by its right translates with exp(zX) and its left translates with
exp(tT'), we finally have that

0 = (0, 0)/ ze” W f(t,x,y, 2)dydz
R2
+(¢1 (05 O) - Z@$¢0(0, O)) /R? ye—iyf(tv T, Y, Z)dde

~0(0.0) [ ye 10, f (b0, dydz, €15, b€ R,
R2
We now have to distinguish two cases:
First case. For all such ¢’s and ¥’s, 99 = 0, i.e. all such ¢’s are of the form
ot @y, 2) = it x)ye ™.

We proceed as in the previous example (section BI.2) and conclude that in this
case the ideal I is L°°(G/N)-invariant.

Second case. Let us assume that there exist ¢, such that ¥y #Z 0. As we may
translate to the left by exp(¢t7) and to the right by exp(zX), we may assume that
10(0,0) # 0. Let us then put

¥1(0,0) —i8,%0(0, 0)
¥0(0,0)

As in section B13] we define ¥;(f) by

o =

W (f)() = /N fan)p;(n)dn, j=1,2.

Because f may be translated to the right by any element of N, equation (813 may
be written as

(8.15) Uo(f) 4 aW(f) — i, U1 (f) =0, fel,

with 9,91 (f) = ¥1(0,f). We may then conclude as in the step two case (with the
simplification that we don’t need to distinguish between ¥; and ¥;):

Proposition 8.4. There exists for every a € C exactly one ideal I, € T™ which is
a solution to equation (BIBl) and which is not L*°(G/N)-invariant. All the ideals
I € I™ which are not L (G /N)-invariant are of that form.

8.4.1. Degree two weight. As beforelet £ € g* with £(Y) = 1,4(Z) = ¢(T) = ¢(X) =
0. Let w be a polynomial weight on Fady such that P, , (N) admits polynomials
of degree < 2. This case is far more complex, and we will thus limit ourselves to
proving the existence of one family of ideals, indexed by C2, contained in Z™ and
which are not L°°(G/N)-invariant.

Let W = C + span{y, z} and V = span{z?, 2y, 42, z,v,1}. We will show in the
following that there exist ideals I € Z™ such that W (I) = W and V(I) = V. Let
us assume that such I’s exist. We have the Jordan-Holder basis {p; = y%,p2 =
yz,p3 = 22} of V(I)/W(I). We assume that I is not L°°(G/N)-invariant. Hence
Iy(ry €I C Iy and I|y is annihilated by span{1,y, z} - xy,-
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It is therefore enough to consider ¢’s in I+ of the following form:

e(t,z,y,2) = x(zy, )¢ 2,y 2)
where w(ta Z,Y, Z) = wO(ta J;)Zz + '(/)1 (ta -T)Zy + '(/J2(t7 30)92
and x(t,x,y,2) =e ¥ t,x,y,2 €R.

Suppose that g £ 0. As we may translate to the left by exp(¢T) and to the
right by exp(zX), we may assume that 1(0,0) # 0, and even that 10(0,0) = 1.

By conjugating ¢ with exp(sX) and using the previous remark about the anni-
hilation of elements of I|y, we see that

(8.16) 0= / o(t,z,y, 2) f(t,z,y, 2)dedydz, f eI teR.
R3

By conjugating ¢ with exp(s7T') and using the same remark about annihilation, we
obtain the identity

2
(8.17) 0= / o(t,z,y+ sz, z+ sy + %x)f(t,:l:, y, z)dzdydz, f eI teR.
RS

Hence, for t = 0,

52 2
0= /RS £0,2,y,2)(Y0(0,7) (2 + sy + =2)* + ¥1(0,2) (2 + sy + =)y

2 2
+2(0, 2)y?)e” YT 5 drdydz
= /R3 100, 2,5, 2) (1o (0, ) (2+5y) 2 +101 (0, 2) (2 +5Y)y+12(0, z)y? e~ V™" drdydz
- / F(0,2,9,2) (0(0,2) 2% + (2510(0, ) + 41(0, 7)) 2y

+ (s%0(0,2) + s¢1(0, ) + 12(0,2))y*)e” ¥ " dadydz, s €R, f € I°.
Therefore we get the equation
0 = /}R2 10,2, 9, 2)(%0(0, 2) 2% + 91 (0, 2) 2y + ¥2(0, )y e~V dydz

—2i e D2 (f(0, 2,5, 2))00(0, ) zye” ¥ dydz
—2i e £(0,2,y, 2)0:10(0, ) zye ™ ¥ dydz
—i . 02 £(0, 2,9, 2)¥1 (0, x)y*e” Y dydz
—i /R2 10,2, y, 2)0,41 (0, z)y*e” “dydz
- [ 702 0. pe g

-2 amf(07x7yaz)az¢0(07$)y2€_iydyd2
R2

- / £(0, 2,9, 2)0200(0, 2)yPeWdydsz, f € IS,
R2
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Hence, putting first £ = x = 0 and then, in a second step, translating f again by
exp(tT) on the left and by exp(zX) on the right, we get

0 = /}R ft,x,y,2)2%e Ydydz
+(11(0,0) — 2i0210(0,0)) . ft,x,y,2)zye” Ydydz
H02(0,0) = 0,11(0.0) = 20u(0.0)) [ (.. ey
—2i g D f(t,x,y, 2)zye” Ydydz
—i(—2i0,10(0,0) + 11 (0,0)) 9 Ouf(t, 2y, 2)y%e” Wdydz

— | 2f(t,2,y,2)y e Vdydz, fe€I°.
R2

As, moreover, f may be translated to the right by any element of N, this gives us
for f € I the relations

(8.18)  W3(f) +azWa(f) + a1 U1(f) — 20W(0: f) — V(93 f) — iaz¥1 (D f) = 0,

where the constants aq,as € C are obtained by as = 11(0,0) — 2i0,%(0,0), a; =
12(0,0) — 0,11 (0,0) — %) (0,0). The functions ¥,’s are defined as in section
By definition of the W¥;’s,

Ker¥; NKerWy NKerWs N Iy NS(G) = Iy NS(G).

Now choose f = 23:1 hj ®6; € Ig, where as before §; € S(N) and
0= [ tmdn, [ swamnn=o
N N

/ 5, (m)ps (n)xe(n)dn = 6,5, 1<i,j <3, 1< k<2,
N

for ¢1(y,2) =y, q2(y,z) = z. Then equation ([BI]) tells us that
hs + asho + ajhy — 2i0,hy — 85}11 —ta90,h1 = 0.

Conversely, two independent solutions of equation (8I8]) may be obtained in the
following way: Choose a function h # 0 in S(R) and let

f1 =h X 51 - (alh - (ﬁh - Zagamh) & 53, f2 =h & 62 - (G,Qh - 218mh) & 53.
We obtain the ideal I, 4, as closure of the space
Ig?,ag = <f1a f2> + 1‘30(1)7

where V(I) = span{l,y, z,y?,yz, 22}. For this ideal we have (fa1.e2 = {1,2} and
Iv(ry € Iayay S Iw(r)- Inparticular, I,, 4, € Z™ and it is not L°°(G/N )-invariant.
We hence have:

Proposition 8.5. For every (a1, az2) € C?, there exists an ideal I,, o, € I™, which
is not L*°(G/N)-invariant. The elements f of I3? ., satisfy

(8.19)  W3(f) + asVs(F) + a1V (f) — 2005 (0, f) — U1 (02 f) — iaa W1 (0, f) = 0.
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