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Relative State Estimation for LEO Formations with Large Inter-satellite
Distances Using Single-Frequency GNSS Receivers

Ahmed Mahfouz∗, Davide Menzio†, Florio Dalla-Vedova‡, and Holger Voos§

Relative baseline estimation is an integral part of satellite formation flying missions. GNSS-based relative
positioning has been a dominating technology for formation missions in LEO, where very precise estimates
could be obtained for formations with small inter-satellite distances (1− 10 km). Larger baselines between
the satellites (> 10 km) pose the problem of considerable differences in the ionospheric delays experienced
by the signals received by each receiver. This problem could be mitigated by using precise ionospheric-free
combinations that could only be obtained by dual-frequency receivers, which is not a cost-efficient option
for modern low-cost miniature missions. In this paper, the problem of relative baseline vector estimation is
addressed for formation missions with large inter-satellite distances equipped with single-frequency receivers.
The problem is approached using the space-proven relatively simple Extended Kalman Filter with an
advantageous setting for the observation vector.
keywords: DGNSS, Relative navigation, State estimation, Extended Kalman Filter

1. Introduction

A reliable state estimation subsystem is essential to
close the control loop for any control system. Satellites
in Low Earth Orbits (LEO) have long relied on Global
Navigation Satellite System (GNSS) signals to esti-
mate their position and velocity vectors in real-time,
enabling precise orbit maneuvers. Two distinctive
GNSS-based positioning schemes are extricated, abso-
lute positioning, and relative positioning.
Absolute positioning aims at estimating the position
vector of the receiver with respect to the center of
the Earth, either by solely relying on the measure-
ments from that receiver (standalone positioning) or
by combining the measurements from the primary
receiver and another nearby base receiver with a pre-
cisely known position. The latter leverages Differ-
ential GNSS (DGNSS) techniques and is unsuitable
for space applications. Relative positioning, on the
other hand, is after estimating the baseline vector
of one receiver with respect to another, conceivably
using the GNSS signals collected by these receivers
and also leveraging DGNSS techniques. The accuracy
of the absolute positioning schemes can vary from a
few centimeters to tens of meters6,12 depending on
many factors such as whether DGNSS is incorporated,
atmospheric conditions, receiver quality and design
features, and signal blockage.
While absolute positioning is a natural choice for one-
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satellite missions, relative positioning can be essential
for multi-satellite ones. Extended Kalman Filters
(EKF) have shown to achieve superb estimates with
millimeter-level accuracy of the baseline vector for
formations with small inter-satellite distances (1-10
km) in Low Earth Orbits (LEO).2,7, 15 Baseline esti-
mation has also been tackled by Kroes et al.11 for
longer inter-satellite distances and could obtain a
remarkable accuracy of 1.7 mm. Although the algo-
rithm which requires dual-frequency receivers has not
been implemented onboard a formation flying mis-
sion, it has been validated by the GRACE mission
data (two satellites, 220 km apart). In the case of
long baselines, dual-frequency receivers are very im-
portant not only to mitigate the huge difference in
ionospheric delay between the two receivers but also
to help fix the double-difference integer ambiguities.
Nevertheless, the construction of precise relative orbit
determination algorithms shall be an enabling tech-
nology for low-cost satellite formations in LEO, which
comprise single-frequency receivers. In10 a hybrid Ex-
tended/Unscentenced Kalman filter is proposed for
baseline determination for widely spaced formations
equipped with single-frequency GNSS receivers. The
algorithm which performs double-difference integer
ambiguity resolution could achieve excellent estima-
tions of the baseline vector (2 cm RMS error) using
GPS data that was generated by a GNSS receiver
emulator for two spacecraft 500 km apart. Although
fairly precise for large baselines, this algorithm suffers
from slow convergence time (around 1 hour). The
late convergence is hypothesised to be due to two
factors, the first is the use of integer ambiguity resolu-
tion, and the second is related to using the Klobuchar
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ionospheric model in conjunction with an estimated
term to account for the unmodeled effect of the iono-
sphere. Indeed, integer ambiguity resolution is a huge
contributor to obtaining centimeter precision. To the
contrary, however, estimating a correction term for the
ionospheric delay without a relevant dynamic model
not only makes the filter take long to converge as
the filter tries to estimate this parameter, but also
renders the use of the Kolbuchar model meaningless
as the filter could estimate the total ionospheric delay
instead of estimating only a part of it. Moreover, the
use of the Klobuchar model can be directly exploited
only for GPS-based navigation as the the Klobuchar
coefficients are transmitted in the broadcast message.
For navigation set-ups that depend on other GNSS
systems, the coefficients need to be generated or cho-
sen from a constant set.
In this paper, relative navigation for satellite forma-
tions equipped with single-frequency GNSS receivers
and with large inter-satellite distance (100-500 km) is
investigated using an Extended Kalman Filter (EKF).
In this setting, ionospheric delay is the largest distur-
bance that needs to be filtered out. A simple iono-
spheric model is used in conjunction with ionospheric-
free combinations to achieve relative state estimates
without the need to perform integer ambiguity reso-
lution. The ionospheric model adopted in this paper
relies on mapping the Vertical Total Electron Content
(VTEC) to the Slant Total Electron Content (STEC)
based on a modified version of the Lear mapping func-
tion.13

The relative position and velocity between two
spacecraft are to be estimated directly by the filter
rather than estimating the absolute states then sub-
tracting them from each other to obtain the baseline
position and velocity, hence, nonlinear relative dynam-
ics between the target and the chaser spacecraft are
used, and the measurements to be fed to the filter
have to be differential measurements (i.e. single dif-
ference, double difference, or triple difference).

This research comes as part of the AuFoSat project
which aims at developing a toolbox that features au-
tonomous constellation and formation control solu-
tions comprising state estimation and control algo-
rithms. The toolbox is going to be used by LuxSpace
which is currently developing its next generation multi-
mission microsatellite ”Triton-X” to enable affordable
satellite applications in LEO. The consideration of a
single-frequency receiver is especially interesting for
Triton-X as it uses a 12-channel L1 receiver. Although
Triton-X onboard GNSS receiver leverages only GPS
signals, the proposed navigation scheme can be used

with other GNSS receivers.

2. Problem statement

In formation flying missions, estimating the relative
position and velocity of a spacecraft with respect to
another is of huge interest. In this paper, the relative
state estimation is considered for a formation con-
sisting of two spacecraft, a target and a chaser. The
two spacecraft are separated by a large distance and
are equipped with single-frequency GNSS receivers.
An intersatellite link from the target to the chaser is
constructed, which allows the position and velocity
of the chaser with respect to the target to be esti-
mated. Although only two spacecraft are considered,
the state estimation scheme proposed by this paper is
applicable to any two spacecraft in a big formation.
To get a clearer understanding of the challenges that
face achieving precise baseline estimates for this for-
mation, a brief summary of the observables of a GNSS
system is given in the following discussion.

2.1 Native GNSS measurements

The ultimate goal of a GNSS system is to mea-
sure the distance between the phase center of the
GNSS satellite antenna and the phase center of the
receiver’s antenna. Two main native measurements
are obtained by any GNSS receiver that represent
this range: the pseudo-range (code) and the carrier
phase. The pseudo-range measurement ρPR is simply
the measured travel time of the signal from the GNSS
satellite to the receiver multiplied with the speed of
light. The pseudo-range measurement is a coarse mea-
surement of the geometric range that can be modeled
as follows if the instrumental delay and the multipath
effects are ignored:

ρPR = ρ+ c (δt− δts) + α (f)S + νPR, [1]

where ρ is the geometric range, c is the speed of light,
δt and δts are the GNSS receiver and satellite clock
bias from the GNSS time, α (f)S is the frequency de-
pendent ionospheric delay where α (f) is the frequency
dependant mapping function between the Slant To-
tal Electron Content (STEC) and the signal delay,
S is the STEC, and νPR is the pseudo-range noise.
It is important to emphasise that all the necessary
parameters to calculate the satellite’s clock bias δts

are transmitted in the broadcast navigation message.

Besides the pseudo-range, the phase of the car-
rier on which the information are modulated can be
used to measure the geometric range between the
GNSS satellite and receiver. The carrier phase mea-
surement is much smoother than the pseudo-range,
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however, it includes an ambiguous term that results
from the unknown integer number of wavelengths and
also from the wind-up effect. If the multipath and
the instrumental delay are ignore, the carrier-phase
measurement can be modelled as:

ρCP = ρ+ c (δt− δts) + λfN − α (f)S + νCP , [2]

where λf is the wavelength corresponding to frequency
f , N is the floating point ambiguity in cycles, and
νCP is the carrier phase noise. Typically, the carrier
phase is two orders of magnitude more precise than
the pseudo-range (i.e. |νCP | ≈ 0.01 |νPR|).

2.2 Differential measurements

In the context of relative estimation of the states of
the chaser with respect to the target, the well known
single and double differences can be used. Concretely,
the single difference pseudo-range (SDCP) can be ob-
tained by subtracting the carrier-phase measurement
of the target from the carrier-phase measurement of
the chaser at the same instant and for signals received
from a commonly tracked satellite.

ρSDCP := ρCP |t − ρCP |c = ∆ρ+ c∆δt

+ λf∆N − α (f)∆S + νSDCP , [3]

where (·)t is a target related quantity, (·)c is a chaser
related quantity, ∆ (·) := (·)c − (·)t, and νSDCP ∼
N (0, σ2

SDCP ) with N (µ, σ2) being the normal distri-
bution with a mean µ and a variance σ2 and σSDCP ≈√
2σCP .

Double difference quantities can be obtained by
subtracting single difference quantities that were col-
lected from two different satellites. Namely, the double
difference carrier phase (DDCP) is constructed by sub-
tracting the single difference carrier phase collected
from satellite p and q as follows:

ρDDCP := ρpSDCP − ρqSDCP = ∆p,qρ

+ λf∆
p,qN − α (f)∆p,qS + νDDCP , [4]

where ∆p,q (·) := ∆p (·)−∆q (·), and ∆p (·) and ∆q (·)
are single difference quantities related to the GNSS
satellites p and q respectively. It can be deduced that
νDDCP ∼ N (0, σ2

DDCP ) with σDDCP ≈ 2σCP .

It can be seen that using differential measurements
not only allows the direct estimation of the base-
line vector between two receivers, but also features
some interesting properties such as cancelled common
noises. The most important property of the DDCP is

that it is not affected by the wind-up which renders
the double difference ambiguity ∆p,qN integer. This
property is usually leveraged in resolving and fixing
ambiguities mostly by using the LAMBDA18 or the
MLAMBDA4 algorithms. Resolving double difference
integer ambiguities is a key factor in obtaining precise
relative position and velocity estimates.10,11,17 It is
to be stressed that there are various types of differen-
tial measurements with different advantages yet, this
discussion is out of the scope of this paper. Interested
reader is referred to Chapter 6 in.14

It is important to note that the single and double dif-
ference concepts are not limited to the native measure-
ments, as they are also applicable to the measurement
combinations discussed in the next section.

2.3 Measurements combinations

When the two receivers are close to each other, the
differential ionospheric delay α (f)∆S, together with
the other noises, become negligible, that is why differ-
ential measurements perform adequately even without
integer ambiguity resolution.2,8 However, when the
two spaceraft are separated by a large baseline, as
is the case of the proposed Triton-X formation, the
ionospheric effect becomes the main source of noise,
and rigorous ionospheric models need to be used. One
way to mitigate this problem is to use ionospheric-free
combinations. There are many ionospheric-free combi-
nations that require dual-frequency receivers in order
to be realized, nevertheless, for single-frequency re-
ceivers, the well-known Group and Phase Ionospheric
Correction (GRAPHIC) combination19 can be used.
The GRAPHIC combination is simply the arithmetic
mean of the pseudo-range and the carrier phase mea-
surements. It is modeled as:

ρGR :=
ρPR + ρCP

2
= ρ+ c (δt− δts)

+
λfN

2
+ νGR, [5]

where νGR ∼ N (0, σ2
GR) with σGR ≈ 0.5σPR. The

advantages of the GRAPHIC combination are not lim-
ited to being an ionospheric free combination, as it also
experiences lower levels of noise in comparison to the
native pseudo-range measurement (|νGR| ≈ 0.5 |νPR|),
however, the noise level in the GRAPHIC is still not
as low as that of the carrier phase measurement.
Similar to the SDCP, the Single Difference GRAPHIC
(SDGR) can be obtained by subtracting the GRAPHIC
value for the target spacecraft from that of the chaser
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spacecraft,

ρSDGR := ρGR|t − ρGR|c = ∆ρ+ c∆δt

+
λf∆N

2
+ νSDGR, [6]

where νSDGR ∼ N (0, σ2
SDGR) with σSDGR ≈ σPR/

√
2.

One other interesting linear combination of the
GNSS native measurements is the Geometric Free
ionospheric combination (GF) which results from sub-
tracting the carrier phase from the pseudo-range. It
can be modelled according to [1] and [2] as:

ρGF := ρPR − ρCP = 2α (f)S − λfN + νGF . [7]

Again, the Single Difference Geometric Free combina-
tion can be obtained the same way as for pseudo-range,
carrier phase, and GRAPHIC,

ρSDGF := ρGF |t − ρGF |c = 2α (f)∆S

− λf∆N + νSDGF , [8]

where νSDGF ∼ N (0, σ2
SDGF ) with σSDGF ≈

√
2σPR.

The linear combinations of measurements discussed
in this section can be used individually or concurrently
to estimate the relative position of the receivers as well
as the auxiliary quantities such as the differential clock
bias ∆t, the differential ionospheric delay α (f)∆S,
or the differential float ambiguity ∆N .

2.4 Extended Kalman Filter algorithm

While the choice of the measurement combinations
to be fed to the filter might be an exhausting task,
this is not the case for the choice of the estimation
algorithm, as the Extended Kalman Filter (EKF) is a
space proven algorithm that has been used for decades.
The extended Kalman Filter (EKF) is an extension
of the well-known Kalman Filter (KL) that combines
information from the process and the observation
models which can be nonlinear models of the state,

Xk = fff (Xk−1,uuuk) +wwwk, [9]

zzzk = hhh (Xk) + νk. [10]

Equations [9] and [10] are the state transition and the
measurement models respectively. The vector Xk rep-
resents the state vector at time instant k which is to
be estimated by the EKF, uuuk is the known/estimated
input vector, and wwwk and νk are the process and
the measurement noises respectively which are nor-
mally distributed multivariate random variables, with
wwwk ∼ N (000,Qk) and νk ∼ N (000,Rk).

The EKF is usually divided into two successive phases,
the prediction and the update. In the sequel, the hat

symbol (̂·) signifies a quantity that is produced by the
filter (i.e. an estimation), while the double subscript
(·)m|n represents the estimation of (·) at the time in-
stant m given the measurements up to and including
the time instant n, where n < m.

The prediction phase is depicted in the following
set of equations,

X̂k|k−1 = fff
(
X̂k−1|k−1,uuuk

)
P̂k|k−1 = FkP̂k−1|k−1F⊺

k +Qk,
[11]

where (·)⊺ is the matrix transpose, and

Fk :=
∂fff

∂X

∣∣∣∣
X̂k−1|k−1, uuuk

.

The update phase can as well be summarised by
the following equations:

Kk = P̂k|k−1H⊺
k

(
HkP̂k|k−1H⊺

k + Rk

)−1

X̂k|k = X̂k|k−1 +Kk

(
zzzk − hhh

(
X̂k|k−1

))
P̂k|k = (I−KkHk) P̂k|k−1,

[12]

where

Hk :=
∂hhh

∂X

∣∣∣∣
X̂k|k−1

.

3. Extended Kalman Filter set-up

This section is dedicated to introducing the state
variables to be estimated by the EKF as well as the
measurement combinations to be fed to the filter in
the update phase.
Clearly, the main variables that need to be estimated
are the baseline vector and the relative velocity be-
tween two spacecraft, however, some auxiliary vari-
ables (e.g. receiver’s clock bias, carrier phase float
ambiguities,...) need to be estimated in order to in-
crease the precision of the filter. In fact, if an EKF
filter is run without accounting for these auxiliary
variables, especially the receiver’s clock bias, it is sus-
ceptible to generate unusable estimates.
In the domain of GNSS-based relative state estima-
tion, a unique set of state variables does not exist, and
the choice of the state vector is customary. In fact,
the choice of the state variables to be estimated is
heavily dependant on the choice of the measurements
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combinations to be fed to the filter, which itself is
customary.
A brief study was carried out in order to help asses the
effectiveness of using different sets of state variables in
conjunction with different sets of measurement combi-
nations, and highlights of this preliminary study are
presented in Table 1.

In Table 1, ∆rrr and ∆vvv are the relative position
and velocity vectors respectively, while n refers to the
number of independent channels in the used GNSS
receiver. By no ionospheric model we mean that the
term α (f)∆S in [3] and [8] is estimated directly by
the filter for each of the commonly visible satellites,
while the Lear ionospheric model is discussed later in
Section 4. The proposition of not including an iono-
spheric model is a common practice in the literature
(see for example11), however, it could lead to a late
convergence of the filter, which is obvious in Table 1.

The preliminary results helped conclude that the
inclusion of an ionospheric model could not only dra-
matically improve the convergence rate of the filter,
but also improve the overall precision of the velocity
estimates. It also helped conclude that the advantages
of the SDGR, the SDCP, and the SDGF combinations,
defined in equations [6], [3], and [8] respectively, are
worth exploiting.
The measurement vector zzz in equation [10] could then
be constructed as:

zzz :=

ρSDGR

ρSDCP

ρSDGF

 . [13]

It is to be noted that ρSDGR, ρSDCP , and ρSDGF are
no longer scalar values that correspond to one GNSS
satellite, but rather vectors that comprise the mea-
sured combinations from all the commonly tracked
satellites. In this setting, the length of the measure-
ment vector is 3n, where n is the number of channels
of the GNSS receiver (12 channels for the Triton-X
onboard receiver).
The choice of this measurement vector is not arbitrary,
at least it was not arbitrary to try out these combi-
nations in our preliminary study, and the reasons for
this choice are listed below:

1. The relative position and velocity of one space-
craft with respect to another are estimated di-
rectly by the filter, instead of estimating the
absolute states of the two spacecraft then sub-
tract the state vector of one spacecraft from
that of the other. In this setting, differential
measurements have to be used, hence the single
difference combinations are chosen.

2. As the ionospheric delay is the most significant
noise to be accounted for, the use of ionospheric-
free combinations comes as no surprise. That is
why the SDGR is used, as GRAPHIC is the only
known single-frequency ionospheric-free combi-
nation.

3. Although the SDGR is an ionospheric-free com-
bination, it is still a noisy measurement, that is
why more precise combinations, like the SDCP,
need to be included to augment the overall ac-
curacy of the filter. It has to be noted that the
inclusion of the SDCP comes with its own chal-
lenges, like having to estimate the ionospheric
effect as well as the float ambiguities.

4. It was believed from the beginning that the
inclusion of the ionospheric geometric-free com-
bination, the SDGF, shall assist in estimating
the ionospheric delay as well as the ambigui-
ties however being coarse. This hypothesis was
tested true by the preliminary study results in
Table 1.

Having chosen the measurement vector, the state
vector X can now be constructed based on the chosen
measurements. The choice of the state variables for
this research is,

X :=
[
∆xxx⊺ c∆δt c∆̇δt VVV ⊺

c VVV ⊺
t ∆NNN⊺

]⊺
, [14]

where xxx :=
[
rrr⊺ vvv⊺

]⊺
is the vector that contains the

position and velocity coordinates of a receiver in the
Earth-Centred, Earth-Fixed (ECEF) frame, ∆δt is
the differential receiver’s clock bias with ∆̇δt being
its rate of change, VVV c and VVV t are the Vertical Total
Electron Content (VTEC) vectors of the chaser and
the target spacecraft respectively containing all the
VTECs for all the commonly visible satellites, and NNN
is the carrier phase float ambiguity vector for all the
commonly tracked satellites by the chaser and target.
For a given tracked signal that travels from the GNSS
satellite to the receiver, the VTEC, V , can be empiri-
cally mapped to the STEC, S, through the following
simple mapping:

S = m (ε)V, [15]

where m (ε) is a mapping function of the elevation
angle ε of the GNSS satellite with respect to the re-
ceiver. The details of the mapping function are to be
discussed in Section 4.
The length of the state vector in this setting is 8+ 3n,
where n is the number of channels of the GNSS re-
ceiver (12 channels for Triton-X onboard receiver).
The ∆xxx vector accounts for 6 state variables, c∆δt
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# Measurements
Ionospheric

model
#

states
RMS error in
∥∆rrr∥ (cm)

RMS error in
∥∆vvv∥ (cm/s)

Convergence
time (min)

1 SDGR N/A 8 + n 86 20 0.37

2 SDCP None 8 + 2n 312 19 83.9

3 DDCP None 8 + 2n 310 19 83.9

4.1 SDGR + SDCP None 8 + 2n 48 18 32.7

4.2 SDGR + SDCP Lear 8 + 3n 61 9 0.05

5.1 SDCP + SDGF None 8 + 2n 45 18 27

5.2 SDCP + SDGF Lear 8 + 3n 47 9 0.15

Table 1: Summary of the preliminary results for 22 hours of the SWARM mission data

and c∆̇δt add two more variables, while each of VVV c,
VVV t, and ∆NNN account for n variables.

Choosing to estimate the VTEC for the chaser and
the target separately instead of estimating ∆VVV stems
from the fact that ∆VVV never appears explicitly in the
measurement model [6], [3], and [8], unlike the quan-
tity ∆N which appears explicitly in the measurement
model. Only if the elevation angle of the common
GNSS satellite can be assumed to be the same for the
two receivers is it possible to estimate the single differ-
ence VTEC, ∆VVV , directly. This assumption can only
be valid for small baselines between the two receivers.
In this case, the quantity ∆VVV explicitly appears in
the measurement model.

4. Dynamical models

In this section, the dynamical models (e.g. fff)
together with the Jacobian matrices (e.g. Fk and Hk)
necessary for the operation of the EKF are presented.
The dynamics of the state vector are separated into
the orbital dynamics, concerning the ∆xxx vector, and
the dynamics of the auxiliary variables which concern
the rest of the state variables in [14].

4.1 Relative orbital dynamics

The absolute dynamics of a satellite moving un-
der the influence of the gravity of the Earth can be
described by,

r̈rr = − µ

r3
rrr + ωe × vvv + ωe × ωe × rrr + uuu+wwwvvv, [16]

where rrr, vvv, uuu, and wwwvvv are the position, velocity, con-
trol, and disturbance vectors respectively in the ECEF
frame, ωe ≈

[
0 0 ωe

]⊺
is the rotational velocity vec-

tor of the Earth, and µ is the standard gravitational

parameter of the Earth.

The relative orbital dynamics between the chaser
and the target spacecraft in the ECEF frame can be
simply dervied from [16],

∆ẋxx :=
[
∆ṙrr⊺ ∆v̇vv⊺

]⊺
,

∆ṙrr = ∆vvv,

∆v̇vv =
µ

r3t

(
rrrt −

r3t (rrrt +∆rrr)

(r2t + 2rrrt ·∆rrr +∆r2)
3/2

)
+ωe × ωe ×∆rrr + ωe ×∆vvv

+∆uuu+www∆vvv,

[17]

where rrrt is the position vector of the target satellite
in the ECEF frame with a magnitude of rt, ∆rrr and ∆vvv
are the relative position and velocity vectors respec-
tively from the target to the chaser spacecraft with
magnitudes of ∆r and ∆v. Moreover, ∆uuu = uuuc − uuut

is the differential control vector, and www∆vvv collates all
the relative acceleration noises, www∆vvv ∼ N (000,Q∆v∆v∆v).

In the prediction phase of the EKF [11], equation
[17] is numerically integrated after omitting the distur-
bance, to obtain a prediction of the relative position
and velocity states where the initial condition for the
this integration is drawn from the estimated state
vector.
It is of a huge interest to obtain predictions of the
absolute position and velocity vectors of each space-
craft as these vectors are essential for the operation
of the EKF. Instead of numerically integrating the
absolute dynamical equations [16], the absolute states
are directly acquired from the receiver’s noisy onboard
solution at each measurement step. This solution can
be used as an initial condition for the integration of
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the absolute dynamics if necessary. The onboard solu-
tion of Triton-X onboard receiver is characterized by
a noise level of 10 m for the position and 25 cm/s for
the velocity (1σ), which are acceptable noise levels as
the onboard solution is only used in calculating the
Jacobian matrices required by the EKF, and not in
propagating the state variables.

4.2 State transition matrix

With the definition of the state variables [14] in
mind, the State Transition Matrix (STM) (Fk in [11])
can be divided into several sub-matrices as,

F :=
∂XXXk

∂XXXk−1

= diag
(
F∆xxx, Fc∆δt, FVVV c

, FVVV t
, F∆NNN

) [18]

where F∆xxx, Fc∆δt, FVVV c
, FVVV t

, and F∆NNN are the state
transition matrices for ∆xxx, c∆δt, VVV c, VVV t, and ∆NNN
respectively. Moreover, diag (. . .) is a function which
places its input arguments on the diagonal of the out-
put matrix with zero off diagonal entries.

Various linearization techniques can be adopted
in order to obtain the STM F∆xxx,

3 nonetheless, this
STM is not used to propagate the states, but rather
to propagate the estimated states variance-covariance
matrix (as seen in [11]), hence the constraint of having
a very precise STM becomes much looser. The simple
STM obtained from the closed form solution to the
Clohessy–Wiltshire (CW) equations5 can be used,
however, one needs to keep an eye on the fact that
CW equations provide the solution in Hill’s frame of
the target spacecraft, and the obtained STM has to be
rotated to the ECEF. In this paper, an even simpler
approach is adopted by linearizing the equations of
motion [17] taking the target’s orbit as a reference for
the linearization. In this case, the STM of the relative
states F∆xxx is only dependent on the target’s states.
Approximating the Jacobian of the relative states by
the Jacobian of the target’s states yields,

J :=
∂∆ẋxx

∂∆xxx
≈ ∂ẋxx

∂xxx

∣∣∣∣
xxx=xxxt

,

F∆xxx :=
∂∆xxxk

∂∆xxxk−1
≈ I6 + (tk − tk−1) J|xxxt|k−1

,

[19]

where I6 is the identity matrix of size 6, tk and tk−1

are the two consecutive time instants to which the
STMs correspond, J is the state-dependant Jacobian
matrix that can be calculated by partial differentiation
of [16], and J|xxxt|k−1

is the Jacobian matrix evaluated

at the target’s state at time tk−1.

The rest of the variables are modeled as random
walk processes,

c∆̈δt = wc ˙∆δt,

V̇VV c = wwwVVV c
,

V̇VV t = wwwVVV t
,

˙∆NNN = 000,

[20]

where wc ˙∆δt ∼ N
(
0, σ2

c ˙∆δt

)
, wwwVVV c

∼ N (000,QVVV ), and

wwwVVV t
∼ N (000,QVVV ), withQVVV being the variance-covariance

matrix of a VTEC vector.

The state transition matrices of the auxiliary vari-
ables can be directly derived from the linear system
of equations [20] after omitting the noise as follows:

Fc∆δt =

[
1 tk − tk−1

0 1

]
,

FVVV c
= FVVV t

= F∆NNN = In,
[21]

where In is the identity matrix of size n, with n being
the number of channels of the adopted GNSS receiver.
Equation [21] not only can be used to construct the
full STM [18], but also to propagate the auxiliary
states in the prediction phase of the EKF [11].

4.3 Measurement model

Although the measurement vector in [13] is modeled
by equations [6], [3], and [8], the Jacobian matrix H
of these nonlinear functions needs to be determined
as a requirement for the update phase of the EKF
[12]. Concretely, the nonlinear measurement model is
presented once again as follows,

hhh (XXX) =

 ∆ρ+ c∆δt+
λf

2 ∆NNN
∆ρ+ c∆δt+ λf∆NNN − α (f)∆SSS

2α (f)∆SSS − λf∆NNN

 , [22]

where the differential STEC vector ∆SSS is obtained
from the VTEC vectors according to the mapping
[15], ∆SSS =mmm (εc)VVV c −mmm (εt)VVV t.

The state dependant Jacobian matrix H can then
be obtained,

H (X) =

E 0 111 000 0 0
λf

2 D
E 0 111 000 −bbb⊺cD bbb⊺tD λfD
0 0 000 000 2bbb⊺cD −2bbb⊺tD −λfD

 ,

[23]
where bbbc := α (f)mmm (εc), bbbt := α (f)mmm (εt), and D is
a Boolean rearrangement matrix that is in general not
square. Moreover, Matrix E in [23] is itself a Jacobian
matrix that is obtained by linearizing the ∆ρρρ part
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of the measurement model around the states of the
target, and similar to [19], this matrix depends only
on the target’s states,

E :=
∂∆ρ

∂∆rrr
≈ ∂ρt

∂rrrt
=
[
eee1t eee2t . . . eeemt 000 . . . 000

]⊺
,

[24]
where the zero vectors at the end account for the
target’s receiver channels that did not track any satel-
lite or that tracked a satellite that is not visible by
the chaser, eeept is the unit baseline vector between the
target and the pth commonly tracked satellite in the
ECEF frame, with m being the number of commonly
tracked satellites. Namely,

eeept =
rrrt − rrrp

∥rrrt − rrrp∥
. [25]

4.4 Ionospheric model

Besides estimating the VTEC vectors by the filter,
one has to define the two mapping functions α (f)
and m (ε) given in [1] and [15] respectively in order
to estimate the ionospheric delay that affects a signal.

The frequency dependent mapping function that
maps the STEC to the ionospheric delay α (f) is
modeled by the following formula,1

α (f) =
40.3 · 1016

f2
m/TECU, [26]

where f is the carrier frequency in Hz, which for GPS
L1 is equal to 1575.42 MHz, and TECU is the Total
Electrol Content Unit (TECU = 1016 e−/m2).

To map the VTEC to the STEC, different mapping
functions can be used. The empirical mapping func-
tion introduced by Lear13 is the adopted to VTEC to
STEC mapping function in this paper, however, with
a minor modification. The original mapping function
introduced by Lear is expressed as,

m (ε) =
2.037√

sin2 (ε) + 0.076 + sin (ε)
, [27]

where ε is the elevation angle of the GNSS satellite
with respect to the receiver. While the original for-
mulation of the Lear mapping function works fine for
most of the cases, it only considers positive elevation
angles, where in action, negative elevations are possi-
ble for spaceborne receivers. Figure 1 illustrates that
while less probable than positive elevations, negative
elevation angles remain a possibility.

To account for negative elevation angles, the fol-
lowing modified Lear mapping function is adopted.

m (ε) =
2.037√

sin2 (ε) + 0.076 + sin (|ε|)
, [28]

GNSS satellite (q)

GNSS satellite (p)

Local horizon

L
o
ca

l 
v
er

ti
ca

l

εp (+ve)

ε
q (-ve)

Fig. 1: Illustration of negative elevations for space-
borne receivers

5. Filter operation

In order for the EKF to operate properly, it needs
an initial guess for the state vector as well as the esti-
mated states variance-covariance matrix. The state
variables where initiated with randomly selected val-
ues within the true range of each variable, and the
estimation covariance matrix was inaugurated as a
diagonal matrix with large variances to reflect the
uncertainties of the initial guess of the state vector. It
is of a huge importance to re-initiate the values of VVV c,
VVV t, and ∆NNN to account for newly tracked satellites.
Once a value is initialized, the corresponding process
noise variance needs to be set to a large value in the
process noise variance-covariance matrix Q. More-
over, a proper rearrangement of the estimated state
variance-covariance matrix needs to be carried out in
order to account for the satellites that went out of
sight.
Besides the initialization of the state vector and the
estimated states variance-covariance matrix, two other
variance-covariance matrices need to be defined for the
EKF to operate efficiently, the process noise variance-
covariance matrix Q and the observation variance-
covariance matrix R.

The process noise variance covariance matrix Q is
set to the following semi-definite time-varying matrix,

Q =



0 0 000 000 0 0 0

0 Q∆vvv 000 000 0 0 0

000 000 0 0 000 000 000
000 000 0 σ2

c ˙∆δt
000 000 000

0 0 000 000 QVVV 0 0

0 0 000 000 0 QVVV 0

0 0 000 000 0 0 Q∆NNN


, [29]

where Q∆NNN is generally a matrix of zeros, except
when a newly tracked satellite is introduced, then
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the corresponding diagonal entry is set to a large
value to reflect the unreliability of the corresponding
initiated ∆N value. The state variables’ noises are
assumed uncorrelated, thus all the covariance elements
of the Q matrix are zero. Furthermore, the process
noise variance-covariance matrix is in general a time-
varying matrix, as the entries QVVV and Q∆NNN need
constant rearrangement as new satellites are being
tracked. The diagonal entries for Q∆vvv, QVVV , and Q∆NNN

are defined as,

Q∆vvv|i,i := σ2
∆vvv

QVVV |i,i :=

σ2
VVV Ci tracks existing sat.

100σ2
VVV Ci tracks new sat.

0 Otherwise

Q∆NNN |i,i :=
{
100 Ci tracks new sat.
0 Otherwise

,

[30]

where Ci is the ith independent channel of the GNSS
receiver

Assuming uncorrelated measurement noises, the
observation noise variance-covariance matrix is set to
the following time-varying matrix,

R =

RSDGR 0 0

0 RSDCP 0

0 0 RSDGF

 , [31]

where RSDGR, RSDCP , and RSDGF are the noise
variance-covariance matrices corresponding to the
SDGR, SDCP, SDGF measurements respectively. Ma-
trix R is time varying only as its size changes as the
number of commonly tracked satellites is not constant.
The off-diagonal elements of the RSDGR, RSDCP , and
RSDGF matrices are all zeros, while their diagonal
elements are set to σ2

SDGR, σ
2
SDCP , and σ2

SDGF re-
spectively.

6. Results and discussion

In order to validate the algorithm, the SWARM
mission data9 are collected to test the algorithm in a
simulated real-time setting. Swarm is an Earth obser-
vation mission that consists of three identical satellites,
Alpha, Bravo, and Charlie; which were launched in
November 2013.

The algorithm was tested using an arbitrary 22-
hours worth of GNSS data (namely on 08-Nov-2021),
and the relative navigation is performed between Al-
pha (chaser) and Charlie (target) spacecraft which
share the same orbit ( 170 km apart at the date of
estimation).

In order for the EKF to operate efficiently, precise
statistics of the process noises as well as the measure-
ment noises need to be provided. A particular issue
that needs to be addressed here is that, although the
SDCP is considered a smooth signal with a noise level
of order of millimeters, it cannot be considered very
smooth in this context as the ionospheric model is
not accurate to the millimeters order due to the vary-
ing solar activity over the years and the atmospheric
variations over the alternating day and night. The
statistics that were adopted are presented in the Table
2.

Qty Value Qty Value

σ∆vvv 0.01 m/s2 σSDGR 3/
√
2 m

σc ˙∆δt 1 m/s σSDCP 0.4 m

σVVV 10−16 TECU/s σSDGF 3
√
2 m

Table 2: Statistics used in the simulation

The simulation results are illustrated in Figures 2
and 3.
Figure 2 depicts the relative position error, while Fig-
ure 3 shows the relative velocity error between the two
spacecraft. It is important to note that the relative
position vector ∆rrr =

[
∆x ∆y ∆z

]⊺
as well as the

relative velocity vector ∆vvv =
[
∆vx ∆vy ∆vz

]⊺
are

both estimated in the ECEF frame, and not in the
Local Vertical Local Horizontal (LVLH) frame of the
target. Nonetheless, a transformation between the
two frames is simple given the absolute position of
the target at each time step.

Fig. 2: Relative position error in the ECEF frame

In order to generate the error signals in Figures 2
and 3, a ground truth of the estimated states must
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Fig. 3: Relative velocity error in the ECEF frame

be present. The output of the post-processing Precise
Orbit Determination (POD) algorithms is used as the
ground truth. The POD output is accurate to the
level of 1-cm and is provided as part of the swarm
mission data.

It is important to mention that Root Mean Square
(RMS) errors of 46 cm and 9 cm/s could be obtained
for relative distance and relative speed respectively,
while the filter converged after 9 iterations. The con-
vergence point in this setting is defined as the first
filter iteration at which the signal is less than or equal
to the RMS.
Results with such convergence rate and accuracy, es-
pecially without implementing any integer ambiguity
resolution technique, could only be obtained thanks
to the incorporation of the presented measurement
setting and ionospheric model.

Although the obtained results are adequate for
an algorithm that does not resolve ambiguities, one
cannot ignore that less than 99.7% of the estimates’
errors are lying within the ±3σ bounds, as seen by Fig.
2. This can be justified by the inaccurate model and
observation variance-covariance matrices, Q and R. It
is hypothesised that if the matrix R is formed in such
a way that leverages its dependence on the elevation
angles of the tracked satellites, better estimates will
be obtained for both the state variables as well as
the estimations variance-covariance matrix. It is also
hypothesised that better estimates can be obtained
if an efficient outlier detector is adopted. Our future
work shall not only include a different setting for the
variance-covariance matrices and outliers detection,
but also include an ambiguity resolution technique on
top of the EKF.

7. Conclusion

In this paper, the problem of GNSS-based relative
navigation between two spacecraft with large inter-
satellite distance is addressed. A measurement setting
comprising the Single Difference GRAPHIC (SDGR),
the Single Difference Carrier Phase (SDCP), and the
Single Difference Geometric Free (SDGF) combina-
tions is proposed. Although the classical Extended
Kalman Filter (EKF) was used, augmenting the mea-
surement vector with the SDGF combination proved
to provide better estimates than that of using the clas-
sical observables such as the SDGR and the SDCP.
In order to obtain acceptable convergence rates, an
ionospheric model had to be adopted instead of per-
forming model-less estimations of the ionospheric de-
lays. The Lear mapping function, which maps from
the Vertical Total Electron Content (VTEC) to the
Slant Total Electron Content (STEC), was modified
in order to account for negative elevation angles of
satellites with respect to receivers.
The implemented EKF could achieve 46 and 9 cm/s
RMS errors in the estimated relative distance and
relative speed respectively for the two SWARM mis-
sion satellites, Alpha and Charlie, which were 170
km apart at the time of estimation, which is much
better than the best -to the authors’ knowledge- space-
borne single-frequency standalone positioning results
of 1 m 3D RMS error for absolute positioning for
TerraSAR-X mission.16 It is important to emphasise
that the obtained results could be achieved without
implementing integer ambiguity resolution. An inter-
esting future research path is to implement integer
ambiguity resolution in conjunction with the proposed
filter settings.
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