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Abstract
From a recent geometric generalization of thermodynamic uncertainty rela-
tions (TURs) we derive novel upper bounds on the nonlinear response of an
observable of an arbitrary system undergoing a change of probabilistic state.
Various relaxations of these bounds allow to recover well known bounds such
as (strengthenings of) Cramer–Rao’s and Pinsker’s inequalities. In particular
we obtain a master inequality, named symmetric response intensity relation,
which recovers several TURs as particular cases. We employ this set of bounds
for three physical applications. First, we derive a trade-off between thermody-
namic cost (dissipated free energy) and reliability of systems switching instantly
between two states, such as one-bit memories. We derive in particular a lower
bound of 2.8kBT per Shannon bit to write a bit in such a memory, a bound dis-
tinct from Landauer’s one. Second, we obtain a new family of classic speed
limits which provide lower bounds for non-autonomous Markov processes on
the time needed to transition between two probabilistic states in terms of a ther-
modynamic quantity (e.g. non-equilibrium free energy) and a kinetic quantity
(e.g. dynamical activity). Third, we provide an upper bound on the nonlinear
response of a system based solely on the ‘complexity’ of the system (which we
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relate to a high entropy and non-uniformity of the probabilities). We find that
‘complex’ models (e.g. with many states) are necessarily fragile to some per-
turbations, while simple systems are robust, in that they display a low response
to arbitrary perturbations.

Keywords: stochastic thermodynamics, thermodynamic uncertainty relations,
response theory, speed limits, thermodynamic cost of computation,
nonequilibrium statistical mechanics

(Some figures may appear in colour only in the online journal)

1. Introduction

Thermodynamic uncertainty relations (TURs) are as old as their better known counterparts of
quantum mechanics. For more than a half century the term has denoted the tradeoff between the
uncertainty in pairs of conjugated thermodynamic variables in systems at equilibrium (see [1]
and references therein). Despite a long debate about their exact practical meaning, their deriva-
tion has been repeated several times, resorting either to the theory of equilibrium fluctuations
or to purely statistical methods [2].

However, in the last few years the term has started to designate a radically different set
of inequalities valid for nonequilibrium systems (see [3–14] for an incomplete list). Roughly
speaking, TURs state that the mean-to-variance ratio of current-like observables is bounded
by a function of the entropy production [15]. These TURs have been obtained by analogous
methods as those used for the ancient thermodynamics uncertainty relations, in their modern
forms now well known to physicists—large deviations theory [4, 6] and information theory
[16]—and applied to rather general dynamics—Markov processes equipped by the thermo-
dynamic notion of local detailed balance [17]. Recently, we have put forward an alternative
derivation which deduces TURs from the very mathematical properties of the observable
space [14]—somewhat similar to viewing the Heisenberg principle as a direct result of the
uncertainty between Fourier transformed pairs of variables.

The fact that nonequilibrium conditions bring time and dynamics to the forefront has led
the community to consider other bounds on dissipative processes. On the one hand, classi-
cal speed limits (SLs) have been derived which prescribe the minimal time to implement a
system’s transformation in terms of the involved dissipation [18]. It is by now understood that
TURs and SLs are just two faces of the same fundamental fact underlying all nonequilibrium
conditions [19], that is the breaking of time-reversal invariance and hence the appearance of a
non-zero average entropy production. On the other hand, results have started to appear on the
response of systems to environmental perturbations [20]. The general picture emerging from
these various results is the identification of the fundamental physical tradeoffs between effi-
ciency, performance and robustness of nonequilibrium processes, as used in natural as well as
man-made applications.

In this paper we contribute to the quest for a unifying theory. First we define the asymmetric
response intensity of an observable f subject to a change of probability distribution from q to
p. We recover the linear regime bound of [16] but also a nonlinear version, which turns out to
coincide with a well-known generalization of Cramer–Rao’s relation. Then we introduce the
symmetric response intensity, a related quantity that nevertheless obeys different inequalities.
In particular we derive the symmetric response intensity relation, that contains the various
TURs for anti-symmetric observables [10, 11, 21]. Remarkably, it allows to derive a relation
between reliability and thermodynamic cost for memories or gates that relax abruptly from a
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zero to a one conversely (thus dissipating entropy on the way). This model is not universal (as
one can escape this relation by a slow protocol for instance) but is relevant for many current
technologies using switched systems, even beyond computing devices. As a further application,
we also recover a result on distinguishing the arrow of time, completing [22].

The maximum response intensities between two probability distributions can serve as a
measure of distance or divergence between these distributions. We leverage this to obtain novel
SLs [18, 19] for finite state Markov chains, which offer lower bounds on the time needed
to reach a probability distribution from another, in terms of the distance of these probability
distribution, the distance to stationarity and the maximum escape (or entrance) rates.

Finally we observe that the largest response one can obtain away from a probability dis-
tribution is still relatively small if this probability is ‘simple’, i.e. of low entropy and close
to uniform distribution. Thus ‘simple’ systems are ‘robust’. In particular, one should be cau-
tious in using simplistic toy models to model complex situations (a practice often found in
biophysics), as these toy models may be much more robust to perturbations than the original
systems.

To guide the reader though the text we collected the main results in the graph figure 1 and
the most important quantities in table 1.

2. How to measure nonlinear response

Consider two possible probability distributions p and q on an arbitrary space Ω. A given physi-
cal observable, i.e. a real random variable f : Ω→ R may exhibit two different expected values
〈 f 〉p and 〈 f 〉q. In order to check how significant the difference between the two is, we may com-
pare it to the average fluctuations of the observable under p or q. Taking q as a ‘reference’, or
‘unperturbed’ probability distribution, and p as the ‘perturbed’ distribution, we see the follow-
ing adimensional ratio as the response intensity of the observable f to the perturbation p of q:

Rp‖q( f ) =
|〈 f 〉p − 〈 f 〉q|2

Varq( f )
. (1)

We call it the asymmetric response intensity as q and p have distinct roles. Sometimes p and
q are two probability distributions of interest to describe a situation, without hierarchy of role.
For example, think at two metastable states realizable within the same physical system. In
this situation we may simply consider the average fluctuations over p and q, and define the
symmetric response intensity:

Rp,q( f ) =
|〈 f 〉p − 〈 f 〉q|2

Varp( f )+Varq( f )
2

. (2)

One may intuitively see these quantities as how easy it is to tell p and q apart by just observ-
ing the value of f . If the response intensity Rp‖q( f ) is less than one, then it means that the
typical values taken by f under p or under q differ by less than the typical fluctuation of f ,
hence it is hard to conclude whether the system is in the distribution p or q. Conversely, a
large intensity means that the difference in response can hardly be confused with a random
fluctuation.

The response intensity can be likened to a signal-to-noise ratio, if we see 〈 f 〉p or 〈 f 〉q as
the signal being transmitted to the environment by a system switching between distributions p
and q. This analogy can be made formal in the following scenario: if we choose to apply p or
q randomly (with equal probabilities), then the signal, taking randomly the value 〈 f 〉p or 〈 f 〉q,
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Figure 1. Graphic outline of the main results of the paper and their logical connection.

Table 1. Summary of the main quantities used in the paper.

Kullback–Leibler divergence D(p‖q) =
∑

ω∈Ωp(ω) log p(ω)
q(ω)

χ2 divergence χ2(p‖q) =
∑

ω∈Ω
p2(ω)
q(ω) − 1

Le Cam’s distance dLeCam(p, q) =
√

1
2

∑
ω∈Ω

(p(ω)−q(ω))2

p(ω)+q(ω)

Shannon entropy H(q) = −
∑

ω∈Ω p(ω)log p(ω)
Total variation distance dTV(p, q) = 1

2‖p− q‖1 = 1
2

∑
ω∈Ω|p(ω) − q(ω)|

has a variance |〈 f 〉p − 〈 f 〉q|2/4, thus a signal-to-noise ratio (which is defined in information
theory as the variance of the signal over the variance of the noise) Rp,q( f )/4.
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3. Link between symmetric and asymmetric response intensities

We make some elementary observations on the response intensities introduced above. The
symmetric response intensity is the harmonic average of asymmetric response intensities:

2
Rp,q( f )

=
1

Rp‖q( f )
+

1
Rq‖p( f )

. (3)

A key observation is that adding a constant to the observable f does not change Rp‖q( f ) or
Rp,q( f ), since both the response 〈 f 〉p − 〈 f 〉q and the variances are unaffected. Thus we can
assume without loss of generality that 〈 f 〉p = −〈 f 〉q. We call such an observable centered. Let
us introduce an intermediate quantity where the variance is replaced with the second moment:

R0
p,q( f ) =

|〈 f 〉p − 〈 f 〉q|2
〈| f |2〉p+〈| f |2〉q

2

. (4)

For a centered observable f , we find by direct calculation that

Rp,q( f )/4 =
R0

p,q( f )/4

1 − R0
p,q( f )/4

=
1

1
R0

p,q( f )/4
− 1

(5)

and that

R0
p,q( f )/4 = Rp‖ p+q

2
( f ) = Rq‖ p+q

2
( f ). (6)

We would like now to find a tight upper bound on the response intensities Rp,q( f ) and Rp‖q( f ),
which would hold for all f , only depending on p and q.

4. Tight bounds on nonlinear response intensity and uncertainty principles

We exploit here the similar form of the response intensity and the square-mean-to-variance
ratio appearing in TURs to derive bounds on the former in terms of physically interpretable
quantities (such as the Kullback–Leibler divergences) between p and q. Specifically we use
a recent geometric formalism introduced under the name of Hilbert uncertainty relation [14]
which allows to prove general inequalities including, but not limited to, TURs, as we now
recall.

4.1. The Hilbert uncertainty relation: general statement

We consider a Hilbert space H of observables, endowed with an arbitrary scalar product 〈.|.〉.
One should not confuse 〈.|.〉, a standard notation for a scalar product, with 〈.〉, a standard
notation introduced above for the mean value (with respect to some probability distribution).
Given a real continuous linear form f �→ L( f ) ∈ R, we want to find the maximum value of the
ratio

|L( f )|2
〈 f | f 〉 (7)

among all f belonging to a given closed linear subspace F ⊆ H of observables of interest. We
find that it reaches the maximum value for f = m ∈ F such that L(g) = 〈m|g〉 for all g ∈ F ,
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with m existing by virtue of Riesz’s representation theorem. Then the maximum ratio takes the
value

max
f

|L( f )|2
〈 f | f 〉 = 〈m|m〉 = |L(m)|. (8)

Hereafter the Hilbert H space can be finite or infinite-dimensional. As applications II and (part
of) III below regard discrete systems, we spell out the general theory by using discrete sum-
mation notations, even though all results can be extended in straightforward way to continuous
probability distributions, where the sums must in general be replaced with integrals.

4.2. The Hilbert uncertainty relation: application to asymmetric response intensity

We can immediately apply the Hilbert uncertainty relation to derive the observables with
maximal response intensity.

Let us start with the asymmetric case: given probability distributions p and q, we want to find
f that maximises Rp‖q( f ). To apply the Hilbert uncertainty relation, we consider the linear form
L( f ) = 〈 f 〉p − 〈 f 〉q and the scalar product 〈 f |g〉 = 〈 fg〉q (the expected product fg according
to distribution q). Since, as observed above, we can always shift an observable by a constant
and preserve the asymmetric response intensity Rp‖q( f ), we limit ourselves to the observables
with zero q-mean: F = { f : Ω→R|〈 f 〉q = 0}. In this space, variance and second moment
coincide, thus the asymmetric response intensity (1) is indeed the ratio (7). We easily find that
the optimal observable is m = p

q − 1. Indeed we can check that 〈m〉q =
∑

ω∈Ωq(ω)( p(ω)
q(ω) − 1) =

0 and 〈m|g〉 =
∑

ω∈Ωq( p
q − 1)g = L(g).

Thus we conclude

max
f

Rp‖q( f ) =
∑
ω∈Ω

p2

q
− 1 = χ2(p‖q), (9)

whereχ2(p‖q) is the so-called χ2 divergence of p with respect to q. Equation (9) formally coin-
cides with the Hammersley–Chapman–Robbins bound [23] but has the merit of giving physical
meaning to a result of estimation theory, by identifying in the left-hand side of (9) a sound proxy
for the relative response intensity of a physical system. The latter bound is a known generali-
sation of Cramer–Rao’s bound [23], which is obtained from Hammersley–Chapman–Robbins
bound by considering p close to q, such that the χ2 divergence reduces to Fisher’s information
metric.

The χ2 divergence has the following relation with the Kullback–Leibler divergence,
resulting from convexity of exponential:

χ2(p‖q) � eD(p‖q) − 1 � D(p‖q). (10)

This inequality can be interpreted physically in the following way. If we consider q as a sta-
tionary distribution of some Markov process and p as a non-stationary distribution relaxing
to q, then kBD(p‖q) is the entropy produced in the course of the relaxation, not counting
the ‘housekeeping’ entropy possibly produced to maintain the stationary state q, if it is not
an equilibrium distribution [24] (see section 5 for a more thorough discussion). This entropy
production corresponds exactly to the non-adiabatic entropy production [25] for the case of
autonomously relaxing systems. In the case where the stationary state q is an equilibrium at
temperature T , then D(p‖q)kBT is the non-equilibrium free energy being dissipated in the
course of relaxation [26–28].
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Thus if p is far from the stationary distribution q (in the sense of a large D(p‖q)), then it
results in the existence of a large nonlinear response intensity Rp‖q( f ) for some observable f .
In the limit where p and q are close (the so-called linear response regime), a Taylor expansion
yields

χ2(p‖q) ≈
∑
ω∈Ω

(p− q)2

q
≈ 2D(p‖q). (11)

In summary, we have in the limit of linear regime:

max
f

Rp‖q( f ) = 2D(p‖q) (12)

which provides another proof of Dechant–Sasa’s linear-regime relation [16]. We notice that
(12) is also the starting point to derive bounds on the mean-to-variance ratio of time-integrated
observables with Markovian dynamics. This method, devised in [16], relies on an artificial
perturbation which speeds up the dynamics. It can be implemented by adding auxiliary forces,
or by appropriately rescaling the transition rates in jump dynamics. The two approaches yield,
respectively, the mean entropy production [13, 29] and the mean dynamical activity [30] as the
upper bound to the mean-to-variance ratio.

4.3. The Hilbert uncertainty relation: application to symmetric response intensity

As we seek now to bound the symmetric response intensity, we choose the scalar product
〈 f |g〉 = 〈 f g〉p+〈 f g〉q

2 = 〈 f g〉 p+q
2

. The space of observables F of interest is now the set of all

observables. The linear form is still L( f ) = 〈 f 〉p − 〈 f 〉q. In this case we see that the ratio (7)
is exactly R0

p,q( f ), defined in (4). The maximum ratio is reached for the observable m = 2 p−q
p+q

in application of the Hilbert uncertainty relation, and 〈m|g〉 = L(g) for any observable g. Thus
we arrive at

max
f

R0
p,q( f ) = 2

∑
ω∈Ω

(p− q)2

p+ q
= 4d2

LeCam(p, q). (13)

The latter expression involves Le Cam’s distance [31, 32] between two probability distri-
butions p and q, defined as

dLeCam(p, q) =

√
1
2

∑
ω∈Ω

(p− q)2

p+ q
� 1. (14)

This quantity is indeed a proper distance for the space of probability distributions over Ω,
verifying the axioms of a metric (including, non-trivially, the triangle inequality) [31].

Note that m happens to be centered, namely 〈m〉p = −〈m〉q, thus the maximum in (14) is
also the maximum of all centered observables f :

max
fcentered

R0
p,q( f ) = 2

∑
ω∈Ω

(p− q)2

p+ q
= 4d2

LeCam(p, q). (15)

In view of (6), the same observable m = 2 p−q
p+q is also maximal for Rp‖ p+q

2
( f ) and for

Rp‖ p+q
2

( f )—over all observables f , centered or not, since those quantities are invariant under
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shift by a constant. Thus from the Hammersley–Chapman–Robbins bound (9), we find that

d2
LeCam(p, q) = χ2

(
p

∥∥∥∥ p+ q
2

)
= χ2

(
q

∥∥∥∥ p+ q
2

)
, (16)

as can also be verified by direct calculation. Finally, using (5) and (6), the symmetric response
intensity is found to be bounded (for all observables f , centered or not) as follows:

max
f

Rp,q( f ) =
1
2

∑
ω∈Ω

(p−q)2

p+q

1 − 1
2

∑
ω∈Ω

(p−q)2

p+q

(17)

=
χ2
(

p‖ p+q
2

)
1 − χ2

(
p‖ p+q

2

) (18)

=
d2

LeCam(p, q)
1 − d2

LeCam(p, q)
. (19)

Bounding the symmetric response intensity thus reduces to bounding Le Cam’s distance, e.g.
with respect to other quantities such Kullback–Leibler divergences, as we now proceed to do.

4.4. Upper bound on Le Cam’s distance and the symmetric response intensity relation

Upper and lower bounds can be found on Le Cam’s distance in terms of other distances between
probability distributions (see appendix A for lower bounds). A well-known distance between
probability distributions is the total variation distance

dTV(p, q) =
1
2
‖p− q‖1 =

1
2

∑
ω∈Ω

|p− q| =
∑
ω:p>q

(p− q) � 1. (20)

We now derive a novel upper bound on Le Cam’s distance based on the total variation distance
and the Kullback–Leibler divergence. Given the distributions p, q on Ω, we define Ωp = {ω ∈
Ω|p(ω) > q(ω)} and Ωq = {ω ∈ Ω|q(ω) � p(ω)}. In other words, we split Ω into the part Ωp

(resp. Ωq) where p dominates q (resp. where q dominates p). On Ωp we define the distribution
p′ = p−q

dTV(p,q) , while on Ωq we define the distribution q′ = q−p
dTV(p,q) . We now observe that p−q

p+q =

tanh 1
2 ln p

q and exploit the fact that tanh is concave for positive arguments. In this way we find

∑
ω∈Ω

(p− q)2

p+ q
=
∑
ω∈Ω

(p− q) tanh

(
1
2

ln
p
q

)
(21)

= dTV(p, q)

⎡
⎣∑
ω∈Ωp

p′ tanh

(
1
2

ln
p
q

)
+
∑
ω∈Ωq

q′ tanh

(
1
2

ln
q
p

)⎤⎦ (22)

� dTV(p, q)

⎡
⎣tanh

⎛
⎝1

2

∑
ω∈Ωp

p′ ln
p
q

⎞
⎠+ tanh

⎛
⎝1

2

∑
ω∈Ωq

q′ ln
q
p

⎞
⎠
⎤
⎦ (23)

� 2dTV(p, q) tanh

(
1

4dTV(p, q)

∑
ω∈Ω

(p− q) ln
p
q

)
(24)

= 2dTV(p, q) tanh

(
1

2dTV(p, q)
D(p‖q) + D(q‖p)

2

)
. (25)

8



J. Phys. A: Math. Theor. 55 (2022) 124002 G Falasco et al

To summarize, our first main result in this section is

d2
LeCam(p, q) � dTV(p, q)tanh

1
2dTV(p, q)

D(p‖q) + D(q‖p)
2

. (26)

Given that the rhs of (26) is an increasing function of dTV(p, q), we can relax it by set-
ting dTV(p, q) to its maximum value (one), and obtain a novel bound in terms of symmetric
Kullback–Leibler divergence alone,

d2
LeCam(p, q) � tanh

1
2

D(p‖q) + D(q‖p)
2

(27)

and thus, via (17), the following bound on the response intensity,

max
f

Rp,q( f ) � e
D(p‖q)+D(q‖p)

2 − 1
2

. (28)

This is the second main result of this section, which we call the symmetric response intensity
relation. Let us mention three immediate applications of these relations recovering previously
known results.

First, taking Ω as a set of trajectories for a stochastic system, p the probability distribution
over trajectories and q the probability distribution over time-reversed trajectories, we obtain
that D(p‖q) = D(q‖p). We thus see that the symmetric response intensity relation (28) contains
the various TURs derived in [10, 11, 21],

〈 f 〉2
p

Varp( f )
� eD(p‖q) − 1

2
. (29)

The added generality is that the observables here need not be current-like observables, i.e.
antisymmetric under time reversal. As pointed out in [14], these results hold more generally
for any involution (order-two symmetry) over any probability space, and it turns out that this
generality can be leveraged to provide another proof of (28), see appendix B. Moreover, [14]
shows that the original TUR [3, 4, 6] can be derived as well from (29) under the additional
assumptions of Markovianity and stationarity.

Second, by combining the lower bound and upper bounds on Le Cam’s distance, we retrieve
a useful bound on the Jensen–Shannon distance in terms of Kullback–Leibler divergences, see
appendix C.

Third, an interesting observable to consider is f = sign(p− q). Then we have 〈 f 〉p −
〈 f 〉q = 2dTV(p, q) and 〈| f |2〉p = 〈| f |2〉q = 1, implying R0

p,q( f ) = 4d2
TV(p, q). Using this in (13)

(which yields dTV � dLeCam) and (26) allows us to find the following relation between total
variation distance and Kullback–Leibler divergences,

dTV(p, q) � tanh
1

2dTV(p, q)
D(p‖q) + D(q‖p)

2
, (30)

or

2dTV(p, q) atanh dTV(p, q) � D(p‖q) + D(q‖p)
2

. (31)
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Equivalently, as atanh x = 1
2 ln 1+x

1−x , we obtain

dTV(p, q) ln
1 + dTV(p, q)
1 − dTV(p, q)

� D(p‖q) + D(q‖p)
2

. (32)

In fact this bound is known to be tight, since equality is achieved for binary distributions
p = (ε, 1 − ε) and q = (1 − ε, ε), for any 0 < ε < 1 [33]. This bound is the key ingredient for
estimating the thermodynamic cost of a bit switch in the next section.

5. Application I: trade-off between reliability and thermodynamic cost for fast
computation and other switched systems

5.1. A model for one-bit memories

We propose the following model for a one-bit memory. We set up a time-varying Markov
process over a state space Ω � ω with two possible rates matrices Lp and Lq. When the rate
matrix is Lp, then the Markov chain converges to the (unique) stationary distribution p, thereby
encoding a ‘zero’, and converges to q when the rate matrix is Lq, thereby encoding ‘one’. An
external device switches the rate matrix from Lp to Lq (thus ‘writing a one’ in the memory)
or from Lq to Lp (thus ‘writing a zero’). Another device reading the memory must in fact
solve an inference, or decoding problem: from the value of an observable on Ω it must decide
whether the Markov chain is more likely to encode a ‘zero’ (i.e. obey probability distribution
p) or a ‘one’ (i.e. obey probability distribution q). If p and q happen to have disjoint sup-
ports in Ω then the reading is errorless but usually p and q overlap, leaving the possibility of
a wrong conclusion. We assume that the switch from Lp rates to Lq rates is instantaneous, or
(more realistically) much faster than any other timescale of the Markov chain. Moreover, a
reading, or a new writing operation occurs after the Markov process has converged to its sta-
tionary distribution (a reasonable assumption in practice). We defer to the end of the section a
more concrete description of the specific physical implementations to which this theory applies.

5.2. Entropy production and error probability associated to a bit switch

In this context, Δσswitch = kB
D(p‖q)+D(q‖p)

2 has a thermodynamic interpretation: it is the non-
adiabatic (also called Hatano–Sasa) entropy production associated to the relaxation process
occurring in the transition between a ‘zero’ and a ‘one’, averaged over the two transitions. To
show this we start from the splitting of the total entropy production rate σ̇total = σ̇na + σ̇hk into
the non-adiabatic (σ̇na � 0) and the adiabatic, or housekeeping (σ̇hk � 0) contributions, the
latter being zero only for detailed balanced dynamics. The non-adiabatic entropy production
rate is defined as

σ̇na = −kB

∑
ω

ṗ(t) ln
p(t)

pst(t)
= kBḢ(p(t)) + kB

∑
ω

ṗ(t)ln pst(t), (33)

where H(p(t)) = −
∑

ω∈Ω p(t)ln p(t) is the Shannon entropy of p(ω, t) the time-dependent
solution of the master equation with rates L(t) switching between Lp and Lq. The stationary
solution pst(t) of the master equation is p (resp. q) when L(t) = Lp (resp. L(t) = Lq). Thus, the
non-adiabatic entropy production associated to the transition from p to q is

σna(p→ q) = kB

[
H(q) − H(p) +

∑
ω

(q − p) ln q

]
. (34)

10
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The non-adiabatic entropy production averaged over two consecutive switches reads

Δσswitch =
kB

2
(σna(p→ q) + σna(q → p)) = kB

D(p‖q) + D(q‖p)
2

, (35)

where the opposite Shannon entropy variations cancel each other. This derivation holds even
if p and q are non-equilibrium stationary distributions: in that case the term above counts the
entropy production associated to the relaxation excluding the housekeeping (yet time-varying)
entropy production needed to sustain the memory (i.e. to maintain the violation of detailed
balance) and the instantaneous work to manipulate it (i.e. switch from Lp to Lq and vice versa).
It is also true if p and q are quasi-stationary instead of truly stationary, i.e. stay approximately
constant over the time scale in which reading and writing operations occur, as is the case for
example in bistable (‘flip-flop’) memories. In case where p and q are equilibria at temperature
T, ΔσswitchT is the heat dissipated into the relaxation processes of the bit switching. This is the
case in some recent experimental setups [34, 35]. Conversely, Δσswitch is not directly relatable
to the dissipated work in typical technological implementations in which the housekeeping
entropy is non-zero (e.g. CMOS inverters or bistable memories [36, 37]). In case of isothermal
transformations, ΔσswitchT is only a lower bound on the dissipation over the cycle, which is
ΔσtotalT.

The total variation distance dTV(p, q) also has a relevant interpretation. Suppose we observe
the full state ω of the system (e.g. the charge in all capacitances) at a time instant t and we
try to infer whether the system is in a ‘zero’ or a ‘one’, i.e. follows distribution p or q. If
a ‘zero’ or a ‘one’ are a priori equally likely, then the optimal inference is the maximum
likelihood estimator: if p(ω) > q(ω) then we infer a ‘zero’, otherwise we infer a ‘one’. Thus
the observable f = sign(p− q) is the optimal ‘reading’ of the bit. In this context, ε = 1−dTV(p,q)

2
is precisely the probability of error, i.e. of reading a ‘zero’ while the system obeys distribution
q or a ‘one’ when it obeys p. Hence, the response intensity relation for the sign observable (32)
can be rewritten as

kB(1 − 2ε) ln(ε−1 − 1) � Δσswitch � Δσtotal, (36)

where in the last equality we used that the total entropy production Δσtotal of the switch
is obtained by adding the non-negative housekeeping entropy production. Equation (36)
expresses a relation between error probability and thermodynamic cost of the computation. We
remind that this relation—the main result of this section—is deduced under the assumption of
a Markov process undergoing an abrupt (instant) switch between the two dynamics.

5.3. Reliable vs noisy computations

In the limit of reliable computations, ε 
 1, (36) simplifies to kB ln ε−1 � Δσswitch, or equiv-
alently

ε � e−Δσswitch/kB . (37)

A similar relation has been obtained under particular technological assumptions fitting the
current technological paradigm (e.g. circuit with linear capacitances operating under Gaussian
thermal noise) [38].

In the opposite noisy computation limit, dTV = 1 − 2ε 
 1 (i.e. ε ≈ 1/2), (36) simplifies to

2kBd2
TV � Δσswitch. (38)

11
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Note that in this limit, the output has very low information in the sense of Shannon, i.e. the
mutual information between writing (alternating between Lp or Lq with probability 1/2) and
the reading is very low (with error probability close to 1/2). As a matter of fact, the mutual
information is equal (in nats) to

I = ln 2 − [ε ln ε−1 + (1 − ε) ln (1 − ε)−1)] ≈ d2
TV/2, (39)

where the first term is the Shannon entropy of the writing process and the second term in
square brackets is the conditional entropy of the writing given output of the reading process.
Therefore, the cost of switching a bit in this context is

4kBI � Δσswitch � Δσtotal. (40)

To speak in terms of energy, the cost of switching a bit abruptly in an environment of tempera-
ture T is at least 4kBT per nat, or 2.8kBT per Shannon bit, independently of the (low) reliability.
This is in contrast with the low noise limit (37), where the cost per bit switch grows unbound-
edly as we approach perfect reliability. This supports quantitively the common knowledge that
noisy circuits may be more energetically efficient than low-noise circuits. Of course, managing
noisy information may require carefully designed noise-tolerant algorithms [36, 39, 40].

5.4. Discussion on the energy-error-speed trade-off

To make things more concrete, we consider the example of the NOT gate (also known as the
inverter), an elementary electronic circuit ubiquitous in digital computing devices, as it is a
building block for more complex circuits. This circuit is controlled by an external voltage u(t)
which takes the value umin or umax. This voltage determines the random dynamics of the charges
flowing into the capacitances of the inverter. When stationarity is reached, an output capaci-
tance has a mean voltage close to umax (encoding a ‘one’) when the input voltage is umin and
conversely. The reading of the bit is in practice a thresholding of the output capacitance volt-
age: if it takes a value larger than (umin + umax)/2 we consider it encodes a ‘one’, otherwise a
‘zero’. Due to random fluctuations however, an erroneous reading may occur. The technolog-
ical details do not matter here: it suffices to know that the dynamics of such a circuit is well
modeled indeed by a Markov process. We refer the reader to [36, 37] for explicit and realistic
constructions of Markov chains for inverters and more complex memories.

We made the assumption of an abrupt, instant switching between two rate matrices. In the
practice of a digital circuit such as an inverter, this would amount to an instant switch between
voltages umin and umax. Since these voltages are themselves the output of another circuit, they
do not evolve instantly but with a certain time constant. Taking these time scales into account
would need to correct the analysis above. Nevertheless, these time constants tend to be made
as short as possible in current digital technologies, and the abrupt switching can be seen as an
ideal limiting case.

Let us remind that the actual reading of the bit in practice is not always given by
the maximum-likelihood binary observable sign(p− q) as we have assumed here, but for
instance by sign( f ), where f is a physical observable such as the voltage on one specific
capacitance. If the two differ, the reading process may be suboptimal, resulting in an extra
error probability. From Chebyshev–Cantelli’s inequality alone, assuming f centered and
Varp f = Varq f for simplicity, we know that an inference based on sign( f ) will have an error
ε � (1 + Rp,q( f )/4)−1, which is a very slow decrease. If more is known about the distribution
of f , for instance if it is Gaussian, then we may derive an exponentially fast decrease of the
error with Rp,q( f ), as indicated from Chernov’s bound for instance, or bounds in [41].

12
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Remember that the main result of this section, (36), is derived from (27) applied to the
observable sign(p− q) (which is the outcome of the bit reading process). If our goal is to obtain
a lower bound on σswitch that is as tight as possible, one should rather use the response intensity
of the maximum-response-intensity observable m = 2(p− q)/(p+ q) or an observable close
to it. In the high reliability limit (ε 
 1), the distributions p and q have a small overlap, and the
binary observable sign(p− q) is always close to m indeed. In the low accuracy limit however,
the two might differ substantially, and the response of other observables may offer a better
lower bound on entropy production. Consequently, the bound (40) may be loose in these cases.

Importantly, note that the bound (40) is unrelated to the similar-looking Landauer’s bound.
Landauer’s bound concerns the erasure of a bit, and is relevant universally. We know, in agree-
ment with Landauer’s bound, that switching a bit from zero to one and conversely can in
principle be done at zero dissipation, with underdamped time-varying circuits or with infinitely
slow overdamped circuits. We place ourselves at another end of the spectrum, with abrupt
(as fast as possible) switching in a circuit undergoing a relaxation to stationarity. A full theory
encompassing the energy-accuracy trade-off in all the spectrum of speeds is beyond the scope
of this paper. Our results here are, as far as we know, among the first towards a trade-off for
general classes of systems at non-zero speeds. See however [42] for energy-optimal erasure in
finite time on the real line.

Finally, even though we discussed the case of a bit switch in this section, note that dynam-
ical systems switching abruptly between two or more regimes are common in physics and
engineering beyond the realm of computation, and the results discussed here can in principle
be adapted for those (see appendix D). More abstractly, every inference problem involving a
binary decision can benefit from the same analysis. For example, in [22] it was considered the
problem of deciding whether a given trajectory of a stationary Markov chain is unfolded for-
ward or backward in time. Equation (9) in [22] coincides with our (36) with Δσswitch being the
total entropy production of the process. Adapting our derivation to this context (see appendix
E), we can indeed extend the validity of the result of [22], showing that it holds under very
general circumstances, e.g. independently of the choice of a certain stopping criterion and for
non-Markovian dynamics.

6. Application II: classical speed limits

6.1. What is a classical speed limit?

Classical speed limits (SLs) are lower bounds on the time needed for a driven system to reach
a target state from an initial state, in terms of thermodynamic or kinetic quantities. The main
such result [18, 19] states that if a non-autonomous finite-state Markov chain starts from state
probability p(0) = p and finishes in state probability p(τ ) = q, then the time τ to do so is lower
bounded as follows:

τ � 2d2
TV(p, q)

ΔσA
. (41)

In this inequality, Δσ is the (non-adiabatic, or Hatano–Sasa) entropy production along the
trajectory that is associated with the relaxation to the instantaneous stationary state. The latter
is defined at each time t as the probability distribution that would be reached by the system if
the driving stopped, i.e. the transition rate became time-independent for all times larger than
t. The activity A is the time-average activity rate, i.e. expected number of jumps per time unit.
In (41), a thermodynamic term (non-adiabatic entropy production) quantifies how far we stand
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from the stationary distribution, and a kinetic term (activity) quantifies how fast the system
evolves.

In this section we adopt the view that a classical SL is any inequality that can be written in
the form

τ � h(Dist, Therm, Kin) (42)

where Dist is the distance between p and q, for any notion of distance between probability
distributions, Therm is a thermodynamic quantity capturing how far p(t) is from equilibrium
or stationarity, and Kin is a kinetic quantity which measures the ‘fastness’ of the dynamics. If
the time τ and the distance are very small (infinitesimal), we can speak of local classical SL.
We leverage the concepts encountered above, such as the maximum response intensity between
p and q, to derive new classical SLs involving various statistical distances, thermodynamic and
kinetic quantities of interest.

6.2. Bounding Le Cam’s distance with an integral along the trajectory

Le Cam’s distance dLeCam(p, q), via (17), captures the maximum response intensity between p
and q. The key observation is that the triangle inequality allows to write

dLeCam(p, q) �
K−1∑
k=0

dLeCam( p(kΔt), p( (k + 1)Δt ) ) (43)

for τ = KΔt, where Δt can then be taken arbitrarily small, and K very large. In the limit of
very small Δt, Le Cam’s distance essentially coincides with Fisher information metric:

d2
LeCam(p, p+Δp) =

1
4

∑
ω

Δp2

p
+O(Δp3). (44)

From the triangle inequality and the local behavior of the distance, we find:

dLeCam(p, q) � 1
2

∫ τ

0

∥∥∥∥ ṗ
√

p

∥∥∥∥
2

dt (45)

where ‖.‖2 is the usual Euclidean norm (square root of sum of squares). To go further, we need
to compute and bound ṗ, as we do in next sections.

6.3. Forward and backward master equation

For Markov chains the evolution of p(t) is dictated by a transition rate matrix L(t), to which an
instantaneous stationary distribution pst(t) is associated. We thus have the master equation

ṗ(t) = p(t)L(t), (46)

as commonly written in Markov chain literature notation, i.e. with the state probabilities as a
row vector, and the matrix elements Lωω′ (ω �= ω′) denoting the transition rate from state ω to
state ω′. The diagonal entry is Lωω = −

∑
ω′ �=ω Lωω′ , so that each row of the matrix L sums

to zero. We assume for simplicity that at each time instant, L(t) admits a unique stationary
probability distribution pst(t), defined as the left eigenvector satisfying pst(t)L(t) = 0.

14
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As it will be useful later, we also write the master equation backward in time,

− ṗ(t) = p(t)L∗(t) (47)

where the transition rate matrix is L∗ = P−1LTP − P−1Ṗ, and P = diag(p) is the diagonal
matrix created from p. This is proved as follows: the off-diagonal entries of PL and (PL∗)T

coincide, because the entry ωω′ of PL represents the probability flow from state ω to state ω′,
and the entry ω′ω of PL∗ represents the probability flow from state ω′ to state ω in the back-
ward dynamics, which is of course the same. The diagonal entries of L∗ must be such that each
row of L∗ sums to zero. The diagonal entries of L represent the escape rates from each state,
while the diagonal entries of L∗ represent the escape rates in the backward dynamics, thus the
entrance rates in the forward dynamics [43].

6.4. Local speed limit

In order to estimate (45), we want to find an upper bound on ‖ ṗP−1/2‖2, knowing that ṗ = pL.
This will lead to what we can call a local classical SL.

Knowing that pstL = 0 (expressing that pst is a stationary state), we can write ṗ = (p−
αpst)L, for any scalar coefficient α of our choice. We can also write:

ṗP−1/2 = (p− αpst)LP−1/2 (48)

= (
√

p− αpstP
−1/2)P1/2LP−1/2. (49)

It is useful to introduce the two-norm of a square matrix A, defined as the maximum ratio
‖xA‖2
‖x‖2

over all non-zero (row) vectors x. It turns out to be equal to the maximum singular vec-
tor of A, i.e. the square root of the spectral radius ρ (eigenvalue of largest magnitude) of the
symmetric matrix AAT. This is denoted

‖A‖2 =
√
ρ(AAT) =

√
ρ(SAATS−1), (50)

for any invertible square matrix S (encoding a linear change of coordinates, which does not
affect eigenvalues). Thus we obtain from (49):

‖ ṗP−1/2‖2 � ‖√p− αpstP
−1/2‖2‖P1/2LP−1/2‖2. (51)

First, we estimate ‖P1/2LP−1/2‖2 as

‖P1/2LP−1/2‖2 =
√
ρ(P1/2LP−1/2P−1/2LTP1/2) (52)

=
√
ρ(LP−1LTP) (53)

�
√
‖L‖∞‖P−1LTP‖∞. (54)

Here we have used the matrix norm ‖A‖∞, which is an upper bound on the spectral radius
(ρ(A) � ‖A‖∞) and submultiplicative (‖AB‖∞ � ‖A‖∞‖B‖∞). It is defined as the maximum
one-norm of a row of A, or equivalently as max ‖xA‖1

‖x‖1
. Thus ‖L‖∞ is twice the maximum escape

rate from each state, which we denote Amax,escape = maxω Lωω . The one-norm of P−1LTP is
obtained by noticing that the off-diagonal entries of this matrix are the same as L∗ (the matrix
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of backward rates), while the diagonal entries are the same as L. Thus the one-norm of P−1LTP,
denoted Amax,entrance, is the largest sum of escape rate and entrance rate (which is the escape rate
in the backward random walk) on a state. Therefore, we arrive at

‖P1/2LP−1/2‖2 �
√
‖L‖∞‖P−1LTP‖∞ (55)

�
√

2Amax,escape(Amax,exit + Amax,entrance) (56)

� 2 max(Amax,escape, Amax,entrance) (57)

= 2Amax, (58)

where Amax = max(Amax,escape, Amax,entrance) is the maximum activity rate. Second, we estimate
‖√p− αpstP−1/2‖2:

‖√p− αpstP
−1/2‖2

2 =
∑
ω

[
p(ω) − 2αpst(ω) + α2 p2

st(ω)/p(ω)
]

(59)

= 1 − 2α+ α2
∑
ω

p2
st(ω)/p(ω) (60)

= 1 − 2α+ (1 + χ2(pst‖p))α2. (61)

Choosing α = 1/(1 + χ2(pst‖p)), which minimizes (61), we obtain:

‖√p− αpstP
−1/2‖2

2 =
χ2(pst‖p)

1 + χ2(pst‖p)
(62)

� min(1,χ2(pst‖p)). (63)

With these estimates, our bound (51) turns into the local classical SL

‖ ṗ/
√

p‖2 � 2

√
χ2(pst‖p)

1 + χ2(pst‖p)
Amax. (64)

This is indeed a classical SL in the form (42) as an upper bound on the speed ṗ is also
a lower bound on the (short) time Δt needed to achieve a certain (short) displacement
Δp = ṗΔt +O(Δt2). Referring to (42), our thermodynamic quantity isχ2(pst‖p), which quan-
tifies, as we have seen, the maximum response intensity to the change from p to stationarity
pst, thus capturing in a meaningful way whether p is far from stationarity. Our kinetic quan-
tity is Amax, which bounds the entrance or escape at any state. In other words, 1/Amax can be
interpreted as the fastest time scale at any state in any direction of time.

6.5. The classical SL for Le Cam’s distance

Integrating the local bound (64) into (45), we obtain a SL for the time interval [0, τ] between
p = p(0) and q = p(τ ):

dLeCam(p, q) �
∫ τ

0

√
χ2(pst‖p)

1 + χ2(pst‖p)
Amax dt. (65)
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In order to obtain separate thermodynamic and kinetic factors, we can for instance bound the
integral as follows:∣∣∣∣

∫ τ

0
f g dt

∣∣∣∣ � sup
t
| f |
∫ τ

0
|g| dt. (66)

In this way we get a novel classical SL:

dLeCam(p, q) � sup
0�t�τ

√
χ2(pst‖p)

1 + χ2(pst‖p)
Amaxτ (67)

where Amax = τ−1
∫ τ

0 Amax(t)dt is the time-average of the maximum activity. This evidently
provides a lower bound on τ , in terms of total distance, thermodynamic and kinetic factors,
following the template (42). Note that since the thermodynamic term is bounded by 1, we have
the purely kinetic SL:

dLeCam(p, q) � Amaxτ. (68)

This bound is acceptable far from stationarity, when χ2(pst‖p) � 1 for some part at least of
the trajectory. Nevertheless, the thermodynamic factor is useful when driving close to station-
arity, when χ2(pst‖p) 
 1 (low asymmetric response intensity), yielding a much tighter bound
than (68).

6.6. A classical SL with the total variation distance

We now apply the same methodology as for Le Cam’s distance to the total variation distance.
Locally, we find:

dTV(p(t), p(t +Δt)) =
1
2
‖Δp‖1 =

1
2
‖ ṗ‖1Δt +O(Δt2). (69)

Thus, from the triangle inequality we obtain

dTV(p, q) � 1
2

∫ τ

0
‖ ṗ(t)‖1dt,

in which the integrand in the rhs can be estimated as

1
2
‖ ṗ(t)‖1 =

1
2
‖pL‖1 (70)

=
1
2
‖(p− pst)L‖1 (71)

� 1
2
‖(p− pst)‖1‖L‖∞ (72)

� 1
2
‖(p− pst)‖12 max

ω
|Lωω| (73)

= 2dTV(p, pst)Amax,exit, (74)
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yielding

dTV(p, q) � 2
∫ τ

0
dTV(p, pst)Amax,escapedt. (75)

Using (66), the latter can be further bounded as

dTV(p, q) � 2 sup
0�t�τ

dTV(p, pst) Amax,escape τ , (76)

which constitutes an example of classical SL involving the total variation distance both as
the distance between initial and final state, and as a thermodynamic measure of distance to
stationarity. It can be related to available free energy D(p‖pst) through Pinsker’s inequality

dTV(p, pst) �
√

1
2

D(p‖pst), (77)

thus giving the classical SL

dTV(p, q) � sup
0�t�τ

√
2D(p‖pst) Amax,escapeτ. (78)

It resembles the original classical SL obtained in [18, 19], although they are not directly com-
parable. The main conceptual difference is that here our thermodynamic factor is the total
available free energy (in case of detailed balanced dynamics), rather than its dissipation rate.

Note that this can be improved by using other bounds on total variation distance than
Pinsker’s, for instance Bretagnolle–Huber’s bound [44]

dTV(p, pst) �
√

1 − e−D(p‖pst), (79)

which is worse than Pinsker’s close to stationarity but better far from stationarity. We thus find
another classical SL:

dTV(p, q) � 2 sup
0�t�τ

√
1 − e−D(p‖pst) Amax,escapeτ. (80)

From this we have again a purely kinetic SL:

dTV(p, q) � 2Amax,escapeτ. (81)

This SL is useful if p is far from stationarity (total variation distance close to one), but extremely
loose when driving the distribution in a quasi-stationary fashion. An analogous fact is true
for precision: kinetic uncertainty relations [30] are tighter that thermodynamic ones for large
entropy production.

Note that one can easily obtain many variants of the SLs, following the same methodology
with different bounds or distances. A few ones are highlighted in appendix F.

7. Application III: simplicity implies robustness, complexity implies fragility

In this section we go back to the problem of bounding the nonlinear response of a physical
system. Given a reference distribution q on a space Ω, and a perturbed distribution p, the maxi-
mum of (asymmetric) response intensity over all observables on Ω is χ2(p‖q) =

∑
ω p2/q − 1,

as derived in section 4.3. We now bound this further, for a given unperturbed distribution q,
over a range of possible perturbations p, and find in two different situations that only ‘complex’
q allow large maximal perturbations χ2(p‖q).
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7.1. In trajectory space: Langevin dynamics

First, we focus on Ω being the space of trajectories of a stochastic system and we rewrite the
probability density p(ω) = eAp(ω) (resp. q(ω) = eAq(ω)) as the exponential of an action func-
tional. To be concrete, we consider the case of diffusive dynamics given (in the unperturbed
case q) by the Langevin equation

ẋ(t) = μF(x(t)) +
√

2Dξ(t) (82)

for the vector x ∈ R
dN describing, e.g. N particles in d dimensions. Equation (82) features a

delta-correlated Gaussian noise ξ, a positive definite symmetric diffusion matrix D and mobility
matrix μ (not necessarily connected by the Einstein relation D = kBTμ). It corresponds to the
action

Aq(ω) = −1
4

∫ τ

0
dt(ẋ(t) − μF(x(t)))D−1(ẋ(t) − μF(x(t)))T (83)

for the trajectories ω = {x(t) : t ∈ [0, τ]}, when the Ito convention is used. If p and q are abso-
lutely continuous, i.e. the ratio p/q (more rigorously, the Radon–Nikodym derivative) exists
and is finite, the computation of the maximal response reduces to an exponential average over
unperturbed trajectories

χ2(p‖q) =
〈
e2(Ap−Aq)

〉
q
− 1, (84)

that might be much less involved than an average w.r.t. the perturbed p (q can refer to an
equilibrium or non-interacting system, for instance). Perturbations that satisfy (84) are, for
example, changes of the drift, such as F(x) → F(x) + g(x). Instead, a perturbed probability
density p generated by a change in the matrix D is not absolutely continuous w.r.t. q (and
response in trajectory space is known to require explicit regularization procedures [45, 46]).
Restricting us to a change in the external forces F(x) → F(x) + g(x), we obtain

χ2(p‖q) =

〈
e
∫ τ

0 dt
[
μgD−1(ẋ−μF)− 1

2μgD−1(μg)T
]〉

q

− 1. (85)

In general (85) is hard to compute as it involves averaging a functional of the trajectories and
thus requires knowledge of the time propagator. Possibly, a saddle point calculation can be
performed in some large-deviation regimes, e.g. long time τ →∞, weak noise D → 0 (entry-
wise), and in some proper thermodynamic limit involving N →∞. For small perturbations,
we retrieve Dechant–Sasa’s bound on the linear response (see (12)),

max
f

Rp‖q( f ) =
1
2

∫ τ

0
dt
〈
μgD−1(μg)T

〉
q
. (86)

Here we point out how the complexity of the system (spread in space and range of inter-
actions) potentially leads to large responses in paradigmatic models of energy and mass
transport. To show that we consider as the unperturbed system independent particles in a sta-
tionary state, subject to a single-particle force F(x) = (F1(x1), . . . , FN(xN))T and in contact
with separate thermal baths at temperature Ti. Hence, we set μ equal to the identity matrix
(choosing appropriate time units) and D diagonal with elements Dii = kBTiμi. The perturba-
tion g(x) = (g1(x), . . . , gN(x)) may consist of an arbitrary interaction force coupling different
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particles. The maximal linear response is thus given by

1
τ

max
f

Rp‖q( f ) =
N∑

i=1

μi

〈
‖gi‖2

2

〉
q

2kBTi
� M2κ2

N∑
i=1

〈
‖xi‖2

2

〉
q

2kBTi
, (87)

where the second equality holds by assuming that the interactions can be modeled to leading
order as a linear force of strength κ involving M neighbors, and by taking x = (x1, . . . , xN)T

as the displacement from the particle rest positions (i.e. 〈x〉q = 0). This general setting covers
standard models of heat conducting lattices and loaded molecular motors (see e.g. [47, 48]).
In the first case, F(x) is an arbitrary nonlinear potential force; in the second F(x) is typically
a tilted sinusoidal potential, the dynamics is restricted by spatial periodic boundary conditions
within a period, and Ti = T for all i. Note that for the observables of interest, such as the
time-integrated heat and particle currents, the scaling by 1/τ ensures that the lhs of (87) is
independent of τ . In both cases the more ‘complex’ is the system (larger spreading in space〈
‖xi‖2

2

〉
q
) and the perturbation (larger range of interactions M), the larger the maximal linear

response.

7.2. In finite state spaces

Second, we take Ω to be the state space of a stochastic system. For a finite space Ω, we now
consider the maximum χ2(p‖q) over all possible perturbations p. The perturbation leading
to highest possible response is the distribution p concentrated on ω such that q(ω) = qmin is
minimal. Thus

max
p

χ2(p‖q) =
1

qmin
− 1. (88)

We take 1/qmin as an index of complexity of the system. IfΩ has cardinality N then 1/qmin �
N. Inversely, if q is relatively uniform over a few states, then 1/qmin is small. This is quantified
by the following inequalities:

eH(q) � N � 1
qmin

� eH(q) qmax

qmin
� N

qmax

qmin
, (89)

where H(q) =
∑

ω∈Ωq ln 1
q is the Shannon entropy, with bounds

1
qmax

� eH(q) � N � 1
qmin

. (90)

We can always write q(ω) in an exponential form q(ω) = e−β(E(ω)−F), where F = 〈E〉 −
β−1H(q). This is especially relevant when q is an equilibrium distribution, where E is an energy,
β−1 = kBT and F the equilibrium free energy. In this case we can write:

1
qmin

= e−βEmax+F � eH(q) eβ(Emax−Emin). (91)

Thus as a general rule we find that ‘simple’ systems (with low 1/qmin) are ‘robust’, in that
the response of any observable to any perturbation does not go beyond a few standard devia-
tions. Conversely, ‘complex’ systems (e.g. with a large entropy or large energy spreading) are
fragile, in that some observables are highly sensitive to some perturbations. This is reminis-
cent, although in another context, of the ‘complexity implies fragility’ principle advocated in
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[49, 50]. If we see the response as a useful signal rather than a disturbance, then this means
that simple systems are unable to transmit with a high signal-to-noise ratio.

This allows some insight on the value of simple models. Consider that typically nonequi-
librium toy models have few states, e.g. N = 3 for a minimal Markov chain able to sustain
a current (without recurring to multiple transitions between two states). A typical example
is offered by the enzyme kinetics describing substrate inhibition as a Markov chain on the
three different states of the enzyme (free, and bounded to one or two substrate molecules)
[51, 52]. If we mean to describe a biophysical process in this way, then typically the energy
spread of the unperturbed system can be taken to be Emax − Emin � kBT. Therefore, we find
|〈 f 〉p − 〈 f 〉q| �

√
3e1 − 1

√
Varq( f ) ≈ 2.67

√
Varq( f ), namely, the response never exceeds 3

standard deviations irrespective of the perturbation strength. Thus, few-state models are by
construction robust. Also, if results of an experiment were rationalized with a few-state model,
they would be unable to tell whether the measured system is in or out of equilibrium.

7.3. Discussion

In these two situations, we propose a notion of ‘complexity’ related to the spreading of the state
distribution of the system onto a large volume (variance of the state in the Langevin dynamics,
1/qmin for the finite state space case). We observe that ‘simple’ systems are bound to be robust,
i.e. exhibit low response to perturbations. Complex systems on the other hand allow possibly
large responses. It should be noted however that such a large response can only be reached by
certain well-chosen observables, that depend on the global state of the system. For example
consider a ‘local’ observable f that would only depend on a few degree of freedoms, e.g. the
energy of a single particle, then it is expected that the formula (87) becomes asymptotically
trivial for large N. This same phenomenon is also visible in the second situation (finite state
space): in there nothing is said about the dynamics, which could be the non-Markovian coarse-
graining of a large state space onto a few states only. Thus if the observable of interest can be
expressed in terms of a few coarse-grained states, then the same bounds apply on the coarse-
grained state space as well, where the complexity (here measured as 1/qmin), thus the maximal
response, can only be lower. Finally, let us observe that the dynamics on the small reduced
(e.g. coarse-grained) dynamics is in general not known, and finding the tightest bounds for
local observables is an open challenge [53].

8. Conclusions

We have explored bounds on the response of observables subject to a perturbation of the
underlying probability distribution, introducing the response intensity as an adimensional ratio
comparing the size of the response to the size of typical fluctuations. It turns out that bounds
on the response intensity can be found by the Hilbert uncertainty relation, a recent generaliza-
tion of TURs. These bounds allow to derive several nontrivial inequalities between the various
distances or divergences that can be defined between probability distributions, some of them
well-known and some of them novel. We believe that the novel SLs we have subsequently
derived and the novel applications we have provided on switched systems (e.g. computing
devices) and biophysical systems (e.g. the significance of simple models), together with other
recent results of the stochastic thermodynamics literature, are only the tip of the iceberg of an
emerging theory that characterizes the necessary relations between kinetics, thermodynamics
and reliability of stochastic systems.
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Appendix A. Lower bounds on Le Cam’s distance

On the one hand, we derive from (10) lower bounds on Le Cam’s distance:

d2
LeCam(p, q) � eD

(
p‖ p+q

2

)
− 1 � D

(
p‖ p+ q

2

)
(A.1)

and

d2
LeCam(p, q) � 1

2
eD

(
p‖ p+q

2

)
+

1
2

eD
(

q‖ p+q
2

)
− 1 (A.2)

� e
1
2

(
D

(
q‖ p+q

2

)
+D

(
p‖ p+q

2

))
− 1 (A.3)

� 1
2

(
D

(
p‖ p+ q

2

)
+ D

(
q‖ p+ q

2

))
(A.4)

= d2
JS(p, q). (A.5)

The latest quantity, dJS(p, q), defined as the square root of 1
2 (D(p‖ p+q

2 ) + D(q‖ p+q
2 )), is also a

distance (satisfying the triangle inequality), called the Jensen–Shannon distance.

Appendix B. Equivalence of symmetric response intensity bounds with the
TURs for antisymmetric observables

TURs were initially devised for Ω being the set of trajectories of a (stochastic) physical system,
andF being the set of observables anti-symmetric under time-reversal (and possibly other con-
straints). In a more abstract version, regardless of any thermodynamic context, one considers
an abstract Ω endowed with an involution s : Ω→ Ω (i.e. a bijection whose square is the iden-
tity), which is not necessarily time-reversal but could be space reversal, spin reversal, etc [14].
The relations obtained as upper bounds on symmetric nonlinear response, such as (28) or (26),
generalize results obtained previously in this literature, for p being the probability distribution
on Ω, and q being the symmetric distribution q(ω) = p(sω).

Conversely, these known results offer an alternative way to rederive the nonlinear response
bounds, thanks to the following trick. Two distributions p and q on one same space Ω can
be recoded into a single distribution on the space Ω⊕ Ω (the disjoint union of two copies of
Ω), with probability p/2 on one copy of Ω and q/2 on the other copy. The involution s : Ω⊕
Ω→ Ω⊕ Ω simply swaps the two copies of Ω. The observables f on Ω can be recoded into
antisymmetric observables f ⊕ (− f ) on Ω⊕ Ω. Applying the various bounds derived in [14]
on antisymmetric observables we recover the bounds (26) or (28).
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In conclusion there is an equivalence between the symmetric response intensity relation
(28) and the TUR for antisymmetric observables with respect to arbitrary involutions.

Appendix C. Symmetric Kullback–Leibler divergence and Jensen–Shannon
distance

The bounds on Le Cam’s distance allow to compare the Jensen–Shannon (square) distance

d2
JS(p, q) =

D
(

p‖ p+q
2

)
+ D

(
q‖ p+q

2

)
2

(C.1)

with the symmetric Kullback–Leibler divergence, also called the Jeffreys divergence:

D(p, q) =
D(p‖q) + D(q‖p)

2
. (C.2)

Comparing the lower bound (A.5) on Le Cam’s distance with the upper bound (27), we
conclude that:

ed2
JS(p,q) − 1 � tanh

D(p, q)
2

. (C.3)

Using tanh x = 2/(1 + e−2x) − 1, this can be rewritten as

d2
JS(p, q) � ln

2
1 + e−D(p,q)

(C.4)

which is the main result of [54].

Appendix D. Switching systems and bang–bang controls

When controlling the parameters of a dynamics in order to elicit a certain behavior, it is com-
mon to adopt a strategy of abrupt switching (at well-chosen time instants) between two or
several continuous-time dynamics. For instance we can consider a time-varying Markov chain
which switches between two transition rate matrices. One reason for such a switching control
strategy is the simplicity of implementation, where one has to simply switch on or off a voltage
source, a magnetic flux, a reactant influx, a heater, etc.

A deeper reason is to be found in optimal control theory. Even if we can modulate freely
the external force with a real number u(t), some various fundamental or practical reasons often
constraint the values of u to an interval [umin, umax]. Assume we want to optimize an objec-
tive for the trajectory of the system, for instance the time needed to reach a desired state
(or set of states), over all possible input signals t �→ u(t) ∈ [umin, umax]. Finding this optimal
control signal u(t) results in a variational problem whose solution is, in many cases, a so-called
bang–bang control (or on-off control) switching abruptly between the extremal values umin

and umax at well-chosen time instants. Typically, minimum-time control problems are well-
known to often result in bang–bang controls (we refer to textbooks such as [55] for precise
mathematical statements, e.g. the Pontryagin maximum principle). A didactical example is the
following: suppose that we want to drive a car from point A (at zero speed) to point B (at zero
speed) along a line: how to proceed in minimum time? The answer is accelerate as much as is
possible for the car, then at some carefully calculated moment, brake as much as possible so at
to arrive at B at zero speed. A bit switch is another example: if the input voltage is constrained
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to be in the interval [umin, umax], then the abrupt bang–bang switching is, generically speaking,
the fastest way to write a bit into the memory. Thus the results illustrated on the bit switch have
a more general value for systems operated ‘as fast as possible’, hence in an abrupt switching
way.

Appendix E. Distinguishing the arrow of time: low error requires high entropy
production

In [22], the authors consider the following decision problem: we are given a trajectory of a
stochastic system, which is presented either in the forward time direction or in the backward
time direction (with probability 1/2), and we must make a guess on which direction is being
presented to us. This problem offers another application of the main formula (36), in which Ω
is regarded as a set of trajectories of a stochastic system. We request that this set is closed under
time-reversal. The trajectories can be on fixed time-interval, or of variable length (determined
by a random starting and stopping time). The two distributions p and q of interest are the
forward path probability and the reverse path probability, respectively. Now Δσ is, under some
circumstances (for instance a constant, or time-symmetric protocol), the entropy production
along the path, or a lower bound on it. The probability of error in the maximum likelihood
decision is ε. Our formula (36) once again shows that a small probability of error requires a
large entropy production. While formally identical to Equation (9) in [22], (36) holds under
very general circumstances, e.g. independently of the choice of a certain stopping criterion and
for non-Markovian dynamics.

Appendix F. More classical SLs

F.1. Hölder’s inequality

Instead of using the bound (66), one could use as well Cauchy–Schwartz inequality to separate
the thermodynamic from the kinetic factors appearing in (65). Hölder’s inequality can also be
used, ∣∣∣∣

∫
f g dt

∣∣∣∣ �
(∫

| f |kdt

)1/k (∫
|g|�dt

)1/�

, (F.1)

for any k, � ∈ [1,+∞] such that 1/k + 1/� = 1 and functions f , g so that the integrals make
sense. In fact, this inequality generalizes both Cauchy–Schwartz inequality (k = � = 2) and
(66) (k = ∞, � = 1). In this way, every choice of k, � leads to a variant classical SL of (67).
The same remark holds for (75).

F.2. More distances

Many distances can be defined on the space of probability distributions, all with their
respective applications and interpretations. In addition to Le Cam’s distance dLeCam and
Jensen–Shannon’s distance dJS, we can also define Hellinger’s distance,

dHell(p, q) =
1
2
‖√p−√

q|‖2, (F.2)

or Fisher’s distance dFisher, which is the length in Fisher’s information metric sense of the short-
est path between two distributions. It turns out that these four distances essentially coincide
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locally. Indeed, if q = p+Δp with Δp 
 1, then

d2
LeCam(p, q) ≈ 2d2

JS(p, q) ≈ 2d2
Hell(p, q) ≈ 1

2
d2

Fisher(p, q) ≈ 1
4

∑
ω

Δp2

p
. (F.3)

Thus one can replace Le Cam’s distance dLeCam with
√

2dHell, or with
√

2dJS, or with√
1/2dFisher in SLs (65), (67) and (68).
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