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I. MOTIVATIONS

In these notes, we will discuss the dynamics of two simple toy models of disordered systems, that provide a simple
description for a broader class of more complex models. We will consider (1) the equilibrium dynamics, i.e. the
dynamics that starts from the Boltzmann-Gibbs distribution at a fixed temperature and satisfies detailed balance at
the same temperature, (2) the simplest case of off-equilibrium dynamics, i.e. a zero-temperature energy minimization
via gradient descent from a random initial condition, and (3) a simple combination of the previous two, which provides
a simple approximation to the simulated annealing protocol. The most important feature of the class of disordered
systems we consider here is to have a rough energy landscape, i.e. an energy function featuring multiple local minima
and saddle points that can trap the dynamics for long times; this metastability phenomenon will be one of the central
theme of the notes.

While the interest in this problem in physics has been mostly driven by the study of glasses and spin glasses, these
phenomena play a fundamental role in many other fields of research, hence their study has benefited from a fruitful
interaction between different disciplines such as statistical physics, probability theory, statistics, machine learning,
and computer science. Given the vastity of the field, it is clearly impossible here to give a complete overview, so we
will rather start the discussion by giving a few examples that will serve as motivations for the rest of the discussion.

A. Glasses and spin-glasses: finding low-energy states

Structural glasses (such as common window glasses) are microscopically formed by a disordered collection of atoms
or molecules. As a simple model, we can consider a system of N classical point particles in three dimensions, described

by a set of positions x ∈ R3N with total potential energy V (x). At low temperatures, the system visits low-energy
states. The lowest-energy state is usually a crystal, corresponding to a periodic arrangement of the particles. In glassy
systems, the potential energy also features disordered local minima, in which particles’ configuration do not display
any evident periodicity. Many different microscopic arrangements of the particles then give rise to similar potential
energy values: at a given value of V (x) there are many local minima with similar properties, as illustrated in Fig. 1A.
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FIG. 1: A. Illustration of the potential energy landscape V (x) of a structural glass model. B. Preparation of glassy states by
cooling. The glass line with lower energy corresponds to slower cooling.

Glasses are usually prepared by slow cooling from a high-temperature liquid melt. Suppose that the system is
initialized in equilibrium at high temperature, in the liquid phase. There, it explores a large portion of the phase
space, corresponding to the basin of attraction of many local minima, as illustrated in Fig. 1A. Upon a slow enough
cooling, the system maintains thermodynamic equilibrium and a sharp first-order phase transition to the crystalline
state is observed, as illustrated in Fig. 1B. However, in glass-forming systems, the nucleation time of the crystal can
be astronomically large, and as a result, crystallization is not observed [1]. Upon slow cooling, instead, the system
remains confined in the basin of attraction of one of the local minima that compose the original liquid state (Fig. 1A).
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As a result, during the cooling process, the average potential energy does not jump discontinuously to the crystal
value, but instead displays a smooth crossover from the liquid regime to the glassy one (Fig. 1B). Because there are
multiple glassy local minima within the liquid basin, different thermal histories (e.g. different temperature cooling
rates) can bring the system to slightly different glassy states, hence leading to different low-temperature values of the
potential energy. Typically, slower cooling leads to lower values of potential energy (Fig. 1B) [1].

Hence, the problem of describing structural glasses corresponds, mathematically, to the problem of characterizing
low-energy local minima of the potential energy V (x) [2]. Similar problems arise in other physical systems such as spin
glasses, which are magnetic systems with impurities. In this case, the system is described by a N -spin configuration
σ and an associated magnetic Hamiltonian H(σ) [3]. Note that, both for glasses and spin glasses, the existence of
disordered local minima is independent of the presence of explicit randomness in the potential energy function or
Hamiltonian [4].

B. The jamming transition: colloids, emulsions, granular materials

floppy rigid

(a) (b)

V = 0 V > 0
floppy rigid

unjammed jammed
SAT(isfied) UNSAT(isfied)

FIG. 2: The jamming transition from a floppy (A) to a rigid (B) state.

A special case of interest is that of particle interacting via a finite-range pair potential, i.e. a potential such that
there is no interaction when particles are sufficiently well separated. A specific common example is that of harmonic
soft spheres,

V (x) =
∑
i<j

v(|xi − xj |) , v(r) = ε(1− r/`)2Θ(`− r) , (1)

where Θ(x) is the Heaviside theta function, and therefore v(r) = 0 if particles do not overlap, i.e. |xi − xj | > `. Such
a potential has multiple local disordered minima, as illustrated in Fig. 1A, but on top of that, a new phenomenon
emerges due to its finite range. In fact, local minima of the potential (or T = 0 athermal states) can be separated in two
classes. Those with V = 0 are such that all the overlaps between particles are removed (Fig. 2A). As a consequence,
one can imagine that in the generic case the structure is mechanically floppy, because of the absence of interactions.
These states are called unjammed. On the contrary, minima with V > 0 have at least two particles overlapping, and
in the generic case there is a full network of particle contacts (Fig. 2B) that provides mechanical stability (or rigidity)
to the structure. These states are called jammed. Remarkably, a sharp jamming phase transition [5, 6] separates
a low-density region where unjammed minima are found with high probability (going to one in the thermodynamic
limit) from a high-density region where jammed minima are found with high probability.

The model potential in Eq. (1) has been used as a simple model in soft matter physics, to describe soft colloids,
emulsions, and soft granular materials [7, 8]. The jamming transition found application to these materials, because it
describes the onset of rigidity upon compression.

The problem of finding unjammed minima is also a packing problem [9, 10] that can be formulated as follows: is it
possible to find x such that V (x) = 0, i.e. for which there is no overlap between particles? In other words, can a set
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of N hard spheres of diameter `, which cannot overlap, be packed in a periodic box Ω of volume V ? As such, it has
a deep connection with many branches of mathematics and coding theory, because the problem of packing spheres
(especially in high spatial dimension) is connected to the theory of error correcting codes [11, 12].

Finally, this problem can also be seen as a constraint satisfaction problem: a configuration space x ∈ ΩN is
given together with a set of constrains, i.e. |xi − xj | > ` , ∀i, j, which have to be satisfied. In this language, an
unjammed configuration is also called SAT, because all constraints are satisfied, while an unjammed configuration is
called UNSAT, because some constraints are not satisfied; and the jamming transition correspond to a SAT-UNSAT
transition [13]. We will come back to this analogy in Sec. I D below.

C. Optimization problems: finding low-energy configurations

The problem of finding low-energy configurations in a rough energy landscape, which is a central one
in the physics of disordered systems (Sec. I A), is also very important in theoretical computer science.
A typical example is the so-called traveling salesman problem [14, 15], which is formulated as follows.
One is given a set of cities labeled as 1, . . . , N , and a cost wij to go from i → j. One is
then asked to find a path i1, i2, . . . , iN that goes once and only once through all the cities,
and minimizes the total cost of the trip

E(i1, · · · , iN ) =
∑
k

wikik+1
. (2)

This is called an optimization problem, i.e. one is given a cost function and has to min-
imize it over a large space of possibilities. Another version, called decision problem, is
to find whether there exist a path such that the cost is below a given threshold, i.e.
E(i1, · · · , iN ) =

∑
k wikik+1

< E0. Note that the cost wij can represent for example the
distance between city i and j, the price of the train ticket, or any other positive number that is relevant to the
problem.

This problem is one of the most intensively studied problems in optimization, and it is obviously relevant for many
planning/scheduling problems, but it also find applications in biology and astronomy1. Many other optimization
problems have been formulated in theoretical computer science, and in all cases the problem is to minimize a given
cost function over a space of variables, with a number of configurations typically growing exponentially in the number
of variables N , thus making a brute force search impossible.

D. Constraint satisfaction problems: finding solutions to a set of constraints

A special class of optimization problems, akin to the problem formulated in Sec. I B, is obtained when
the cost function is a sum of local terms involving a finite number of variables, such that the local cost
vanishes for certain assignments of the variables and is positive otherwise. An example is that of graph
coloring [16]. One is given a graph with N nodes and M edges. Each node can be colored
by q different colors (e.g. green, red, blue...), represented by a Potts spin σi = 1, · · · , q.
The cost function is a sum over edges < i, j >,

E(σ) =
∑
<i,j>

δσi,σj , (3)

which counts the number of monochromatic edges connecting two nodes having the same
color. Clearly, the cost function in Eq. (3) is a sum of local terms, each involving two
variables, and vanishing whenever the two variables are different and being positive oth-
erwise. Similarly, the potential in Eq. (1) is a sum of pair terms, vanishing when the pair
of particles involved is well separated, and being positive otherwise.

One can then formulate two distinct problems. The first is a satisfiability problem: is there an assignment σ of
the N variables such that E(σ) = 0, or, in other words, is the problem satisfiable? If the answer is yes, the problem
is deemed SAT, and UNSAT otherwise. Like in the setting of Sec. I B, for a broad class of cost functions involving

1 See e.g. https://en.wikipedia.org/wiki/Travelling_salesman_problem.

https://en.wikipedia.org/wiki/Travelling_salesman_problem
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disorder, a sharp SAT-UNSAT phase transition separates the two phases in the thermodynamic limit, upon varying
the number of constraints per variable, i.e. the ratio α = M/N . Furthermore, around the transition, there is a critical
slowing down of search algorithms that look for solutions [13, 17–21].

The second problem is an optimization (or approximation) problem, as in Sec. I C: if there is no solution to the set
of constraints, is it possible to minimize the number of unsatisfied constraints, i.e. to find the ground state of E(σ)?

E. Machine learning: minimize a loss function

Similar problems arise in machine learning applications [22, 23], for example in supervised learning. An example is
data classification. Suppose one is given a set of input data xm (e.g. images), and a set of associated labels ym ∈ {0, 1}
(e.g. “dog” or “cat”). The problem is to learn, from this set of training examples, the unknown function ym = f(xm)

that relates the input to the output. One can then assume a class of functions yp = g(x|θ) ∈ [0, 1] for θ ∈ RP , such
that yp is the probability of the input x being labeled as a “1”, which depends on a set of unknown parameters θ,
and define a loss function as:

L(θ) =
1

M

∑
m

e
(
ym, g(xm|θ)

)
, (4)

where e(y, yp) is a measure of the error of the predicted probability yp, e.g. the so-called cross-entropy loss:

e(y, yp) = −y log yp − (1− y) log(1− yp) . (5)

For a true label y = 0, minimizing the cross-entropy is equivalent to minimize − log(1− yp), i.e. to minimize yp, and
vice versa for y = 1. The aim is then to learn the best value of the parameters θ by minimizing the loss function L(θ)
calculated on the training examples. The training often consists in a gradient descent in the parameter space,

θ̇ = −∇θL(θ) , (6)

possibly in the presence of a little additional noise.
Assuming that the function f(x) is known, together with the statistical distribution of input data, the generalization

capacity of the trained machine can be evaluated by computing the generalization error :

Eg(θ) = Ex
[
|f(x)−Θ[g(x|θ)− 1/2]|

]
, (7)

where Θ(x) is the Heaviside theta function. In words, we extract a new data point x at random, we compute its true
label y = f(x), and its predicted label y′ = Θ[g(x|θ)− 1/2] (i.e. we assign a label “1” if yp > 1/2 and “0” otherwise),
and we then compute the average of |y− y′|, which is one in case of a mistake and zero otherwise. This quantity then
provides the probability that the trained machine commits a mistake when classifying a new data point, extracted
from the same statistical distribution as the training data, but that was not used in the training.

In order to characterize the local minima of L(θ) that are reached by the gradient descent, one can ask several
questions:

• Can we perfectly classify the training data, i.e. reach L(θ) = 0? The answer to this question defines a sharp
SAT/UNSAT transition, as a function of the ratio α = M/P between the number of data and the number of
parameters when both go to infinity, also called the capacity transition [24]. It separates a phase with L = 0 for
low α from a phase with L > 0 for high α, as described in Secs. I B and I D.

• How does the generalization capacity of the machine depend on the dynamics (e.g. by the discretization of the
gradient descent, by the initial condition, ...) and on the ratio M/P [25, 26]?

• What is the role of a little additional noise (e.g. in the so-called stochastic gradient descent) [27, 28]?

The analytical and numerical study of the training dynamics, both using simple toy models of data (e.g. random
uncorrelated data) and real datasets, has given insight on the functioning of the resulting machines.

F. Inference problems: maximize the likelihood of data

In inference problems, one is given a set of data, and has to deduce some information about the underlying
statistical model from which the data were generated, see e.g. [29–33]. Many inference problems can be framed
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as unsupervised learning problems. The data {xm}m=1,··· ,M are independently and identically generated from an
unknown probability distribution P (x). One then assumes a model probability distribution Qθ(x), with unknown
parameters θ. The likelihood of the data, i.e. the log-probability that the data were generated by Qθ(x), is defined as

L(θ) =
1

M

∑
m

logQθ(xm) . (8)

Note that the likelihood also coincides with minus the cross-entropy Sc[Pemp, Qθ] of the empirical distribution
Pemp(x) = M−1

∑
m δx,xm and the trial distribution Qθ(x). One can then seek for the value of θ that maximizes

the likelihood, or equivalently minimizes the cross-entropy, once again via a gradient descent:

θ̇ = ∇θL(θ) = −∇θSc[Pemp, Qθ] . (9)

This intuitive procedure can also be justified more formally, either via the maximum entropy principle [29] or in a
Bayesian setting with uniform prior [33].

One can then ask several questions to characterize the quality of the inference, such as:

• If P (x) = Qθ∗(x), can one reconstruct the true θ∗ via gradient ascent on the likelihood [34]?

• Whatever the form of the unknown P (x), are samples from the inferred Qθ(x) statistically identical to samples
from P (x)? If the answer if yes, then Qθ(x) is called a generative model [35].

• Can one use the learned model Qθ(x) to infer hidden structure in the data, e.g. to cluster the data or to project
them on lower-dimensional manifolds (i.e. lower-dimensional representations or features)? Can one use this
knowledge to generate data with desired properties [36]?

G. Simulated annealing: a general algorithm for optimization

We have seen by this sequence of examples that the optimization of multi-dimensional functions is a highly interdis-
ciplinary problem, which finds application in very diverse fields, ranging from soft matter to inference. A very powerful
algorithm to search for a global minimum is simulated annealing [37], that was introduced by statistical physicists
in the context of optimization problems (Sec. I C). In this algorithm, a random initial configuration is chosen (cor-
responding, in statistical physics, to an initial state at temperature T = ∞) and the system is then cooled, with
different cooling protocols, to zero temperature (Fig. 3). This process mimics in the computer the physical cooling
process used to created structural glasses (Fig. 1B). Simulated annealing is one of the most widely used algorithms
for optimization.

Yet, in many of the applications described above, the function to be optimized is rough, i.e. it displays multiple
local minima at different levels, separated by saddle points and local maxima, as in Fig. 1A. Because local minima can
trap simulated annealing for extremely long times (infinite for gradient descent), and high-energy minima are likely
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FIG. 3: Simulated annealing, i.e. exploring the energy landscape by slowly decreasing the temperature.
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to be more numerous than low-energy ones, one might wonder what are the performances of this algorithm in these
complex situations. Does the algorithm get stuck in high-energy, bad minima? Is it able to reach the ground state?
Or is it able to find a good compromise, i.e. low enough states that provide good approximation to the ground state?

Statistical physics (and other disciplines) have made much progress on this question, see e.g. [25, 27, 28, 34, 38–42].
In these introductory notes we will consider the two simplest toy models of rough function, that give some insight on
the problem:

1. the mixed p-spin model;

2. the perceptron model.

Moreover, while in simulated annealing the cooling protocol can be rather arbitrary, we will focus on some limit cases
that can be more easily described analytically:

1. full equilibrium (very slow cooling);

2. gradient descent (very fast cooling);

3. equilibrium down to some temperature T , followed by gradient descent (mixed dynamics).

We will see how the performances of these annealing protocols can be studied in the two toy models. The central
theme of the notes will be the relation between the function geometry (i.e., how the local minima and the saddle
points are organized) and the long-time properties of the dynamics.

II. DEFINITION AND PROPERTIES

In the following, we will denote by σ ∈ RN the system’s configuration, because we will be dealing with continuous
spin systems, and by H(σ) the energy, or cost, or loss, or minus likelihood, function, which we will call Hamiltonian
in the language of physics. Let us consider a system in contact with a heat bath at temperature T = 1

β . Given the

Hamiltonian H(σ), its equilibrium Boltzmann-Gibbs distribution is given by

Peq(σ) =
e−βH(σ)

Z
, Z =

∑
σ

e−βH(σ) , (10)

being Z the partition function.

A. Langevin dynamics

We consider the simplest model for the dynamics of a system in contact with a heat bath, the over-damped Langevin
dynamics [43, 44]:

dσi
dt

= −∂H
∂σi

+ ξi(t) , i = 1, · · · , N , (11)

where ξi(t) is a white Gaussian noise that models the thermal bath, with mean and variance given by

〈ξi(t)〉 = 0 , 〈ξi(t) ξj(t′)〉 = 2Tδijδ(t− t′) . (12)

The evolution of the probability distribution is described by the Fokker-Planck equation,

dP (σ, t)

dt
=
∑
i

∂

∂σi

(∂H
∂σi

+ T
∂

∂σi

)
P (σ, t) = −LP (σ, t) . (13)

This equation conserves the total probability, i.e. d
dt

∫
dσP (σ, t) = 0, and admits the equilibrium distribution Peq(σ)

as fixed point. It is easy to check that

0 = −LPeq(σ) , (14)

which implies that if at any time the system is in P (σ, t) = Peq(σ), then it stays there at all times, because the time
derivative of P (σ, t) then vanishes.
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Because L is not Hermitian, its left and right eigenmodes associated to an eigenvalue λα, respectively Qα and Pα,
differ. For finite N and under a few assumptions, physically needed to ensure that the Hamiltonian is confining at
infinity and to exclude the existence of disconnected regions of phase space (see Ref. [44] for details), the operator L
has a unique ground state corresponding to the equilibrium distribution,

λ0 = 0 , P0 = Peq , Q0 = 1 , (15)

and presents a discrete spectrum of strictly positive excited states with eigenvalues λα > 0. The dynamics starting
from a generic initial distribution Pin(σ) can then be decomposed on eigenmodes of L,

P (σ, t) = e−LtPin(σ) =
∑
α

e−λαtPα(σ)〈Qα|Pin〉 . (16)

The λα then physically correspond to decay rates, and the second eigenvalue λ1 defines the rate of convergence to
equilibrium with a corresponding time scale τrel = 1/λ1.

B. Observables

Given generic observables A(σ) and B(σ), we define the dynamical average, i.e. the average over the initial condition
Pin and over different stochastic paths, as

〈A(t)〉 ≡ 〈A(σ(t))〉 =

∫
dσP (σ, t)A(σ) , (17)

and the correlation between observables at two different times as

CAB(tw + t, tw) ≡ 〈A(tw + t)B(tw)〉 . (18)

If we perturb the Hamiltonian with an external time-dependent field h(t) conjugated to the observable B(σ),

H(σ) −→ H(σ)− h(t)B(σ) , (19)

we can define the linear response:

〈A(t)〉h = 〈A(t)〉0 +

∫ t

0

dsRAB(t, s)h(s) . (20)

If the perturbation is a pulse at time tw, h(t) = δh δ(t− tw), then the response of the system precisely corresponds to

the response function RAB(t, tw) = δ〈A(t)〉h
δh , as illustrated in Fig. 4.

t

h

0

δh

tw

(a)

t

R A
B(t

,t w
)

0 tw

(b)

FIG. 4: A. Pulse δh at time tw. B. Response of the system to the pulse δh at time tw.

C. Special properties of the equilibrium dynamics

Let us consider an initial equilibrium distribution Pin(σ) = Peq(σ), which is then left invariant by the L operator.
Physically, if the system is initialized in equilibrium, then it remains in equilibrium at all subsequent times. The
invariance of Peq with time has several important implications [43, 44]:
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• Time-Translation Invariance (TTI): because the origin of time can be shifted arbitrarily leaving the dynamics
invariant, two-times observables depend only on the time differences, i.e.

CAB(t+ tw, tw) = CAB(t) , RAB(t+ tw, tw) = RAB(t) . (21)

• Onsager Reciprocity: combining the time reversal symmetry, which implies CAB(t) = CAB(−t) (because the
Langevin dynamics is statistically reversible), and TTI, which implies CAB(t) = 〈A(t)B(0)〉 = 〈A(0)B(−t)〉 =
CBA(−t), we have

CAB(t) = CBA(t) . (22)

This symmetry has important implications for transport coefficients.

• Fluctuation-Dissipation Theorem (FDT): the response and correlation functions are related by

RAB(t) = − 1

T
Θ(t)

d

dt
CAB(t) , (23)

where Θ(t) is the Heaviside function.

• Decorrelation (at finite N): because of the discreteness of the spectrum of the evolution operator (Sec. II A),
the connected correlation and response functions decay exponentially at long times,

〈A(t)B(0)〉eq − 〈A〉eq〈B〉eq ∼ e−t/τrel , RAB(t) ∝ d

dt
CAB(t) ∼ e−t/τrel , (24)

as illustrated in Fig. 4B for the response function.

As we will see in Sec. III, the relaxation time τrel can however diverge in the thermodynamic limit, leading to ergodicity
breaking at a dynamical phase transition.

III. EQUILIBRIUM DYNAMICS IN THE THERMODYNAMIC LIMIT:
THE p-SPIN SPHERICAL MODEL

The pure p-spin spherical model is defined by the Hamiltonian:

Hp(σ) = −
∑

i1<i2<...<ip

J
(p)
i1···ipσi1σi2 ...σip , (25)

where the spins σi ∈ R with i = 1, · · · , N are constrained on a sphere
∑
i σ

2
i = N . The quenched disorder is given

by couplings J (p) that are i.i.d. Gaussian variables with mean J = 0 variance J2 = p!
2Np−1 ; from now on, an overline

denotes the quenched average over the random couplings. A mixed p-spin is given by a mixture of pure p-spins with
independent couplings:

H(σ) =
∑
p

√
αpHp(σ) . (26)

For fixed σ, H[σ] is a random Gaussian variable with average and covariance given by

σ
τ

q

H[σ] = 0 , H[σ]H[τ ] = Nf(qσ τ ) with f(q) =
1

2

∑
p

αpq
p , (27)

where qσ τ = σ · τ/N = σ̂ · τ̂ is the overlap (or scalar product) between different configu-
rations. Energies for different configurations σ, τ are thus correlated, but their correlation
depends only on the overlap between the configurations. The function f(q) is the poly-
nomial that uniquely defines each specific mixed p-spin model. By means of f(q) it is
possible to define different classes of models, which correspond to different kinds of rough
landscapes with ergodicity breaking at low temperature (see Ref. [45] for more details).
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As in Sec. II, we consider the simplest equilibrium dynamics, the overdamped Langevin equation

∂tσi = −µσi −
∂H

∂σi
+ ξi , (28)

where ξi is the thermal noise with zero mean and white correlation 〈ξi(t)ξj(t′)〉 = 2Tδijδ(t− t′), and the term −µσi is
added to enforce the spherical constraint on the spins [43]. We will discuss later on how the parameter µ is determined.
This mixed p-spin spherical model with Langevin dynamics is the simplest toy model of rough energy landscape, and
it is exactly solvable in the thermodynamic limit N → ∞, both for the thermodynamics (via replicas) and for the
dynamics (via dynamical mean field theory, or DMFT) [38, 43, 46–50]. A very pedagogical review on its solution is
Ref. [3]. Several results obtained via these methods for the spherical p-spin have been rigorously confirmed [51–56].

A. Equilibrium phase diagram

A rather peculiar case is given by the pure p = 2 spherical model, for which the Hamiltonian H = −∑i<j Jijσiσj is
quadratic in the spins σ. This model presents a phenomenology that differs, both thermodynamically and dynamically,
from models with p > 2. This is a result of the fact the GOE matrix Jij can be diagonalized, leading to a decoupling
of the degrees of freedom in the diagonal basis:

H = −
∑
α

λασ
2
α . (29)

Correspondingly, the energy landscape is convex, hence not rough. The thermodynamics of the system is characterized
by a condensation transition at a critical temperature Tc, below which a finite component of the Gibbs measure
is concentrated in the lowest eigenvalue λ0, and the system enters a “disordered ferromagnetic” phase, where a
spontaneous magnetization along the lowest eigenvalue of the matrix Jij is present [57]. The Newtonian dynamics of
the system is fully integrable, with N integrals of motion [58].
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FIG. 5: Equilibrium energy in the 3-spin model

We will thus be mostly interested in the equilibrium behavior that is generically observed in all pure p-spin models
with p ≥ 3, and in most cases of mixed models, as illustrated in Fig. 5. A critical temperature TK (Kauzmann
temperature) then separates two different thermodynamic phases.

• Paramagnetic phase (T > TK): The system is paramagnetic, hence the local magnetization is 〈σi〉 = 0 for
all spins. Futhermore, the average overlap of two configurations that are drawn independently from the same
Boltzmann-Gibbs measure (i.e. with the same couplings, corresponding to the same physical system) is

q = 〈σ · τ〉/N =
1

N

∑
i

〈σiτi〉 =
1

N

∑
i

〈σi〉〈τi〉 =
1

N

∑
i

〈σi〉2 = 0 . (30)

We conclude that two typical equilibrium configurations are orthogonal on the sphere.
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FIG. 6: A. Equilibrium overlap correlation function in the (3+4)-model at several temperatures. If limt→∞ C(t) = 0 the system
is an ergodic liquid (red lines), while for limt→∞ C(t) = q > 0 it is in a dynamically arrested supercooled liquid phase (green
lines). The relaxation time scale τ diverges upon approaching TMCT from above. B. A log-log representation of C(t) − qMCT

versus time shows the power-law approach to the plateau from above and below TMCT. Plots adapted from Ref. [45].

• Spin glass phase (T < TK): Few lowest-energy glassy states dominate the Gibbs measure, leading to a spin

glass phase with 〈σi〉 6= 0. Following the previous reasoning, we now obtain q =
∑
i 〈σi〉2/N > 0.

In the language of structural glasses, the paramagnetic phase corresponds to the liquid phase, and the spin glass
phase to the glass phase. The transition happening at TK is called a Random First Order Transition and it has mixed
character [59–63]: the transition is thermodynamically of second order (e.g. the energy is continuous at TK so there is
no latent heat), but 〈q〉 jumps from zero to a finite value at TK, hence the order parameter is discontinuous as in a first
order transition. The low-temperature phase for T < TK is also characterized by replica symmetry breaking [3, 59–64].

B. Equilibrium dynamics

We now consider more carefully the equilibrium dynamics of the model. The system is initialized at time t = 0 in
an equilibrium configuration, drawn from the Boltzmann-Gibbs measure at temperature T , and Langevin dynamics
is run at the same temperature T , so the system remains in equilibrium at all times and enjoys the special properties
discussed in Sec. II C. We consider the time-dependent overlap correlation function C(t, t′),

C(t, t′) =
1

N

∑
i

〈σi(t)σi(t′)〉 = 〈σ̂(t) · σ̂(t′)〉 , (31)

in the limit N →∞ at finite times t, t′. Because of TTI, we have C(t+ tw, tw) = C(t), using the notation of Eq. (21).
This function shows several different regimes upon varying temperature, corresponding to three distinct dynamical
phases.

1. T > TMCT

At high temperature, one observes an exponential decay of C(t) ∼ e−(t/τ)β at long times, with relaxation time τ ,
and possibly a non-trivial exponent β called stretching exponent, as illustrated in Fig. 6A. The stretching exponent
decreases by approaching TMCT from β = 1 to a smaller value β ≈ 0.9; this effect is observed also in numerical
simulations of real glasses [65]. Hence, the dynamics is ergodic. At long times t� τ , ergodicity implies 〈σi(t)σi(0)〉 ∼
〈σi〉eq〈σi〉eq, see Eq. (24). Hence the overlap between the state at t = 0 and that at time t converges to the typical
overlap of two independent equilibrium configurations, i.e. to the thermodynamic value q = 0. Upon cooling, the
typical relaxation time τ increases, and it diverges as a power-law upon approaching a critical temperature, i.e.
τ = |T − TMCT|−γ when T → T+

MCT. At T = TMCT, the correlation function does not decay to zero anymore, but
it reaches a finite limit, limt→∞ C(t) = qMCT. The values of TMCT and qMCT are obtained by finding the maximal
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temperature such that the equation

β2f ′(q) = q/(1− q) (32)

has a solution q > 0. This equation can be derived following two paths. Either dynamically, by clos-
ing the equilibrium DMFT equation in the long-time limit [50], or by a replica calculation that eval-
uates the free energy of the metastable states [66, 67]. See Refs. [3, 45] for pedagogical reviews.

σ(0) q1

σ(t)

relaxation in the liquid
phase

The critical scaling of C(t) upon approaching TMCT from above is characterized by three
time regimes (Fig. 6B):

C(t)− qMCT ∝ t−b , t� τ ,
C(t)− qMCT ∝ −ta , t . τ ,
C(t) ∝ exp(−t/τ) t� τ ,

(33)

and the three exponents γ, a, b are related by λMCT = Γ(1−a)2

Γ(1−2a) = Γ(1−b)2
Γ(1−2b) and γ = 1

2a , with

a non-universal parameter λMCT = f ′′′(qMCT)f ′(qMCT)
2qMCTf ′′(qMCT)2 . In the special case of pure models,

f(q) ∝ qp, one has qMCT = (p − 2)/(p − 1), and λMCT is then identically equal to 0.5. In
summary, for T slightly higher than TMCT, a typical dynamical trajectory starting from
an equilibrium state σ(0) remains close to the initial state for a long time, of the order
of τ , and then relaxes away from it towards another typical equilibrium state, which is then orthogonal to σ(0).
At TMCT and below, this relaxation process is frozen and the trajectory remains forever confined in the vicinity of
the initial state, without reaching equilibrium. The critical behavior described above had been previously described
within Mode-Coupling Theory, an approximate theory of the glass transition [68]. This analogy was crucial to realize
that the p-spin model provides a mean-field theory of the glass transition [69, 70].

2. TK < T < TMCT

Remarkably, it is found that TMCT > TK, so the critical divergence of the relaxation time happens at a tem-
perature strictly higher than the thermodynamic transition [49, 50, 70]. For TK < T < TMCT, the dynam-
ics is trapped around the initial state for an infinite time: the overlap correlation reaches a finite plateau,

σ(0) q1

σ(t)

states in the supercooled
phase

limt→∞ C(t) = q1, with q1 given by the largest solution of Eq. (32). In other words, a
typical equilibrium trajectory remains confined in a cone of scalar product σ̂(t) · σ̂(0) ≤ q1

around the initial condition. But yet, we know that the system is thermodynamically a
paramagnet, hence typical pairs of equilibrium configurations have overlap q0 = 0. We
conclude that each equilibrium configuration is surrounded by a cone of size ≈ 1 − q1,
that is explored by the dynamics starting in that configuration, but that there are many
such cones, each one corresponding to a distinct independent initial equilibrium state, so
that typical pairs of cones are orthogonal on the sphere. Each of these cones defines a
metastable spin-glass (SG) state. Because of these metastable states, the dynamics is not
ergodic: the long-time limit of a typical dynamical trajectories does not reach equilibrium,
because it is unable to jump out of the cone defined by the initial state. More precisely,
the time to escape from the initial metastable state scales exponentially with the system
size, τ ≈ eN , in this regime. Hence, if the limit N →∞ is taken first, no relaxation is observed on finite times; while
for finite N systems, some relaxation can be observed, but over extremely long time scales (Fig. 8B).

It is possible to show that in this regime there is an exponential number in N of equivalent SG states, each having
a typical size 1− q1 > 0 and being orthogonal, i.e. with q0 = 0, to all other states [3, 71]. The finite limit

Σ = lim
N→∞

1

N
log #SG (34)

is called “complexity” or entropy of the SG states, and is illustrated in Fig. 7. In the glass literature, this quantity is also
known as configurational entropy [2]. A metastable SG state can be thought, in a first approximation (which is actually
exact for the pure p-spin model), as a local minimum of the Hamiltonian “dressed” by thermal fluctuations [3, 71].
Hence, the presence of an exponential number of SG states indicates an extremely rough Hamiltonian at low energies.
In Ref. [45] different methods to evaluate the complexity in the p-spin model are compared.

Finally, note that while equilibrium configurations are always mathematically well defined, in practice it is impossible
to sample from the Boltzmann-Gibbs distribution for T < TMCT by conventional means. Typically, one would take a
finite N system, initialize it in a random (infinite-temperature) state, and run the dynamics at the target temperature
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for long enough, until equilibration is reached. But because the relaxation time is exponentially large in N , the
dynamics takes an astronomically large time to equilibrate unless the system is very small, which makes the sampling
practically impossible. A solution to this problem is the so-called planting trick, see Refs. [40, 45, 72] for a detailed
discussion.

3. T < TK

The shape of the equilibrium complexity for a p-spin model is illustrated in Fig. 7. The complexity is only defined
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T0.000

0.005
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Σ
eq(T)

TK TMCT

FIG. 7: Complexity for the 3-spin model.

for T < TMCT, where metastable states exist, and it is a decreas-
ing function of temperature. This is consistent with intuition: the
lower the temperature, the lower the energy, and it is reasonable
to expect less local minima of the energy landscape at lower en-
ergy. The complexity is found to vanish continuously at TK, in-
dicating that at this temperature, the system in equilibrium can
only be found in a sub-exponential number of SG states (which
can be shown to be actually finite). Because the complexity can-
not be negative (it is the logarithm of the number of states), the
SG states at TK are the lowest free energy states, and are thus
thermodynamically stable [3]. A true phase transition to an equi-
librium spin glass phase then happens at TK. For any T < TK, the
complexity remains identically zero and the system is found in the
lowest free energy states at each T , which become, when T → 0,
the ground states of the Hamiltonian. Throughout this phase, the dynamics is qualitatively similar to that in the
regime TK < T < TMCT: the correlation function relaxes to a finite plateau q1, whose calculation now requires replica
symmetry breaking [73].

IV. OUT-OF-EQUILIBRIUM DYNAMICS

A. Gradient descent from an equilibrated configuration

We will now discuss the simplest case of out-of-equilibrium dynamics, namely gradient descent (GD) dynamics from
fixed tempeature T . More precisely, the algorithm goes as follows.

a) Prepare an initial configuration σ(0) in equilibrium at T > TK, i.e. by sampling it from the Boltzmann-Gibbs
distribution

Pin(σ(0)) =
e−βH(σ(0))

Z
. (35)
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FIG. 8: A. Sketch of the gradient descent protocol. B. Sketch of the equilibrium relaxation time as a function of T and its
evolution with system size N .
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We restrict the initial temperature to T > TK for simplicity; with this choice, the initial state is in the phase
where the system is thermodynamically a paramagnet and the Boltzmann-Gibbs distribution can be studied
without the need of replica symmetry breaking [73], see Sec. III. Based on the discussion of Sec. III, we know
that it is algorithmically hard (i.e. exponentially hard in N) to sample from Eq. (35) when T < TMCT, but in
some models one can use the planting trick [40, 72]. Even when this is not possible, this prescription to generate
σ(0) is always mathematically well defined and it can be studied by analytical techniques in the thermodynamic
limit [66, 73, 74].

b) Run the gradient dynamics at T = 0, i.e. the noiseless version of the Langevin Eq. (28), keeping in mind the
spherical constraint:

∂σi
∂t

= −∂H
∂σi
− µσi . (36)

In the T = 0 limit, the Lagrange multiplier can be easily computed by imposing the spherical constraint:

|σ|2 = N ⇒ σ · ∂σ
∂t

= −σ · ∇H − µN = 0 ⇒ µ = − 1

N
σ · ∇H . (37)

This out-of-equilibrium dynamics, illustrated in Fig. 8A, does not satisfy TTI and FDT, see Sec. II C.
The physical motivation for considering this dynamical protocol is the following. We have seen in Sec. III that the

equilibrium relaxation time of the system grows quickly upon cooling. In the thermodynamic limit, it diverges as
a power-law at TMCT. At finite (large enough) N , the relaxation time is independent of N for T > TMCT, it grows
strongly around TMCT, and for T < TMCT it is exponential in N , as illustrated in Fig. 8B. Consider now the simulated
annealing protocol illustrated in Fig. 3, with a fixed cooling rate dT/dt. Whenever T is such that τeq(T )dT/dt� T ,
the system spends a long time at a given temperature before temperature changes, and as a result it can equilibrate
easily. When instead τeq(T )dT/dt� T , the temperature is changing so fast compared to the equilibration time that
the system is effectively being quenched athermally. Hence, one can approximate the high-T part of a constant cooling
schedule by equilibrium dynamics, and the low-T part as a gradient descent dynamics; the delicate regime is when
τeq(T )dT/dt ≈ T and the system is falling out of equilibrium, which happens at some cooling-rate-dependent glass
transition Tg. Because τeq(T ) changes very rapidly with T , the crossover regime is a narrow temperature interval
around Tg. As a result, the idealized description where the system is fully equilibrated down to Tg and follows
zero-temperature gradient descent dynamics from there, is a good approximation of an actual simulated annealing
dynamics, but it is much easier to solve analytically. This is why we focus on this protocol in the rest of this section.

B. Hessian of the final state

The Hessian of the final state is a fundamental quantity in order to understand the long-time GD dynamics. The
GD dynamics ends up in a local minimum of the Hamiltonian, with the spherical constraint, hence

lim
t→∞

σ(t) = σ∞ , which is a solution of ∇H = −µσ . (38)

In the long-time regime we can study the asymptotic relaxation. Defining δσ(t) = σ(t)− σ∞, which is small at long
times, the GD dynamics, from Eq. (36), can be linearized and gives

∂δσi
δt
∼ −

∑
j

∂2H

∂σi∂σj
δσj − µδσi = −

∑
j

Mij(σ∞)δσj , Mij(σ∞) =

[
∂2H

∂σi∂σj
+ µδij

]
σ=σ∞

, (39)

where Mij(σ∞) is the asymptotic Hessian of the GD dynamics. Decomposing it in normal modes, the asymptotic GD
dynamics becomes

Mij =
∑
α

λα|σα〉〈σα| ⇒ |δσ(t)〉 =
∑
α

e−λαt|σα〉〈σα|δσ(0)〉 , (40)

such that the relaxation is dominated by the lowest eigenvalue λα of the Hessian. Note, however, that this is only an
asymptotic result that holds at times possibly diverging with N , so the gradient descent dynamics is more complex
than a simple relaxation along eigenmodes.

From Eq. (39), it can be shown that in the p-spin model the correlation between the Gaussian couplings and the
configuration σ∞ can be neglected in the thermodynamic limit. The Hessian of typical stationary points in the energy
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landscape is thus a shifted GOE matrix (see e.g. [34]), with Mij = µδij and Var[Mij ] = f ′′(1)
N . Its eigenvalue spectrum

thus has a semicircular shape (Fig. 9):

ρ(λ) =

√
(λ− µ)2 − 4f ′′(1)

π
√
f ′′(1)

, (41)

and the two edges of the spectrum are λ± = µ ± 2
√
f ′′(1). In order to evaluate the Hessian matrix, we thus

ρ(λ)

λ− λ+μ λ

λ − λ−

FIG. 9: Hessian spectrum in the p-spin spheri-
cal model. λ− > 0 stable minimum (gapped spec-
trum); λ− < 0 unstable saddle; λ− = 0 marginal
minimum.

need to compute the Lagrange multiplier µ from Eq. (37). In the
pure model (H = Hp), it is proportional to the energy:

µp = − 1

N

∑
i

σi
∑

i2<...<ip

Jii2...ipσi2 · · ·σip = −pHp

N
. (42)

In the mixed model (H =
∑
p

√
apHp) the above proportionality

does not hold:

µ = − 1

N

∑
p

√
appHp 6∝ H . (43)

Because (in the thermodynamic limit) the typical spectrum is thus
only determined by its Lagrange multiplier µ, this difference has
important implications in terms of the energy landscape: in the
pure p-spin model, the spectrum of a typical stationary point is
fully determined by its energy, while this is not the case in the mixed p-spin. We now discuss the implications of
this difference in more details. As illustrated in Fig. 9, when λ− > 0 the stationary point is a stable minimum
with a gapped spectrum of strictly positive eigenvalues; when λ− < 0, it is an unstable saddle point with negative
eigenvalues; while stationary points with λ−0 are local minima but have arbitrarily small eigenvalues, hence they are
deemed marginally stable.

C. Pure p-spin

As we have already noticed, from Eq. (42), in pure p-spin models, with f(q) = qp/2, there is a direct proportionality
between the spectrum-shift µ and the energy of the minimum e = H/N . Recalling that f ′′(1) = p(p − 1)/2, the

marginality condition λ− = µ− 2
√
f ′′(1) = 0 fixes a value for µ and therefore a value for the energy e:

λ− = 0 =⇒ µth = 2
√
p(p− 1)/2 = −peth =⇒ eth =

√
2(p− 1)/p . (44)

The energy corresponding to marginally stable minima is also called the threshold energy [71, 75, 76]. Typical
stationary points of the energy landscape are stable minima for e < eth, and unstable saddles for e > eth.

The GD dynamics can be characterized in terms of the time-dependent energy, e(t) = 〈H(t)〉/N , and the correlation
function C(t, t′) given by Eq. (31). Two distinct phases, depending on the initial equilibrium temperature T > TK,
exist.

• T < TMCT - If the initial temperature is below TMCT, then one observes [74]:

a) an exponential relaxation to a nearby local minimum (also called the “inherent structure” in the structural
glass literature [2]), e(t)− eIS(T ) ∝ e−t/τ , with a temperature-dependent final energy eIS(T );

b) and a persistent memory of the initial condition, C(t, 0)→ qr(T ) for t→∞, i.e. the configuration at time
t remains in a cone of width qr(T ) around the initial state.

In this phase, the dynamics can be mapped onto a restricted thermodynamics calculation [66]. A thermodynamic
calculation of eIS(T ) and qr(T ) can be achieved by constraining a “slave” configuration to have fixed overlap with
an equilibrium “master” configuration, and then finding the overlap that minimizes the free energy of the slave
configuration, which gives qr(T ). This is called a Franz-Parisi [66, 74] or state-following construction [40, 77]. For
T < TK the same mapping is possible but it requires a more complicated replica symmetry breaking scheme [73].

• T > TMCT: if the initial temperature is above TMCT, then one observes [38, 42]:

a) a power-law relaxation to the threshold energy, e(t)− eth ∝ t−2/3, independently of T ;
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FIG. 10: 3-spin model. A. Representation of the gradient descent dynamics in the energy-temperature plane. An initial state
at temperature T > TMCT is brought to the threshold level (red dashed lines, only the initial and final point are physical). An
initial state at T < TMCT is brought below the threshold (full colored lines, that represent the evolution of the metastable state
from the initial to the final temperature). B. Aging of the correlation function C(t+ tw, tw) for gradient descent dynamics from
infinite temperature, as a function of t for several tw.

b) consistently with the temperature-independence of the final state, memory of the initial condition is lost,
i.e. limt→∞ C(t, 0) = 0. Furthermore, limt→∞ C(t+ tw, tw) = 0 for any tw, i.e. memory of any finite time
configuration is also lost, as illustrated in Fig. 10B. This condition is called weak ergodicity breaking [38].

In the pure p-spin model it is thus possible to explain the asymptotic (long-time) dynamics in terms of simple
geometric properties of the energy landscape [71, 75, 76]. At high energies e > eth, typical stationary points are
unstable (they present negative eigenvalues of the Hessian). At the threshold energy eth, they become marginally
stable minima, and below eth they become stable. The threshold manifold is an attractor for the asymptotic dynamics
starting from high temperatures (T > TMCT), independently of the used protocol, while for low temperatures (T <
TMCT) one starts in the basin of attraction of a stable minimum, which is then reached quickly by the gradient descent.
This geometric transition in the energy landscape is illustrated in Fig. 11A. A more detailed calculation gives the
complexity associated to saddles of order one (or higher), that is found to cross that of stable minima precisely at eth,
see Fig. 11B. Hence, saddle points also exist below eth, but they are exponentially rarer than stable minima, while
the reverse is true above eth.
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FIG. 11: A. Schematic illustration of the energy landscape in a pure p-spin model. B. Complexity of minima Σ0 and of saddles
of index one Σ1 (one negative eigenvalue of the Hessian).
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A simple argument2 explains the power-law convergence ∝ t−2/3 towards the threshold energy, and goes as
follows. The system, while aging towards the threshold, moves close to saddle points with rarefying number
of negative eigenvalues of the Hessian. Let us assume that during this process the dynamics induces random

ρ(λ)

λΔμ

FIG. 12: Hessian spectrum during the
gradient descent

rotations of the gradient with respect to the local Hessian eigenvectors. The
time to escape from the neighborhood of a saddle is thus proportional to the
probability that a random rotation brings the gradient in a negative direction.
Given that the shift of the spectrum is proportional to the energy (Fig. 12),

λ− = ∆µ = µ− µth ∝ −(e− eth) = −∆e , (45)

and that ρ(λ) vanishes as a square root at the edge (Fig. 9), the probability
of extracting a negative eigenvalue for small ∆µ is:

ρ(λ < 0) ∝
∫ 0

∆µ

dλ
√
λ−∆µ ∝ |∆µ|3/2 ∝ ∆e3/2 . (46)

Therefore the time to escape is t ∝ 1/ρ(λ < 0) ∝ ∆e−3/2, which justifies the power-law scaling ∆e ∝ t−2/3.

D. Mixed p-spin

We next consider a mixed p-spin model that presents a RFOT [77], e.g. the (3+4)-spin model, with f(q) = 1
2 (q3+q4).

The energy and the Lagrange multiplier are:

e = e3 + e4 , µ = −3e3 − 4e4 , (47)

where ep = 〈Hp〉/N with p = 3, 4. In this case, an exponential number of marginally stable states is found in a finite
range of energies. To see this, one can compute (an approximation of) the complexity Σ(e, µ), which gives the number
of stationary points with energy e and Lagrange parameter µ, which controls the shape of the spectrum [42, 72]. For
fixed µ, Σ(e, µ) is a parabola and there exists a family of possible energies e, as illustrated in Fig. 13B. This is true in

particular for marginal states with µ = µth = 2
√
f ′′(1), which are therefore present in a finite range of energies. At

fixed energy e, the dominant states are those with µ∗(e) = argmaxµΣ(e, µ) (Fig. 13B). When µ∗(e) < µth, the most
numerous states (exponentially in N) are stable minima, while when µ∗(e) < µth the dominant states are unstable
saddles. The value eth such that µ∗(eth) = µth thus corresponds to the geometrical transition that separates the
minima-dominated and saddle-dominated regions of the landscape.
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FIG. 13: (3+4)-spin model. A. Representation of the gradient descent protocol in the energy-temperature plane, as in Fig. 10A.
B. Complexity as a function of the energy for several values of µ. Dashed lines represent the complexity Σ(e, µ) for fixed µ.
The envelope is Σ(e) = maxµ Σ(e, µ), which is represented as a full line when µ∗(e) = argmaxµΣ(e, µ) < µth (stable minima
dominate) and as a dashed line when µ∗(e) > µth (unstable saddles dominate).

Because of this different structure of the energy landscape, in the mixed p-spin with a RFOT transition a new phase
emerges, which displays both memory and aging [42]. One thus finds three distinct temperature regimes.

2 Private communication from F.Ricci-Tersenghi.
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• T < TSF: Memorious exponential dynamics with C(t, 0) → qr(T ) for t → ∞ and exponential relaxation,
e(t) − eIS(T ) ∝ e−t/τ to the inherent structure. Also in this case, eIS(T ) and qr(T ) can be computed via the
state following or Franz-Parisi approach. Because relaxation is exponential, transient (aging) effects become
quickly unobservable.

• TSF < T < Tonset: Memorious power-law dynamics with limt→∞ C(t, 0) > 0 and e(t)− eIS(T ) ∝ t−2/3 relaxation
to a below-threshold energy eIS(T ) < eth, which depends on the initial temperature, consistently with the
observation that memory is preserved. Final states are marginal, i.e. µ(t) → µth, and persistent aging is
observable in C(t+ tw, tw).

• T > Tonset: Memoryless power-law relaxation to the threshold energy, with limt→∞ C(t, 0) = 0, e(t)−eth ∝ t−2/3,
and persistent aging with weak ergodicity breaking.

The high-temperature and low-temperature phases are identical to those of the pure p-spin, but in this case there
is an intermediate phase. Furthermore, in the pure p-spin one has Tonset = TSF = TMCT, hence the equilibrium and
out-of-equilibrium dynamics both have a phase transition at the same temperature, while in the mixed p-spin the
equilibrium transition at TMCT is unrelated to the out-of-equilibrium ones at TSF and Tonset.
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FIG. 14: Asymptotic energy vs initial temperature in the (3+4)-spin model.

The RFOT class of mixed p-spin models presents a behavior strongly reminiscent to that of structural glasses [2, 65,
78, 79], as illustrated in Fig. 14. For initial temperatures above Tonset, gradient descent converges to the T -independent
energy eth at which marginal states dominate the landscape. For Tonset > T > TSF, T -dependent atypical marginal
states, close to the initial condition, are found instead. Finally, for T < TSF, a stable inherent structure close to
the initial state is found. The geometric interpretation of this relaxation is not fully understood. In particular,
the problem of computing the final energy eIS(T ) in the intermediate phase without having to solve explicitly the
dynamical equations remains open.

E. Summary

The study of the out-of-equilibrium dynamics of the spherical p-spin model, both pure [38] and mixed [42], is
extremely useful to get a first insight on the behavior of models with complex (or rough) energy landscapes. In
particular:

• A generic scenario for the geometric, thermodynamic and dynamics properties of glassy systems at the mean-field
level is obtained.

• A simple analytic solution of these models can be obtained using the replica method and dynamical mean field
theory (DMFT), which gives dynamical equations with fully explicit kernels.
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• In the high-temperature regime (T > Tonset), equilibration is easy, and gradient descent converges slowly (t−2/3)
to the geometric threshold.

• In the low-temperature regime (T < TSF), equilibration is hard (exp(N)), but once it is achieved, gradient
descent converges fast (e−t/τ ) to a stable close minimum.

• An intermediate-temperature regime (TSF < T < Tonset) exists, where equilibration can be easy (T > TMCT) or
hard (T < TMCT), but in any case gradient descent converges slowly (t−2/3) to a marginally stable minimum
close to the initial condition.

• Because of this rich structure, it is exponentially hard in N to find the ground state and low enough energy
states by simulated annealing.

This kind of study can be generalized to other models, different search algorithms, and other cooling protocols, leading
to an even richer phenomenology. The impossibility of equilibration below TMCT is a general property of mean-field
systems [80].

V. CONSTRAINT SATISFACTION PROBLEM AND THE JAMMING TRANSITION

As we discussed in Secs. I B and I D, the jamming transition is a characteristic phase transition of particle systems
with finite-range interactions, such as granulars and emulsions [5–8]. It occurs when the particle density increases so
much that a rigid network of contact interactions is formed, and it is closely related to the SAT/UNSAT transition
of constraint satisfaction problems [13].

The simplest toy model of the jamming transition is the perceptron [81]. Its degrees of freedom, like for the p-spin

model, are a set of N continuous spins σ with a spherical constraint |σ| =
√
N . This vectorial spin degree of freedom

interacts with M = αN obstacles ξ
m

that act as a quenched disorder. The constraint satisfaction problem is defined
by the following Hamiltonian or cost function

H(σ) =

M∑
m=1

1

2
h2
µΘ(−hm) , hm =

ξ
m
· σ

√
N
− κ , (48)

being hm ≥ 0 the constraint imposed by the m-th obstacle, and κ a real parameter representing the diameter of the
obstacles. Indeed, one can imagine that an obstacle is located in position Ξm = −

√
Nξ

m
/|ξ

m
| on the sphere, and

the constraint is then equivalent to Ξ̂m · σ̂ < −κ/|ξm|, which imposes (for negative κ) that the vector σ should stay

outside of a cone around the obstacle Ξm [81].
The perceptron with κ ≥ 0 is instead one of the simplest classifiers, i.e. a machine that allows one to separate

points in a phase space by assigning them a binary label [24, 82]. Imagine that one is given a set of M images of
cats and dogs represented by a sequence of N bits encoded in the vectors xm, m = 1, . . . ,M . Knowing the labels
ym ∈ {±1} corresponding to a cat/dog in the m-th image, the goal of supervised learning is to find a vector σ such
that ym = sgn (σ · xm), i.e. to correctly classify the training labeled images {xm, ym}. Calling ξ

m
= ymxm, the

constraint becomes σ · ξ
m
> 0 for all m = 1, . . . ,M . One can show that a stricter constraint, i.e.

σ · ξ
m
> κ
√
N , ∀ m = 1, . . . ,M , κ > 0 , (49)

allows one to preserve the correct classification if the images are slightly corrupter by noise [24, 82].
In the simplest setting, the random perceptron, the input vectors components xi,m are drawn from a white Gaussian

distribution with zero mean and unit variance, and a random label ym ∈ {±1} with probability 1/2 is assigned to
each of them. The obstacles (or patterns) ξ

m
then have the same statistics of the xm, i.e. they are Gaussian vectors

with i.i.d. components of zero mean and unit variance. In this case, there is nothing to be learned because the labels
are random, but one can ask - as a benchmark question - if the machine can learn random noise. This problem is
related to the bias/variance tradeoff and gives a bound on the generalization error [83].

We conclude that the random perceptron, whose behavior is fully determined by the parameters κ and α,
corresponds to a simple random noise classification problem for κ ≥ 0 [24, 82], and to a particle that has to
avoid random obstacles for κ < 0 [81]. In both cases, it is an instance of a continuous-variable constraint
satisfaction problem (CCSP) [84], like the sphere packing problem, which consists of finding a configuration of
N particle positions x such that no two particles are overlapping, namely hij = |xi − xj | − ` > 0 , ∀ i, j.
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σ

H(σ)

Gradient
descent

Thermal
annealing

FIG. 15: An energy lake in the SAT
phase of a CCSP. GD dynamics con-
verges to the shore, while thermal an-
nealing can explore the interior of the
lake.

In Sec. IV we analyzed the connection between the out-of-equilibrium dynam-
ics and the energy landscape of the p-spin model. An important additional
ingredient brought in by the perceptron (and more generally by CCSPs) is that
its energy landscape can have “lakes”, i.e. regions where the energy is identi-
cally vanishing. These regions where H(σ) = 0 represent the set of solutions
of the CCSP, as shown in Fig. 15.

The jamming transition can be then related to a SAT/UNSAT transition:
increasing the fraction of obstacles α at fixed κ, the lakes of the energy land-
scape shrink until, at the jamming point, their volume vanishes and we are
only left with UNSAT minima with H(σ) > 0. At every value of α, κ, one can
determine the equilibrium probability of having a SAT instance, P eq

SAT, as the
probability, over the choice of the random obstacles ξ

m
, that the absolute min-

imum of H(σ) (i.e. the thermodynamic zero-temperature ground state) is at
zero energy. The equilibrium SAT probability is almost unity at low obstacle
density α (unjammed, SAT phase) and almost vanishing at high α (jammed,
UNSAT phase), and the transition becomes sharp in the thermodynamic limit
around a critical value αc [13, 24, 81, 82], see Fig. 16A. Alternatively, one can
estimate a non-equilibrium PGD

SAT as the probability that GD dynamics reaches
zero energy starting from a random initial condition, the probability being calculated over the choice of initial con-
dition and the realization of the random obstacles. It is found that PGD

SAT has the same behavior of P eq
SAT illustrated

in Fig. 16A, but with an a priori lower critical value αGD
c ≤ αc. The two values only coincide for κ > 0. In the

particles literature, the jamming transition is usually defined via the gradient descent protocol, hence it coincides
with αGD

c = αJ [5, 6].
Furthermore, the convergence time of GD dynamics diverges at αGD

c , see Fig. 16B, indicating that finding energy
minima in the very dilute of very dense case is much easier than in the near-critical case [85]. This scenario is quite
general in search algorithms and applies to several problems (such as the coloring), and it also provides a practical
way to construct difficult instances of constraint satisfaction problems [17–21].

Unfortunately, the solution of the random perceptron problem is technically more difficult than the p-spin. Ther-
modynamic calculations involving the replica [24, 81, 82, 84] or cavity [86] methods are still possible but a bit more
involved. Complexity calculations have not been performed yet, and DMFT equations are much more complicated
because the memory kernels are given by functionals over a space of trajectories [87, 88]: their solution is an open
problem at present, for which new numerical algorithms are required. Interestingly, the DMFT equations for the
perceptron are very similar to those for infinite-dimensional particle systems [88, 89]. Therefore, a consistent solution
may be easily generalized to both cases. From now on, we will focus for simplicity on the GD dynamics starting from
equilibrium configurations at infinite temperature, T =∞.

0 αc(κ)

0.5

1

α

PSAT

N

(a)

0 αGD
c (κ) α

τ

easy
easy

hard

(b)

FIG. 16: A. Probability of finding a SAT configuration, minσH(σ) = 0, as a function of the constraint fraction α. B. Char-
acteristic time needed for gradient descent to decide is the system is SAT or UNSAT, and its divergence around the jamming
transition.
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A. Classification of the minima

The GD dynamics leads the system towards a local minimum of the energy landscape H(σ): we can then repeat
the study of Sec. IV B in order to characterize the vibrational spectrum of the Hessian matrix in typical stationary
points [90]. As in Sec. IV B, taking into account the spherical constraint via a Lagrange multiplier µ, stationary points
are solutions of

∂H

∂σi
+ µσi = 0 with µ = − 1

N
σ · ∇H = α

([
h2
]

+ κ [h]
)
, (50)

being [f(h)] ≡ 1

M

∑
m f(hm)θ(−hm) the average over the contacts (i.e. violated constraints) for a fixed configuration

σ and obstacle realization. The Hessian matrix is then given by

Mij =
∂2H

∂σi∂σj
+ µδij =

1

N

M∑
m=1

ξmi ξ
m
j θ(−hm) + µδij . (51)

While, in a local minimum, the obstacle positions ξmi and gaps hm are obviously correlated because σ is a solution
of Eq. (50), one can argue that the correlations can be neglected at the leading order in N [90], similarly to the
p-spin case. The matrix M is then a N ×N matrix given by a sum of a number

∑
m θ(−hm) of independent random

−µ λ− λ+ λ

ρ(λ) (a)

λ− = 0 λ+ λ

ρ(λ)

≈ 1/
√
λ

(b)

λ− λ+ λ

ρ(λ) (c)

λ− = 0 λ+ λ

ρ(λ) (d)

FIG. 17: Classification of the minima of the random perceptron. A. Hypostatic case. B. Isostatic case. C. Hyperstatic case,
stable. D. Hyperstatic case, marginal.
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Gaussian projectors, i.e. it is a random Wishart matrix with a fraction

c = α [1] =
1

N

∑
m

θ(−hm) (52)

of uncorrelated patterns, being c the isostaticity index indicating the ratio between the number of binding constraints
and the degrees of freedom [90]. The eigenvalues of the Hessian matrix therefore follow the Marchenko-Pastur
distribution

ρ(λ) = (1− c)Θ(1− c)δ(λ+ µ) +
1

2π

√
(λ− λ−)(λ+ − λ)

λ+ µ
1[λ−,λ+](λ) ,

λ± =
(√
c± 1

)2 − µ . (53)

Like in the p-spin case, the spectrum only depends on global parameters; here, in addition to µ that provides a global
shift, it also depends on c. The isostaticity index then shows its relevance; it is worth noting that the value c = 1
implies that the number of contacts is equivalent to the degrees of freedom of the system, so for c ≥ 1 the matrix
∂2H
∂σi∂σj

has full rank, while for c < 1 it has a rank equal to Nc and it thus has a number N(1− c) of zero modes. We

can now classify the possible scenarios, all shown in Fig. 17.

A. Hypostatic case c < 1. Here, there are N(1 − c) modes with eigenvalue −µ, hence we need µ ≤ 0 for stability.
For µ < 0, all the eigenvalues are positive, and the distribution ρ(λ) is stable and gapped (Fig. 17A). Note that
this kind of minima can only exist for κ > 0, because µ = α

([
h2
]

+ κ [h]
)

and [h] ≤ 0 by construction. When
µ = 0, the isolated eigenvalue vanishes, generating a finite density of zero modes.

B. Isostatic case c = 1. Here, when in addition µ = 0, the system is marginally stable. The Marchenko-Pastur
distribution diverges at λ → 0+ as ρ(λ) ∼ λ−1/2, which implies that the density of states with vibrational

frequency ω =
√
λ ∼ 0 (soft modes) is constant at low frequencies, D(ω ∼ 0) ∼ const (Fig. 17B). The case c = 1

and µ > 0, which is in principle possible, is not observed in practice [90], because isostaticity is only realized at
the jamming transition where [h] =

[
h2
]

= µ = 0.

C, D. Hyperstatic case c > 1. The isolated eigenvalue is absent and the stability condition λ− ≥ 0 requires

(
√
c− 1)

2 ≥ µ. Close to isostaticity, we have δc = c − 1 and
[
h2
]
� | [h] | ∼ p, where p is identified with

the mechanical pressure in particle systems [84], and the stability criterion thus implies δc2 ≥ const × p, as
derived in [91]. The system is therefore stable if the criterion above is satisfied (λ− > 0, Fig. 17C), and becomes

marginally stable when λ− = 0 (Fig. 17D). In the latter case, the distribution goes as ρ(λ) ∼
√
λ at small λ,

and the density of soft modes goes as D(ω ∼ 0) ∼ ω2 [92].

B. Phase diagram

The zero-temperature equilibrium phase diagram (i.e. the ground state structure) of the random perceptron has
been deeply investigated for both positive [24, 82] and negative [81, 84] κ, and it is illustrated in Fig. 18. The control
parameters are κ and α, and the first one governs the convexity of the solution space, which is convex at κ > 0 and
non-convex at κ < 0 [81]. The phase diagram can thus be divided into four main regions: the convex region for κ > 0
and the non-convex region for κ < 0 are both separated into a SAT phase at low α < αc(κ) and an UNSAT phase
at α > αc(κ). In the convex region, only the jamming transition at αc(κ) is present; conversely, in the non-convex
region the phase diagram is much richer and several phase transitions occur within the SAT phase below the jamming
line [81, 84].

1. Convex UNSAT phase

The phase diagram can be obtained from replica computations [24, 81, 82, 84]; in the convex region, the replica-
symmetric (RS) solution is stable both in the SAT and UNSAT case, and the transition line can be identified as

αc(κ) =

[∫ 0

−∞

dh√
2π
e−(h+κ)2/2h2

]−1

. (54)
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FIG. 18: Phase diagram of the random perceptron, adapted from Ref. [84].

The easiest phase to analyze is the convex UNSAT one, α > αc(κ) and κ > 0 [24, 82]. The energy minimum is unique
because of convexity, and the free energy converges to the ground state energy when T → 0, which reads

eRS =
1

2

(√
α

αc(κ)
− 1

)2

. (55)

The GD dynamics therefore converges exponentially to the unique minimum, i.e. e(t) − eRS ∝ e−t/τ at long times,
being τ the relaxation time [85, 88, 93]. The RS computation also provides the contact number

c = α [1] = α

∫ 0

−∞

dh√
2π
e−(h+κ)2/2 . (56)

The perceptron is therefore hypostatic on the convex jamming line, and becomes isostatic only at κ = 0, i.e. at the
boundary of the non-convex phase [81]. The spectrum is gapped in the UNSAT phase at α > αc(κ), and the long-time
limit values of c, µ, e and other observables coincide with those of the unique ground state and can thus be computed
exactly both from replica calculations [24, 81, 82, 84] and from DMFT [88, 93]. When α → αc(κ)+, one has µ → 0
with c < 1 and a finite fraction of zero modes is thus present at jamming (Fig. 17A).

2. Convex SAT phase

The convex SAT case is, somehow surprisingly, more complex than the UNSAT case, because in the SAT phase the
solutions found by thermal annealing and GD dynamics do not coincide. Replica computations [24, 81, 82, 84] indeed
predict the existence of a single convex lake of solutions with H(σ) = 0, surrounded by a convex energy landscape.
In this scenario, during thermal annealing the system starts from a high-energy configuration and explores the lake
uniformly when temperature is very low. When temperature is finally switched off, the algorithm thus stops in a
randomly chosen configuration inside the lake, where c = e = µ = 0, and all the directions are flat - i.e. ρ(λ) = δ(λ),
see Fig. 15. Conversely, GD dynamics starts from the same configuration but follows the steepest descent path that
ends up on the lake “shore”, implying a final value of µ = e = 0, as for thermal annealing, but a finite fraction of
contacts 0 < c < 1 that have precisely h = 0 [88], as illustrated in Fig. 19A. The convergence to the final zero-energy
state is exponential as in the UNSAT case. Therefore, the spectrum of the final state of the GD dynamics shows
a Marchenko-Pastur distribution at finite λ together with a finite fraction of zero modes. Numerical results for the
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FIG. 19: Isostatic index c as computed from GD dynamics (red) and thermodynamics (blue). A. Convex region: the two
methods coincide in the UNSAT phase, while in the SAT phase thermodynamics gives c = 0 while dynamics gives 0 < c < 1.
B. Non-convex region: the two methods do not agree and there is a hard region where solutions of the CSP exist, but the
gradient descent is unable to find them.

GD dynamics are given in [85]. The difference between the final states of thermal and athermal dynamics may have
important consequences in machine learning applications, see e.g. [26, 28].

The relaxational dynamics of the convex problem also shows features of dynamic criticality: indeed the relaxation
time τ of the GD dynamics diverges when approaching the jamming transition from both directions [85], see Fig. 16B.
It has been numerically shown that τ ∼ 1/λ1, being λ1 the first non-zero eigenvalue of the Hessian matrix [85]. When
approaching the transition from the UNSAT phase, λ1 is given by the isolated eigenvalue λ1 = −µ ∼ | [h] | ∼ δα,
therefore one has τ ∼ δα−1. On the other hand, from the SAT phase one would naively obtain λ1 = λ−, which remains
finite when α → αc(κ). However, the relaxation has been observed to be dominated by an isolated, low-frequency
eigenmode, which is not captured by the density ρ(λ) [85, 94–97]. Computing this isolated mode analytically remains
an open problem.

3. Non-convex phase

When κ < 0, the energy landscape becomes non-convex and rough, and correspondingly the phase diagram becomes
more complex; we refer to Ref. [84] for details. Concerning the jamming transition, there are two main differences
with respect to the convex case:

• the jamming transition is isostatic, i.e. c = 1 identically all along the jamming line, contrarily to the hypostaticity
observed in the convex phase;

• thermodynamics and GD dynamics do not agree on the location of the transition, with αGD
c (κ) < αc(κ) as com-

puted from replica calculations, because the energy landscape is developing growing complexity with many local
energy minima in which GD dynamics gets trapped before the jamming transition occurs at the thermodynamic
level - see Fig. 19B. This gap defines a hard region αGD

c (κ) < α < αc(κ), where zero-energy solutions exist but
the GD dynamics cannot find them [32].

Furthermore, in the UNSAT phase one expects that the energy landscape of the perceptron is very similar to that of
the mixed p-spin, hence GD should display the same power-law relaxation described for the p-spin in Sec. IV, namely
e(t) − eth ∼ t−δ with δ = 2/3, associated to memoryless persistent aging with weak ergodicity breaking. This has
not been carefully checked in the perceptron yet, but it has been investigated in numerical simulations of spherical
particles, with δ ' 0.84 in d = 2 and δ ' 0.70 in d = 3 [98, 99]. Also, the final state is hyperstatic with c > 1, and

similarly to the mixed p-spin, we expect it to be marginal, hence λ− = 0 and the spectrum goes as ρ(λ) ∼
√
λ, see

Fig. 17D. Note that because the relaxation of the energy is a power-law, the relaxation time τ is formally infinite
throughout this phase; this is a consequence of the marginal stability of the final state.
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Furthermore, precisely at the non-convex jamming transition, the system exhibits other non-trivial critical relations.
The distribution of gaps h and forces f exhibit a universal power-law behavior [100]

P (h→ 0+) ∼ h−γ , P (f → 0+) ∼ fθ , (57)

with γ ' 0.41269 . . . and θ ' 0.42311 . . .. These critical exponents have been obtained analytically by replica calcu-
lations [101], hence at the thermodynamical jamming point. However, they have also been computed by numerical
simulations of GD dynamics in sphere packings and in the perceptron (hence at the dynamical jamming transition),
obtaining perfect agreement within numerical precision, despite the different nature of the transition [102–105]. Fur-
thermore, scaling relations based on marginal stability [100, 106, 107] are also satisfied by the exponents predicted by
the replica method. These results hints at a strong universality of the jamming transition.

The non-convex SAT phase, on the other hand, shows more similarities with the convex case. As in the latter, the
energy decay follows an exponential law; the relaxation time has been derived from a scaling argument [94, 96], with
the result

τ ∼ δc−β , β =
4 + 2θ

1 + θ
' 3.41 . . . . (58)

This result is in agreement with some numerical results, but it is very hard to be tested precisely [97]. Moreover, a
derivation of this exponent within dynamical mean-field theory is still missing.

Finally, we mention that a modified perceptron can be used to describe a different universality class of non-convex
hypostatic jamming, found for example in ellipsoids [108].

C. Summary

In this section, we discussed the complex behavior of constraint satisfaction problems, based on the paradigmatic
perceptron model. The latter is closely related to the sphere packing problem, and their DMFT equations almost
coincide in the infinite-dimensional limit. Their energy landscape is even richer than in the p-spin case.

We have seen that the jamming transition is associated with a SAT/UNSAT transition, and that, in the non-
convex case, a hard region exists where GD dynamics and thermodynamics do not give the same result. All the
results obtained for the non-convex perceptron also apply to the sphere packing problem of particles in infinite spatial
dimentions, d→∞.

However, DMFT equations are particularly difficult to solve: the analytical understanding of mean-field dynamics
is still poor, and the currently known results are limited to the long-time limit of the GD dynamics in the UNSAT
phase [88, 93]. The numerical solution of the DMFT equations has been possible only at very short times for the
sphere packing problem [88], while more encouraging results have been found in classification problems [27, 28]. To
conclude, we recall some of the main open problems:

• the derivation of the β exponent of the relaxation time τ ∼ δc−β in the SAT phase;

• the derivation of the 2/3 exponent in the energy relaxation e− eth ∼ e−2/3 in the UNSAT phase;

• the understanding of why jamming criticality is strongly universal, so that mean-field thermodynamic predictions
are also consistent with dynamical results in all dimensions;

• the effect of finite dimensionality, especially focused on the role of localized modes [97].

While the toy models discussed here provide a good starting point to understand many phenomena that are charac-
teristic of disordered systems with complex landscapes, many problems remain open and a lot of exciting results are
surely yet to come.
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