
11th International Workshop on Satellite Constellations & Formation Flying, Milan, Italy, 7-10 June 2022.

Formation design of an inter-satellite link demonstration mission

Davide Menzio∗, Ahmed Mahfouz†, Florio Dalla Vedova‡, and Holger Voos§

The problem of secular growth of the inter-satellite induced by the J2 perturbations has been widely explored
in the literature. In this paper, we study the influence of altitude and initial mean anomaly of the chief on the
inter-satellite distance growth in a classical trailing formation. Mean elements are converted into osculating
ones and then in Cartesian coordinates that are propagated together in the ECI frame. Preliminary results
shows that zonal harmonics are responsible for a steep distance drift when the formation is inserted in
the vicinity of ±45 and ±135 degrees of mean anomaly in a polar orbit. Distance-invariant solutions are
determined in term of the mean anomaly and characterized in terms of the difference between the average
relative distance and the initial one and of the amplitude of the osculating distance. Finally, after the inter-
satellite distance has grown to an unacceptable level, the electric thruster onboard of the deputy spacecraft
is leveraged in order to reset the deputy’s orbit to the distance invariant mean elements. A finite-time Linear
Quadratic Regulator (FTLQR) is designed and validated within a high-fidely dynamics framework
keywords: formation design, inter-satellite distance control, perturbations

1. Introduction

Formation flying is a distributed satellite archi-
tecture that foresees two or more spacecraft orbit-
ing in a predefined configuration and synchronizing
their operations. Combining their instruments re-
sults in an improved spatial and temporal sensing
ability that could not be achieved with a single satel-
lite. Several applications benefit from this architec-
ture: elevation17 and cloud27 profiles mapping, geolo-
calization,13 high resolution imagery, gravimetry,28

and magnetometry,11 but also, technology demon-
strations preparing for active debris removal12 and
on-orbit servicing.31

These complex missions could have not been con-
ceived without the efforts of great astrodynamicists.
Several models were developed from the Clohessy-
Wiltshare8 to account for different perturbations, in-
duced by an elliptic orbit of the chief satellite29 or/and
the oblateness of the main body.1,26,32 For Earth-
like bodies, the J2 effect induces short-, long-period
and secular variations that affect the configuration of
the satellites.7 Schaub and Alfriend noticed that, in
first order approximation, the conjugate momenta of
the mean elements remains constant while the mean
angles grow linearly. With a thoughtful selection of
semi-major axis, eccentricity and inclination differ-
ence, it is possible to nullify these rates and to bound
the motion of the deputy satellites to the chief for
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few periods.23 An equivalent reduction of the longi-
tude of the ascending node and the mean argument
of the latitude rates can be obtained constraining the
along-tracks drift and negating either the differential
nodal precession or the differential perigee rotation.2
Gurfil derived an analytical expression for the inter-
satellite distance14 that was used by Nie to deter-
mine conditions for the differential nodal precession
(DNPN), the differential periapsis drift (DPRN) and
minimum acceleration (MAC).20 Nie showed that by
minimizing the initial drift rate, it is possible to de-
termine solutions in mean elements difference that re-
main within a 5% margin of the mean inter-satellite
distance for about a year. A different approach is
the one of Koon et al.,16 that proposed to initialize
the satellite orbits on the center manifold of the peri-
odic orbit that appears in the Routh-reduced system
perturbed by zonal harmonics.6 Nevertheless, upon
conversion in osculating elements, the configuration
does not survive for more than few days under the
effect of the natural drifts. Xu et al. obtained yearly
bounded formations by matching the nodal periods
and the RAAN drift rates of the pseudo-circular and
pseudo-elliptical orbits.33 Baresi and Scheeres explic-
itly computed the quasi-periodic invariant tori within
the center manifolds of the periodic orbit via a strobo-
scopic approach and used it to determine trajectories
that remain bounded around Earth4,5 and asteroids.3
A notable mention is the integrable intermediary of
Lara that captures not only secular variations but
also short and long period ones.18 Based on the ob-
servation that the analytical solution of the approxi-
mation are 1:1 resonant orbit at the critical inclina-
tion, Gurfil showed that initializing the chief satellite
on a frozen orbit can reduce the inter-satellite dis-
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tance growth rate.15

In this study, a low-thrust system propulsion sys-
tem is used to control the relative positions in the for-
mation. Indeed, low-thrust systems are different in
nature from impulsive thrust ones. For instance, low-
thrust systems work in finite time basis and mostly
can control not only the direction of the thrust vec-
tor, but also its magnitude without having to perform
pulse width modulation. This capability made it pos-
sible to adopt continuous-time control laws that stem
from the classical control theory. Schaub has pro-
posed two Lyaponov-based controllers that are based
essentially on the use of the mean orbital elements,25

while Flack et al. have improved on the low-thrust
control laws9 that had been proposed by Ruggiero.22

In this paper, we analyse the effect of the orbital
parameters of the chief satellite and different com-
bination of mean elements difference of the deputy
on the inters-satellite distance. When it exceeds the
limit of 2000 km, the deputy maneuvers to reset its
relative orbit and restore its value to 500 km. The
reminder of this paper consists of four sections. A
brief description of the satellite is given, followed by
dynamics, the formation design and the controller de-
sign sections. The conclusion is presented in the last
section.

2. Triton-X

LuxSpace Sàrl has recently developed Triton-X, a
futuristic micro-satellite platform that is planned to
reduce the price of earth observation and technology
demonstration missions in low earth orbit, without
sacrificing power, performance and lifetime. The first
mission, for which it is considered, consists in two
satellites orbiting an altitude of 450 km above the
earth surface. Each satellite is equipped with a radio
frequency device allowing the pair to establish the
inter-satellite link. The customer required to main-
tain the relative distance in the 500-2000 km range
employing a 7 mN ion thruster.21

This work will support LuxSpace Sárl in deploying
a two satellite formation performing performing SAR
imagery at 450 km altitude relying on inter-satellite
link and low-thrust propulsion.

3. Mathematical model

3.1 Reference frames
In this paper, two reference frames are used:

• The Earth-Centered Inertial reference frame (ECI)
F i whose origin is at Earth’s center and axes
coincide with those of the J2000 frame.

• The Local Vertical Local Horizontal (LVLH)
reference frame F l which is centered at the satel-
lite’s centre of mass with its x-axis pointing
away from the center of the Earth, z-axis along
the orbit’s angular momentum vector, and y-
axis completing the right hand triad.

A vector’s reference frame is signified using a su-
perscript, either (·)i or (·)l. However, superscripts
are dropped for all the vectors that are represented
in the ECI frame to simplify the sequel formulae.

3.2 Orbital dynamics
Under the attraction of gravitational field gener-

ated by an axial-symmetric body, the gravity poten-
tial can be expressed as the sum of a central field and
the zonal harmonics terms, as in Eq. 1 :

U =
µ⊕

r

1− 4∑
j=2

Jj

(
R⊕

r

)j

Pj(sin θ)

 [1]

where µ⊕ is the standard gravitational parameter of
the Earth, R⊕ is the equatorial radius of the Earth, J
the zonal harmonic coefficient of j term, reported in
Tab. 1, and P the Legendre’s polynomial of j degree.

Table 1: Earth zonal coefficients and Legendre’s
polynomials up to the 4th order

Zonal coefficients Legendre polynomials
J2 1.08262× 10−3 P2 (3x2 − 1)/2
J3 −2.5388× 10−6 P3 (5x3 − 3x)/2
J4 −1.6560× 10−6 P4 (35x4 − 15x2 + 3)/8

In the presence of an atmosphere, the acceleration
of the satellite can be obtained integrating the po-
tential and adding the drag resistance, that can be
approximated by Eq. 2:30

a =
dU

dt
− 1

2
ρcD

A

m
v2

v

v
+ actrl [2]

where ρ is the piece-wise linear atmospheric density
measured for high solar and geomagnetic activity,10

A/m = 0.25 m2/kg is the area-to-mass ratio of Triton-
X, CD = 3.2 is value of the drag coefficient, and r
and v are the Cartesian orbital position and velocity
of the satellite in the ECI frame.

The orbit of the chief is modelled in mean ele-
ments while the one of the deputy is provided as
difference. Let [a′, e′, i′,Ω′, ω′,M ′] describe the chief
state with a the semi-major axis, e the eccentric-
ity, i the inclination, Ω the right ascension of the
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ascending node (RAAN), ω the argument of the pe-
riapsis, M the mean anomaly, where ′ indicates the
mean elements according to Brouwer’s theory.7 Then
[δa′, δe′, δi′, δΩ′, δω′, δM ′] denote the mean elements
difference of the deputy with δ.

The mean elements are converted, firstly, into os-
culating ones using the first-order mapping improved
by Schaub and Junkins24 starting from the work of
Brouwer7 and, subsequently, in Cartesian coordinates.
as function of the desired initial inter-satellite dis-
tance.

Following the work of Gurfil and Lara,15 a frozen
orbit of the deputy is chosen as it shows to reduce the
secular drift. For Earth-like planet, the argument of
periapsis is fixed at 90 degrees and the eccentricity is
defined by the following expression:

e = −J3
J2

R⊕

2a
sin i [3]

The inclination is chosen polar while the longitude
of the right ascension is fixed to zero for convenience.
Despite limited applications, polar orbits are inter-
esting to be studied as they maximize the effect of
zonal harmonics in the orbital plane of the satellite.

As it regards the deputy, the choice of its parame-
ters is limited. Given the eccentricity and inclination
of the chief, Nie and Gurfil prescribe zero difference
in semi-major axis, eccentricity and inclination. This
constraint aims at cancelling out the along-track drift
and differential nodal precession that are responsible
for the secular growth of the inter-satellite distance.20

In this paper, we consider a classical trailing forma-
tion where the difference in longitude of the ascending
node and in argument of the periaspsis are not consid-
ered and the mean anomaly difference accounts alone
for the correct phasing with chief. Its value is com-
puted interpolating the signed distance at the desired
level, see Eq. 4:

δM∗ = spline (sign(sin(δM))d(δM), δM, d∗) [4]

nwhere d is the inter-satellite distance and ∗ iden-
tifies the desired conditions. The sign function en-
sures that the distance is monotonic and that inter-
polation is successful. Once the initial conditions for
the chief and the deputy have been determined, the
Cartesian states of the two satellite are propagated
together in the ECI frame. This is possible by resort-
ing the common practice of separating the state in
position and velocity. The two sets of ordinary dif-
ferential equations are integrated with an adaptive
step-size Runge-Kutta method that preserves 10−9

relative and absolute tolerances. This procedure en-
sures to retrieve the relative dynamics with a simple

subtraction since the states of the two satellites are
computed at the same epoch. Moreover, it allows
to monitor the evolution of the chief’s orbit under
the influence of the considered perturbations. In the
end, in the case that the chief is equipped with a
propulsion system and can be controlled, the dynam-
ics and control of the deputy becomes more complex
in an accelerated reference frame and an inertial one
is preferred. Although this scenario is not consid-
ered in this paper, the TRITON-X platform allows
to control both the satellites ,and for this reason, the
current formulation of the dynamics was preferred.

The propagation is halted once the inter-satellite
distance grows a given value.

4. Formation design

Under these premises, the inter-satellite distance
depends only on the initial mean anomaly and the
initial altitude of the chief. Therefore a preliminary
analysis is conducted to assess how the initial con-
ditions influence the inter-satellite distance evolution
in the given dynamics. The analysis is conducted
studying the effect of each variable independently,
fixing the value of the others and varying the one
considered.
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Fig. 1: Inter-satellite distance evolution as function
of the initial altitude

Initially the effect of the initial altitude is investi-
gated. Fig. 1 shows how the inter-satellite distance
varies initializing the propagation from an altitude
changing between 450 and 750 km, that is the oper-
ational range considered for the mission. The mean
anomaly of the deputy is set to 0 degree, while the
one chief is interpolated from the signed distance and
varies between 4.201 to 4.024 degrees with the alti-
tude for an initial 500 km of separation.
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As expected, the effect of the zonal harmonics is
stronger at lower altitude and induces a reduction in
the time of free flight during which the formation re-
mains within the 2000 km limit without any control.
It passes from 100.359 days to 121.688.

Although a higher altitude is desirable, the cus-
tomer preferred a lower one, therefore the following
analyses employ a 450 km altitude. As seen in the
previous section, the mean anomaly of the chief is
the only free parameter to study. In this analysis
similarly as before, we fix the mean anomaly of the
deputy and derive the one of the chief via interpo-
lation. Fig. 2 displays that the distance drift varies
significantly with the initial mean anomaly, consider-
ing an initial separation of 505 km. This adjustment
is beneficial since the zonal harmonics induce a short
periodic oscillation of the inter-satellite distance that
for large mean anomaly triggers the event function
and halts the propagation.

Fig. 2: Inter-satellite distance evolution as function
of the initial mean anomaly of the deputy satellite

It is interesting to notice that for the selected val-
ues of the mean anomaly, the drift rate is positive
and induces the inter-satellite distance to grow secu-
lar. Moreover, following the color transition, it can
be noticed a shallower trend when the mean anomaly
is at the extreme values and gets steeper while mov-
ing to the mean value. This behaviour can be eas-
ily understood looking at the time of free flight, that
varies from 98.014 days obtained for 0 degree of mean
anomaly, to 7.260 days for 45 degrees, back to 71.297
days for 85 degrees. In the end, at −5 and 90 de-
grees the drift rate switches and becomes negative.
This insight suggests that for mean anomalies of the
2nd and 4th quadrants the negative drift rate can be
leveraged to reduce a large initial separation as it can
be seen from Fig. 3.

Fig. 3: Inter-satellite distance evolution as function
of the initial mean anomaly of the deputy satellite

It is interesting to compare Fig. 2 and Fig. 3.
Contrarily to what expected, moving from 500 km
of separation to 2000 is not equivalent to the reverse
trip. Fig. 3 is more compressed against the y-axis as
it can be seen observing that the longest time of free
flight measures just 26.125 days.

Finally, since the drift rate change of sign from −5
to 0 degrees and from 85 to 90, a root with zero drift
is expected to exist.

4.1 Invariant inter-satellite distance
Following this idea, the values of mean anomaly

for satellite formation maintaining the initial sepa-
ration are searched numerically. Combining a grid
search approach with an interpolation on the aver-
aged inter-satellite distance, the four invariant solu-
tions represented in Fig. 4 are generated.
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Fig. 4: Invariant inter-satellite distance solutions
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The first two solutions are obtained for an initial
separation of 505 km and the following sets of mean
anomalies for chief and deputy satellites: 2.121 and
−2.121 degrees, and 92.150 and 87.912 degrees, re-
spectively. The latter two are computed for an initial
separation of 1900 km and the sets of mean anoma-
lies: 187.989 and 172.011, and 98.029 and 82.034 de-
grees. It is interesting to note that the average mean
anomaly of the formation is exactly above the pole,
while at the equator, it is offset by few cents of de-
grees, 0.031 in both cases. Another interesting dis-
covery is the fact that polar initial conditions con-
verge to a plateau in inter-satellite distance that is
few km greater than the initial separation: 506.60 km
instead of the 505 one at the departure and 1909.95
km instead of the initial 1900. On the other hand,
equatorial initial conditions tend to a lower minimum:
504.12 and 1894.8 km, respectively. Conversely, the
latter experience smaller variation in osculating dis-
tance compared to the former: 4 against 5 km for an
initial separation of 505 km and 13 instead of 19 km
for the 1900 km case.

These solutions are not practical. They disappear
when high fidelity dynamics is considered. For in-
stance, higher order zonal harmonics restore the sec-
ular distance drift. Moreover, they are saddle points
and small inaccuracy in mean anomaly, few cents of
degrees, produce large errors on the terminal inter-
satellite distance. The evolution of the inter-satellite
distance for the first solution (i.e. with initial separa-
tion of 505 km and with a mean anomaly difference
of 2.121 degrees) is depicted in Fig. 5.
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Fig. 5: Evolution of the ISD under high fidelity dy-
namics for the first solutions

To control the growth of the inter-satellite dis-
tance, propulsion system are needed and the following
section explains how it is possible to reset your orbit
relying on low-thrust propulsion.

5. Control design

Following the discussion in Section 4, it is im-
portant to note that the change in the inter-satellite

distance for the designed formations is accounted for
solely by the drift in the mean Argument of Latitude
(AoL). All the other differential mean orbital param-
eters experience almost no change. The drift in the
differential mean AoL for the case study of the first
solution (see Fig. 5) is depicted in Fig. 6.
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Fig. 6: Evolution of the differential argument of lat-
itude through an uncontrolled propagation

The orbit reset problem in our context concerns
only the correction of the AoL of the Deputy space-
craft, and since the chosen orbits for the chief and the
deputy are almost circular, the argument of perigee
does not have much meaning, and the problem re-
duces to one in which only the true anomaly needs
to be corrected. The problem of orbit reset is hence
reformulated as a rendezvous problem between the
deputy spacecraft and a hypothetical target point
that follows the chief following the constraints which
reduce the distance drift (500 km away from the chief).
This rendezvous setting is illustrated in Fig. 7. It
is important to note that unlike the chief and the
deputy, the hypothetical target is propagated using
an unperturbed propagator in order to insure that
the deputy reaches the required orbital elements no
matter after how long. 7.

Chief

Target
Deputy

Fig. 7: rendezvous problem formulation

To achieve the rendezvous goal, a simple Finite-
Time Linear Quadratic Regulator (FTLQR) controller
is adopted. Although LQR is not well known for large
rendezvous maneuvers, if a rendezvous between two
objects that are drastically far apart is required, the
rendezvous between the deputy and the hypotheti-
cal target can be subdivided into a handful of sub-
rendezvous, each of which is responsible for correcting
part of the true anomaly. This idea of sub targets is
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illustrated in Fig. 8. For our case study, only about
0.2 degrees of true anomaly (or more precisely argu-
ment of latitude) needs to be corrected (see Fig. 6),
hence, the sub-division of the rendezvous problem is
not necessary.

Chief

Target
Deputy

ST
ST ST ST ST

Fig. 8: Sub-targets illustration

5.1 FTLQR
The FTLQR scheme is discussed in details by Math-

avaraja,19 nonetheless, a brief discussion is given here
for completeness.

The dynamics of the state and the costate vectors
are collated and modeled under the LQR scheme as
follows: [

ẋl

λ̇

]
= Aa

[
xl

λ

]
,

Aa :=

[
A −BR−1B⊺

−Q −A⊺

]
,

where xl is the baseline vector between the deputy
and the instantaneous target, written in the LVLH of
the instantaneous target,

A =
∂ẋl

∂xl

is the Jacobian matrix obtained directly from the
Hill-Clohessy-Wiltshire equations,

B =
∂ẋl

∂alctrl

is the control matrix, and R and Q are the LQR tun-
able gains.

For this time invariant system, the State Transi-
tion Matrix (STM) between the final and the initial
time instants, tf and t0, can be written as,

Φ (tf , t0) =

[
Φ11 Φ12

Φ21 Φ22

]
= eAa(tf−t0),

where the sub-matrices Φ11, Φ12, Φ21, and Φ22 all
have the same dimensions, namely 6× 6 for our ren-
dezvous problem.

The FTLQR control acceleration can then be writ-
ten as,

alctrl = −R−1B⊺Φ−1
12

[
xl (tf )−Φ11x

l (t)
]
, [5]

where t is an arbitrary time instant.
It is important to point out that the final time

tf as well as the final state x (tf ) are chosen by the
user such that (tf − t0) is the desired time of flight
for the maneuver, and x (tf ) is the desired final state
which is, in effect, a hard terminal constraint. It
is conceivably set to zeros for the rendezvous prob-
lem. For a perfectly linear time-invariant system with
no disturbances or constraints on the actuators, the
FTLQR will drive the system from the initial state to
the chosen final state within the chosen time window.
Indeed, the formation flying system is a nonlinear
system which is affected by disturbances that were
not taken into account in the FTLQR design pro-
cess. Moreover, the electric thruster is constrained
by the maximum thrust it can produce. Hence, the
actual performance of the controller is expected to
be degraded even after extensive tuning of the con-
trol gains.

5.2 Actuator model
The deputy spacecraft is equipped with one elec-

tric thruster that can produce a maximum net thrust
of Tmax. It is assumed that the attitude control sys-
tem is able to reorient the spacecraft in the required
thrust direction as quickly and as precisely as the or-
bit maneuver system requires.

The total thrust vector follows the following dy-
namics,

T̂ = Rilâlctrl,

∥T∥ =

{
T if T < Tmax

Tmax if T ≥ Tmax
,

T := md

∥∥alctrl∥∥ ,
where md is the instantaneous mass of the deputy
spacecraft and Ril is the directional cosine matrix
that transforms vectors from the LVLH frame of the
instantaneous target to the ECI frame.

5.3 Controller validation
The control scheme discussed in Section 5.1 has

been validated through numerical simulations for a
deputy spacecraft with mass of 200 kg. The simula-
tion results are presented in Fig. 9 for the rendezvous
between the deputy and the hypothetical target. The
tuned control parameters as well as other simulation
settings are summarized in Table 2 in which the sub-
scripts refer to the spacecraft (i.e. (·)d is a deputy-
related quantity and (·)t is a target-related quantity).
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In the presented simulation, the effect of shadow on
the performance of the electric thruster is not taken
into account.
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Fig. 9: FTLQR results

t0 0

tf 4 hours
rd (0)

[
−509.54 0 6809.12

]⊺km
vd (0)

[
−7.6191 0 −0.5701

]⊺km/s
rt (0)

[
−499.6648 0 6809.85

]⊺km
vt (0)

[
−7.6199 0 −0.5591

]⊺km/s
R 1010 × I3

Q

[
10−4 × I3 03

03 10−2 × I3

]
Tmax 7 mN

Table 2: Simulation settings

Although the time window set for the maneuver is
4 hours, the states did not converge to zero until after
10 hours as seen by Fig. 9, and that is mainly because
of the inherent nonlinearities of the formation flying
system as well as the nonlinearities that arise from
saturating the magnitude of the generated thrust.

6. Conclusion

In this paper, we have analysed the effect initial
altitude and the initial mean anomaly on the inter-
satellite distance induced by the first three zonal terms.

For small initial separation 1st and 3rd quadrants are
preferable. Vice-versa, 2nd and 4th for long base-
lines. Solutions in mean anomaly exist that stabilize
the inter-satellite distance growth. For a frozen po-
lar orbit, they are centered either at the pole or at
the equator and present a different settling distance
and amplitude of the osculating distance. Despite
these solutions does not remain distance invariant in
high-fidelity dynamics, they are of interest to bound
the distance drift. When the inter-satellite distance
reaches a predefined threshold, the low-thrust con-
trol system is triggered to reset the orbit to its design
conditions. A FTLQR control system is implemented
and appeared to restore the deputy to its relative ini-
tial conditions. Although the adopted control law is
mainly suitable for small rendezvous maneuvers be-
tween the deputy and a hypothetical target, if the
baseline between the deputy and the target is dras-
tically large, the orbit reset problem can be divided
into smaller rendezvous problems.
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