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A B S T R A C T

IoT data markets in public and private institutions have become increasingly relevant in recent years because
of their potential to improve data availability and unlock new business models. However, exchanging data in
markets bears considerable challenges related to disclosing sensitive information. Despite considerable research
focused on different aspects of privacy-enhancing data markets for the IoT, none of the solutions proposed
so far seems to find a practical adoption. Thus, this study aims to organize the state-of-the-art solutions,
analyze and scope the technologies that have been suggested in this context, and structure the remaining
challenges to determine areas where future research is required. To accomplish this goal, we conducted a
systematic literature review on privacy enhancement in data markets for the IoT, covering 50 publications
dated up to July 2020, and provided updates with 24 publications dated up to May 2022. Our results
indicate that most research in this area has emerged only recently, and no IoT data market architecture has
established itself as canonical. Existing solutions frequently lack the required combination of anonymization
and secure computation technologies. Furthermore, there is no consensus on the appropriate use of blockchain
technology for IoT data markets and a low degree of leveraging existing libraries or reusing generic data market
architectures. We also identified significant challenges remaining, such as the copy problem and the recursive
enforcement problem that – while solutions have been suggested to some extent – are often not sufficiently
addressed in proposed designs. We conclude that privacy-enhancing technologies need further improvements
to positively impact data markets so that, ultimately, the value of data is preserved through data scarcity and
users’ privacy and businesses-critical information are protected.
1. Introduction

IoT devices have been improved, mass-produced, and deployed in
the past few decades through steady progress in information and com-
munication technologies (ICTs) and motivated by a trend of data-driven
decision-making, automation, and the opportunity for new business
models. IoT devices’ primary collective purpose is to interact with
the physical world and enable the measurement and collection of
events and interactions [S23]. These characteristics apply to IoT devices
deployed in, for example, a factory or a powerline network and many
devices employed by people, such as cell phones, laptops, or wearables.
The volume, velocity, and variety of the information generated by the IoT
is immense, which drove practitioners to coin the term big data and
develop tools for their analysis [S4]. Public and private institutions use
big data to promote the public good, innovations, and improve products
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and services. Big data has become the foundation of the emerging data
economy, which in Europe was worth nearly 2% of its GDP in 2016,
close to 300 billion Euros [1]. However, the generation, collection,
storage, processing, distribution, and analysis of big data to realize
such economic potential also come with challenges for enterprises and
responsibilities toward society.

Big data needs to be accessible to institutions that can harness
their potential and develop innovations, lest society fails to materialize
their advantages. Unfortunately, a significant share of the world’s
data is siloed and exploited solely by the institutions that host them
[2], consequently locking the untapped potential of the data economy
and hindering progress in science, business, and society. To surmount
this obstacle, a paradigm shift toward openness emerged in the form
of electronic data markets for the IoT, i.e., mediums for the trade
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of information across the Internet based on electronic infrastructure
[3]. This paradigm brings potential benefits, such as increasing the
efficiency of business processes, facilitating growth by unlocking new
business models [4], and profiting from trading. Decision-makers in
governments and businesses have recognized the economic potential
of data markets and hence recently supported significant projects that
provide a shared digital infrastructure for data-sharing initiatives such
as GAIA-X [5] or the automotive-related Catena-X, which promote the
collaboration of large enterprises in data markets.

Despite data markets’ promise to benefit society by fostering in-
novation and collaboration across enterprises, these markets hold the
risk of exposing individuals’ and businesses’ sensitive information [6,7].
Moreover, confidence in privacy protection is an essential driver of
users’ willingness to share their data [S8]. Similarly, businesses are
unwilling to bear the risk of unintentionally leaking their customers’
private or business-critical information. Consequently, the adoption of
data markets is generally hampered. Additionally, while a corpora-
tion may have taken security measures to protect collected data from
unauthorized access or unintended use, data buyers might not have
the same standards. Hence, in this case, exchanging data entails an
additional risk that the seller needs to mitigate before the data are
shared. Furthermore, blockchains are expected to play an essential
role in the ability of institutions to trade data in tokenized form [8],
but their inherent transparency further increases the need to make
data exchanged in markets less sensitive [S25]. Additional trends that
aggravate the negative consequences of lacking data protection for
institutions are recent privacy laws such as the GDPR in Europe or
the CCPA in California with their increasingly expensive fines for data
breaches [9].

As a first reaction to these risks, practitioners and corporations
have increased their systems’ security. However, if data are sold and,
thus, replicated, confidentiality is not sufficient to protect privacy:
Only managing or modifying the data in a way that enhances privacy
while preserving as much utility as possible is effective [10]. Thus,
institutions have started to allocate more resources to balance data
utility and privacy, employing privacy-enhancing technologies (PETs)
[S27]. The term PET was coined in 1995 in a report by the Dutch
Data Protection Authority and the Ontario Information Commissioner
[11] that explored a novel approach to privacy protection [186]. These
technologies take the form of architectures built with privacy-by-design
principles and policies [S39,S6], or data modifications based on heuris-
tics or mathematical privacy guarantees. Prominent examples of PETs
are differential privacy [12,13], syntactic anonymization definitions
like 𝑘-anonymity [14], homomorphic encryption [15–17], trusted ex-
ecution environments [18], secure multiparty computation [19], zero-
knowledge proofs [20,21], and a set of conventional de-identification
approaches such as masking, rounding, or hashing [22].

The relevance of PETs in data markets also increases with the
growing adoption of IoT devices, such as in vehicles, wearables, smart-
phones, and the applications that stream data daily from millions
of individuals’ private lives to data marketplaces [23]. Despite their
current relevance and growing attention [S27], researchers and institu-
tions still find PETs challenging to understand, integrate, and deploy in
IoT data markets because most PETs are technically complex and have
a wide range of variations and combinations with different tradeoffs
[24]. Regarding research addressing these challenges, primary studies
are predominant, i.e., studies based on original designs developed or
data collected by their authors, while secondary studies collecting and
systematizing existing knowledge are less frequent. The applications
proposed by primary studies range from funneling data from markets
into machine learning (ML) algorithms [S2,S25,S43], crowdsourcing
data into markets [S16,S22,S24,S47], adopting data markets for smart
mobility ecosystems [S3], smart manufacturing [S19], smart homes
[S11], and smart wearables in the health industry [S48].

On the other hand, 9 out of the 50 studies that we identified
2

n our systematic literature review (SLR) are secondary, and out of
these, four studies [S19,S23,S35,S48] cover some of the PETs available
for data markets for the IoT, yet without giving a detailed compar-
ison of their functionalities, benefits, and limitations. The other five
secondary studies [S4,S8,S14,S27,S38] perform high-level surveys re-
volving around challenges, non-technical privacy strategies, and user-
centric perspectives on data markets for the IoT. However, none of
these secondary studies provided a rigorous, systematic review that
collected and mapped PETs and challenges comprehensively. Moreover,
as we discuss in Section 9, we noted a low level of re-using existing
components to build a more holistic architecture for data markets in
related work, which may indicate the need for systematically analyzing
the current seminal components, strengths, and weaknesses of solutions
proposed for privacy-enhancing IoT data markets.

Consequently, we tackle the research gaps mentioned above with a
comprehensive and detailed SLR that aims to guide decision-makers,
privacy officers, policymakers, and researchers in the challenge of
employing PETs to build or participate in privacy-enhancing IoT data
markets. We guide these stakeholders by identifying, classifying, and
describing how PETs are leveraged in the current body of scientific
knowledge (see Sections 6 and 7) and presenting key findings from
our SLR (see Section 9). Moreover, for the benefit of the reader,
we distill terminology from the extant literature to differentiate and
navigate the concepts of PETs in the scope of this SLR (see Section 5).
We also organize related work into a reference model for the use of
PETs in IoT data markets in distinct categories (see Fig. 10 and Fig.
C.11) and identify narrow and broad challenges that PETs can tackle
or circumvent (see Fig. 8). Through mapping PETs to the distilled
terminology and the identified narrow challenges, we want to support
practitioners in making informed decisions about the appropriate PETs
to employ in the context of IoT data markets (see Table 3).

The remainder of the paper is structured as follows. Section 2
introduces the main concepts of privacy, data markets, and the IoT.
Section 3 portrays how we conducted our SLR on publications dated
before July 2020, followed by a discussion of related work in Section 4
and a distillation of terminology in Section 5. Sections 6 and 7 present
the main results from analyzing the content of the studies in our SLR,
followed by a structured review of challenges in Section 8. Based on
these results and the studies’ metadata, we extract a set of key findings
and artifacts in Section 9, where we also provide future work and
discuss the limitations of our research. Finally, Section 10 updates our
study by including new selected publications from May 2022 to July
2020, and Section 11 concludes with a summary of the results.

2. Background

2.1. Privacy

Given the increased attention and relevance of privacy during the
past decades, practitioners have provided many acknowledged defini-
tions. For example, [25] stated that ‘‘[Privacy is] the claim of individuals
[...] to determine for themselves when, how and to what extent information
about them is communicated [...]’’. Similar definitions have been given
by other authors like [26] or [27]. Despite these efforts, D. J. Solove
argued that any attempt to distill a unique, timeless definition is infea-
sible due to privacy’s multifaceted concept [28]. However, in the field
of computer science, a narrower definition may be possible by adopting
an attack model perspective, as the concept of privacy would likely not
have emerged if transgressors would not exist: attackers of one’s secrets
tacitly give meaning to privacy. Therefore, a helpful definition in the
context of computer science may be F. T. Wu’s [29]: ‘‘[Privacy] is defined
not by what it is, but by what it is not – it is the absence of a privacy
breach that defines a state of privacy’’. F. T. Wu hence defined privacy as
a product of a threat model, the one from [30], in which a practitioner
needs to determine what information to hide, from whom, and what

harms should be prevented before defining legal and technical tools.
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Once IT architectures and tools enhance privacy appropriately,
other advantages emerge. For example, from an economic perspective,
privacy enables data utilization across organizations and applications
to create new fair products and services and prevent price discrimi-
nation [31]. Furthermore, employing PETs may increase the number
of sources and data harvested by institutions because PETs help to
overcome regulatory barriers [32], in addition to mitigating the risk
of fines and differentiating and appreciating a brand [4]. Moreover,
political freedom and stability may only be achieved by unobtrusive
forms of governments [33], privacy-enhancing journalism, and less
pervasive forms of digital products such as social media that can enable
malicious social engineering [S38]. Moreover, research indicates that
compromising privacy can result in negative long-term economic effects
[34].

Despite these benefits, and while consumers emphasize that privacy
is important to them, they are typically not willing to make small
additional efforts or pay for privacy [35], the so-called privacy paradox.
Thus, in the past decades, governments have enacted rules and laws to
protect consumers against violations of their privacy, specifically for
data captured through advanced ICTs such as personal computers, the
world wide web, or smartphones. Examples include the European Data
Protection Directive in 1995, the HIPAA Privacy and Security Rule of
1996, the APEC cross-border privacy rules of 2011, the GDPR of 2016,
and the Consumer Privacy Act of 2020 in the USA, which comprises
Acts such as the CCPA of 2018 in California.

2.2. Data markets

According to [3], there is a misconception in everyday language
between the terms ‘‘market’’ and ‘‘marketplace’’: A marketplace is the
implementation of a market in terms of infrastructure, time, and location
(virtual or physical) where the participants transact. Markets are the
environments where buyers and sellers set the price and quantity of a
particular good. Marketplaces have evolved over millennia; however,
the most drastic changes arguably have happened in the past few
decades. ICT has driven the costs of instant and ubiquitous communi-
cation to an often negligible amount, which has led to the digitization
of many existing transaction-based ecosystems, including marketplaces
[3]. Moreover, ICT has enabled the creation of virtual marketplaces
that did not exist before [36] – the most prominent example being e-
commerce. In this context, data have become goods themselves [3].
Data markets incentivize institutions to collect more data and to profit
from trading, and, in turn, the resulting improvements and innovations
benefit the public good [37].

Beyond the above formal definition, from the selected studies, we
can carve out several characteristics of data marketplaces: [S1] indi-
cated that most of the data marketplaces in operation are centralized,
where the platform is run by either a trusted third party (a broker)
that coordinates buyers and sellers or by the data owner (e.g., a
large institution) who is also selling the data. Another 15 selected
studies also proposed decentralized architectures employing distributed
ledger technology to counter the drawbacks of centralized systems
(e.g., single point of failure or trust on a potentially malicious entity).
On the other hand, [S46] took another perspective, characterizing
data trading platforms depending on the number and type of data
domains: general platforms include data from any source type, while
specialized platforms focus on one domain, e.g., financial, healthcare,
or social media. [S27] identified two categories for data markets based
on the type of participant: companies or private individual customers,
e.g., owners of a smart home. Altogether, we distilled three dimensions
for characterizing data markets: (i) the degree of centralization, (ii) the
types and number of data domains, and (iii) the types of sellers and
consumers. These dimensions permeate most of the identified solutions
in this study, and all exhibit individual privacy trade-offs of which
3

practitioners need to be aware (see Section 9).
2.3. The internet of things

The IoT is considered a network of physical devices that leverages
sensors to measure and collect information from the real world and
support the access and exchange of data via the Internet instantly
and ubiquitously [38]. IoT devices are considered essential for gath-
ering big data [39], which in turn brings new opportunities such as
targeted advertisement, predictive maintenance, and quality improve-
ments. Consequently, many companies have introduced the IoT in their
strategy for participating in the data economy [38] and make substan-
tial investments in the technologies that make them possible: sensors,
wireless networks, and cloud computing infrastructure [39]. In this
SLR, the definition of the IoT includes any device with a CPU connected
to the Internet, including sensors in factories, supply chains, or vehicles,
and devices such as smartphones, wearables, and computers that people
use daily. These devices act as data collectors and as the gateway to a
plethora of applications that collect users’ actions and behavior, such
as browsers, social media, e-commerce, or media entertainment, as well
as sensor data generated in business processes like manufacturing and
predictive maintenance, and use them for analyzes and predictions.

The design and implementation of data markets are dependent on
the IoT. The ubiquity of IoT devices generates many constellations
for different degrees of decentralization, with a myriad of possible
sources and prosumer types. Furthermore, while such ubiquity will
likely boost the data economy and its products and services, IoT devices
also permeate many aspects of an individual’s life, e.g., dealing with
highly sensitive healthcare data or capturing sensitive information from
a business perspective. Hence, the sensitivity of the data gathered from
IoT devices calls for the implementation of PETs.

3. Research process

3.1. Goal and research questions

We employed the Goal-Question-Metric paradigm [40] to formulate
the focus of this study as follows: we systematically analyze peer-
reviewed literature to provide an overview of the state-of-the-art con-
cerning available research and trade-offs on privacy-enhancing data
markets for the IoT as well as potential research gaps from the point
of view of both scholars and practitioners. Based on this paradigm, the
research questions (RQs) we pursued were:

RQ1. What relevant PETs enable IoT data markets?
By answering this RQ, we aim to reveal, describe, and classify PETs

in the context of data markets for the IoT based on their fundamentals
and applications to give researchers and practitioners an overview of
the PETs researched and employed so far.

RQ2. What challenges and trade-offs hinder privacy-enhancing IoT data
markets?

Through answering this RQ, we account for explicit and implicit
challenges depicted and tackled in existing work so that researchers
may quickly identify pain points in the field and focus their research.

3.2. SLR execution

We conducted a SLR based on the guidelines of [41]. SLRs aim to
collect, structure, and summarize the existing evidence and gaps in a
particular research field to pave the way for future research. Further-
more, SLRs need to provide a rigorous and auditable methodology that
can be reviewed and replicated [42]. SLRs define research questions,
and a set of predefined inclusion and exclusion criteria that assess
potentially relevant primary studies to answer them [43,44]. Table F.10
of the Appendix F contains the criteria for this SLR related to focus,
quality, and accessibility.

To conduct the study search, we identified the most relevant publi-

cations in the field of privacy-enhancing data markets for the IoT to
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nswer our research questions [45,46]. To obtain a corpus of high-
uality publications, we defined a search strategy based on the work
f [46]. Accordingly, our strategy consisted of three phases:

(i) A preliminary search of the base literature. The base literature
ncludes representative papers (8) in the field of privacy-enhancing
ata markets for the IoT known to the researchers before the SLR,
nd some other publications found manually in the digital library
f the researchers’ university, which also complied with the criteria
escribed in Table F.10. We created preliminary search strings based on
dentified keywords and synonyms that we found in the base literature
nd research questions. Afterward, we parsed our base literature with
tool to analyze frequent phrases and keywords. Using the results of

his analysis, we refined our search terms [47]. Finally, we clustered the
earch terms into three strings based on the field of this SLR: Privacy,
ata markets, and IoT. Altogether, we composed the following search
trings:
C1: privacy OR private OR encryption OR encrypted OR encrypt OR

ata protection
C2: data market OR data marketplace OR data trading OR data broker

R data trader OR data auction
C3: Internet of things OR Internet of everything OR IoT OR sensor OR

onnected devices OR networked devices OR smart devices OR controller
R edge computing OR cloud infrastructure OR machine to machine OR
2M OR web-of-things OR WoT OR mobility OR automotive OR vehicle
R car OR automobile OR industry 4.0 OR smart grids OR V2V OR IIoT
R machine learning OR mobile OR cyber–physical OR microservice OR
icrocontroller OR micro-service OR micro-controller OR blockchain OR
eural network OR smart learning OR automated driving OR autonomous
riving OR smart city OR smart factory.

Consequently, we defined our final search string as C1 AND C2 AND
3.

(ii) The main search. Since no single source may contain all the
igh-quality, relevant publications [48,49], we selected seven elec-
ronic databases (see Table F.9 that focus on computer science or
oftware engineering and, according to L. Chen et al. cover the most
elevant databases in these fields [50]. The time frame that we spec-
fied covers any publication included in the selected digital libraries
efore the 13th of July 2020. With the defined search string, time
nterval, databases, and following the process Fig. 1 depicts, we col-
ected 1291 studies (1136 after duplicates removal), which two re-
4

earchers filtered independently and redundantly by title (119 selected S
out of 1136), abstract (79 selected out of 119), and body (37 selected
out of 79) following the predefined inclusion and exclusion criteria of
Table F.10 to reduce bias. After each of the three filtering phases, both
researchers resolved conflicts in an informed discussion and attended
to the criteria.

(iii) A backward search of the references of the 37 studies resulting
rom the main search. After filtering by title, abstract, and body, consid-
ring our inclusion and exclusion criteria, we included another 11 stud-
es in our corpus. The process resulted in a total of 50 studies from
hich we subsequently extracted and synthesized data. Hence, the SLR
ielded a considerable but not excessive number of results. Further-
ore, thanks to the multiple synonyms in the search string, the 37 stud-

es only missed two studies from the base literature. Moreover, the
ackward search only added a modest number of new works (11). Thus,
he process suggests that the choice of search terms was suitable.

To answer the research questions, we performed a data extraction
f key information from the 50 publications in a structured manner
51]. To reduce the degree of bias, two scientists defined and inde-
endently followed an extraction card, which contained the following
wenty fields: Authors, cite count, year, country, publication channel,
ublication type, publication source, research type, research approach,
ontribution type, tags, topic, subtopic, sub-subtopic, research goal,
esearch questions, study findings, privacy-enhancing architecture or
echnologies, challenges, and future work. After the two scientists
ompleted the data extraction, they held an informed discussion to
esolve any possible conflicts on the extracted information. For the data
ynthesis necessary to answer RQ1 and RQ2, we adapted the ‘‘narrative
ynthesis’’ method described by [41] and performed the following
ynthesis procedure: (i) we developed a preliminary synthesis of the
indings, followed by (ii) exploring relationships in the data and (iii)
efining the preliminary synthesis with the newly acquired knowledge.
fter the refinement, we returned to the second step until we deemed

he RQs answered.
Finally, with the goal of including significant updates and reaffirm

he findings extracted from our initial research process, we conducted
he same systematic search process for publications dated between July
020 and May 2022 (24 new publications) and included the findings in

ection 10.

https://www.sketchengine.eu/
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Table 1
Short description of the involved layers.

Layer Description

Storage Persists data for future use.
Processing Uses data from storage and runs algorithms on it, typically

to extract information.
Communication Exchange of data with other devices.
Verification Checking via processing whether the data received and the

identities involved are authentic.
Sovereignty Ability to govern which (sensitive) information the

communication with others exposes.
Consensus A special case of communication and verification in which

data is compared and synchronized with other devices’ data.

4. Related work

In our SLR, we found nine secondary studies, i.e., studies that
systematize and organize existing knowledge, conducted in the con-
text of privacy enhancements for IoT data markets [S4,S8,S14,S19,
S23,S27,S35,S38,S48], which Table B.4 summarizes. Some of these
studies focused on privacy-related challenges in data markets for the
IoT [S14,S19,S27,S38], while others delved into PETs from a technical
perspective and discussed their challenges and opportunities [S23,S48,
S35]. Lastly, [S8] analyzed users’ preferences in privacy-enhancing data
markets, and [S4] listed technical design choices for data markets for
the IoT.

These secondary studies provided valuable contributions and built
the foundation of our work; however, they focused on different as-
pects of IoT data markets and, therefore, lacked depth in the concepts
we present in this study. For example, [S23,S35] and [S48] briefly
discussed, altogether, blockchain technology, secure and outsourced
computation, 𝑘-anonymity, and differential privacy and sketched their
mplications without considering other PETs that we identified in our
LR. Furthermore, although [S19] provided an overview of the avail-
ble technologies and their challenges, the authors did not discuss
ETs in detail, e.g., the study mentioned anonymization but did not
elve into 𝑘-anonymity or differential privacy. Additionally, the authors
nly discussed three out of the six challenges we found: the recursive
nforcement problem, the utility and privacy trade-off, and attacks
n privacy. Moreover, [S19] based their results on observations from
xemplary use cases and, therefore, cannot provide the scientific rigor
nd comprehensiveness of a SLR. The remaining secondary studies
ocused on privacy strategies instead of technology, discussed digital
ights, described challenges at a high level, or provided a user-centric
iew of data markets.

Regarding PETs classification, some selected papers included in
ur SLR provided a framework. Notably, [S48] considered two cate-
ories for classification (outsourced computations and information shar-
ng), whereas [S19] provided a more involved classification than [S48]
ith five layers: data security, data processing, proving support, platform

apabilities, and external measures. Furthermore, outside of our SLR,
notable framework developed by [10], which was heavily inspired

y H. Nissenbaum’s work on contextual integrity [52], dissected an
nformation flow into input, computation, and output, and assessed
rivacy and verifiability in each step. They also wrapped their frame-
ork with flow governance, i.e., the information flow rules upon which
articipants agree. To provide an improved classification of PETs, we
nspired some components of our classification from [10] and [S19]
nd distilled from the 50 selected papers the set of layers necessary
o build a privacy-enhancing IoT data market: verification, storage,
ommunication, processing, and sovereignty, which Table 1 describes
uccinctly. Moreover, we also considered important layers necessary for
functional data market that do not require PETs (see Fig. 10).

Furthermore, not all of the technologies included in [S19] enhance
rivacy, e.g., version control and most distributed ledger technolo-
ies. Therefore, unlike in [S19], we have introduced another branch
5

Fig. 2. Overview of the categories of our classification of the identified technologies
among the selected studies. Note that some PETs also enhance authenticity.

for technologies focused on authenticity, which we call authenticity-
enhancing technologies (AET). Note that some PETs accomplish data
authenticity or integrity while enhancing privacy or confidentiality,
e.g., zero-knowledge proofs, homomorphic encryption, or some digital
signatures (see terminology in Section 5). Specifically, some PETs can
also be AETs, but AETs are not always PETs. Lastly, we classified
the identified AETs into the verification and consensus layers, which
are strongly associated with distributed ledger technology, as they
coordinate entities and provide verification guarantees. We display
our classification framework in Fig. 2. Accordingly, we structure our
key results into privacy-enhancing technologies (PETs, Section 6), and
authenticity-enhancing technologies (AETs, Section 7). The authors
of the selected 41 primary studies jointly employed the technologies
included in our classification to create holistic or parts of data market
architectures for the IoT; Tables D.5, D.6, and D.7 describe the most
salient architectures.

Overall, none of the related work conducted a SLR to create a holis-
tic view of the body of scientific knowledge in privacy-enhancing IoT
data markets, which, therefore, indicates the lack of an academically
rigorous secondary study in this field [41]. Furthermore, despite the ef-
forts in [S48,S19] and [10], there is not yet a comprehensive classification
and fine-grained analysis of technologies and challenges that researchers
have studied in the context of privacy-enhancing IoT data markets (see
Sections Section 6, 7, and 8). Lastly, unlike other secondary studies,
we also provide a detailed mapping of technologies, IoT data market
layers, and challenges in Table 3.

5. Terminology

To help the reader follow our SLR, we first provide some termi-
nology. These definitions are the distillation of the concepts found in
the 50 selected studies and other seminal studies regarding utility and
integrity [53], and confidentiality and privacy [54]. When we use the
word assure, a technology fully guarantees the quality of the data or
computation. In contrast, when we use the term enhance, a technology
improves the quality of the data or computation to some extent. These
qualities concern with authenticity, integrity, confidentiality, privacy, and
utility. In line with the definition of privacy of Section 2.1 in the context
of computer science, we define these qualities by the absence of an
attack against them, if applicable.

Data authenticity is preserved when a malicious entity has not tam-
pered with the truthfulness of the original data; truthfulness covers both
provenance and integrity. In the context of PETs, the degree of authentic-
ity of data can be reduced to enhance privacy. Correspondingly, identity
authenticity is preserved when a malicious entity has not impersonated
another entity. If identity authenticity is assured, then the provenance
of the data is also assured. In the context of PETs, the identity of an
entity can be concealed to enhance privacy. Data integrity is preserved
if data that have been copied and stored or are in motion are equal
to the original [53]. In practical scenarios where data are exchanged,
if integrity is not preserved, then data authenticity is also inherently
violated. Computational integrity is preserved when, even in the presence
of malicious entities, the output of an algorithm that runs on data is
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Fig. 3. Classification of PETs employed for data processing. Any other privacy approach encountered in the SLR without explicit inclusion of the underlying technology was either
ot included in a leaf node but in a parent node or completely dismissed if too vague. *The publication reviews or briefly comments on the technology without delving in-depth
r using it as a building block of the architecture concept, e.g., included for future work.
r

omputed correctly. In the context of PETs, the computation can be
oncealed to enhance privacy. Furthermore, some technologies enhance
onfidentiality, i.e., ensure that data or specific properties thereof are
nly shared only with the intended parties. Furthermore, we refer
6

o utility as a measure of the usefulness of data for the successful
completion of a task; it is high when the data is authentic. While PETs
educe authenticity, they are helpful in the balancing act between utility

and privacy, as PETs may help to facilitate the sharing of data, which

otherwise would not have been revealed (zero utility).
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We briefly give some illustrative examples of the interplay of con-
cepts: A digital signature can assure data integrity provided the cor-
esponding private key is not accessible to an adversary, and identity

authenticity if the signature includes a digital certificate that a trusted
third party issued; otherwise, digital signatures cannot assure identity
authenticity. Distributed ledgers can assure data and computational in-
tegrity by replicated storage and computation [55], but these ledgers
cannot enhance data authenticity ; additionally, replication is often prob-
lematic regarding confidentiality and, hence, privacy [56]. Furthermore,
zero-knowledge proofs can provide evidence for data and identity au-
thenticity and computational integrity without violating privacy, and truth
discovery can enhance these qualities independent of privacy consider-
ations. Moreover, privacy-preserving data mining can enhance privacy;
however, if the right PETs are not employed, qualities such as com-
putational integrity may not be enhanced or assured. As last examples,
technologies such as differential privacy or 𝑘-anonymization enhance
privacy by reducing data authenticity, and onion routing or ring sig-
natures enhance privacy by forgoing or reducing identity authenticity,
respectively. These latter technologies consequently reduce data utility
in exchange for privacy.

Lastly, we are mindful of the term tackling, which refers to a
echnology that directly and fully or partially solves a current challenge
n the context of privacy enhancement, e.g., the copy problem or the
ecursive enforcement problem (REP) (see challenges in Section 8). We
se the term circumvent when a technology bypasses a problem, i.e., the
echnology does not directly address the issue. However, the entities
hat leverage the circumventing technology are still not affected by
he problem. For example, obscuring the data and computation in a
hird-party server with homomorphic encryption (HE) does not tackle
he REP; instead, HE circumvents such problem because the third-party
erver cannot see the contents. On the other hand, distributed ledger
echnology tackles the REP with a redundant and hence tamper-evident
torage and execution.

The following Sections 6 and 7 describe the technologies that we
dentified in our SLR. We provide a new categorization of these tech-
ologies based on the characteristics emphasized in the corresponding
elected publications and the technical properties described in this
ection.

. Privacy-enhancing technologies

.1. Processing layer

The PETs we included in data processing aim to enhance the privacy
f either data inputs, outputs, the intermediate steps of a computation,
r a combination thereof while maintaining a high degree of utility.
his Section follows the structure of Fig. 3.

.1.1. Secure and outsourced computation
Secure and outsourced computation comprises PETs that enhance

rivacy through confidentiality. Furthermore, if the PET also employs
igital signatures and their cryptography primitives, then the PET can
lso assure the integrity of the data and computation and identity
uthenticity in the presence of a digital certificate.

ero-knowledge proofs (ZKPs). With ZKPs, a technology firstly con-
eived in the 1980s by [20], a verifier can verify the authenticity of the
ata and the integrity of a computation conducted by a prover without
he need to access the data or replicate the computation itself [21].
f the statement that is proven is about claims attested in a digital
ertificate signed by a trusted entity (e.g., age over 18), ZKPs can verify
dentity authenticity while keeping the information leaked about the
dentity minimal.

Specifically, ZKPs exhibit (i) zero-knowledgeness, i.e., the verifier
learns nothing new from the prover beyond the correctness of their
statement, (ii) completeness, i.e., the prover can convince the veri-
fier of a correct statement with high probability, and (iii) soundness,
7

i.e., the prover cannot convince the verifier of a wrong statement with
high probability [57,S43]. Furthermore, there are interactive and non-
interactive ZKP protocols. With the latter, there is no need to engage
in sequential message exchange, and the prover can convince multiple
parties of a claim with a single, potentially short, message [57]. These
characteristics make non-interactive ZKPs highly attractive for use in
blockchains [56]. ZKPs are also the building block of many anonymous
credentials, which are also known as privacy-preserving attributed-
based credentials [58]. They allow the verification of information in
a digital certificate without disclosing any unnecessary data, including
the highly correlating value of the signature. Anonymous credentials
were initially proposed in 1985 by [59], and developed further with
ZKPs and blind signatures [60] chiefly by [61,62] and by [63]. Lately,
anonymous credentials have seen renewed interest also in the context
of digital wallets for end users’ identity management [64,65].

Within our SLR in IoT data markets, [S43] employ non-interactive
ZKPs to verify the correct computation of outputs, which, in turn,
unlocks the payment from a smart contract in the Agora blockchain,
eliminating a third-party verifier. While ZKPs have their limitations
due to computational complexity, typically for the prover, and there is
still a considerable gap between cryptographers and software engineers
[66], we expect to see more publications such as [S43]. This projection
is justified by the significant improvements in ZKPs’ performance, and
ease of use in recent years [67,68] and the availability of an increasing
variety of domain-specific programming languages to implement ZKPs,
such as bellman or circom in combination with snarkjs. Recently, first
research has emerged that uses ZKPs to prove that a machine learning
model was trained correctly on specific data [69], and there are many
opportunities to leverage them in data markets, such as demonstrating
that the input data of a computation was signed by a sensor that
received a certificate from a trusted third party without revealing the
sensor’s identity or the data. In this case, the digital signature and
certificate can be regarded as AETs, while their verification inside a
ZKP enhances privacy and, hence, qualifies ZKPs as a PET.

Secure multiparty computation (MPC). In broad terms, MPC enables
multiple parties to exchange information obliviously and jointly com-
pute a function without revealing individual inputs to each other
[19,70]. The MPC implementations that we observed in our SLR employ
either secret sharing [S5,S10,S34] or garbled circuits [S34]. In secret-
sharing-based MPC, each party first obfuscates the input by splitting
it into shares. Secondly, this party distributes the shares among the
other computing parties. Afterward, each party executes arithmetic
operations independently on these shares, and finally, all parties share
the outputs to reconstruct the result [19].

In Shamir’s scheme [71], one can specify a minimum of shares that
the recipient needs to reconstruct the output, and any combination of
fewer shares does not reveal anything about the secret to the receiving
entity [S19,187,188,S48]. On the other hand, in additive secret sharing,
all the shares are needed. Outside MPC, Shamir’s scheme has been com-
monly used for key management schemata for cryptographic systems so
that if some shares that represent a private key are lost, one can still
reconstruct the key with the remaining shares [71]. On the other hand,
MPC can also be implemented by garbled circuits [19], for only two
[72] or multiple [73] parties. Garbled circuits are protocols that enable
secure computation by using functions translated into Boolean circuits,
i.e., a sequence of basic logic gates such as AND, XOR, and OR that may
be combined to construct any function [19,74,S48]. Garbled circuits
make use of oblivious transfer [75], which in turn utilizes asymmetric
encryption, and symmetric encryption for encrypting and decrypting
each gate’s truth table. Lastly, there are MPC hybrids that combine
these approaches [76].

MPC allows computing functions without revealing the inputs to
other participating parties. MPC protects inputs against brute force
attacks and it is to date considered less computationally expensive than
alternatives such as fully homomorphic encryption [77]. Drawbacks of

https://github.com/zkcrypto/bellman
https://github.com/iden3/circom
https://github.com/iden3/snarkjs
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MPC include its high processing and communication costs [58] and
sensitivity to network latency, which can considerably decrease the
performance [S5,S9,S48]. Additionally, MPC protocols often need to be
supplemented by mechanisms that prevent collusion [S5]. Moreover,
since the individually provided inputs are only locally available, one
cannot stop malicious entities from jeopardizing the authenticity of
the input with false inputs. MPC can only prevent curious entities
from learning information. A countermeasure for this reduction in
accountability is zero-knowledge proofs to enforce the authenticity of
participants’ local computations while maintaining them confidential
[78].

Three of the papers in our SLR implement MPC in their architec-
ture: [S5] uses additive secret sharing, [S10] employs Shamir’s secret
sharing, and [S34] leverages a combination of garbled circuits an
additive secret sharing. Additionally, other publications acknowledge
the importance of MPC schemata by including them in their review
[S19,S23,S48]. We provide additional details in Table D.5. While sev-
eral frameworks for MPC are available, the MPC solutions employed by
these three publications were handcrafted. This may indicate that the
integration of MPC into existing systems requires features that are not
yet available with generic tools, such as performance aspects.

Homomorphic encryption (HE). HE allows performing operations on
encrypted data (ciphertext) as if they were not encrypted. After the
computation, the entities with the corresponding secret key can de-
crypt the output [189]. There are variations of HE depending on
the diversity of operations it can perform [15,16]: Fully homomor-
phic encryption (FHE) schemata support addition and multiplication,
while partially homomorphic encryption (PHE) schemata allow for only
one of these alternatives — typically in exchange for drastically im-
proved performance. Any other schema in-between is called somewhat
homomorphic encryption [S48].

Five out of the six studies that use HE in our SLR use a PHE
variation [S41,S26,S7,S34,S46]. Each of the former four specifies the
name of the employed schema, namely the Paillier cryptosystem in
the first two [17], Boneh–Goh–Nissim [79], and Hash–ElGamal [80].
The latter study only briefly mentions the additive homomorphic prop-
erty of their handled data. On the other hand, [S10] uses FHE with
a schema called fully homomorphic non-interactive verifiable secret
sharing [81]. Several other articles in our SLR underline the importance
of HE [S4,S19,S48]. On the other hand, [S43] suggested the use of
multi-client functional encryption [82,83] instead of HE so that the
scheme combines data from some individuals with others, and, in turn,
malicious entities cannot trace back the output of the computation to
a single user, as it may happen in HE. Furthermore, there is a related
scheme called functional encryption [S43] that allows to retrieve a pre-
specified function executed on a set of cyphertexts [82], e.g., decrypt
only the mean of a set of encrypted numbers by deriving a function-
specific decryption key from the secret key that was used for encrypting
the data. A summary of papers from our SLR that mention or use HE is
given in Table D.5.

The major limitation of FHE is its high computational complexity
and the comparatively large storage needs of its cyphertext, which
poses a significant challenge for its use and is aggravated in the context
of IoT devices’ limitations [S41,S7,S48,S24]. Therefore, the approach
adopted by most authors is the use of PHE instead of FHE [84], which,
while still not as efficient as other PETs, consumes significantly more
computing resources than PHE [85].

As observed for the case of MPC, while there exist generic frame-
works such as SEAL, HElib, or TFHE, the authors of the publications
in our SLR utilized handcrafted solutions, which may indicate the
lack of framework versatility or performance. Overall, practitioners
and companies may use HE to perform lightweight functions on data
privately on non-local resources, e.g., computing in the cloud, which
otherwise would be too expensive to maintain in-house. MPC would
usually be preferred over HE when the inputs to the function belong to
multiple parties. Nonetheless, some selected publications also employ
HE in these cases, e.g., when data brokers determine the winner of an
8

auction [S26,S34,S41].
Trusted execution environments (TEE). TEEs were first defined in
2009 by the Open Mobile Terminal Platform as ‘‘hardware and soft-
ware components providing facilities necessary to support applications’’
that are secure against attacks that aim to retrieve cryptographic key
material or other sensitive information. These features include defense
against more sophisticated hardware attacks such as probing external
memory [18] or measuring execution times and energy consumption.
Moreover, TEEs defend against adversaries who are legitimate owners
of the hardware or remote access to the operating system that can
run the code themselves. TEEs allow a user to define secure areas
of memory (‘‘enclaves’’) that enhance confidentiality and assure data
and computation integrity of the code and data loaded in the TEE
[S2], i.e., any other program outside the enclave cannot act on the
data. Specifically, TEEs associate unique encryption keys to computer
hardware, making software tampering at least as hard as hardware
tampering and certifying the computation results within the TEE. The
reason is that the only way to hacking a TEE is physical access to
the hardware and, consequently, performing manipulations so that the
hardware provides false certifications to bypass remote attestation and
sealed storage [S45]. Seal-stored data may not be accessed unless the
user employs the correct hardware and software, and remote attestation
is a process whereby a trusted third-party assures that the execution of
a program in a specific piece of hardware is correct [S45].

Four of the selected papers in our SLR leverage TEEs [S2,S12,
S25,S45], and a review mentions their importance [S19]. [S2,S25]
and [S45] proposed TEEs to confidentially train and evaluate machine
learning models on data available through a data market. While the
role of TEEs in data markets overlaps with the use of HE and MPC,
authors have preferred the latter technologies to enhance confidential-
ity in auctions and data processing, which may be due to the limited
memory TEEs offered at the time. The reviewed four studies used Intel’s
Software Guard Extension (SGX) [86], where Intel is the trusted third
party, and, therefore, the single point of failure. However, practitioners
should be mindful of the numerous vulnerabilities present in TEEs [87–
89], and Intel’s SGX deprecation in 2022 [90], which affects many of
the designs found in this SLR dated before July 2020. Therefore, we
suggest practitioners to explore Sanctum [91], Keystone [92] and AWS
Nitro [93]. Specifically, [S2,S25] and [S45] used SGX for confidential
computing, and [S12], employed SGX for their blockchain architecture
to perform ‘‘Proof of Useful Work’’. In this type of consensus mecha-
nism, nodes perform useful computations instead of computing hashes
like in Bitcoin or Ethereum mining. Moreover, [S2] decided to use TEEs
to enhance data and computation confidentiality for machine learning
algorithms because of the low performance of MPC and HE on machine
learning [94].

On the other hand, we noted that TEEs designed for resource-
constrained devices – potentially at the cost of offering less function-
ality – were not prominently discussed in the selected papers. This
includes, for instance, ARM TrustZone [95], which is relevant as many
IoT devices run on ARM processors, and trusted execution modules
[96].

Privacy-preserving data mining (PPDM). [S23] describe PPDM as a
means to enhance privacy while extracting useful information from
data mining. Data mining includes ML and conventional statistical anal-
yses such as aggregations (e.g., mean or quantiles). PPDM is achieved
by performing the computation where the data reside, protecting the
computation with cryptographic or data perturbation means, or a
combination thereof. As a comprehensive example, suppose the clients’
local data and computation are cryptographically protected and the
clients have the capability to perturb data. In that case, the computation
can run anywhere, which is accomplished by deploying a ML model and
input data in a trusted execution environment (TEE) or implementing a
ML model using MPC or HE. With input or computation perturbation,
the clients also enhance the privacy of the outputs.

A popular tool for PPDM is federated learning (FL) [97–99], as
it avoids collecting users’ data. Specifically, FL collaboratively trains

https://github.com/rdragos/awesome-mpc#frameworks
https://github.com/microsoft/SEAL
https://github.com/homenc/HElib
https://github.com/tfhe/tfhe
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a seed ML model across multiple clients’ local data, after which a
server aggregates the resulting weights to form a unique model (process
repeated across rounds). Researchers have increased the privacy of
FL by sharing weights with secure aggregation protocols [100] (MPC,
Shamir’s secret sharing), and protected the privacy in client selection
[101] and update parameter sharing [102] with additive HE (i.e., par-
tial HE). Alternatively, split learning approaches [103,104] decompose
neural networks’ layers into elements and, thus, the input data and
labels do not need to be within the same machine. Split learning
presents advantages over FL when the local hardware for computations
belongs to different network speeds or hardware configurations [105].
Additionally, gossip learning [106,107] proposes a framework whereby
multiple models perform a random walk over clients, where they are
trained and merged with other models they encounter.

Another way to achieve PPDM is by perturbing input data or
weights of the ML model with anonymization techniques such as
differential privacy (DP), resulting in privacy-enhancing optimization
schemata like DP-stochastic-gradient-descent (DP-SGD) [108]. DP-SGD
perturbs the weights’ updates with noise and, therefore, one may not re-
construct the inputs based on the outputs, which may happen in ML or
stand-alone FL [94]. Practitioners can plug in weight DP perturbation
in central ML, FL, gossip learning, or split learning, in combination with
MPC as well. We depict such leverage of anonymization technologies
for PPDM with the dashed line connecting both elements in Fig. 3.

With PPDM, individuals may enjoy a higher degree of privacy than
outsourcing the computation transparently to a trusted third party.
Data markets can offer an infrastructure leveraged by PPDM, where
data prosumers and consumers only need to provide the input data
and ML models, much like the studies in our SLR propose [S2,S25,S45]
using TEEs to train models with DP. Like data, trained ML models could
also be exchanged in markets.

6.1.2. Anonymization
While the previously presented PETs hide sensitive data from un-

solicited parties and, thus, provide confidentiality while enhancing
or assuring data and computation integrity, the authorized receiver
of the plaintext may reverse engineer the output and correlate data
records with individuals (re-identification attack). Consequently, em-
ploying only secure and outsourced computation PETs is insufficient
to provide the required degree of privacy in cases where the recipient
may not be fully trusted. Anonymization technologies can help in these
situations by protecting non-explicit identifiers and sensitive attributes
[S47,S44]. The cost of this protection is forgoing data authenticity and
thus decreasing utility. Given the frequency of re-identification attacks,
anonymization should be a critical element of any survey or modern
online application, and, in particular, IoT data markets [S8]. One may
observe that anonymization technologies rely on statistics, probabil-
ity theory, and heuristics, while secure and outsourced computation
usually employs cryptography and trusted hardware.

This sub-section describes our findings for the most employed
anonymization technologies identified in our SLR. We categorize most
of them into two groups [190]. Syntactic technologies provide a numer-
ical value to the degree of individuals’ protection in a dataset, resulting
in a perceptible perturbation of data, e.g., generalizing the values 42,
44, and 45 to the interval [40, 45] such that it is harder for an attacker
o distinguish between the three individuals. Semantic technologies
nforce a privacy definition to a learning mechanism executed over a
ataset, namely differential privacy, whereby the output distribution of
he mechanism should be insensitive to the removal or addition of an
ndividual in the dataset. Typically, the property is fulfilled by adding
alibrated noise to the output of a mechanism, yielding a result that is
ot syntactically different from the original value, e.g., 42 could become
5 after noise addition.

Semantic technologies have an advantage over syntactic technolo-
ies, as they provide a mathematical guarantee of privacy agnostic to
9

background information, i.e., an attacker cannot use related informa-
tion to re-identify an individual in the dataset. Additionally, we discuss
other anonymization technologies not covered in these two groups,
namely noise perturbation and pseudonym creation. Perturbation, in
this context, is not classified as semantic because its process does
not necessarily provide a formal semantic privacy guarantee (such
as in differential privacy) and, simultaneously, the outputs are not
syntactically modified. In essence, anonymization techniques obfuscate
information by perturbing the data during measurement or processing
[58]. From this perspective, anonymization can be understood as a
kind of statistical disclosure control [109], and, thus, also encompasses
semantic techniques such as differential privacy.

Syntactic technologies. We identify the implementation of the privacy
definitions of 𝑘-anonymity and its variations 𝑙-diversity and 𝑡-closeness,
a newly proposed model called 𝛽-likeness, and also their building-
blocks: generalization, and suppression. The most frequently utilized
model for syntactic anonymization in our SLR is 𝑘-anonymity [S3,S28,
S33,S36,S47], which was also reviewed or highlighted by [S8,S27,S49]
and [S35]. 𝐾-anonymity is a privacy model that guarantees any indi-
vidual in a dataset to be indistinguishable from at least 𝑘 − 1 others.
𝐾-anonymization, i.e., altering a dataset to fulfill 𝑘-anonymity, clusters
a set of sensitive attribute values into equivalence classes of size 𝑘.
However, finding an optimal value of 𝑘 for minimum information
loss is NP-hard. Thus, researchers have proposed alternative heuristics
[191]. Nonetheless, some of the selected studies used the building
blocks of 𝑘-anonymization (transformations): generalization [S21,S36]
and suppression [S36]. Suppression deletes selected data points, while
generalization substitutes data points for others that belong to a higher
level in a manually pre-defined hierarchy, e.g., substituting a city by a
country to make the location less detailed.

The selected studies [S28,S33] applied 𝑘-anonymization to aggre-
gate data from a set of entities. [S47] innovated upon [S28] and
[S33] by also employing the 𝑙-diversity model to ensure at least 𝑙
different values in sensitive attributes, and 𝑡-closeness so that the
distribution of the sensitive attributes within each equivalence class
was at most at a distance 𝑡 from the overall dataset distribution of that
attribute. These two models have their own limitations, they prevent
homogeneity and external knowledge attacks (𝑙-diversity) and skewness
and similarity attacks (𝑡-closeness) [190], to which 𝑘-anonymity is
vulnerable. Furthermore, [S36] tailored the use of 𝑘-anonymity based
on record history, privacy policies, and disclosure context. Their new
approach prevented a significant decrease in the data utility compared
to homogeneously applying 𝑘-anonymity to all individuals’ records
equally.

Nonetheless, there are detractors of syntactic technologies in data
markets because of the need for a centralized intermediary that sees
and aggregates the data in a, e.g., 𝑘-anonymous fashion [S18]. More-
over, [S44] stated that these conventional syntactic approaches are not
sufficient because they lack an attacker perspective in the model. For
this reason, they designed a novel model called 𝛽-likeness that explicitly
bounds the additional knowledge that an adversary gains from seeing
the released data.

In the context of this SLR, 𝑘-anonymization is mainly employed
before sharing data in an IoT data market. However, researchers also
employ 𝑘-anonymity for privacy-enhancing location-based services that
exchange location data in IoT data markets, whereby similar fake loca-
tions hide the real ones. This type of approach fits well with IoT devices
embedded in phones, vehicles, and laptops, among other mobile things.
Some of the approaches named by [S3] were cloaking, which consists
of sending a more extensive region that encompasses the real one, and
geomasking, whereby the real location is randomly displaced outside
of an inner circle but within an outer one. [S3] adopted geomasking
for situations where low accuracy is sufficient, and a high degree of
privacy is required. A modern alternative to releasing anonymized data
is synthetic data generation, which creates data by randomly sampling
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from a distribution representative of the real data. Practitioners can
employ generative adversarial networks (GANs) [110], or GANs with
differential privacy for a higher protection [111] to synthesize data.
Synthetic data could be helpful in some contexts as they ‘‘look’’ sim-
ilar to the real data (unlike fulfilling 𝑘-anonymity), e.g., developing
applications before testing them with the real data.

Altogether, anonymization technologies and PPDM compose the
building blocks of statistical disclosure control [112], which organiza-
tions may leverage internally in their privacy-preserving data manage-
ment and analysis solutions, or externally, by using privacy-enhancing
publishing solutions [113] in, e.g., data markets. Among past surveys
focused on the latter solutions (namely 𝑘-anonymity and related mod-
els, in addition to a few cryptographic primitives), the reader may refer
to [113–116] and [117] for further specialized reading. Most notably,
[115] provide a comprehensive survey of syntactic models and differ-
ential privacy and their attacks, and [117] compile a helpful mapping
of data types to the appropriate syntactic and semantic techniques for
anonymization.

Semantic technologies. Introduced by [12] in 2006, differential privacy
(DP) proposes a formal guarantee of privacy that has become the
golden standard for researchers [S37]. DP appears in its pure form or
one of its flavors in 13 of the 35 studies that propose a solution in
our SLR. Furthermore, another seven studies refer to DP to underline
its importance or drawbacks. The potential reasons behind the high
number of references and use of DP are multifaceted. While HE or
MPC may protect the inputs’ and computations’ confidentiality, they do
not prevent reverse-engineering the outputs (re-identification attacks).
Moreover, syntactic technologies or other conventional anonymization
technologies, e.g., additive noise, lack a mathematical guarantee of
privacy and are subject to background knowledge attacks. DP, however,
tackles these issues.

In broad terms, DP guarantees that the output distribution of an
analysis (a statistical query or a ML model) over a dataset is ‘‘essen-
tially’’ identical, irrespective of the presence or absence of an individual
in the dataset. Additionally, DP is agnostic to auxiliary information
available in the present or the future. DP is typically achieved by
adding random noise sampled from a probability distribution such as
the Laplacian or the Gaussian. Specifically, the noise limits the output
distribution difference of an analysis executed over two datasets (one
with and one without an individual) to be no greater than an upper
bound, making the outputs ‘‘differentially’’ indistinguishable. Overall,
DP bounds the amount of new information gained by an attacker after
observing the output of an analysis.

The set of selected studies of our SLR that used DP in their pro-
posed solutions are [S2,S3,S9,S15,S16,S18,S22,S24,S25,S28,S37,S42,
S50]. Tables D.6 and D.7 summarize their proposed architectures. Six
of these studies employ DP locally [S3,S9,S15,S16,S37,S42], i.e., the
noise is added to the data of an individual on the client-side. In contrast,
the rest of the studies apply DP centrally, i.e., on aggregated data on
the server-side. Furthermore, we can cluster the studies into those that
focus on a data trading design for data markets [S22,S37,S15,S50],
crowdsensing data markets [S42,S9,S16,S24], and architectures that
host a data market in an attempt to achieve end-to-end privacy [S2,
S3,S18,S25,S28].

While DP offers a mathematical privacy guarantee, DP is not a
panacea. DP still holds flaws in its real-world implementations [118]
that the research community and practitioners should address. More-
over, DP’s combination with ML needs further improvements regarding
balancing privacy and accuracy [109]. In our SLR, [S48] and [S36]
identify two specific problems with DP: firstly, DP cannot be used
when a high level of accuracy is required [S48], e.g., analyzing data
from the brakes of vehicles to improve safety. Secondly, releasing an
entire dataset with current DP approaches is troublesome. Despite these
challenges, the authors of [S2] and [S50] argue that the benefits of
DP predominate, as DP can adapt to many use-cases and allows a
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practitioner to fine-tune the added noise to enhance privacy.
Fig. 4. Classification of PETs employed for communication.

As we already noted with ZKP, MPC and HE, the authors of the
selected publications that used DP did not employ open-source DP
libraries such as OpenDP, Google-DP, diffprivlib, TensorFlowprivacy,
or Chorus. Instead, they used handcrafted implementations of DP. Aside
from syntactic and semantic technologies, other anonymization tech-
nologies are simpler to implement, e.g., sampled data release, character
masking, truncation, rounding, top and bottom coding, data swapping,
randomization, creating pseudonyms, character scrambling, microag-
gregation, or noise perturbation [22,119]. Moreover, [120] designed
an algorithm that combines the syntactic definition of 𝑘-anonymity
with DP. The two other anonymization technologies employed by an-
other three studies were noise perturbation [S36,S47] and pseudonym
creation [S7].

Perturbative anonymization. Perturbation relies on the use of noise
to obfuscate sensitive information. One of the simplest forms of per-
turbation is additive noise, employed in [S36] and [S47]. Additive
noise consists of adding to a deterministic value a random value
sampled from a uniform distribution whose bounds are set by a spe-
cific percentage of the deterministic value. Furthermore, [S48] reviews
two novel perturbative technologies: First, random space perturbation
[121], which strives to protect the privacy of cloud-stored data by
utilizing a confluence of order-preserving encryption, dimensionality
expansion, random noise injection, and projection. Second, geometric
perturbation [122], which is motivated by the idea of protecting the
geometric transformations that a machine learning model may perform
on a dataset rather than the data itself. While perturbative technologies
aim to tackle the same problems, unlike DP, they do not provide
mathematical guarantees of privacy, even though some are also based
on noise addition.

Pseudonym creation. Pseudonym creation is applied to direct identi-
fiers, e.g., names or social security numbers, to enhance privacy while
uniquely identifying each record. Practitioners create pseudonyms by
hashing or deterministically encrypting an identifier, e.g., using order-
preserving encryption [S48], or by applying asymmetric key encryp-
tion like ElGamal [S7]. However, researchers have demonstrated that
pseudo-anonymization falters against some attacks like profiling, task
tracing, or re-identification [S35].

6.2. Communication layer

The PETs included in this Section enhance the confidentiality of data
in transit or of the sender’s identity (see Fig. 4). These PETs rely on
cryptography.

https://github.com/opendp
https://github.com/google/differential-privacy
https://github.com/IBM/differential-privacy-library
https://github.com/tensorflow/privacy
https://github.com/uvm-plaid/chorus
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Encryption. Encryption is one of the most fundamental technologies to
enhance confidentiality [S19] because after encrypting a piece of data
(cipher), only the anointed holders of a decryption key can decipher
such data. We underline that encryption cannot guarantee privacy
because nothing stops an intended receiver from publicly sharing the
decrypted message; this also emphasizes employing anonymization
PETs. Encryption may be symmetric (one key to both encrypt and
decrypt data) or asymmetric, known as public-key cryptography (two
keys, a public key to encrypt and a private key to decrypt, or vice
versa). Encryption is the building block of virtually every secure com-
munication established through a network and takes a key role in
digital signatures.

While some publications from our SLR employed asymmetric en-
cryption for the confidential communication of data [S1,S2,S3,S10,
S17,S25,S33,S41,S42,S46] (most of these publications also employed
asymmetric encryption for digital signatures, hence the high frequency
of digital signatures in Fig. G.14), other publications such as [S1,
S25,S32,S33,S41] and [S45] employed symmetric encryption to also
confidentially store data. Naturally, encryption is also a building block
for digital signatures (verification layer) and for the storage layer to
maintain data at rest confidential. We depict this relationship with the
dashed lines connecting these elements in Fig. 5.

Onion routing . Onion routing, the backbone of the P2P network re-
sulting from the Tor project [123], consists of a series of re-transmission
steps through the network’s nodes. A sender’s message is encrypted
once for each step. The intermediaries decrypt only their appointed
encryption layer. Thus, the node only knows the immediate sender and
receiver but not the origin of the chain of messages. As the messages
are encrypted, the nodes cannot see the contents either. Overall, onion
routing renders one’s messages unreadable and untraceable. The paper
that suggests employing onion routing in a data market context is
[S26], which some of the identified reviews equally appreciate [S4,S27,
S35].

However, some drawbacks exist. Implementations backed by Tor
have high-latency and redundant communication that challenges band-
width, which can be hard to align with high transactional environ-
ments, such as IoT data markets. Moreover, if an architecture decides to
use Tor, the network is often blocked by IT departments within organi-
zations or even subject to state-level censorship by some governments
[123]. Therefore, practitioners can use alternative technologies such
as a VPN to enhance entities’ privacy in a network in these contexts.
However, these typically centralized alternatives generally offer lower
anonymity guarantees, e.g., a VPN provider can identify a user [58].

Because there is no central authority to set privacy policies uni-
laterally, one must remember that onion routing enhances privacy by
preventing malicious entities from collecting IP addresses to identify
users. Onion routing will not help if the data that users submit to
the network is intrinsically sensitive or correlating. To tackle these
limitations, practitioners may use onion routing as a building block of
a more extensive privacy-enhancing system that leverages other PETs
[S26].

Notably, the publications surveyed in our SLR did not include many
other untraceability protocols, which would include mixnet-based al-
ternatives to onion routing (e.g., anonymous remailers, Chaum’s mixes
[124]), DC-nets [125], or peer-to-peer anonymous communication sys-
tems. An extensive overview of these systems is given by [126].

6.3. Storage layer

The authors of the selected papers that propose confidential stor-
age functionality in their architecture leverage symmetric encryption,
mostly AES [S1,S25,S32,S33,S41,S45] (encryption is described in the
communication layer). Furthermore, researchers could leverage Inter-
Planetary File Systems (IPFS) [127] to compensate for the lack of
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storage capacity in blockchains to some extent. Specifically, IPFS is a
Fig. 5. Classification of PETs employed for verification.

peer-to-peer protocol for data storage and access in a distributed file
system. Among the PETs in the processing layer, practitioners could
employ homomorphic encryption [128] to encrypt and store certain
types of data, so that data are readily available to compute confidential
operations. Furthermore, unless strictly necessary, practitioners should
store encrypted data that are, in turn, anonymized with syntactic or
semantic technologies. In case of a breach that leaks the decryp-
tion key, anonymized data would reduce the likelihood of attackers
re-identifying individuals.

6.4. Verification layer

Some of the PETs that support data processing cannot verify the
authenticity of data, identities, or the integrity of data [S19] by them-
selves. The PETs we include in this Section accomplish these verifica-
tions with different levels of privacy enhancement. The data processing
PETs that can assure identity authenticity and data integrity use the
digital signatures of the verification layer and the encryption tech-
nologies of the communication layer as building blocks. Furthermore,
the credibility associated with verifying the information exchanged,
analysis outputs, and identities can increase the willingness of users
to share data [S8]. To navigate this Section, we refer to Fig. 5.

Privacy-enhancing digital signatures (DSs). DS schemata assure data
integrity and identity authenticity if accompanied by a digital cer-
tificate. As a consequence, DSs also provide non-repudiation [S1],
i.e., actions that an entity cannot deny later. The steps that usually con-
stitute a DS scheme are private and public key generation, encrypting a
digest of data with a private key, and a signature verifier that employs
the public key to check whether the sender signed the data with the
private key.

DSs and the encryption primitives of the communication layer are
so fundamental that one of the selected studies solely relies on HTTPS
for their data market architecture [S17]. However, this architecture
does not consider privacy beyond data in transit. Hence, most selected
studies rely on multiple PETs. Moreover, although not all of the selected
studies explicitly mention DSs, we can safely assume that since DSs are
already a living part of virtually any enterprise IT system, most selected
studies employ them in their architectures (hence the high frequency
of DS utilization in Fig. G.14). Nonetheless, while DSs allow verifying
the integrity of data or the authentic identity of the sender, users still
need to trust the sender with the authenticity of the data.

So far, we have only described DS as an authenticity-enhancing
technology. However, some of the studies selected in this SLR employed
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Fig. 6. Classification of PETs used for sovereignty purposes.

wo DS schemata based on asymmetric encryption primitives that make
Ss privacy-enhancing:

• Ring signatures [S32], whereby any party within a pre-defined
set of parties could have been the signer of a message. Thus, the
identity of the authentic signer is kept hidden [192,193].

• Blind signatures [S20,S26], whereby the signer does not have
access to the content being signed [60]. It is possible to use
blind signatures in combination with zero-knowledge proofs to
convince the signer that the content to be signed has the expected
properties. Also, one can make an entity sign multiple contents
and allow for spot checks to detect fraud. The latter procedure has
been employed in the first approaches toward privacy-enhancing
payments [59].

ashing . Hashing is a tool to deterministically map data of an arbi-
rary length to a fixed output length. In the context of privacy and
erification, and aligned explicitly with some of the selected studies
S1,S10,S33,S46], hashing is used to verify the integrity of transferred
ata by hashing the data and making the hash public before transferring
he data. In this manner, the recipient can verify the integrity of the
onfidentially transferred data by comparing the hash of the received
ata with the previously published hash. Provided the entropy of the
ata is sufficiently high, nobody except the intended recipient can
etermine the data from the published hashed value. Hence, hashing
an be considered a form of version control with a privacy component.

The hash function employed by the publications mentioned above
as SHA-256. Their authors commonly use the published hashed data
n distributed ledger technologies to ensure immutability and availabil-
ty. In this setting, hashing enhances the confidentiality of the sender’s
ata while the parties (network nodes) ensuring the ledger’s integrity
and inherently the persisted hash) cannot unveil the original data. The
riginal data is only viewed by the intended receiver, which validates
he integrity of the data received through another channel with the
ash persisted in the ledger.

.5. Sovereignty layer

The sovereignty layer deals with the concept of information control,
he perceived ability to govern what is exposed from one’s data [54].
pecifically, based on an entity’s requirements, this layer defines the
ntity’s rules and guidelines regarding ownership and management that
an indirectly govern data processing, verification, and other IoT data
12

arket layers. Furthermore, to prevent entities’ violation of privacy,
practitioners should map these rules to the PETs capable of fulfilling
them. For example, GAIA-X’s high-level architecture contemplates pri-
vacy policies in their data sovereignty layer [5]. Privacy policies (closely
related to access controls), have been predominant across publications,
and, thus, dominate the sovereignty layer depicted in Fig. 6, which
illustrates the three identified types.

Privacy policies and privacy by design. Privacy policies embody the
requirements and guidelines of a data governance model and are meant
to be part of any privacy-enhancing application. To define them, given
the regulatory and human aspects of privacy policies, it is also helpful
to adopt perspectives from definitions beyond computer science, such
as the one underlined in Section 2. [129] indicates that the privacy
requirements depend on the recipient of the information, e.g., an indi-
vidual can have different reservations when disclosing information to a
family member than to the government. Privacy policies should reflect
this definition, which means that individuals should express the privacy
policies they expect. Several studies in our SLR explicitly proposed poli-
cies as part of their solution [S6,S21,S25,S28,S29,S33,S36], while many
others reviewed privacy policies [S19,S35,S40] or mentioned similar
ideas. For example, [S8] did not provide a concrete implementation
or explicitly named privacy policies. However, they mentioned that,
in data sharing scenarios, the data owners should be able to control
some fundamental aspects: data types to share, with whom to share,
the required degree of trust in another party, the purpose of sharing,
and for which benefit.

Among the publications discussing privacy policies, there is a dis-
cernible classification. Four of these publications [S6,S28,S29,S33] con-
sidered privacy policies as a negotiation between the user and a third
party, such as the data consumer or data broker. [S6] provided a set
of legal requirements and high-level technical solutions that facilitated
the introduction of policies in international data markets, e.g., writing
policies in a standard language. On the other hand, [S29] presented
an approach where the data owner could choose among a set of four
privacy policies, which included how data was aggregated, and [S33]
relied on a privacy policy manager that acted as a gatekeeper and
managed the privacy settings from a set of users. Furthermore, another
set employs a pre-defined logic to execute PETs based on the desires
and track record of the data shared by the individual [S21,S36], while
the last set relied on smart contracts for decentralized pre-defined
[S2,S25] or negotiated [S28] policies.

Nonetheless, the implementation of policies faces challenges. Firstly,
there may be multiple colliding policies, i.e., applications must pri-
oritize policies depending on the context [S21]. Secondly, there is
no uniformly accepted global standard for electronic privacy policies
[S6]. [S40] investigate how practitioners model privacy policies in
different domains, focusing on IoT applications. They point to the
lack of a uniform standard and propose to utilize ontology-based
privacy-knowledge modeling. Thirdly, policy enforcement also causes
overhead and an increase in latency due to the need for compliance
checks and a lack of automation [S21]. Furthermore, conventional
users should include their privacy preferences with minimal manual
effort, as they could be overwhelmed otherwise. [S40] suggested using
recommender systems based on similar users’ data to address this
issue. However, this solution may incur a biased recommendation.
Moreover, data acquisition expenditure for privacy policies should not
incur costly computational resources as they scale to a growing number
of transactions [S40].

Privacy policies are crucial to protect users’ privacy; however, they
are not enough. Organizations must consider privacy issues at each
stage of the data pipeline (i.e., processing data end-to-end with the
extract-transform-load framework [130]), contemplating aspects that
escape user-defined or mutually-agreed policies, and taking into ac-
count that typically, neither users nor data brokers will be privacy
experts. If a user does not know the potential harms of sharing sensitive

information such as DNA data, a data consumer may take advantage
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of the user. Therefore, while privacy policies are a stepping stone
toward end-to-end privacy, practitioners must develop systems with a
privacy-by-design philosophy [S36,S4].

Privacy by design is a term coined in the ’90s by the former
information and privacy commissioner for the Canadian province of
Ontario, A. Cavoukian, who created seven principles [131]. Privacy by
design claims that privacy goes beyond current regulations and must be
an ever-present concern in the minds of organizations [131]. Following
privacy-by-design principles entails, for example, preventing sensitive
information extraction by default [S36], minimizing the amount of
shared data at each exchange (proportionality) [194], and increas-
ing the price of large data packages [194], among others. However,
adopting these design principles comes with effort, forcing developers
to adapt their design patterns. For example, current homomorphic
encryption techniques force data scientists to express their analysis in
terms of additions and multiplications, and differential privacy requires
new software engineering design patterns that track the privacy budget
of individuals or data scientists.

Smart contracts (SCs). A SC alone is mainly equivalent to conven-
tional scripts. Nevertheless, because SCs are executed in distributed-
ledger-technology-based architectures (DLT) (see Section 7.1), SCs in-
herit from DLT their enhanced availability and integrity guarantees
[55]. DLTs execute SCs synchronously on every node of a P2P net-
work if an arbitrary transaction demands a function’s execution. Once
deployed, no one can change the script, not even the creators (unless
there is an intended call of the script that enables modification), and the
script will remain in the network as long as the network exists unless
specified differently (e.g., through a self-destruct call). This inherited
integrity property of SCs makes them a unique tool to specify and
enforce policies between parties or any other process where no trusted
third party is available.

Within this review, all the studies that used the Ethereum, Quorum,
Hyperledger Iroha, or Ekiden blockchains relied on SCs to declare
privacy policies [S2,S25] (Ekiden) [S28] (Ethereum), fair auctions [S3]
(Hyperledger Iroha), or payments or incentives [S32] (Ethereum) [S43]
(Agora) [S3] (Hyperledger Iroha). However, while SCs ease verification
and enable democratic proposals of privacy policies, SCs also inherit the
privacy flaws of DLT, i.e., SCs by default imply the disclosure of data
and computations to all DLT network nodes [56,132]. For example, the
architecture from [S25] employed SCs to set user-defined policies, yet
it relied on trusted execution environments to enforce them. SCs alone
cannot enforce privacy policies without relying on other PETs. The only
privacy-related feature that a SC can offer to an IoT data market is
declaring privacy policies.

Data access control. Data access control refers to allowing an organi-
zation or an individual to choose who has access to which data. Access
control represents a subset of privacy policies in data markets and may
utilize different PETs to enforce access rights. While access control is a
long-established approach, [S25] propose a novel method, using a key-
rotation system [195] in combination with a key manager. Thus, the
potential impact of a leaked key is only temporal, with the downside
of shorter access permissions.

7. Authenticity-enhancing technologies

The included authenticity-enhancing technologies (AET) focus on
enhancing the authenticity of data and identities and also cover data
integrity as described in Section 5. Some of the AETs that we describe
incorporate privacy-enhancing features, while others do not address
or even aggravate privacy protection issues and, thus, need to be
13

combined with PETs. a
7.1. Consensus layer

Distributed ledger technology (DLT). While DLT may take different
forms, most architectures follow the blockchain design pattern, except
for IOTA, which uses the so-called Tangle [196]. A blockchain is a
tamper-proof distributed database whose state is stored, synchronized,
and replicated by nodes in a P2P network following a consensus al-
gorithm [55]. By its distributed nature, the shared ledger becomes a
medium to verify claims, data, payments, or contracts, as once an entity
writes something on the ledger, it is practically impossible to modify
or erase this record in the future. This property makes blockchain a
decentralized and highly reliable alternative to conventional auditing
methods like version control [S19].

Benefits of DLT in IoT data markets are the ability to represent
the governance, distribution, and roles of authorities on a technical
basis [S3], and the enforcement or transparent storage of pre-defined
rules by the architects of the respective platform [S25]. Other benefits
include eliminating the need for a trusted third party, which removes
a single point of failure, improves censorship resistance, and provides
more robust data and computational integrity guarantees. DLTs also
enable payments through their often built-in cryptocurrencies or other
payment systems implemented via smart contracts [S32,S46].

However, some of the studies in our SLR also point at the challenges
of current DLT designs: IOTA fails to deliver regarding throughput
[S28], is still centralized [S20], and provably has security flaws [133].
Furthermore, blockchains exhibit low transaction throughput [S25],
high latency [S11], limited storage [S1] and scalability [S11,S25], com-
putational overhead [S25], high energy consumption [S12], and, most
importantly, excessive information exposure that can entail a privacy
violation [134]. However, some of these aspects can be mitigated.
For example, the energy consumption issue only concerns proof-of-
work blockchains [135], and performance can be improved to some
extent by private permissioned blockchains that restrict participation in
consensus and read access to a small number of nodes in a consortium
[136].

Despite the possible operational improvements, employing a DLT
for a privacy-enhancing IoT data market needs in-depth consideration.
Firstly, through highly replicated storage, a DLT is not suitable for
storing large amounts of data produced by IoT devices, not even in
a privacy-compliant manner. Consequently, most architectures of the
selected studies transfer data through interplanetary file systems [S28],
employ a hashing verification approach as described in the communica-
tion layer [S1,S10,S33] or use Merkle trees [S46]. Secondly, while DLT
allows for disintermediation and verification in a trust-less manner, it
exposes to the network whatever information someone writes on the
ledger for as long as the network exists, which may, among others,
violate GDPR’s Article 17 ‘‘Right to be forgotten’’ for personally identifi-
able information [137]. Lastly, even if an organization uses a DLT only
for the matching and clearing steps of an auction, potentially sensitive
business information such as turnover can become available to other
network participants, which can conflict with antitrust regulation.

Despite the privacy and performance issues of DLT, 31% of the
ncluded papers implemented a DLT as the backbone of IoT data market
rchitectures, employing the Ethereum blockchain [S1,S13,S20,S28,
31,S32,S45,S46], Quorum [S18], the Agora blockchain [S43], Hyper-
edger Iroha [S3], Hyperledger Fabric [S10,S33], IOTA [S20,S28,S30],
ntel’s TEE-based consensus Rem [S12], and Ekiden [S2,S25]. Other
ublications only considered them agnostically [S11,S49] or in a review
S19,S23]. The most salient architectures are described in Table D.7.

Some of the selected studies included privacy-enhancing features
n their stack. For example, Quorum supports private transactions and
rivate contracts through a public–private state separation and P2P
ncrypted message exchange for the direct transfer of private data
S18]. However, the interaction between the private and public ledgers
s thus naturally limited and cannot be directly applied, for example, to

n on-chain payment system. Another example is Ekiden, which offers a

https://github.com/ConsenSys/quorum


Journal of Network and Computer Applications 207 (2022) 103465G.M. Garrido et al.
Fig. 7. Classification of the identified authenticity-enhancing technologies in the selected studies of this SLR.
horizontally scalable blockchain potentially capable of hosting end-to-
end privacy-enhancing applications through key management protocols
and Intel’s TEEs [S25] (Note that [S12] uses these TEEs only for
consensus, not privacy). Like the solution that [S45] presented, Ekiden
allows for smart contracts to execute data analysis in TEEs. However,
it is essential to note that these DLTs accomplish the described privacy
and integrity functionalities not because of the DLT characteristics but
by leveraging the PETs described throughout Section 6.

7.2. Verification layer

This verification layer corresponds to AETs that can be employed
for the verification of data and identities. We structure this Section
according to Fig. 7.

Truth discovery (TD). TD encompasses algorithms aiming to find the
authentic value when different data sources provide conflicting infor-
mation. As a consequence, TD enhances data and computation integrity
and can also enhance identity authenticity, e.g., through reputation
systems [S9]. In our SLR, we found that TD takes different forms. For
example, the survey by [S23] mentioned a mechanism called peer-
prediction-based trustable data aggregation [197], in which the system
administrator rewards participants for predicting outcomes of arbitrary
events based on other participants’ data. This design created incentives
for honest reports and therefore enhanced data correctness, resulting
in almost all participants choosing to report their bids truthfully [S23].
Moreover, [S23] also proposed mutual validation in which an IoT de-
vice compares its data with that of other nearby IoT devices. However,
14

this only applies to specific measurements that are positively correlated P
for neighboring devices, e.g., temperature, speed of a vehicle, or loca-
tion in particular settings. It also seems challenging to establish generic
handling of differences. Other TD approaches are majority voting,
implemented by [S9] in their crowdsourcing architecture and by [S45]
in their data processing-as-a-service model. Specifically, given the use
of differential privacy in the former approach, they systematically
discovered high-quality data with an estimated measure of utility that
compares individual data points with an aggregate (the ‘‘majority’’).
The latter publication created a reputation system based on the quality
of previously sold data.

While most TD approaches leverage transparency to enhance data
and identity authenticity and data and computation integrity, TDs are
flexible to include PETs such as ZKPs, MPC, HE, TEEs, and DP such as
in [S9]. Furthermore, TD can also tackle the oracle problem of DLT,
i.e., nodes within the network cannot assure the authenticity of data
from outside the network, e.g., the price of a physical asset or the result
of an election. For example, ChainLink [138] is an initiative that utilizes
incentives to create a trusted oracle network and incorporates many of
the principles of TD.

Digital signatures (DS). While DS1 schemata are commonplace for
authentication purposes in today’s IT architectures, we have found
in selected studies the use of two notable public key cryptography
(PKC) schemata that offer some convenience-related advantages over
conventional PKC systems:

1 We introduced the fundamentals of DSs in the verification layer within the
ETs branch.
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• Identity-based [S7], where a key generation center (KGC) creates
a secret key in a way that the entity’s public key can be a publicly
available unique string, e.g., the entity’s email address. The KGC
must be trusted because it holds the master secret key from
which all parties’ secret keys can be derived. This digital signature
assures identity authenticity as the signature is digitally certified
by the KGC.

• Certificateless [S12] DS schemata are a special form of identity-
based PKC whereby an entity’s private key is generated by both
the entity and a KGC so that the KGC is not aware of the private
key of the entity. However, the entity can prove that the KGC was
involved in the key generation [139]. This approach assures the
authenticity of an entity while tackling the single point of failure
of the KGC.

Decentralized identifiers (DIDs). Identifiers can link an entity elec-
tronically across multiple IT systems, such as mobile phone numbers, ID
cards, user names, or emails. These links are sometimes but not always
unique and are facilitated by identity providers that centrally host reg-
istries of these identifiers’ [140]. In contrast, DIDs are globally unique
(with certainty through publishing them on a DLT or probabilistically
through randomized generation) identifiers decoupled from centralized
registries. DIDs essentially correspond to URLs linked to a file contain-
ing one or several public keys and associated metadata that specifies
the policies of controlling or interacting with the associated identity.
There are two studies in our SLR that employed DIDs in combination
with DLT in their conceptual frameworks [S3,S20], described in Table
D.7.

Digital fingerprints (DF). DFs are unique physical identifiers that can
be attached to or are inherent of items, and thus, one can be sure to
interact with, e.g., the right IoT device [S19]. DFs can be seen as a
form of version control at a high level. However, attaching an identifier
securely to a physical object is difficult unless it has a unique property,
e.g., unique metal patterns in the soldering of a chip. However, even
if the attachment is relatively tamper-proof, e.g., with a crypto-chip,
the same problem also pervades the items that interact with the digital
fingerprinted item, e.g., tracking scanners. Therefore, despite the au-
thenticity assurance of DFs, their authentication can only be as truthful
as the honesty of the devices that scan the DF.

8. Privacy challenges in IoT data markets

This Section aims to answer RQ2 by distilling the implicit and ex-
plicit challenges unveiled in our SLR and other seminal studies [10,24]
concerning privacy in the context of IoT data markets. We further
classify them into narrow and broad challenges depending on the scope
of their definition. Fig. 8 summarizes and outlines the structure of this
Section.

8.1. Narrow challenges

Aside from the inherent complexity and low maturity of some PETs
and the compatibility issues with legacy systems [24], we identified an-
other specific set of challenges tackled or circumvented by the selected
studies.

8.1.1. The trade-off between utility and privacy
Practitioners working with personal data face the challenge of bal-

ancing the enhancement of individuals’ privacy with the preservation
of data’s utility [S14]. This challenge is explicitly mentioned by some
of the selected studies [S6,S9,S13] and implicitly tackled by others
[S2,S24,S25,S35,S47]. This dichotomy is the underlying reason behind
the tension between data owners and consumers: the former aim to
maximize privacy while the latter intends to maximize utility, which, in
turn, is frequently determined by data authenticity (see terminology in
Section 5). Furthermore, privacy officers should consider balancing this
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trade-off at each stage of an information flow [10]: input, computation,
output, in transit, and at rest, which increases the complexity of the
task. On the other hand, decision makers’ or data scientists’ quality of
judgment depends on computational integrity and the authenticity of
data and identities, which is affected by the privacy-utility trade-off.

While PETs from the secure and outsourced computation category
seem to circumvent the utility-privacy trade-off by concealing inputs,
computation, and outputs, the anointed recipients of these outputs can
still perform a re-identification attack. Thus, anonymization PETs, such
as differential privacy, should also be included in the stack as they
lower the probability of successful re-identification attacks [10].

Data and identity authenticity and accountability bring another
problem in the utility-privacy trade-off. Some PETs, namely anonymiza-
tion technologies, increase plausible deniability at the expense of reduc-
ing authenticity and, therefore, accountability [S14,S43]. If the data is
fuzzy, the data owner may claim that such a result is not resembling the
truth, which is favorable for individual users. However, such protection
is not beneficial for society in some contexts, e.g., in criminal contexts.
Regarding authentic data from fuzzy identities, if an authority cannot
trace data back to the origin, an individual could try to claim plausible
deniability, which would hinder processes such as tracking COVID-19
patients to improve pandemic countermeasures. For practitioners to
find a balance in these contexts, the requirements of any application or
platform should first define the accountability of the involved entities
to strike an optimal balance between utility and privacy.

Regarding accountability in data markets specifically, mechanisms
to punish misbehavior, such as banning an entity for re-selling or not
selling authentic data [S7], can be beneficial to enhance the utility of
the market. While AETs such as truth discovery, e.g., majority voting
[S9,S45] or reputation systems [S9], incentivize market participants to
report honestly about the exchanged data, their identity, and compu-
tation integrity, among others, the privacy of the entities is not neces-
sarily enhanced. Additional related issues that may arise are verifying
the purchased data’s authenticity without violating the individuals’
privacy [S7]. For example, if a data broker sells analysis outputs
(insights) and not the (privacy-enhanced) original data, the original
data owner’s digital signature is not valid to authenticate the insights
[S7]. Nevertheless, systems could use zero-knowledge-proof-based au-
thentication of data and computation, coupled with value deposits
locked in smart contracts to hold participants accountable through en-
forcing reimbursement across intermediaries. Moreover, other nascent
solutions exploit the ubiquity and proximity of IoT devices in specific
contexts because the data gathered is likely to be correlated, which
allows for mutual data authenticity verification among IoT devices
[S23]. However, exploiting correlation can only be used for specific
measurements, e.g., weather conditions, vehicle speed, and location,
among others.

8.1.2. The recursive enforcement problem
Trust is an essential component in distributed systems that involve

different stakeholders and, thus, trust is specifically relevant in the
context of IoT data markets. Definitions of trust generally refer to a
‘‘[...] directional relationship between two entities’’ [S49] where one entity
(the trustor) has subjective expectations on the behavior of the other
entity (the trustee) based on previously observed behavior (reputation-
based trust) [141] or the belief in competencies and corresponding
actions — often within a specific context [142,143] and incentivized
by joint interests [144]. Following this definition, we can consider
users as trustors of application owners protecting their data when they
engage in digital activity. However, the number of data breaches [9]
and privacy scandals such as Cambridge Analytica indicate that this
trust is not always deserved. The recursive enforcement problem (REP)
encompasses the underlying problem of third-party trust with more
nuance: Given a third-party authority (𝐴), there ought to be another
authority (𝐵) to supervise 𝐴, so that 𝐴 can be trusted. In turn, there

should be yet another authority 𝐶 to supervise 𝐵 [10], and so forth.
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Fig. 8. Overview of the narrow and broad challenges facing privacy-enhancing IoT data markets.
The REP is a significant challenge that has been covered and tackled
implicitly by some of the studies in our review [S1,S3,S4,S7,S10,S16,
S25,S41]. Additionally, others tackle a sub-set of the REP, which is
the single point of failure of trusting a unique third party [S6,S12].
According to [S8], the hesitation in trusting third parties is one of the
main reasons for the slow adoption of IoT data markets. Indeed, it
is hard to technically ensure and prove that the third party will not
use one’s data for purposes other than those agreed [S8]. Additionally,
adoption is further slowed down because the use of third parties to
supervise other parties incurs costs [S46]. Furthermore, users’ daily
interactions with ‘‘trusted’’ third parties can be regarded as a product
of contrived trust, another form of the REP. For instance, applications
from large service providers with negligible competitors push users to
accept the sometimes poor privacy conditions, e.g., GPS apps. Note that
contrived trust is different from the trust users have on cryptography,
open-source code, or consensus mechanisms that the broad scientific
community has audited over the years.

Tackling the REP requires reducing the power and the responsibility
of the third party in a particular aspect of a specific service by,
e.g., distributing such responsibility among other parties or distributing
the power among multiple parties that enforce rules on each other.
These measures can ease the hesitation to trust a single third party,
tackle contrived trust, and reduce the single point of failure because
the third party would be supervised and held accountable by other third
parties in a flat hierarchy. Fortunately, the PETs included in this study
can also circumvent – only onion routing can tackle – the REP, which,
in turn, reduces the need for third-party trust and, therefore, reduce
contrived trust and a single point of failure. Additionally, 5 of the 7
AETs included in this study can tackle the REP, primarily distributed
ledger technology, whose architecture was purposefully built to tackle
the byzantine generals’ problem [145,146], a manifestation of the REP.

8.1.3. The copy problem
Once an entity releases data freely or for profit-seeking, the data

is no longer under the original owner’s control. Consequently, the
recipients of such data can copy and, e.g., re-sell or use the entity’s
data for a non-agreed purpose without informing or acknowledging the
original owner [10]. Beyond the privacy threats the copy problem (CP)
entails for users of service providers under poor privacy conditions, the
CP is a major obstacle for organizations to engage in data markets,
which some of the selected studies implicitly tackle [S2,S25,S45]. The
CP leads companies to either hoard or sell data as fast as organizations
obtain the data, lest its value drops [10]. Nonetheless, secure and
outsourced computation PETs such as trusted execution environments
or homomorphic encryption can tackle the CP by allowing other entities
16
to extract value without losing control over the input data beyond the
specific information sold, such as an algorithm’s evaluated output on
this data. This paradigm is profound because tackling the CP makes
data scarce (to some extent), as the original data is not shared, and the
data owner would not allow a non-agreed computation. Thus, selling
the access to data can be more attractive to companies, as data would
preserve their value longer than releasing the data.

A subset of the CP is the bundling problem (BP) [10], which is an
attack vector different from re-identification that occurs when an entity
requests actively or passively more data than strictly needed to (i)
prove a claim or (ii) perform an analysis. Harvesting more information
than needed worsens data breaches’ consequences for individuals and
companies and indicates questionable business ethics. For instance, (i)
to prove one’s age with an ID card, the prover usually shares all the
information in the ID instead of only the age and proof of the card’s
authenticity. The BP is a subset of the CP because if one tackles the
CP, neither necessary nor additional information is released beyond the
required computation. For example, tackling the CP by restricting veri-
fication and processing to a trusted execution environment also tackles
the BP. In this setting, the data consumers cannot copy the necessary
data or metadata for other unsolicited analyses, despite being able to
process metadata to verify the authenticity of the data and the integrity
of the computation and obtaining the desired outputs of the analysis.
Additionally, (ii) anonymization-based PETs such as differential privacy
or 𝑘-anonymity reduce data authenticity to tackle the BP. For instance,
in a demographic analysis that only requires the first digits of the
ZIP code to perform clustering, data curators can generalize the ZIP
codes with 𝑘-anonymity, so only the strictly necessary information is
revealed to data scientists. Nonetheless, anonymization can suffer from
background-knowledge-based attacks [S48,156] and does not solve the
CP because the data consumers can replicate the privacy-enhanced
data.

8.2. Broad challenges

8.2.1. The IoT impact on privacy
The paradigm brought by the IoT brings significant amounts of

data to markets. However, this paradigm also bears some of the short-
comings of IoT devices [198]. Table 2 contains an overview of these
challenges and briefly discusses their impact on privacy. In summary,
privacy is always affected by the context and employed technologies,
which underlines the importance of adhering to privacy-by-design prin-
ciples [131] and the need for practitioners in other fields such as
software engineering, economics, law, and politics to tackle together
the diverse issues that IoT entails for privacy.
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Table 2
Overview of challenges brought by the IoT paradigm into data markets explicitly covered by some of the studies included in this SLR.

Challenge Studies Description Impact on privacy

Heterogeneity and
Interoperability

[S36]
and [S39]

The IoT consists of billions of IoT devices from
different manufacturers, running different software on
different local networks and geographic regions, with
different computation power and storage capacity
[147]. Furthermore, different communications
standards, connectivity and availability aggravate the
interplay of IoT devices.

An IoT data market should be agnostic to these
differences and minimize any additional requirements;
however, it is unclear how global data markets should
harmonize data coming from different jurisdictions
with different privacy regulations and how an IoT
device can interact with another whose, e.g.,
verification schemata are considered inadequate. In
addition to these obstacles, a lack of interoperability
may restrain PETs that involve the communication
between many devices, e.g., MPC.

Computation power [S5],
[S11]
and [S48]

Manufacturers produce many IoT devices designed to
consume low energy and require minimal volume,
limiting these IoT devices to the core functionalities
of monitoring and communication [S11].

Any additional computation requires a higher
investment in resources and manufacturing, and
running some PETs becomes infeasible without this
extra investment. Consequently, a set of PETs is
excluded without more computation power, e.g.,
cryptography-based PETs such as HE, MPC, ZKP, some
digital signatures, or consensus algorithms. This
limitation, however, may only apply to contexts
where it might not be possible to connect IoT devices
acting as clients with proprietary or trusted
third-party nodes where these PETs are executed.

Storage capacity and
real-time
communication

[S1],
[S5],
[S11],
[S17],
[S29]
and [S48]

Minimizing the physical volume of an IoT device
reduces their price but limits their storage capacity,
forcing IoT devices to transmit the data to a data
warehouse or a data market as quickly as possible.
This tendency intensifies in some IoT applications
where the time delay tolerance is low to enhance the
utility of real-time information [S17].

Processing time constrains the number of usable PETs,
excluding those that require long execution times,
such as fully HE or creating a ZKP.

Data quality [S14] An unreliable IoT design may afflict thousands of IoT
devices mass-produced by a manufacturer, which at
deployment may lead to millions of unreliable data
points. Furthermore, networks may also be unreliable,
further worsening the quality [S14].

The impact may seem beneficial in terms of privacy;
however, unreliable data leads to verification and
secure computation schemata to fail and
anonymization technologies to over-perturb the data
as the underlying data is not entirely truthful.

Ambiguous data
ownership

[S4],
[S10]
and [S14]

When purchasing a device or a cluster of IoT devices,
e.g., a phone, consumers also expect to own the data
they are generating. However, the phone
manufacturer and service providers expect to receive
parts of this data nowadays with meager consent. In
addition to this clash of interests, there are scholars
that ponder whether data belongs to anyone in the
first place, like [148].

Having unclear data ownership leads to a misguided
deployment of PETs, which may cause detrimental
consequences if the privacy measures fall short. On
the other hand, if the practitioner knows who has the
right to the data and what the owner is reticent to
share with a third party, then selected PETs and their
privacy tuning can be optimized accordingly.

Privacy disparity [S4]
and [S40]

Depending on the IoT devices’ deployment location,
the degree of privacy measures should be higher or
lower, e.g., sensors in vehicles, smart homes, phones,
and wearables. Furthermore, IoT deployments should
adapt the monitoring time to an adequate amount
depending on the context [S40].

Some PETs, such as semantic and syntactic
technologies, allow adjusting the degree of privacy;
however, others are more rigid. Selecting and
adapting a PET to the IoT devices’ deployment
context requires expertise.

Pricing [S4],
[S14],
[S17]
and [S50]

There are multiple variables imposing the price of
data aside from supply and demand: the truthfulness,
the source, either purchasing the data or the access
[S17], and the privacy level. These factors add
additional complexity to pricing, e.g., the sources
have become disparate with the IoT, which drives
pricing to a more granular task than before, when
aggregated data could be sold as a unit [S17].

Aside from payment enforcement mechanisms, pricing
involves negotiations, which frequently must ensure
privacy. This adds an extra layer of complexity to the
deployment of PETs. Furthermore, as data markets
trade with more granular data points, PETs that need
aggregation might be excluded in some contexts, e.g.,
syntactic technologies such as k-anonymity.

Scalability [S25]
and [S36]

The number of IoT devices and streamed data grow
exponentially across industries [147,149], which
extends data collection and improves analytics across
different domains, e.g., health, insurance, or finance.
To gain these benefits, there is a need to increase
networks’ communication and overall storage capacity
as well as interoperability and security efforts.

As the IoT scales, analysts will access more datasets
from different domains to create new products and
services, e.g., linking driving behavior with insurance
in pay-how-you-drive schemata [150]. Such
innovations stem from the ‘‘mosaic effect ’’ [151],
where disparate datasets with limited information
value can obtain significance when combined with
other datasets. However, malicious entities can
leverage such an effect to extract sensitive personal
information not explicitly contained in a dataset
[152].
17
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8.2.2. Attacks on privacy
Adversaries can be malicious, actively trying to breach users’ pri-

vacy through hacking, or honest but curious, passively gathering data
from users to reveal hidden insights [S35]. Both of these entities can
carry re-identification attacks with the collected information. Within
the context of the IoT, the list of security and privacy attacks is ex-
tensive (sniffing, cache poisoning, DoS/DDoS, sinkhole attacks, replay
attacks, among others) [153]. Furthermore, within our SLR, [S45]
discuss some of the additional attack vectors these malicious or curious
entities may execute in the context of IoT data markets to learn sen-
sitive information from users. Notable ones include: Data forwarding,
which is one way the copy problem materializes; roles collision, where
data brokers and buyers may be the same or collaborating entities,
and, therefore, the broker could rig the auction for its benefit and
access the sold data; and side channel attacks, where attackers exploit
he physical properties of the hardware or its power consumption to
xtract knowledge from the hidden computations (trusted execution
nvironments suffer mainly from this attack).

Such attacks make the possession of data intrinsically risky because
f attackers are successful, data re-identification is possible [S38], even
f data have undergone some form of privacy enhancement [154].
here are common attacks used to re-identify data, e.g., reconstruction,
racing, or linkage attacks [118,155]. Some of the most famous re-
dentification white-hat attacks involve [156] who deanonymized the
etflix Prize dataset with IMDB’s public dataset in 2008, [157] who
erformed the same feat with Amazon’s public review data, and [6]
the inventor of 𝑘-anonymity) who re-identified participants within a
enome sequence dataset in 2013. Furthermore, in 2014, [7] tracked
rivers with home address and vehicle speed as inputs, and in 2020,
154] matched users with large-scale mobility datasets from a mobile
etwork operator and transportation smart card usage.

Overall, IoT data markets will facilitate access to large quantities of
ata from different domains, including biometrics, which will increase
he impact of these attacks and the potential harms to individuals,
.g., insurance, employment, or price discrimination. Therefore, IoT
ata markets require a more robust adoption of PETs and security
tandards.

.2.3. Legal challenges
Progressively along the past decades, governmental institutions

ave released laws to protect the privacy of their citizens (see Sec-
ion 2.1). These laws also refer to an individual’s and businesses’ right
o exploit their data commercially, which provides leeway for data
arkets [S28] and aims to uncover the untapped potential of data for

nnovations.
Nonetheless, research points out the sometimes unrealistic expec-

ation to monitor the entirety of the Internet for privacy violations
S45], and the dexterity of hackers to find novel deception methods
S3], and that laws are more reactive than preventative. Well-known
etworks of illegal proprietary digital asset exchanges, e.g., scientific
orks and how users of digital services give away data, tacitly provide

estimony of the failure of data-related legal measures today, and the
roblems will likely increase with the accruing number of IoT devices
S38]. Moreover, privacy regulations can strangle free markets and
nnovations if they are too stringent [S45].

Aligned with these deficiencies, [S38] introduced privacy regulation
itfalls that the IoT unfolds in data markets in 2013. They note that
i) definitions of personally identifiable information will be depre-
ated as unprecedented amounts of data can be aggregated, easing
e-identification, (ii) the development and audit of PETs is costly, which
ay limit business models and potentially make disregarding privacy

egulation profitable [199], (iii) privacy violations result on small fines
r remain unpunished, (iv) technology tends to outpace regulation,
nd (v) the ubiquity of IoT devices will yield more illegal secondary
ersonal data markets. After almost a decade of further research, (i)
18

eems valid, at least in some scenarios. The ambiguity of privacy
regulation is a barrier in some cases, as practitioners may default to
weaker forms of privacy if their architecture appears to comply. This
leads to re-identification – an attack that is also more practical with the
increasing number of IoT devices [156] – being more likely to succeed.
However, in defense of these practitioners, while PETs have improved
since 2013, some PETs that offer better privacy enhancements are still
complex and not yet performant in 2021.

Based on the prior arguments, pitfall (ii) seems to hold; however,
(iii) is no longer a strong pitfall. Since the enforcement of GDPR [137]
in 2018, GDPR has punished multiple corporations with considerable
fines ranging between e20 million and up to 4% of a corporation’s
annual worldwide turnover of the preceding financial year. As of the
writing of this publication, GDPR has harvested considerable fines
assigned to Google in France on two occasions [200], Amazon [158],
H&M [159] or the telecommunications operator TIM [160]. These
fines alone accumulate to e282 million. These statistics are a sign that
PETs are not appropriately introduced in production applications even
by big technology companies and that not complying with privacy
regulations in an IoT data market has dire economic consequences.
While these fines could indicate how profitable it still is to violate
privacy regulation (iii), one can no longer vigorously defend (iii). Pitfall
(iv) seems to materialize as long as the nature of law-making does not
change. Lastly, pitfall (v) is concerning, given the existence of legal
personal data markets that store up to 750 million user profiles and
trade 75 million online auctions daily like BlueKai [23], whose data
could leak to the increasing number of illegal shadow markets [S6].

9. Discussion

This Section presents a set of key findings (KF) distilled from the
two research questions answered in Sections 6 and 7 as well as 8,
the content and metadata of the 50 publications included in our SLR,
and other seminal studies that we encountered throughout our SLR but
which do not necessarily address IoT data markets directly. Lastly, we
cover the limitations of this study and future work.

9.1. Key findings

(KF1) The attention of scientists toward privacy-enhancing technologies in
the field of data markets for iot devices has increased notably in recent
years. The selected publications are modern, as 49 of the 50 studies
were published between 2012 and 2020, and 34 of them (68%) were
published either in 2018, 2019, or during the first half of 2020. While
the absolute number of publications in 2020 is lower than in 2019
because we captured only the first seven months of 2020, Fig. 9
illustrates the arguably accelerating trend of the cumulative curve of
publications in the field of privacy-enhancing IoT data markets.

(KF2) The most frequent research type (design and creation ) and least com-
mon research contribution ( lessons learned) suggest that privacy-oriented
iot data markets are still maturing and have not faced many production-
grade implementations yet. According to Fig. G.13, around 76% of the
publications use a design and creation research approach, while only
4% perform a case study. A further indication of field novelty is that
only one out of the 50 publications had the contribution type lessons
learned [S40]. Furthermore, while 35 studies (70%) were of research
type solution proposal, to the best of the author’s knowledge, only one
solution appears to have an implemented system that is applied in
production [S25].

(KF3) The selected studies rarely leverage existing libraries that provide
PETs and often only build upon architectures developed in previous work
to a small degree. Therefore, to gain more practical relevance, it may be
beneficial for researchers to improve and extend existing work instead of
reinventing the wheel. The research community and industry have de-

veloped many open-source libraries to employ zero-knowledge proofs,
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Table 3
A mapping of privacy- and authenticity-enhancing technologies (PET and AET) to the narrow challenges using the terminology defined for this
review. The extent of enhancement of privacy, utility, and characteristics of the different PETs and AETs varies from significantly increasing ++,
over +, +−, − to significantly decreasing − −. na denotes not applicable. w/ denotes with. *Considering a digital certificate when using digital
signatures, if applicable. The privacy column assumes data and identity are authentic.
homomorphic encryption, secure multiparty computation, or differen-
tial privacy (see Section 6). However, none of the studies have indicated
their use. Furthermore, studies often do not build upon each other,
leading to overlapping further. For example, [S41] and [S34] both
showcase an auction that obscures the bids by employing partially
homomorphic encryption. However, W. Gao et al. only refers to the
work from Z. Chen et al. in one line, noting that ‘‘[...] there is only few lit-
eratures on designing privacy-preserving schemes in data market auctions’’.

oreover, [S42] builds upon [S27] and [S2] upon [S25], but each of
hese two sets belongs to the same group of researchers. In conclusion,
19

t may be beneficial for researchers to incorporate building blocks
from previous data market architectures to advance privacy-oriented
research.

Moreover, many studies included in Table D.7 aim to create an
IoT data marketplace employing distributed ledger technology (DLT).
However, there seems not to be a consensus about which DLT to use for
IoT data markets, as the authors build upon Ethereum, IOTA, Hyper-
ledger Iroha, Fabric, Agora, or Quorum, among others. Specifically, as
an example, [S32] uses Ethereum smart contracts for payments while
[S28] only uses these contracts for safelisting and employs IOTA for

payments instead.
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Fig. 9. Publications in the field of privacy-enhancing data markets for the IoT from January 2002 to July 2020.
o

Fig. 10. Reference model for the layers of a privacy-enhancing IoT data market.

(KF4) The content of the selected studies can be categorized into two main
orthogonal research streams within the context of privacy-enhancing iot
data markets: architectures and data trading schemata. The first research
stream is dedicated to the design of privacy-enhancing architectures for
the exchange of data in IoT data markets (25 studies, 50%), and the sec-
ond one focuses on the design of privacy-enhancing data trading such
as auctions (12 studies, 24%). The remaining studies can be associated
with domains like legal [S6], user preferences [S8], or IoT data market
challenges [S14,S19]. The selected studies, and also international ini-
tiatives such as the European GAIA-X [5], hence envision data markets
beyond matchmaking and auction capabilities. Specifically, the studies
that we analyzed structure the software, hardware, abstract entities,
and their coordination, data processing, storage, communication, and
the offered services to build a holistic or part of a privacy-enhancing
IoT data market that includes PETs to tackle some of the challenges
described in Section 8.

(KF5) Despite the acknowledged need for combining anonymization and se-
20

cure and outsourced computation techniques, none of the researchers behind
the 12 studies proposing data trading schemata, and only two publications
ut of the 25 designing data market architectures employ both PET categories

in combination. Although PETs such as homomorphic encryption (HE)
or secure multiparty computation conceal inputs and computation, the
outputs can leak information about the underlying data and hence may
be exposed to re-identification attacks [10]. Combining secure and out-
sourced computation techniques with anonymization-based PETs like
differential privacy (DP) can help to make the outputs less sensitive.
Moreover, leveraging only anonymization PETs does not sufficiently
address the copy problem.

Within the 12 selected studies focused on data trading, DP is the
most frequently used PET in auctions to enhance the privacy of the
exchanged data. [S16,S22,S24] and [S37] employ DP in various forms
to set the privacy levels and, subsequently, the price of the traded IoT
data. Researchers might choose DP over other anonymization technolo-
gies because DP is the only PET with a mathematical guarantee of
privacy [13]. At the same time, partially HE (PHE) is the PET of choice
to enhance the privacy of the bidding process. A group of authors
[S26,S34,S41] chose PHE primarily for hiding the bids, confidentially
computing the winner, and only revealing the output to the auction’s
winner. Researchers might decide to use PHE over other forms of
HE, secure multiparty computation, or trusted execution environments
(TEEs) despite PHE’s significantly less general scope because PHE has
relatively high performance and is conceptually simple.

Together, DP and PHE can holistically enhance the privacy of auc-
tions, which is a contribution we have not found in this review. [S48]
emphasize that some HE schemata, such as Paillier’s, must complement
other methods to guarantee more protection. Moreover, while HE
protects the input and the computation itself, if the intended recipients
of the decrypted output are malicious, they may reverse engineer the
output to learn properties about the input. An additional modification
employing, e.g., differential privacy, of inputs or decrypted outputs
before sharing may help prevent this attack in exchange for accuracy
and thus utility. The same argument applies to other secure and out-
sourced computation methods when used in isolation. We consequently
point to a lack of combination in the research stream of data market
architectures, except for two publications from the same group of
researchers [S2,S25], which use TEEs to train machine learning models
with DP.

(KF6) The selected studies employ three dimensions to characterize data
markets that entail privacy concerns: the degree of decentralization, the
types and number of data domains, and the types of sellers and consumers.
Each of these dimensions, for example, characterized by [S1,S27] and
[S46] respectively, brings privacy concerns. Data may be stored by
the seller, the platform provider, or a decentralized platform using,
e.g., a combination of commercial cloud storage, interplanetary file
systems, or blockchains. Depending on the degree of decentraliza-
tion and replication, practitioners need to consider different leakage
risks. In particular, if the architecture relies on a blockchain, PETs are

particularly important [134].
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An increase in the number and types of data domains opens ad-
ditional attack vectors and more possibilities for malicious entities
to link an individual’s data across databases. This hyper-connectivity
between datasets can render the definitions of de-identified data, such
as HIPAA’s, obsolete and suggests that privacy enhancements in the
data economy should be defined globally and not locally.

The degree of privacy enhancement should depend on the type
of seller and consumer, e.g., consumers may expect higher privacy
guarantees when a health insurance company gathers their data than
when the collector is a renowned health research institution.

(KF7) Based on our classifications in Sections 6 and 7 and inspired by a set
of seminal selected studies, we have created a reference model for the design
of iot data markets in Fig. 10, and detailed in Table 3. Most of the studies
included in this SLR proposed solutions without following a reference
model, except for [S3] and [S7], who developed their own without
a systematic research. [S7] condense their architecture into two lay-
ers: data acquisition and trading. On the other hand, [S3] present a
more holistic view of privacy-enhancing IoT data markets with six
layers (identification, privacy, contractual, communication, consensus, and
incentive) inspired by the Open System Interconnection model and
heavily conditioned by the use of blockchain technology. This model,
however, lacks essential steps of an IoT data market that several
publications in our SLR focused on, namely storage [S1,S12,S25,S28]
and processing [S7,S19,S20,S45]. Furthermore, the identification layer
[S3] can be regarded as a subset of verification, which also includes
data verification. Other studies base their market design on the type of
participants [S15,S24,S27,S33,S43], e.g., sellers, aggregators, brokers,
among others, and the type of data domain [S46], e.g., health, financial,
or a combination. However, these categories cannot be transferred to
other contexts as easily as a reference model agnostic to entity and data
domain types.

Our reference model hence combines and generalizes some of the
layers from [S3,S7] and complements them with additional layers such
as the data auction, storage, verification, processing, and sovereignty
layer (see Fig. 10). Most of these layers need multiple PETs, as there
is no ‘‘one-size-fits-all’’ technology to enhance privacy. To navigate
these layers in detail, refer to Table 3 amd Fig. C.11. Furthermore,
we distinguish between a contractual and sovereignty-related design to
separate formal agreements from privacy and ownership policies. Fur-
thermore, given the distinct purpose and implementation that auction
schemata play in a data market, they should be respected by a unique
IoT data market layer (auction dedicated studies: S16,S22,S24,S37,
among others). Lastly, incentives are necessary to encourage behavior
that preserves the pre-defined qualities of the IoT data market, e.g., op-
timized prices [S3,S16], data authenticity [S16,S23], or maintaining
the infrastructure like a permissionless DLT.

(KF8) Aside from the ubiquity of digital signatures in IT systems, in this slr,
distributed ledger technology (DLT) is most frequently employed as the back-
bone of iot data market design (see fig. g.14), despite the lack of consensus
on its use and DLT-based applications in production. Although centralized
systems seem more efficient and easier to deploy, and despite the seem-
ingly few industrial applications running on blockchain today, many
researchers in this SLR still advocate for distributed systems using DLT.
Within the 35 solution proposals, around 31% chose permissionless
DLT, 14% consortium DLTs, and the authors of the remaining 55%
either reviewed DLT, implemented a centralized solution, or focused
on designing narrow features. However, we noted that within the 45%
of DLT-based designs, many authors still relied on single entities for
data processing or storage. Specifically, only one of the 50 studies [S25]
has a public blockchain-based ecosystem in production, yet without a
real-world use case running. These statistics indicate a lack of adoption
despite substantial research efforts.

Furthermore, while blockchains enhance authenticity, assure in-
tegrity, and enable payments without the need for a trusted third
party, blockchains are limited in storage capacity [S1], computation
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power [S25], and can exacerbate privacy issues because of their tamper
proof-quality and inherent data and computation replication [56,132,
136,161]. Consequently, almost all studies that include blockchain
technology to support an IoT data market require PETs to protect
users’ data and identities. These studies go as far as creating innovative
privacy-enhancing blockchain architectures with other PETs as building
blocks, e.g., trusted execution environments [S25,S45], or adding a
privacy layer to their market design based on differential privacy [S3].
However, within the literature, there are also questionable statements
such as ‘‘[...] researchers and technologists have found that blockchain can
be a potential solution to the privacy problem by decentralizing information
[...] Blockchain can be used to securely share private information [...]’’
[S3], ‘‘Blockchain-based approaches provide decentralized security and
privacy [...]’’ [S11], or ‘‘Blockchain has been proven to possess security,
immutability, and privacy properties, which has caused a lot of researchers
to introduce it into the privacy and security concerned IoT ’’ [S23]. These
statements, coupled with the current excitement around blockchain,
can lead practitioners in the industry to wrongfully push blockchain
for ‘‘privacy’’. Therefore, the community would benefit from clear
explanations of why authors employ blockchain and clearly state the
need for other technologies to enhance privacy.

9.2. Limitations

Even though we have adopted a rigorous research design and paid
particular attention to the selection and analysis of published studies,
SLRs have limitations that may have undermined our effectiveness.
These threats include (i) incompleteness of study search, (ii) bias in
study selection and (iii) inaccuracy of data extraction.

(i) Some relevant publications might be absent. To mitigate this
limitation, we searched in several highly reputed digital libraries,
performed a preliminary search to determine suitable search strings,
conducted a backward search to identify additional related work, and
included studies in advance that met the standards and filters of this
SLR. These measures reduce the probability of missing relevant pub-
lications. (ii) The experience and knowledge of the researchers may
drive the study selection with an inherent bias. Nonetheless, following
Kitchenham [43], we aimed to create a set of explicit inclusion and
exclusion criteria to maximize the degree of objectivity. To mitigate
different appreciations of these criteria, we conducted a preliminary
search to ensure researchers have a consistent understanding of the
requirements. Furthermore, two researchers conducted the selection
process independently and resolved the conflicts between their deci-
sions interactively. (iii) There might be a bias in selecting the extracted
data, which may affect the classification results of the selected studies.
To mitigate this potential limitation, the two researchers specified a set
of data extraction cards (see Section 3.2) to eliminate any misalignment
in the data extraction process results.

9.3. Future work

The opportunities and need for future work in the context of pri-
vacy and data markets for the IoT highlighted by the selected studies
resonate with the challenges covered in Section 8. Most notably, there
is a need to solve the copy problem [10,S4,S17] and to lessen IoT
devices’ limitations regarding computation [S5,S11], storage and ca-
pacity [S29,S48] to tackle or circumvent the constraints PETs may
induce. Moreover, to decrease the probability of re-identification at-
tacks, further work is needed to advance the maturity of PETs and
combine them, e.g., bringing together differential privacy and secure
and outsourced computation efficiently. Additional research is also
necessary to create standards for data markets, such as a language
to describe privacy requirements, universal APIs to interact between
different IoT devices with various degrees and techniques for privacy
protection, and machine-readable definitions of privacy, e.g., using
ontologies [S40]. In this context, a more detailed description and

https://www.dhcs.ca.gov/formsandpubs/laws/hipaa/Pages/1.00WhatisHIPAA.aspx
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classification of the layers that we found relevant for classifying privacy
and authenticity enhancing technologies (see Fig. 10) constitutes a
promising and relevant avenue for future research. Nonetheless, we
want to emphasize that privacy is not the only challenge that needs
to be addressed, as future research must also consider, for instance,
scalability.

If society considers privacy a necessity, it should be enhanced by
default and optimally in any system without attaching price tags to
one’s privacy, as some of the selected studies pursued suggest [S16,S15,
S22]. We find this posture a worthy research endeavor and encourage
researchers to ponder whether monetizing privacy in a competitive
market ultimately benefits society. Furthermore, legal practitioners
have ample ground to develop legislation specifically around privacy
in IoT data markets and for economists to delve into data pricing and
decentralized market interactions. Legal researchers could investigate
how stringent privacy regulations should be, as heavy regulation may
strangle free markets and innovations [S45]. Additionally, the legal,
pricing and privacy aspects hinge around data sovereignty. As long
as ownership is ambiguous, researchers’ efforts will struggle to max-
imize impact. Furthermore, the relevance of our results may reach
beyond IoT data markets, as the analysis of PETs and derived insights,
e.g., how IoT impacts privacy, can permeate other research areas such
as privacy-by-design software engineering, policy-making, and data
governance, politics, and economics. Moreover, most PETs have specific
performance-, complexity- or utility-related shortcomings (which we
describe in Section 6) that researchers can address.

Lastly, we recommend that researchers derive decision trees based
on Table 3 to enhance the decision-making of privacy officers be-
yond our work. Moreover, we could not find any formulation of an
information-theoretic quantification of the data leaked from a data
market. We also encourage social scientists to focus on questions re-
lated to data sovereignty. To realize a vision of data markets that
benefit society, we suggest researchers concentrate on roadblocks such
as the copy problem. Finally, institutions should consider updating
their privacy-enhancing processes to effectively participate in IoT data
markets.

10. Reassessment of the results

This section provides and discusses new key publications since the
research process ended. Accordingly, we conducted a research process
as per Section 3 for studies dated between July 2020 and May 2022
and, among them, picked for discussion the ones providing the most sig-
nificant updates to our systematic literature review or, on the contrary,
underlining our previous findings. Note that the references included in
this section correspond only to the newly found publications.

In our new search, we again selected primary and secondary studies.
verall, our new search resulted in 24 publications: 3 more from 2020,

14 from 2021, and – as of May – 7 from 2022. These statistics indicate
that the trend depicted in Fig. 9 (consolidating KF1) has not reversed.
Notably, we could still not find publications discussing production-
ready deployments of privacy-enhancing architectures or auction
schemata and no reference to open-source tooling despite PETs being
more mature since July 2020 (underlining KF2 and KF3).

Among the secondary studies, [162] explored the concept of privacy
in the digital economy more broadly and pointed out the need for
interdisciplinary research to supplement the purely technical PET con-
structions with the economic (tradeoff between accuracy and privacy)
and governance perspectives (privacy policies) that we elaborate on in
our paper. [163] systematically investigated privacy-oriented identity
management in the context of the IoT, such as anonymous creden-
tials and other techniques that our review covers. Moreover, [164]
conducted a less systematic survey of standards and future challenges,
including discussions regarding authentication and access control, and
highlighted a subset of the privacy challenges of IoT that we present
in Table 2. Additionally, [165] presented a recent systematic literature
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review on designing data markets. However, their work did not focus
on privacy.

More secondary studies, such as from [166] considered blockchain
and smart contracts beneficial for privacy. Furthermore, [167] re-
viewed PETs in the context of crowdsensing and emphasized the pri-
vacy issues with smart contracts, along with practical challenges in
security and feed-in of reliable data. They suggested a subset of the
anonymization techniques that we present in Section 6, such as privacy-
oriented digital signatures, anonymous networking, 𝑘-anonymity, 𝑙-
iversity, 𝑡-closeness, and differential privacy (DP), and some more spe-
ific ones in the context of location. While they also mentioned ZKPs,
here is no detailed discussion of the secure computing techniques we
urvey. [168] considered privacy mechanisms in data sharing for col-
aborative forecasting and discussed the tradeoff between privacy and
ccuracy. They distinguished between perturbative techniques (‘‘data
ransformation’’), MPC-based protocols, and distributed or federated
pproaches (‘‘decomposition’’) combined with DP. Lastly, [169] pro-
ided a survey that examined the privacy risks that machine learning
oses on IoT data markets supported by blockchains. Hence, our SLR,
ith its comprehensive focus on privacy, still fills the gaps that we
iscussed in Section 4.

The primary studies followed a similar pattern to the previously
ollected studies. Above all, many still employed blockchains and often
id not provide clear explanations the corresponding benefits and ac-
nowledgments of the corresponding challenges, specifically regarding
rivacy (reaffirming KF8). We again encountered questionable claims
uch as ‘‘[...] a decentralized approach based on distributed ledger tech-
ologies (DLT) enables data trading while ensuring trust, security, and
rivacy’’ [170], without discussing why DLT enhances privacy in the
est of the publication about benchmarking IoT data trading protocols
n blockchains. Others followed suit on the use of blockchain to support
lectric vehicle trading marketplaces with IPFS and a scheme to hide
ayment sources [171] and cloaking location with 𝑘-anonymity [172]
r proposing a new blockchain architecture with permissioned domains
o enhance privacy for data market places [173]. Another presented
everal building blocks (blockchain, trusted execution environments,
ossip learning) without an evaluation of the proposal [174].

A notable exception is the comprehensive details provided by [175]
n their blockchain architecture. Their architecture stores encrypted
ensor data in cloud storage, and smart contracts support sensor reg-
stration, data auctioning, and payments. While the smart contract
mits notifications and displays the endpoint for retrieving proxy re-
ncrypted data, the data are exchanged off-chain confidentially via
roxy re-encryption. This construction addresses transparency and scal-
bility issues regarding sensor data. Nevertheless, bidding and payment
rocesses may still reveal sensitive information and require future
esearch by combining this approach with some of the PETs we sur-
eyed. [176] also acknowledged the aggravation of privacy issues on
lockchains and combined federated learning with DP to obfuscate
lients’ weights and use ZKPs to prove the integrity of the training and
valuation process, which they required for providing fair incentives
anaged by a smart contract. Another related publication by [177] pre-

ented a blockchain-based solution for tracking IoT sensor data across
arketplaces and, thus, only detecting but not preventing illegitimate

eplication and resale.
These publications fall into the category of architectures identified

n KF4. We also found papers in the data trading schemata category
or related): two new data auction schemata enhanced with DP [178,
79], a task assignment scheme in crowdsensing that hides the tasks’
ontent with homomorphic encryption (HE) for crowdsensing [180],
nd another where they employ DP on billing data [181]. The latter
ublication, however, does not discuss fairness, which is critical in
onetary use cases as a noisy bill can make data prosumers profit

ess from their data on some occasions. Furthermore, [182] and [183]
ocused on determining fair prices for end users’ datasets that are
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anonymized with DP according to their accuracy and, correspondingly,
risks of revealing sensitive information.

One interesting development that explored the paradigm in ML
markets comes from [184]. They developed a privacy-enhanced frame-
work to evaluate the quality of ML models and data for sale with
functional encryption, achieving improvements over similar schemata
implemented with HE. Another novel concept by [185] strives to em-
power users with tools to help them determine the risk of sharing their
information and, accordingly, make an informed decision about their
data framework. It is thus closely related to enforcing privacy policies
in the sovereignty layer. Except for [176], who focused narrowly on
federated learning, the rest of the new (notable) primary studies did not
leverage the combination of anonymization and outsourced computa-
tion technologies, underlining KF5. Notably, the new publications have
not altered the data market characterization of KF6 or the reference
model of KF7.

11. Conclusion

With this review, we reveal the landscape of PETs in data mar-
kets for the IoT. We have conducted a systematic literature review
(SLR) to identify and filter the studies aiming to solve this landscape’s
challenges. Consecutively, we formulated terminology to dissect the
selected studies’ architectures and findings and identified the PETs that
related work employed and which specific challenges they addressed.

The authors of the selected studies in this SLR have devised propos-
als for privacy-enhancing IoT data marketplaces to comply with privacy
requirements while maintaining utility, profitability, and fair and seam-
less data exchange. Since this is a relatively new, multidisciplinary
research field, the optimal combination of technologies and theoretical
foundations employed in these proposals is still in the development
phase. Therefore, no proposal has established itself as canonical yet.
Moreover, we observed that the research community needs to further
explore the balancing act of utility and privacy before data markets
flourish. We conclude that the practicality of PETs needs to advance
further to positively impact data markets for the IoT. Additionally,
we suggest researchers solve the copy problem and improve privacy-
enhancing verification as their absence discourages data markets from
forming. We also discovered that research on privacy-oriented data
markets could benefit from increased reuse of components from pre-
vious articles and existing open-source libraries and a more explicit
description of critical objectives. For example, the benefits of utilizing
distributed ledger technology (DLT) in data markets for IoT architec-
tures often remain unclear, and authors do not sufficiently consider
DLT’s lack of maturity and inherent privacy challenges.

The IoT’s particular characteristics bring new challenges for privacy
enhancement, most notably, the consequences of a lack of interoper-
ability, computation and storage constraints, and the privacy disparity
across jurisdictions. We have also observed the importance of first
determining the sovereignty layer in data market design, as the par-
ticipants’ ownership and management rules impact the PETs in the
rest of the layers. We also must underline that there is no ‘‘one-
size-fits-all’’ PET. Only a combination may tackle the various privacy
challenges facing data markets for the IoT. Lastly, we recommend that
institutions invest resources in the research and adoption of PETs to
remain competitive in the advent of a more privacy-enhancing IoT.
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