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Abstract
This study explores the reinforcement learning (RL) approach to constructing attitude control strategies for a LEO

satellite with flexible appendages. Attitude control system actuated by a set of three reaction wheels is considered.
The satellite is assumed to move in a circular low Earth orbit under the action of gravity-gradient torque, random
disturbance torque, and oscillations excited in flexible appendages. The control policy for rest-to-rest slew maneuvers
is learned via the Proximal Policy Optimization (PPO) technique. The robustness of the obtained control policy is
analyzed and compared to that of conventional controllers. The first part of the study is focused on problem formulation
in terms of Markov Decision Processes, analysis of different reward-shaping techniques, and finally training the RL-
agent and comparing the obtained results with the state-of-the-art RL-controllers as well as with the performance of
a commonly used quaternion feedback regulator (Lyapunov-based PD controller). We then proceed to consider the
same spacecraft with flexible appendages added to its structure. Equations of excitable oscillations are appended to
the system and coupling terms are added describing the interactions between the main rigid body and the flexible
structures. The dynamics of the rigid spacecraft thus becomes coupled with that of its flexible appendages and the
control strategy should change accordingly in order to prevent actions that entail excitation of oscillation modes.
Again PPO is used to learn the control policy for rest-to-rest slew maneuvers in the extended system. All in all,
the proposed reinforcement learning strategy is shown to converge to a policy that matches the performance of the
quaternion feedback regulator for a rigid spacecraft. It is also shown that a policy can be trained to take into account
the highly nonlinear dynamics caused by the presence of flexible elements that need to be brought to rest in the required
attitude. We also discuss the advantages of the reinforcement learning approach such as robustness and ability of online
learning pertaining to the systems that require a high level of autonomy.
keywords: satellite, flexible appendages, attitude control, reinforcement learning, proximal policy optimization

INTRODUCTION

Reinforcement learning has become an acknowledged
framework to design autonomous control algorithms for
systems that can be described as Markov Decision Process
problems [1]. It has proven to perform well on a number
of classical control problems and is currently being tried
on real-life applications, i.e. unmanned aerial vehicle mo-
tion control systems. The essence of the reinforcement
learning approach is in training an agent through interac-
tion with the environment and learning from experience
what is called a control policy, which amounts to a prob-
ability distribution of taking admissible control actions
given the current state of the system. The agent that has

learned a control policy is an equivalent of a state feed-
back control law implementation. One advantage of the
reinforcement learning approach in the spacecraft attitude
control loop is the ability of online learning, i.e enhancing
the control strategy on the base of the accumulated expe-
rience during the operations. Improving and adapting the
controller performance over time adds greater autonomy
to the control system, which is important for space mis-
sions, especially those encountering uncertainties. Nowa-
days that the space mission design paradigm is shifted to-
wards distributed space systems [2] with multiple space-
craft operating in groups, it may become possible to ob-
tain greater amounts of training data and share it across
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the group as different spacecraft explore different phase
space regions [3].

So far the authors are aware of a few successful at-
tempts of applying reinforcement learning to satellite at-
titude control [4, 5, 6]. These works are mainly focused
on the control of a rigid body with a fixed dynamics, ex-
cept [5] where a space environment simulator is employed
as a training environment. All referenced works use the
Proximal Policy Optimization (PPO) technique to train
the control policy, except [5] that compares the PPO per-
formance with the Soft-Actor Critic (SAC) algorithm. It
is concluded that if the priority of the satellite is to be ro-
bust in sudden disturbances, PPO is the best algorithm,
whereas SAC is better for fast attitude target. The latter
is also the most comparable algorithm with the PID con-
troller in terms of stability. An important conclusion made
is that three is no need to re-tune reinforcement learning
algorithms to obtain a good response, It is thus possible
to complete the computation intensive learning while still
on the ground to produce a control system, whose per-
formance is comparable to conventional techniques. Fur-
thermore, this system is able to continue to learn online,
adapting its performance to the factors that had not been
accounted for at design stages.

Following state of the art research, the PPO approach
is used in this work as it is known for its learning sta-
bility and relative computational simplicity [6]. We start
by formulating our problem in terms of Markov Decision
Process setup, which implies presenting the system’s state
space S, the agent actions space A, the state-action transi-
tion function as the systems evolution operator (or the rule
of proceeding to the next state given the current state and
the choice of control action), and shaping the state-action
reward function. The latter step is most crucial as it is
the cumulative reward (reward along a trajectory) func-
tion that is optimised by the PPO algorithm in its search
of the control policy. It is important to note that the re-
sultant policy is not instantiated as a look-up table for all
possible states, but is approximated by a neural network,
which is trained to learn the control policy.

As far as the environment model is concerned, a mi-
crosatellite in a circular low Earth orbit is considered. The
spacecraft is acted upon by the gravitational torque, all
other environmental disturbances are modeled as a ran-
dom torque. We use the quaternion kinematics and Eu-
ler dynamical equations to model the attitude dynamics
of the spacecraft. Rest-to-rest slew maneuvers from ar-
bitrary initial orientations are studied with the invariable
control objective of aligning the body frame of the space-
craft with its orbital frame (e.g. for nadir pointing). At-
titude determination algorithms and the corresponding er-
rors are not considered in this study. The first part of the

study is about problem formulation, reward-shaping, and
finally training the agent and comparing the obtained re-
sults with the state-of-the-art [4, 5, 6]. The second part
of the study considers the same spacecraft with flexible
appendages added to its structure. The dynamics of the
rigid spacecraft thus becomes coupled with that of its flex-
ible appendages and the control strategy should change
accordingly in order to prevent actions that entail excita-
tion of oscillation modes. The flexible elements model
is incorporated into the system’s dynamics following the
approach proposed in [7]. Equations of excitable oscilla-
tions are appended to the system and coupling terms are
added describing the interactions between the main rigid
body and the flexible structures. Again PPO is used to
learn the control policy for rest-to-rest slew maneuvers in
the extended system.

1. PROXIMAL POLICY OPTIMIZATION

Any control system can be divided into two parts: a
controller and a plant to be controlled, in other words
these two parts can be referred to as mutually interact-
ing agent and environment. The agent observes the en-
vironment, then chooses a control action and passes it to
the environment, which results in the change of the sys-
tem’s state. It must be noted that while observing the en-
vironment the agent not only identifies the system’s state,
which is required to compute the control action for the
next step. Additionally the agent at each step “senses”
or acquires a reward for what it has done to arrive to the
observed state. The reward mechanism is important for
the agent to “become aware” of control objectives and
best ways of satisfying them. This loop is iterated until
a termination condition is satisfied. The described routine
(Figure 1) forms the framework for reinforcement learn-
ing control techniques.

Reinforcement learning control problems are usually
formulated in terms of Markov Decision Processes (MDP)
consisting of:

• all possible states S of the system;

• all possible control actions As that the agent can
choose while finding itself in the corresponding
states;

• state-action transition function via the evolution op-
erator F̂ .

The control policy π playing the role of a control law
is defined as a conditional probability of outcomes from
the set As given the state s:

π(a|s) = P(choose action a in state s). (1)
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Fig. 1: Reinforcement learning loop [1]

The objective of reinforcement learning is to learn the
policy π which maximizes the discounted reward R:

Rt(st) =
ᵀ

∑
k=0

γ
krt+k, (2)

where rt ∈ R is the immediate reward. The discounting
factor γ ∈ (0,1) reduces the contribution of long-term re-
wards thus stimulating the agent to learn receiving reward
in the near future.

The value function V (st) is the expected cumulative
future reward for a given initial state:

V (st) = Ê(Rt(st)). (3)

Using the value function, it is possible to construct an op-
timal policy. With smaller environments, it is possible to
find the policy and value functions using dynamic pro-
gramming but larger ones or those with continuous action
space require more sophisticated methods. This is where
the neural networks come into play. Adaptation of neural
networks to solve reinforcement learning problems is usu-
ally referred to as ”deep reinforcement learning”. Basi-
cally, artificial neural networks are highly non-linear func-
tion approximators that require learning (or tuning their
weights) with examples of possible inputs and correct out-
puts.

The method of reinforcement learning used in this
study is Proximal Policy Optimization [8]. It uses train-
ing samples generated from the environment to iteratively
approximate value and policy functions with neural net-
works.

2. MODELS OF SPACECRAFT ATTITUDE DYNAMICS

The goal of our study is to apply the reinforcement
learning approach to spacecraft attitude control problems.
Therefore, the models described in this section will play a
role of environment (Fig. 1) in the reinforcement learning
setup.

2.1 Reference frames

The following reference frames are used:

• The Orbital reference frame F o with the origin at the
center of mass of the satellite, z-axis pointing away
from the center of the Earth, y-axis along the cross
product of the satellite’s center of mass position and
velocity vectors, and x-axis completing the frame ac-
cording to the right hand rule.

• The Body-fixed reference frame F b with the origin
at the satellite’s center of mass. Its three axes co-
incide with the three principal axes of inertia of the
satellite.

All vector transformations are given in the quaternion
notation. A quaternion qyx is said to relate two reference
frames F x and F y. The representations of any given vec-
tor r in these frames are related by:

ry = qyx ◦ rx ◦ q̃yx, (4)

where “◦” denotes quaternion multiplication, q̃ is conju-
gate of q, and rx is considered to be a quaternion with zero
scalar part.

2.2 Attitude Dynamics of a Spacecraft Equipped with
Reaction Wheels

2.2.1 Rigid Spacecraft
If a spacecraft is assumed to be a rigid body controlled

by a set of reaction wheels, the rotational motion can be
described by the Poisson’s and Euler’s equations [9].

The Poisson’s kinematics equation expressed in quater-
nions is:

q̇ob =
1
2
qob ◦Ω

b, (5)

where qob is the unit quaternion that transforms any vec-
tor from the F b frame to the F o frame, ω is the abso-
lute angular velocity of the satellite (projected onto the
body-frame). Ω

b is the spacecraft’s angular velocity with
respect to the F o frame given by

Ω
b = ω

b−qbo ◦
[

0 ω0 0
]ᵀ ◦ q̃bo, (6)

where ωo is the mean motion of the spacecraft in orbit.

The rotational dynamics of a rigid satellite equipped
with three reaction wheels, aligned with the axes of the
F b frame, can be described by

Jb
ω̇

b +ω
b× (Jb

ω
b +hb) = Tb

ext +Tb
ctrl +Tb

dst,

ḣb =−Tb
ctrl

(7)

where J is the tensor of inertia of the spacecraft, h is the
angular momentum of reaction wheels, Text, Tctrl, and
Tdst are respectively the external, control and disturbance
torques acting on the satellite.
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The external torques in the model used in this study are
represented by the gravity-gradient torque given by:

Tgg = 3ω
2
0

(
eb

o×Jeb
o

)
, (8)

where eb
o is the unit vector from the center of the gravity

field to the body’s center of mass.

The disturbance torque Tdst is modeled as a normally
distributed random variable. The control action Tctrl is
computed for each control loop according to the algorithm
described in the next section. The control goal in the sub-
sequent numerical experiments is to align the body frame
and the orbital frame, so that the required quaternion qbo

req

and angular velocity Ωb
req are

qbo
req = [1,0,0,0]ᵀ , Ω

b
req = [0,0,0]ᵀ . (9)

2.2.2 Spacecraft with flexible appendages
For a spacecraft with flexible appendages such as large

solar panels or flexible antennae we shall follow the ap-
proach outlined in [7]. The kinematics equations (5)-
(6) are kept unchanged, whereas the rotational dynamics
equations are subject to the following modification

Jb
ω̇

b +ω
b× (Jb

ω
b +hb) = Tb

ext +Tb
ctrl +Tb

dst−LPη̈ ,

ḣb =−Tb
ctrl,

η̈ +diag(2ζiωi) η̇ +diag
(
ω

2
i
)

η =−Lᵀ
Pω̇.

(10)

This formulation includes the dynamics of the flexible ap-
pendages given mainly by the third equation in the set
of (10), which has coupling terms with the first equa-
tion. The system now depends on the appendage flexi-
ble modes ωi through three matrices: the stiffness ma-
trix K= diag

(
ω2

i
)
, the damping matrix D= diag(2ζiωi),

and the modal participation factor matrix LP at point P
where the flexible solar panel is attached to the main body.
For detailed description of the model and its derivation,
please, refer to [7].

The external torques and the disturbance torques in the
right-hand side of the first of the equations (10) are the
same as in the rigid spacecraft model. So is the control
goal, which is to stabilize the spacecraft in the orbital ori-
entation described by (9).

2.2.3 Model parameters
The spacecraft moves in the 600 km altitude circular

orbit. As only the central gravity field is considered the
orbital motion is Keplerian and other orbital elements are
not required for simulations.
The parameters required by the equations of rotational

motion models are specified below. The values are given
according to [10].

The inertia tensor of the rigid spacecraft:

Jb =

75 1 2
1 40 −1
2 −1 80

 kg ·m2. (11)

The control actuation is carried out by a set of three or-
thogonal reaction wheels, each can produce the torque of
|ḣ| ≤ τmax = 0.05 N, and its angular momentum is limited
by hmax = 0.5 Nms.

The modal participation factor matrix for the flexible
model

LP =

 0 12.5 0
−3.84 0 0

0 2.51 0

 ,

this matrix is derived based on the inertia tensor of the
solar panel and the point where it is attached to the space-
craft’s main body [10].

Flexible mode’s frequencies

(ω1,ω2,ω3) = (5.6,19.3,35.4) rad/s

and flexible mode damping coefficients

(ζ1,ζ2,ζ3) = (0.005,0.005,0.005) .

3. REINFORCEMENT LEARNING PROBLEM SETUP

3.1 Attitude Control Problem as a Markov Decision
Process

Formulating the control problem in terms of a Markov
Decision Process (MDP) requires us to specify the state-
space, action-space, the state-transition rule and the re-
ward. They are as follows:

• The state is a 10d vector the spacecraft attitude
quaternions q, the components of angular velocity ω

and the angular momentum of reaction wheels h. In
case of the model with flexible appendages six ad-
ditional states η and η̇ introduced by (10) are ap-
pended to the state vector of the dynamical system
simulating the environment. The agent, however, is
not made aware of this change and keeps the 10-
dimensional state vector,

• The action space is

As = m ·10−i ·Tmax for i ∈ {1,2,3} ,
m = {m : m =−1+0.04n, n ∈ {0,1,2, . . . ,50}} ,

where Tmax is the maximum allowable torque by the
actuators.

IAC–22–C1.1.2x73341 Page 4 of 8



73rd International Astronautical Congress, Paris, France, 18-22 September 2022. Copyright © 2022 by Mr. Ahmed Mahfouz. Published by the
International Astronautical Federation with permission.

Let us note that our numerical experiments showed
that using finer mesh for the action space has little to
no improvement compared to the one listed above let
alone being more computationally expensive.

• The state transition F̂ is given by the system of equa-
tions (5) and (7) for the rigid spacecraft problem
or equations (5) and (10) for the flexible spacecraft
problem.

One of the most important parts in reinforcement learn-
ing is constructing the reward function which makes the
agent learn the preferred policy. The candidate reward
functions are in general heuristic, and there is no rule
of thumb when it comes to choosing one. Different re-
ward functions varying in complexity as well as in reward-
ing criteria have been tried, but before the chosen reward
functions can be introduced, the following definitions are
introduced.

• The error angle, ϕ , is defined as,

ϕ = 2 · arccos(qe,0) , ϕ ∈ [−π,π]

with qe,0 being the scalar part of the error quaternion.

• The absolute error angle difference, ∆ϕ , is defined
as,

∆ϕ = |ϕ|−
∣∣ϕprev

∣∣ , ∆ϕ ∈ [−π,π]

where ϕprev is the error angle from previous step
(which can be expressed through the current state in-
formation, i.e. current error angle and angular veloc-
ity).

The goal of the control system is to drive ϕ to zero,
while the best ∆ϕ the agent can achieve is ∆ϕ = −π . A
good reward function encourages positive steps towards
the control goal in terms of the decrease in the error angle
and the right direction of the angular velocity. Another
thing a reward function may take into account is discour-
aging overshoots which lead to long settling times. This
may also be done by punishing wrong directions of an-
gular velocity. Suppression of long transient processes is
especially essential in the problem of the flexible space-
craft, where oscillations in the flexible appendage are eas-
ily excited if special care is not taken. With this in mind
we have constructed and tested a number of rewards and
the four finalist reward functions are presented as follows,

R1 (ϕ,∆ϕ) = β1 (∆ϕ) · τ1 (ϕ) ,

R2 (ϕ,∆ϕ) = β1 (∆ϕ) · τ2 (ϕ) ,

R3 (ϕ,∆ϕ) = β2 (∆ϕ) · τ1 (ϕ) ,

R4 (ϕ,∆ϕ) = β2 (∆ϕ) · τ2 (ϕ) ,

(12)

where the scalar-valued functions, β1 (∆ϕ), β2 (∆ϕ),
τ1 (ϕ), and τ2 (ϕ) are defined as

β1 (∆ϕ) =

0.5, ∆ϕ > 0

1, otherwise
,

β2 (∆ϕ) = e−0.5(π+ϕ̇),

τ1 (ϕ) = e(2−|ϕ|),

τ2 (ϕ) =
14

1+ e2|ϕ| .

To put the introduced reward functions into perspec-
tive, the surface plots in figures 2 and 3 depict the shapes
of reward functions R1 (ϕ,∆ϕ) and R4 (ϕ,∆ϕ) (see equa-
tion (12)).
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Fig. 2: Shape of the reward function R1 (ϕ,∆ϕ)
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Fig. 3: Shape of the reward function R4 (ϕ,∆ϕ)

It can be seen either from the set of equations (12) or
from figures 2 and 3 that the goal of the four reward func-
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tions is to incentify actions that lead to small error angles,
moreover, the reward would be much greater if the ac-
tion is causing the error angle to evolve from a higher to a
lower value.

4. RESULTS AND DISCUSSION

The proposed reward functions (12) were initially used
to train four different policies for the a rigid satellite with
the attitude-related parameters in 2.2.3. The agent was
trained on a computational node that comprises 8 parallel
CPUs for a total of 12500 epochs (500 batches with 25
episodes each) for each policy which took on average 10
hours per policy. By that time, the minimum batch reward
had plateaued for all the trained policies. After the train-
ing process ended for each of the four reward functions,
it was clear that the wining reward function is R4 (ϕ,∆ϕ).
Table 1 presents the final ranking of the reward functions
based on the mean RMS angle error for a batch of 50
episodes.

Order Reward function Mean RMS ϕ [deg]
1 R4 (ϕ,∆ϕ) 0.086
2 R3 (ϕ,∆ϕ) 0.153
3 R2 (ϕ,∆ϕ) 0.16
4 R1 (ϕ,∆ϕ) 0.29

Table 1: Reward functions performance for the four pro-
posed reward functions

The evolution of the minimum reward in a batch, which
comprises 25 episodes, for the winning policy (i.e. the one
which is trained over R4 (ϕ,∆ϕ)) is illustrated in Fig. 4.
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Fig. 4: Reward evolution for an agent using the reward
function R4 (ϕ,∆ϕ)

MoI-MF index 1 2 3 4 5 6
MoI-MF value 0.1 0.5 1 2 5 M

Table 2: Moment of Inertia Multiplication Factors (MoI-
MF) for the test satellites

To fully assess the performance of a certain policy, it is
put under testing against six different satellites. The mo-
ment of inertia matrix of each of these six satellites would
differ from that of the original satellite (against which the
policy is trained, see equation (11)) by a multiplication
factor. Table 2 delineates the six different Moment of In-
ertia Multiplication Factors (MoIMF), where the value of
M in the table is diag(0.5,0.2,1.67).

The performance of the winning policy is bench-
marked against the that of a simple Lyapunov based PD
controller [11]. The results of this experiment for the six
satellites are depicted in the following Fig.5. It is quite
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Fig. 5: Performance of the winning policy against that of
a PD controller for a rigid satellite

interesting to see that the controlling policy still performs
adequately even when it is controlling a completely
different satellite.

The characteristic behaviour of the controlled rigid
spacecraft attitude for an arbitrary initial condition as ex-
pressed through a set of Euler angles is shown in the Fig.
6.

As for the flexible spacecraft problem, the winning re-
ward function, R4 (ϕ,∆ϕ), was used to train an agent,
again for 500 batches, each batch comprising 25 episodes.
The evolution of the minimum reward in a batch for that
policy is illustrated in Fig. 7. It is interesting to notice that
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Fig. 6: Euler angles for a single episode of the rigid SC
controlled by the winning policy

although the system of a satellite with flexible appendages
is more complex than a rigid satellite, it is clear by com-
paring Figures 4 and 7 that the agent which controllers a
satellite with flexible appendages reaches maximum pos-
sible reward in less amount of iterations.
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Fig. 7: Reward evolution for an agent using the reward
function R4 (ϕ,∆ϕ)

The winning policy was once again used to control six
different satellites that have different moment of inertia
tensors. The performance of the control policy against the
six satellites is depicted in Fig.8.

Finally, the characteristic behaviour of the controlled
rigid spacecraft attitude for an arbitrary initial condition
as expressed through a set of Euler angles is shown in the
following Fig. 9.
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Fig. 8: Performance of the winning policy against that of
a PD controller for a satellite with flexible appendages
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Fig. 9: Euler angles for a single episode of the SC with
flexible appendages controlled by the winning policy

CONCLUSION

This work presents a reinforcement learning approach
to formulating the spacecraft attitude control problem and
obtaining the solution to this problem in the form of a
control policy. All in all, the proposed approach is shown
to converge to a policy that resembles the performance
of the quaternion feedback regulator for a rigid space-
craft. It is also shown that for the same problem setup
which has been used for the rigid spacecraft, a policy can
be learned to takes into account the highly nonlinear dy-
namics caused by the presence of flexible elements that
need to be brought to rest in the required attitude. It is
interesting to note that the same algorithms learns control
policies for two different environments (i.e rigid and flex-
ible spacecraft) with equal success. We believe that it is in
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this direction that the advantage of the RL approach lies,
because it better adapts to the environments with higher
degree of uncertainty, such as the problem of a flexible
spacecraft attitude control. It is usually quite difficult to
identify the flexible modes and correctly incorporate them
into the control loop. Furthermore, the dynamics of the
spacecraft’s flexible parts can change over time due to
material degradation, and the ability of RL agent to learn
from experience can be used to make the control policy
track any such changes.
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[3] Seongin Na, Tomáš Krajnı́k, Barry Lennox, and Far-
shad Arvin. Federated reinforcement learning for
collective navigation of robotic swarms, 2022.

[4] F. Vedant, J.T. Allison, M. West, and A. Ghosh.
Reinforcement learning for spacecraft attitude con-
trol. In Proceedings of the International Astronauti-
cal Congress, IAC, volume 2019-October, 2019.

[5] Vanessa Tan, John Leur Labrador, and Marc Caesar
Talampas. Mata-rl: Continuous reaction wheel atti-
tude control using the mata simulation software and
reinforcement learning. In Proccedings of 35th An-
nual Small Satellite Conference, 2021.

[6] Jacob G. Elkins, Rohan Sood, and Clemens Rumpf.
Bridging reinforcement learning and online learning
for spacecraft attitude control. Journal of Aerospace
Information Systems, 19(1):62–69, 2022.

[7] Daniel Alazard, Christelle Cumer, and Khalid
Tantawi. Linear dynamic modeling of spacecraft
with various flexible appendages and on-board an-
gular momentums. In 7th International ESA Con-
ference on Guidance, Navigation & Control Systems
(GNC 2008), pages 1–14, Tralee, IE, 2008.

[8] John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv, abs/1707.06347,
2017.

[9] Bong Wie and Peter M. Barba. Quaternion feed-
back for spacecraft large angle maneuvers. Journal
of Guidance, Control, and Dynamics, 8(3):360–365,
1985.

[10] I A Courie, Francesco Sanfedino, and Daniel
Alazard. Worst-case pointing performance analysis
for large flexible spacecraft. ArXiv, abs/2106.01893,
2021.

[11] Bong Wie, Haim Weiss, and Ari Arapostathis. Quar-
ternion feedback regulator for spacecraft eigenaxis
rotations. Journal of Guidance, Control, and Dy-
namics, 12(3):375–380, 1989.

IAC–22–C1.1.2x73341 Page 8 of 8

View publication stats

https://www.researchgate.net/publication/363840944

