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Abstract

Vulnerability to adversarial attacks is a well-known weakness of Deep Neural Networks. While most of the studies focus on
natural images with standardized benchmarks like ImageNet and CIFAR, little research has considered real world applications,

in particular in the medical domain.

Our research shows that, contrary to previous claims, robustness of chest x-ray classification is much harder to evaluate
and leads to very different assessments based on the dataset, the architecture and robustness metric. We argue that previous
studies did not take into account the peculiarity of medical diagnosis, like the co-occurrence of diseases, the disagreement of
labellers (domain experts), the threat model of the attacks and the risk implications for each successful attack.

In this paper, we discuss the methodological foundations, review the pitfalls and best practices, and suggest new method-
ological considerations for evaluating the robustness of chest xray classification models. Our evaluation on 3 datasets, 7
models, and 18 diseases is the largest evaluation of robustness of chest x-ray classification models.

Keywords

Chest X-ray, Adversarial, Robustness, Evasion, CXR, Radiograph, NIH, PadChest, CheXpert

1. Introduction

Chest x-ray (CXR) is an affordable, easy-to-use medical
imaging and diagnostic technique. Chest radiography
is the most requested radiologic examination. It is com-
monly used to diagnose a broad range of lung diseases
and abnormalities, such as Atelectasis, Pneumothorax,
and even early lung cancer. The chest film reading con-
sists of identifying areas of increased density or areas of
decreased density. The areas are identified with different
shades of grey on the grayscale images. Practitioners
commonly use one or two views in CXR. The postero-
anterior (PA) view is the front view. Examining all areas
where the lung borders the diaphragm, the heart, and
other mediastinal structures is essential. The lateral view,
called the anteroposterior (AP) view, can be used in addi-
tion to refining the diagnosis.

Although disease patterns may seem well-defined, cor-
rectly interpreting the CRX films is always a significant
challenge, even for radiologists. Families overlap and
sometimes are concurrent. In addition, imaging process-
ing provides various grades of contrast levels and is not
exempt from noise. Therefore, examining one CXR film
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can be misleading and may even cause diagnostic discrep-
ancies from one practitioner to another. Medical errors,
especially diagnostic errors, account for additional medi-
cal spending of $17 to $29 billion [1]. Garland [2] reported
a 32% retrospective error rate in the interpretation of ab-
normal CXR, while the daily error rate averaged only
3% to 4% when negative studies were included. More
recent studies have shown that misdiagnosis errors of
chest x-ray images remain high even with the advances
in practice and imaging systems [3].

The challenge of providing a reliable and efficient diag-
nosis has motivated increasing research for automated di-
agnosis systems. While the first attempt for an automated
CXR diagnosis system started in the 1960s [4], recent
techniques using Deep Learning have shown promising
performance [5, 6]. Riverain and Delft imaging systems
have already developed many commercial products [7],
and some have even obtained FDA clearance for large-
scale commercialization, such as Zebra Medical Vision.

While these systems provide remarkable figures in
their respective studies, recent research has shown gen-
eralization issues [6, 8, 9]. Some have proposed a few
hypotheses to explain the discrepancies: Errors in la-
beling [10], practitioner biases and disagreements [3],
and more generally, overfitting of models and lack of
generalization across multiple datasets [11].

A new facet of deep learning generalization has
emerged in recent years. The so-called "adversarial exam-
ples" have exposed the inherent vulnerability of machine
learning models in general and deep learning image clas-
sification models in particular to small perturbations.
Especially inputs that have been engineered to cause mis-
classification. The study of the adversarial vulnerability
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of image classification models has only recently tackled
medical systems. However, the few studies of chest x-
ray classification robustness [12, 13, 14, 15] has focused
on binary classification (normal VS disease) and drew
conclusions from one dataset and one or two models.

However, we argue that natural image classification
setting and the medical classification setting are very
different and require the evaluation of different threat
models, robustness metrics, and hyper-parameters.

To uncover the inconsistencies between the two set-
tings, we provide the first large-scale study of chest x-ray
classification vulnerability to the best of our knowledge.
Furthermore, we introduce two novel methodological
considerations for evaluating robustness in medical do-
mains: cross-domain generalization and domain-specific
knowledge. We argue that a rigorous evaluation of the ro-
bustness of medical classifiers in general and chest x-ray
classifiers in particular needs to consider these facets.

To summarize, our contributions are:

« We survey the literature on adversarial robustness
in chest x-ray classification and identify the major
pitfalls and limitations.

« We propose a set of principles and recommenda-
tions for how such pitfalls could be mitigated.

+ We demonstrate the impact and criticality of the
principles through an empirical study of chest x-
ray classification robustness using three datasets,
seven models, and 18 diseases.

2. Related Work

Adversarial attacks An adversarial attack is the pro-
cess of intentionally introducing perturbations to the
inputs of a machine learning model to cause wrong pre-
dictions. One family of adversarial attacks is poisoning
attacks [16] where the inputs targeted are the training set
and occur during the learning step, while evasion attacks
[17] focus on the inference step.

One of the earliest attacks is the Fast Gradient Sign
Method (FGSM) [18]. It adds a small perturbation 7 to
the input of a neural network, which is defined as:

= esign(V. % (0,2, 4:)), (1)

where 6 are the parameters of the network, x is the input
data, y; is its associated target, (6, x,y;) is the loss
function used, and € the strength of the attack. Following
Goodfellow, other attacks were proposed, first by adding
iterations [19], projections and random restart [20], mo-
mentum [21], adaptive steps [22] and constraints [23].
Recent work investigated attacks for finance [24], pri-
vacy [25], and navigation [26], and demonstrated that
real-world attacks require special considerations.

Adversarial attacks for CXR disease classification.
Taghanaki et al. [27] were among the first to evaluate
the robustness of CXR image classification against adver-
sarial examples. They evaluated white box and black box
attacks on two binary neural networks (ResnetV2 and
NasNet Large) using the ChestX-ray14 dataset [28]. They
showed that both models are vulnerable against gradient-
based attacks (100% success rate of attacks). While their
evaluation pioneered the research on adversarial attacks
in the medical setting, their evaluation focused on binary
classification in a restricted setting.

Finlayson et al. [29] focused on binary image classifi-
cation for medical diagnosis. Their study covered CXR,
Fundoscopy, and Dermoscopy diagnosis, and they also
showed that PGD attacks achieved a 100% success rate on
the ChestX-ray14 Pneumothorax label using one model.

Ma et al. [30] had another take on the robustness of
CXR image classification models. They compared the
robustness of binary classification, 3-label, and 4-label
classification. They showed that while PGD had a success
rate of over 99% on all of them, the vulnerability seems to
decrease with the increased number of labels. The three
classifiers were trained on the ChestX-ray14 dataset, each
time with a subset of labels. Our study covers the com-
plete scenario of 18-label classifiers trained on different
datasets (and distributions) and architectures. A previ-
ous study [11] showed essential performance differences
between the different labels that can explain the slight
variation of robustness across the set of labels. Some
labels are already challenging to learn and, similarly, to
attack. Our evaluation, on the contrary, shows that the
variations between different datasets and architectures
are significant and that some models are actually resilient
against adversarial attacks.

3. Pitfalls and principles of chest
x-ray robustness evaluations

3.1. Medical images differ from natural
images

Before we evaluate common practices, it is insightful
to understand why using the experimental protocol of
adversarial attacks on natural image datasets is rarely
relevant in the context of chest X-ray classification.

The first consideration is the nature of the tasks and
labels. In ImageNet[31] and Cifar[32] classification, the
images are designed to highlight one class (the ground
truth class) more than the others. Meanwhile, chest ra-
diographs are real images in which the same image can
contain multiple diseases of equal importance. Chest
X-ray classification can be seen as a multi-label classifi-
cation problem, and using metrics and losses specific to
this field of machine learning can provide a more faithful



representation of the robustness of the models.

Another consideration is that the labels of the images
and their probabilities are subjective to the radiologists
who provided the ground truths. Cohen et al. [3] have
shown that radiologists suffer from an availability bias:
They judge the probability of an event by the ease with
which examples come to one’s mind. In addition, radiolo-
gists also exhibit a confirmation bias. They actively search
for data to confirm a specific hypothesis rather than look-
ing for data that facilitate efficient testing of a compet-
ing hypothesis [3]. Furthermore, Cohen et al.[11] have
shown that there is a large discrepancy in the agreement
on the most probable diseases across different datasets
(and thus the labelers). Testing the robustness of the
model when the actual ground truth is uncertain is an
arduous task. A chest radiograph image that can be con-
sidered adversarial by a practitioner can be considered
legitimate by another. We can mitigate the risk of con-
sistency by considering the top-k predicted labels and
ensuring that they match the consensus among the practi-
tioners. This consideration requires thus new definitions
of adversarial examples in the medical setting.

Additionally, the risk associated with an error has a dif-
ferent impact depending on the nature of the error. There
are two risks in medical diagnosis: misses, i.e., when the
classifier does not detect the correct disease among the
most probable classes, and misinterpretations when the
most probable disease leads to an incorrect diagnosis. The
latter can have a different impact depending on how sim-
ilar the predicted labels from the original ones. Similarity
can take into account the treatment process: Confusing 2
diseases that, in the end, require similar treatment is less
detrimental than confusing two diseases with different
treatments. Similarity can also be considered following
disease taxonomy: Diseases that belong to the same fam-
ilies/branches can be considered more similar. The four
pattern approach commonly used [33, 34] considers four
families: Consolidation, Interstitial, Nodules or masses,
and Atelectasis. Within each family, there is a wide range
of diseases. Confusing a disease from one family with
one from another can be prejudicial. Some diseases regu-
larly occur together [5] and thus can be used to diagnose
each other. A misclassification that confuses them is less
prejudicial than confusing two improbable diseases.

3.2. Literature review

While previous studies [35, 36] referenced the major pub-
lications about adversarial robustness in the medical set-
ting, their work was an index of the literature and not
a critical analysis of the protocol or the relevance and
impact of the experimental designs.

Collection protocol. Starting from the two existing
surveys, we collected the publications that have been

peer-reviewed related to CXR classification from 2018.
There are, in total, 16 publications that match this scope.
For each publication, we record seven criteria that, when
not sufficiently evaluated, can lead to overestimated or
even wrong claims. We summarize this literature in Table
1. We detail each of the criteria below.

Datasets. The selection of datasets entails two hazards
that can affect the conclusions. First, the evaluation of
binary classification (9 publications among the 16) leads
to an overestimation of the robustness of the models. In-
deed, attacking a multi-label classifier is much easier [49]
as the decision boundaries are more blended than single-
label classifications. Another risk arises when drawing
conclusions about CXR classification from one dataset
only. All publications we identified restrict their evalu-
ation to one CXR dataset. We demonstrate empirically
that the conclusions about the robustness of a model
significantly differ from one CXR dataset to another.

Threat models. The evaluation of the whitebox set-
ting is relevant to understand the internals of the DNN
model or to evaluate the worst-case scenario. However,
in practice, access to the model and dataset of a specific
hospital/practitioner is unrealistic—only five papers eval-
uated a more realistic setting, with at least the graybox
attack scenario. Our results demonstrate that the conclu-
sions can change when assessing realistic cases where the
attacker only has access to the target dataset (graybox)
or even no knowledge (blackbox).

Architectures. Nine papers among 16 restricted the
robustness evaluation to only one CXR architecture. We
demonstrate that the robustness of architectures can sig-
nificantly vary with the threat model and the dataset
under evaluation.

Robust models. This criterion is critical, as demon-
strated by Carlini et al. in multiple publications [50, 51,
52]. Since 2018, robustification solid protocols have been
designed using adversarial training, and multiple reposi-
tories of robust models are available (Robustbench, for
example, [53]). Unfortunately, only two publications
([42, 47] considered strong defenses, and five others used
broken or weak defenses.

Strong attacks. Fourteen publications investigated po-
tentially strong attacks (CW, PGD), and their evaluation
used very few iterations and a limited perturbation bud-
get. Although current good practices are to use adaptive
and robust attacks such as AutoAttack [22], we show
empirically that increasing PGD budgets already leads
to surprising behaviors when comparing datasets and
architectures.



Reference Datasets Threat models Architectures Robust models Attacks Metrics
Finlayson et al. [29] Binary NIH Whitebox, Gray- | Resnet50 No PGD, Patch Accuracy, AUC
box
Ma et al. [30] 4 class NIH Whitebox Resnet50 No FGSM, CW, BIM, | Accuracy, AUC
PGD
Yao et al. [6] Binary Pneumo- | Whitebox Resnet50, VGG-16 | No FGSM, B/MIM, | Accuracy
nia PGD
Tian et al. [37] Binary Pneumo- | Whitebox, Gray- | Resnet, DenseNet, | No FGSM, CW, PGD, | Success Rate
nia box MobileNet B/MIM, Custom
Hirano et al. [38] 3 class COVID Whitebox CovidNet Adversarial  Re- | FGSM, PGD Accuracy
training
Pal et al. [39] Binary COVID Whitebox VGG16,  Incep- | No FGSM Accuracy
tionV3
Gongye et al. [40] 3 class COVID Whitebox Resnet18 No FGSM, PGD2 Accuracy
Rahman et al. [41] Binary COVID Whitebox, Black- | Resnet50 No FGSM, PGD, | Loss
box API DeepFool, +4
Taghanaki et al. [13] | Binary NIH Whitebox, Gray- | Inception, NasNet- | No FGSM, PGD, | Accuracy, AUC
box Large DeepFool, + 6
Anand et al. [42] Binary Pneumo- | Whitebox VGG11 Adversarial Train- | FGSM, PGD AUC
nia ing
Kovalev et al. [43] Binary Custom Whitebox InceptionV3 No PGD Success rate
Hirano et al. [44] Binary Pneumo- | Whitebox, Gray- | ResNet, VGG, | Adversarial Re- | FGSM, DeepFool Success rate, con-
nia box DenseNet training fusion matrix
Xue et al. [45] 3 class RSNA Whitebox ResNet18, VGG16 Custom denoiser FGSM, BIM, CW Accuracy
Tripathi et al [46] 3 class COVID Whitebox ResNet18, VGG16 FUIT Adversarial FGSM, BIM, CW, | Accuracy
train PGD
Xu et al [47] NIH Whitebox DenseNet-121 Adyv training PGD, GAP Success Rate,
AUC, Accuracy
Li et al [48] NIH Whitebox DenseNet-121 Detection FGSM, BIM, PGD | N/A
Table 1

Peer-reviewed publications about adversarial robustness in CXR classification from 2018 to 2021

Evaluation attacks. We demonstrate that the success
rate and accuracy of adversarial examples are misleading
because of the nature of CXR classification. For example,
the co-occurrence of pathologies and the risk associated
with each type of error lead to alternative conclusions in
the evaluation. We propose a new RISK metric to take
into account the specificity of CXR classification.

4. Empirical evaluation

In traditional adversarial attack literature, we evaluate
the robustness using the success rate of the attacks, i.e. 1-
accuracy of the predictions over the adversarial examples
(generally called robust accuracy. The success rate and
the robust accuracy has directly been used in previous
literature about CXR adversarial examples [54, 15, 14, 13].
We argue that the specificities of medical classification in
general, and CXR image classification in particular, make
these metrics irrelevant. First, some datasets are provided
as multi-label datasets (NIH for instance) and multiple
diseases can occur together. Other datasets are built
around the uncertainty of diagnosis, when the domain
experts do not provide the same diagnosis for a given
input. CheXpert dataset, for instance, has been designed
with 3 values of labels: positive (1), uncertain (-1) and
negative (0). Finally, [11] have showed that 2 models
trained for the same task on a different dataset have
different degrees of agreement of the most probable labels
and diagnosis. To take into account the uncertainty and

co-occurrences of labels, we propose to use a k-robust
accuracy.

Definition 1. Let .# a multi-label model with labels
L ={li,.,lu}. M : X CRY — Y C R we
have N the input features size and M the number of labels.
For each input example x, we denote by y the corresponding
ground-truth and we have y = (y1,...,Ys, ym) where
yi € {0, 1} is the corresponding ground truth for label i.
For each x € X, let § the predicted labels § = . (x).
Then, we denote by acck, « (z,y) the k-accuracy of
the input x for its top k labels, and define it as the cardinal
of the intersection between x’s top-k ground truth labels

and its top-k predicted labels:

|(argsort (9)]) N (argsortk(y)|)
k

where argsorty, of a set are the indices of the top k
elements of the set.

acc,.u (t,7) =

For an input z, acck, » evaluates how much the
most probable predicted labels match the most proba-
ble ground truth labels. This formalism is suitable for
both ordinal labels (to take into account uncertainty) and
multi-labels (to take into account label co-occurrence).

Definition 2. We define the k-accuracy of the model
M as the expectation over the input set X of the k-accuracy
of the input x € X: accr, .y = Eq [acck, .u (z,7)]

For k=1 the k-accuracy matches the standard accuracy.



4.1. Experimental setup

Datasets. Following the protocol set up by [11] we eval-
uate the robustness of CXR models using four datasets:

« NIH Chest X-ray14 [28], denoted as NIH in the
following. A dataset of 112k images was labeled
automatically with the NegBio labeler. This is the
most common dataset used in the literature of
CRX image classification.

« CheXpert [55]. This dataset of 224k chest radio-
graphs has been labeled with a custom automated
labeler over the NLP analysis of radiology reports.

+ PadChest [56] is a 160k image dataset. The labels
are extracted from radiographic reports manually
annotated by trained physicians for 27% of them.

« A combination of the three denoted as AlID. We
combine the images obtained from the three pre-
vious datasets for this dataset and process them
as proposed in [11].

For each dataset, we evaluate the robustness using
5120 inputs randomly sampled from the test set.

Models. All our models output a vector of 18 logits to
cover the maximum number of labels of our evaluation,
even if the dataset the model has been trained on is miss-
ing one or a few labels. This allows us to train and test
each model on any other dataset. All our models have an
average AUC > 0.79.

For the dataset specific models, we use pre-trained
models using a DenseNet-121 architecture available in
the TorchXrayvision library [11]. It includes models
trained on NIH, CheXpert (CHEX) and PadChest (PC).
The library also provides pre-trained models on the
MIMIC and RSNA datasets. Those are smaller CXR
datasets that share the same labels as the AlID dataset.

We also compare the robustness of models with dif-
ferent architectures trained using the same dataset. We
evaluate the performance of the DensetNet121 architec-
ture and the Resnet512 architecture when trained using
the AIID dataset.

Following similar work [11, 9], we adjust the training
process to the CXR classification task: We account for
the missing labels by training the models using only the
loss from the available labels. CXR classification also
suffers from a large imbalance in label distribution. We
alleviate the imbalance with a frequency-based weight
for each label: The less frequent labels have a higher
contribution to the loss computation. Finally, each label
also has a different optimal binary threshold. Except to
evaluate the multi-label accuracy, we do not threshold the
outputs and use the raw probabilities. For the multi-label
accuracy, different thresholds are used for each label as
proposed by Cohen et al.[11].

Attacks. We evaluate the robustness of the models
mainly against PGD attack [20]. It has been shown by
Madry et al. as a universal surrogate for first-order gra-
dient attacks, and the robustness against PGD attacks is
a common metric to evaluate the robustness of models
[53]. It is also the one used in previous research about
the robustness of CRX models [12, 14].

We evaluate the 2 hyperparameters of PGD: The
maximum perturbation size € over the range of
{0.5/255,1/255,2/255,4/255,8/255}, and the num-
ber of attack steps in the range of {1, 5, 10, 25, 50}.

Robustness evaluation metrics. In addition to the
k-robust accuracy, we also evaluate the robustness of
the models using traditional error metrics, to cover met-
rics designed specifically for multi-label classification
and ordinal classification: The mean square error (MSE),
cross-entropy error (BCE), multi-label accuracy (MLACC)
[57] and the Ordinal classification loss (OL) [58].

5. Results and Evaluation

5.1. Cross-domain generalization

To better understand how adversarial attacks impact CXR
classification models, we evaluate the impact of the train-
ing data on the robustness of models, in particular for
transfer attacks, when the source model and the target
models are different. Given a PGD attack of e = 1/255
and 25 steps, we evaluate the k-robust accuracy for k=1
and k=3 for our six DensetNet121 models M1, M2, M3,
M4, M5, M6, and M7. The clean images are randomly
sampled from the NIH dataset.

Adversarial attacks transferability: Results are
shown in table 2. When restricted to the 1-robust ac-
curacy, the NIH model is the most robust model (15.4%
robust accuracy on average) and the CHEX model is the
most vulnerable. When we evaluate the 3-robust accu-
racy, the most robust model becomes the AlID model
(35.6% robust accuracy on average). This confirms not
only that different models have a large range of robust-
ness (NIH is ten times more robust than CHEX), but
previous claims that PGD attack on CXR classification
yields a 100% success rate are far from true. Taking into
account the dataset used for model training can yield a
significant difference in robustness.

The significant variability in the performances moving
from top1 to top3 shows that actually, the models, in gen-
eral, remain robust enough and the correct labels are still
predicted with high probabilities. The only exception is
the CHEX model, which remains very vulnerable. It hints
that the distribution that has been learned by this model
can significantly be impacted by a small perturbation.



Topk | Target — NIH CHEX PC MIMIC  RSNA  AlID
Acc Source |
NIH 13.78 1.38 9.66 8.47 7.12 2.25
CHEX 15.66 1.62 9.28 8.00 7.09 244
k=1 PC 15.72 1.38 8.25 8.28 7.28 2.4
MIMIC 15.81 1.38 9.00 8.16 7.22 2.38
RSNA 15.78 1.31 9.97 8.06 8.09 2.53
AlID 15.72 1.34 9.34 8.09 7.28 4.78
NIH 21.41 6.09 35.31 27.28 27.22 36.12
CHEX 21.66 6.28 34.88 27.47 26.91 36.28
k=3 PC 21.69 6.41 34.94 27.09 26.06 36.78
MIMIC 21.75 6.09 35.06 27.94 27.62 36.22
RSNA 21.59 6.12 35.41 27.00 21.16 36.25
AlID 21.69 6.34 35.38 27.12 27.34 32.12
Table 2

k-robust accuracy on NIH dataset for six Densenet121 models,
each trained on different chest x-ray datasets. The columns
are the target models and the rows are the source models.

Additionally, the most robust model in the white box
threat model (the diagonal values where the source and
target model are the same) is not the same given the 1-
robust accuracy or the 3-robust accuracy. While the NIH
model preserves the most probable class, the PC model
retains better the correct labels in the top3 predictions.

Robustness over different test datasets: Next, we
explore the impact of the test dataset on the robustness
of models. We evaluate in Table 3 the k-robust accuracy
of each model when the original inputs are sampled from
one of the datasets: D1 for NIH Chest X-ray14, D2 for
the CheXpert dataset, D3 for the PadChest dataset. The
source and target models are the same in this setting.

Our results show that the examples sampled from the
CheXpert dataset are the most vulnerable, except for
the model trained on the NIH dataset. There is also no
relationship between the robustness of the model and
the distribution of inputs. Sampling the inputs for the
adversarial examples from the same distribution (NIH
with D1, CHEX with D2, PC with D3) does not reliably
lead to higher robust accuracy.

Looking at the 3-robust accuracy, D3 is the more robust
dataset for four models among the six. When the train
examples and the evaluation example are both sampled
from the PadChest dataset, the 3-robust accuracy peaks
at 53.59%, more than three times the robustness of the
NIH model on the same dataset.

Impact of architecture: We observe in Table 4 that
different architectures are not reliably robust across dif-
ferent CXR datasets. While Resnet is more robust on
D3, the DenseNet model has higher robust accuracy on
D1. It is also noted that across both architectures, the
dataset D3 yields the highest robust accuracy across both
architectures. It is consistent with our previous results
(Table 3) that also showed that inputs from D3 are more
robust across different models of the same architecture.

k-robust acc k=1 k=3
Dataset —
D1 D2 D3 D1 D2 D3
Model |
NIH 13.78  34.38 3.31 21.41 43.03 13.88
CHEX 1.62 0.88 1.31 6.28 9.03 19.47
PC 8.25 11.78  12.06 3494 2266  53.59
MIMIC 8.16 5.72 17.47 2794  40.84 49.25
RSNA 8.09 5.38 7.22 21.16 17.00 16.38
ALLD 4.78 5.56 8.62 3212 19.09 37.69
Table 3

k-robust accuracy on our three datasets for six Densenet121
models, each trained on different chest x-ray datasets. The
source and target models for the attacks are the same. The
columns are the datasets from which the example are sampled,
and the rows are the source/target models.

k-robust acc k=1 k=3
Dataset —
D1 D2 D3 D1 D2 D3
Model |
DenseNet121 4.78 5.56 8.62 32.125 19.09 37.69
Resnet50 3.31 256 1144 22.25 30.91 39.31
Table 4

k-robust accuracy on 2 architectures: Resnet50 and
Densenet121. The source and target models for the attacks
are the same. The columns are the datasets from which the ex-
ample are sampled, and the rows are the source/target models.
Greyed cells are best the values across a row, and underlined
cells are the best values across a column.

Impact attack budget € and nbsteps: For k=3, robust
accuracy drops from 34.56% with epsilon = 0.5/255 to
13% with epsilon = 4/255. Meanwhile, the robust k-
accuracy for k=1 slightly increases with the increased
attack budget, from 3.84% to 8.06%. This increase in ro-
bustness is unexpected and can indicate that iteration
budgets of 25 steps are not sufficient to effectively explore
such a large search space.

Given a perturbation budget of epsilon = 0.5/255,
the number of steps has a limited impact on the robust
accuracy. We observe that the attack success (and thus
the models’ robustness) plateaus around 30% for all the
multi-step attacks: 5, 10, 25, and 50 steps.

Conclusion: The robustness of CXR image classifiers
significantly varies when considering architectures and
datasets. Contrary to common practice, mixing multi-
ple datasets leads to less robust models.

5.2. Domain Specific knowledge

CXR classification not only raises questions about the
generalization of one’s hypothesis about the robustness
of models, as we showed, but it also requires a higher
understanding of the labels and diseases that we aim to
classify. When dealing with a critical task like medical
diagnosis, the risk associated with a prediction error can
dramatically increase when the predicted diseases are far



from the actual truth. We show that targeted adversarial
attacks against these risky labels provide a new view of
the robustness of CXR classification models.

To model the prediction risk, we use the co-occurrence
matrix provided by the multi-label dataset NIH. In this
dataset, each radiograph can have 1, 2 or 3 diseases that
have been annotated. This matrix indicates which combi-
nation of diseases are very rare in practice, and hence can
hardly be confused. For instance, while Infiltration and
Atelectasis are two labels commonly found in annota-
tions, Infiltration and Pneumothorax are scarce together.

Let .# a multi-label model with labels & =
{ly, .l } M - X CRY — Y CRM,

For each z € X, let § the predicted labels § =
M (x) = (§1,Y;---, Jps) Where §; € R is the predicted
probability of label ¢. Let §* the most probable label for
x: " = argmax,{§,, §;..., Uas }- Let C the normalized
inverse co-occurrence matrix of the label space ). A
higher value in C' means that the labels of the row and
column indices are very unlikely to occur together. C'(4)
is the vector of improbable labels associated with label ¢.

For eachinputx € X, we generate an adversarial z* €
X example with targeted Projected Gradient Descent
(PGD) [20] algorithm, targeted on the improbable label
vector of z. Targeted PGD adds iteratively a perturbation
0 that opposes the sign of the gradient V with respect to
the input x and target C'(§™). Il is a clip function that
ensures = + ¢ respects a p-norm perturbation budget:

' =z " =1L, (e —asgn(VL L0, z,C(57))))

This optimization can be seen as a weighted multi-
label classification attack because the target vector is a
real-valued vector, or as an ordinal classification attack
because the order of the values of target logits actually
matter. They reflect the risk caused by the misclassifica-
tion. This risk can be computed as a vectorial product
between the predicted logits of the adversarial example
and the target logits computed with C. And we have:
RISK = #(z*) x C(§7).

To account for both views, we use different loss func-
tions: MSE, BCE, OL. We report for each approach the
MSE, BCE, AUC, MLACC, and RISK. We also include the
k-robust accuracy (with k=1,3) to compare this threat
model with the threat model of 5.1. While MSE, BCE,
AUC, and k-robust accuracy reflect how much error we
introduce in comparison with the original prediction,
MLACC and RISK reflect how close is the predicted out-
put to the target output. We bring together the results of
all these evaluations in Table 5.

Impact of the loss function The most robust models
are overall consistent across different loss functions used
in the attack. This confirms that handling risk-based
attacks as an ordinal classification problem are as relevant
as a multi-label problem for the success of the attack

Model - [ NIH CHEX PC  MIMIC RSNA AID
Loss Metric
k=11 3.07 0.25 0.19 0.25 0 4.19
k=31 13.31 331 1613 2.63 0 10.82
AUC 1 0.74 0.5 0.78 0.5 0.5 0.42
MSE MSE | 0.07 0.06 0.13 0.09 0.02 0.1
BCE | 0.78 0.77 0.85 0.76 074 084
MLACC | | 0.66 0.58 0.71 043 045 059 |
RISK | 0.18 0.2 0.28 0.25 024 023
k=171 2.69 1.19 0.19 0.69 0 3
k=31 1243 819 16.5 1.75 0 11.12
AUC 1 0.78 0.5 0.81 0.5 0.5 0.52
BCE MSE | 0.07 0.06 0.12 0.1 0.01 0.09
BCE | 0.77 0.76 0.84 0.76 0.74  0.81
MLACC | | 0.67 0.59 0.71 0.43 0.45 0.6
RISK | 0.17 0.19 0.27 0.24 024  0.26
k=171 2.81 0.31 0.63 0.13 0 25
k=31 1406 531 1456 1.06 0 9.88
AUC 1 0.78 0.5 0.69 0.5 0.5 0.41
oL MSE | 0.07 0.08 0.12 0.09 002 011
BCE | 0.78 0.78 0.84 0.76 0.74 084
MLACC | | 0.66 0.53 0.68 0.42 0.45 0.54
RISK | 0.17 0.2 0.27 0.24 024 022
Table 5

Robustness of metrics for six Densenet121 models on NIH
dataset, attacked using three loss functions. | and 1 indicate
that lower (higher respectively) is more robust.

Impact of the threat model Comparing the k-robust
accuracy of our risk-based threat model with the untar-
geted threat model of our previous results (Table 2) shows
that this risk-based threat model yields more successful
attacks, and thus lower robust accuracy of the models.

For instance, with k=1, the robust accuracy of the NIH
model against untargeted attacks is 13.78% (Table 2), but
it drops to 2.69% under the risk-based attacks (Table 5).
Similarly, for k=3, the AlID model has a robust accuracy
of 32.12% against untargeted attacks and only 11.12%
against risk-based attacks.

Risk evaluation of the models According to the RISK
metric, the NTH model is not only the most robust to ad-
versarial attack but also the one where the end labels have
the lowest probabilities to actually be rare co-occurring
labels of the original label.

Impact of the robustness metric Our results show
that the error metrics fail to highlight one specific model
as being the most robust. According to robust accuracy
and robust AUC, NIH is the most robust model across
different loss functions. Meanwhile, the RSNA model is
the most robust according to the BCE and MSE losses.
We also evaluate the Pearson correlation between the
robustness values of each batch of all models combined.
Except for the correlation between the risk and the 3-
robust accuracy, the p-value is under 1023 . Our results
show that none of the existing metrics (MSE, BCE,...)
is correlated with the RISK metric. This confirms that
existing metrics do not take into account this dimension.
As expected, MSE and BCE are highly correlated with



each other and mildly correlated with the top-3 robust
accuracy. On the contrary, top-1 robust accuracy has
little correlation with the other metrics.

Conclusion: The choice of a CXR classification model
can significantly vary based on the robustness metric
and threat models we evaluate.

Conclusion

Evaluating the robustness of chest radiograph classifiers
requires extreme caution and consideration when design-
ing the experimental protocol.Our study, in particular,
outlines the following recommendations. State a precise
and realistic threat model for your use case. Use clear
assumptions about the distribution learned by the target
model and how it relates to what your craft model has
learned. Choose the right robustness metric depending
on the task and threat model: Single-label classification,
multi-label classification, and ordinal classification met-
rics reflect different vulnerabilities. Identify the risks and
their impacts, and evaluate the robustness of robust mod-
els use strong baselines and risky attack strategies, e.g.,
with larger attack budgets.

We do not intend for this paper to be the definitive an-
swer, nor that the items contained above are exhaustive.
We encourage future research to confront their proto-
col with actual use cases, and we hope that our work
paves the way to critical thinking about the protocols of
adversarial attack evaluation in the real world.
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