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Abstract 

The paper discusses the deployment of multiple-payload fractionated spacecraft as a surveillance system for 

autonomously monitoring and detecting wildfires at early stages in any area on the Earth’s surface. The fractionated 

system, consisting of 12 operational CubeSats, four reserved CubeSats, and one Mothership, acquires images in 13 

spectral bands within the visible, near infrared, and short-wave infrared regions with high spatial resolutions. A 

dynamic fire-hazard index is introduced, based on geographic coordinates, environmental parameters, and weather 

conditions, to prioritize the areas for the probability of wildfires. Then, a convolutional neural network is designed to 

identify potentially hazardous areas and detect the early stages of wildfire spots. The detection method is based on the 

processed images and geographic locations as well as measurements of thermal anomalies, smoke, and unusual 

variations of regional atmospheric conditions. The effectiveness of the surveillance system is examined through several 

case studies using numerical simulations.  
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Nomenclature 

𝐿𝑓 Dimensionless friction of the live vegetation 

𝑇𝑁𝑓 Dimensionless friction of the fuel moisture 

𝐻(𝑝, 𝑞) Cross entropy of the distribution 𝑞 relative 

to a distribution 𝑝 

Acronyms/Abbreviations 

BUI Build Up Index 

CNN Convolutional Neural Network 

COTS Commercial off-the-shelf 

DC Drought Code 

DFHI Daily Fire Hazard Index 

DL Deep Learning 

DMC Duff Moisture Code 

FFMC Fine Fuel Moisture Code 

FHI Fire Hazard Index 

FWI Fire Weather Index 

GSD Ground Sampling Distance 

ISI Initial Spread Index 

JRC Joint Research Centre 

MS Multispectral 

NN Neural Network 

ReLU Rectified Linear Unit 

SWIR Short Wavelength Infrared 

TRL Technology Readiness Level 

U Unit 

VNIR Visible and Near Infrared 

YOLO You Only Look Once 

 

1. Introduction 

Forest fires have notable contributions to global 

warming by emitting a significant amount greenhouse 

gas. In addition, they can adversely affect human lives, 

ecosystem functionality and natural resources. The risk, 

duration and severity of forest fires are dramatically 

increasing due to climate change and human behavior, to 

the extent where the European Commission’s Joint 

Research Centre (JRC) reports that a total area of about 

500,000 hectares was burnt during 2021 in Europe region 

alone, which was 50% more than the average burnt-out  

area during 2008-2020 [1]. Therefore, a rapid and highly 

effective fire detection system is essential to reducing 

losses. 

Traditionally, forest fires are detected by ground-

based observations from fire lookout towers and/or heat, 

smoke, flame, and gas sensors implemented in specific 

locations inside the forests [2]. However, the relatively 

small range of such sensors, as well as human errors, 

cause limitations for early fire detection. Consequently, 

satellite-based early fire detection has been considered as 

a viable alternative. Further, recent developments in 

remote sensing, image processing, and machine learning, 

technologies have made spaceborne systems as an 

effective real-time tool for detecting forest fires.  

The physical properties of flame and smoke can be 

measured by virtue of their apparent characteristics, such 

as color and texture, using optical sensors or RGB 

cameras onboard satellites. The main drawback of the 

color-based fire detection methods is their low accuracy 

[3]. Although the accuracy can be improved by 

combining data from optical and infrared cameras, the 

color-based methods have limited capacity in early fire 

detection in a complex area. In contrast, deep learning 
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(DL) methods can automatically extract and learn 

complex features, thus can be utilized for detecting the 

fire accurately in the early stages in a wide area [4]. 

Employing DL methods for forest fire detection has 

become an attractive research topic during the past 

decade. For example, a convolutional neural network 

(CNN)-based fire forest detection algorithm is developed 

in [5], consisting of five convolutional layers and three 

fully connected layers, which can detect the dynamic 

motion of the smoke. Similarly, CNN structures are 

proposed in [6] and [7] for fire and smoke detection. A 

two-layer fully connected neural network is utilized in [8] 

as an image classifier for detecting the fire. Forest fire 

detection using the surveillance videos is studied in [9] 

and [10], employing a fine-tuned CNN and optimized 

You-Only-Look-Once (YOLO) models, respectively. 

Moreover, a nine-layer CNN combined with a leaky 

rectified linear unit (ReLU) activation function is 

employed for fire detection [11]. A review of different 

approaches for forest fire detection can be found in [3]. 

Despite the capabilities of fire detection satellites, not 

all the fire spots in a vast area (larger than the satellite 

swath width) can be inspected simultaneously, due to the 

limitations of the imaging aperture. Thus, a potential fire 

out of the swath width may not be detected in the early 

stages. Although satellites can generally perform attitude 

maneuvers to change the access area, the slew rate of a 

large monolithic satellite with large optical sensors is 

limited. Consequently, some potential fire spots can 

remain undiscovered using a monolithic satellite.  

One solution to monitoring all the potential fire spots 

in a vast area is to employ several separate imaging 

modules onboard multiple satellites in different orbits. A 

multiple-payload fractionated Earth observation system 

is introduced in [12, 13], which consists of twelve active 

and four reserved 8-unit CubeSats operating alongside a 

Mothership. The CubeSats are individually responsible 

for taking images, while the Mothership controls the 

mission, constructs wide-range images, and transmits 

data to Earth. Such a system makes it possible to monitor 

several potential fire spots simultaneously. Figure 1 

illustrates the ability to monitor several fire spots 

simultaneously using a monolithic satellite versus 

distributed imagery. 

This paper aims to study the effectiveness of enabling 

the multiple-payload fractionated Earth observation 

system as a surveillance system for monitoring and 

detecting wildfires in their early stages compared to an 

equivalent monolithic fire detection satellite. For this 

purpose, a brief overview of the multiple-payload 

fractionated Earth observation system is introduced in 

Section 2. Section 3 explains the methodology of fire 

detection process. Section 4 details the employed 

dynamic fire-hazard index for prioritizing the fire risk in 

different districts. Section 5 discusses the convolutional 

neural network for identifying the potentially hazardous 

areas and detecting the early stages of wildfire spots. 

Then, the effectiveness of the system is investigated 

through some numerical simulations presented in Section 

6. Finally, some concluding remarks are made in Section 

7. 

 

2. Overview of multiple-payload fractionated 

spacecraft 

The Multiple-payload Fractionated Earth 

Observation System consists of twelve active and four 

reserved homogeneous eight-unit (8U) CubeSats 

operating with a single Mothership, as illustrated in 

Figure 2. Each CubeSat, designed using available 

Commercial off-the-shelf  (COTS) components with 

technology readiness level (TRL) of 8-9, carries two 

payload, namely, one multispectral (MS) camera from 

Simera-Sense [14] and one short wavelength infrared 

(SWIR) camera from Sensors Unlimited [15], to provide 

data in visible (VIS), near-infrared (NIR), and SWIR 

spectral bands. The MS camera provides a ground 

sampling distance (GSD) of 7.5 m and a swath-width of 

30.7 km, and the SWIR camera is capable of achieving a 

GSD better than 20 m and a swath-width of 25.4 km at 

786 km orbit altitude. Each CubeSat has a 3-axis pointing 

control system, consisting of four reaction wheels 

mounted in a tetrahedral configuration combined with 

one three-axis magnetorquer, to precisely track the 

imaging region designated by the Mothership. 

The Mothership serves as an interface between the 

 
Figure 1. An illustrative comparison of the monolithic satellite 

and the fractionated spacecraft system regarding monitoring 

several fire spots. 

 
Figure 2. An illustration of the overall configuration of 

Multiple-Payload Fractionated Earth Observation System. 
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imagery system (CubeSats) and the ground station. It also 

manages the CubeSats, through computing the attitude 

reference, allocating the imaging tasks, determining the 

CubeSats orbits, predicting the collisions, and calculating 

the orbital maneuver for the CubeSats, by employing a 

two-way UHF-band (430-440 MHz) communication 

channel. Moreover, the Mothership processes received 

raw images from the CubeSats throughout a one-way X-

band (8.025-8.400 GHz) channel for transmitting to the 

ground station in the Ka-band. 

 

3. Methodology 

The Mothership identifies the CubeSats tasks, and the 

CubeSats serve as a distributed imagery system. First, the 

Mothership receives the environmental information from 

the ground station(s), including temperature, wind, 

humidity, etc., to generate the fire-hazard index map, 

which shows the probability of fire occurrence in each 

area. Next, potential fire spots are identified by the 

Mothership and then allocated to the CubeSats for taking 

images from. After receiving images from the CubeSats, 

the Mothership employs a CNN to determine if fires have 

occurred in a specific location. If the fire occurs, the 

location and the images of the fire are transmitted to the 

ground station. Then, the rest of identified potential fire 

spots are reallocated to the CubeSats. The schematic 

diagram of this process is shown in Figure 3. Detailed 

information regarding the task reallocation technique can 

be found in [13]. 

 

4. Dynamic fire-hazard index 

The probability of fire occurrence in a specific 

location is usually calculated using a fire index, which 

can be a function of environmental variables such as land 

cover, altitude, land slope, fuel type, etc. The required 

information for the fire hazard calculation is traditionally 

employed as a static layer, which may neglect significant 

effects on the fire risk related to the seasonal and daily 

changes [16]. 

The fire weather index (FWI) system is one of the 

substantial tools for predicting forest fires, whose 

purpose is to determine the effects of the weather on 

forest fires. The FWI utilizes the historical daily values 

of the air temperature, relative humidity, wind speed, and 

rainfall quantity provided by weather stations. The FWI 

consists of three sub-indexes, as follows [17]: 

• fine fuel moisture code (FFMC), which represents the 

moisture content of fine fuels;  

• duff moisture code (DMC), which gives the moisture 

content of loosely compacted, decomposing organic 

matter; and  

• drought code (DC), which denotes a deep layer of 

compact organic matter. 

The three primary sub-indexes in conjunction with 

the wind are used to produce the two intermediate sub-

indexes, initial spread index (ISI) and build up index 

(BUI). The final FWI is then formed by combining the 

intermediate sub-indexes, representing the intensity of 

the spreading fire due to weather. More detailed 

information regarding the FWI system can be found in 

[17]. 

The main drawback of the FWI is that the index is 

only based on meteorological information. However, 

other factors such as topography information, vegetation 

cover, and history may affect the fire ignition and the 

spread speed [18]. It is shown in [19] that the fire risk can 

be more accurately predicted in woodland by taking the 

long-term vegetation dynamics into consideration. Thus, 

the FWI should be modified according to the specific 

information for each area. For this purpose, the FWI can 

be combined with daily fire-hazard index (DFHI) [20] for 

employing the satellite data, fuel maps, and historical fire 

records of a certain area to predict the fire-hazard 

probability more accurately. The DFHI can be calculated 

using the dimensionless friction of the live vegetation, 𝐿𝑓, 

and the dimensionless friction of the fuel moisture, 𝑇𝑁𝑓, 

with respect to the values registered in the area of interest 

during the five last year, as follows [20]: 

DFHI =  (1 − 𝐿𝑓)(1 − 𝑇𝑁𝑓) (1) 

Detailed information about calculating 𝐿𝑓  and 𝑇𝑁𝑓  can 

be found in [20].  

Since both FWI and DFHI hold values in the [0, 1] 

interval, the final fire-hazard index (FHI) can then be 

calculated as the average of FWI and DFHI that can be 

translated to a categorical probability as described in . 

Moreover, the diagram of calculating FHI is shown in 

Figure 4. 

 

 
Figure 3. The schematic diagram of the fire detection 

process. 
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Table 1  The classification of the fire probability based on FHI. 

Fire-hazard Index Fire Probability Class 

0.00-0.25 No probability 

0.25-0.50 Low probability 

0.50-0.75 Medium probability 

0.75-1.00 High probability 

 

5. CNN-based fire detection 

The forest fire detection problem can be transferred 

into a classification problem, where a CNN is utilized to 

determine the fire and/or smoke on satellite images. The 

general information about utilizing CNN for machine 

learning, including the training and test processes, is 

detailed in [21]. The employed CNN is formed of three 

convolutional models (with the convolution kernel size 

of 2, 3, and 4) and a fully connected layer. Each 

convolutional model has two convolutional layers with a 

leaky rectified linear unit (ReLU) activation function and 

a maximum pooling layer. After passing through the fully 

connected layers, the final layer employs the SoftMax 

activation function, which is used to get probabilities of 

the input being in a particular class of fire/smoke/no-

event. Finally, the cross-entropy is chosen as the loss 

function, which can be defined as follows [22]: 

𝐻(𝑝, 𝑞) = ∑ 𝑝(𝑥) log 𝑞(𝑥)

𝑥

 
(2) 

The general structure of the employed CNN can be 

seen in Figure 5, where convolutional layers are indicated 

by blue color, maximum pooling layers are designated in 

white color, and fully connected layers are illustrated in 

red.  

 

6. Numerical simulation 

In this section, two case studies are presented to 

investigate the effectiveness of the proposed fire-hazard 

index and the performance of fractionated spacecraft in 

monitoring multiple potential fire spots. 

For studying the effectiveness of the fire-hazard index 

the forests southeast of the Caspian Sea are selected, 

which is indicated by red borders in Figure 6. The 

geographical coordinates of the area are within 
[54o43′    56o01′] E and [36o44′    37o29′] N, which is 

approximately 116 km long and 30 km wide. Over 14550 

hectares of the area were burnt during October and 

November 2010 [23]. All affecting data on FHI for the 

study area during the mentioned period were obtained 

 
Figure 5. the diagram of calculating FHI. 

 
Figure 4. The general structure of the employed CNN. 

 
Figure 6. Probability of the forest fire over the study area: 

A) The fire probability class map according to FWI, B) 

Potential fire spots designated by FHI. 
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from the National Cartographic Center (NCC) of I.R. Iran 

and daily meteorological data from available synoptic-

climatological stations in Golestan Province to generate 

the fire-hazard map. 

Figure 6 compares the probability of the fire over the 

study area based on FWI and FHI. It can be seen from the 

figure that using FWI, 28% of the study area is identified 

as high probability class, 33% as medium probability 

class, 31% as low probability class, and 8% as no fire 

probability class. However, the area of high fire 

probability estimated by FHI is only 5%, which 

practically contains all the actual fire spots that should 

indeed be flagged by the surveillance system. 

In order to study the fire detection performance of 

fractionated system and compare it with that of a 

monolithic satellite, fire scenarios in two regions of the 

Europe are considered, i.e., a small area (410km × 400km, 

indicated by blue borders in Figure 7) and a large area 

(1200km × 800km, indicated by red borders in Figure 7). 

In each area, several fire spots are put randomly in the 

area (the x and y coordinates of each random point follow 

a uniform distribution). The performance of the 

fractionated system for a certain number of fire spots in 

each area is compared to that of its Sentinel-2 counterpart 

through a Monte-Carlo simulation (5000 runs for each 

number of fire spots in each area). 

The performance criterion, as a success ratio, is the 

number of detected fire spots to the total number of fire 

spots. In order to detect a fire spot, each point that is 

identified as a potential fire spot (using FHI map) must 

be observed for 10 seconds to compute the CNN, during 

a satellite’s single pass of 10 minutes for surveilling the 

area (in one orbit). According to the agility requirement 

for Sentinel-2 [24], the maximum slew rate is 0.5 degrees 

per second. It should be noted that when a potential fire 

spot is being observed and other potential spots are in the 

satellite’s field of view, all of these spots are checked 

simultaneously. 

Figure 8 illustrates the success ratio of Sentinel-2 and 

fractionated spacecraft in the small area. It can be seen 

that using Sentinel-2 guarantees a success ratio of 100%, 

because the 290 km swath-width of Sentinel-2 [25] 

covers several fire spots at each imaging shot in the small 

area. However, since the maneuvering time increases 

with the number of fire spots, the performance of the 

fractionated spacecraft degrades when the number of fire 

spots exceeds 140.  

The success ratios of Sentinel-2 and fragmented 

spacecraft in the large area are compared in Figure 9. It 

can be seen from the figure that although the performance 

of both systems degrades with the increase in the number 

of fire spots, fractionated spacecraft has outperformed 

Sentinel-2. The reason is that twelve fire spots are 

investigated simultaneously by the CubeSats of the 

fractionated system, whereas because of the long 

distances between fire spots (unlike the small area), only 

one of such spots may be investigated at any time using 

Sentinel-2. Thus, by increasing the number of spots to 

more than 10, the performance of Sentinel-2 degrades 

dramatically. 

One can argue that Sentinel-2 would be able to cover 

the large area in multiple passes. However, it is essential 

to note that since the revisit time of a single operational 

 
Figure 9. The study area for the fire searching scenario. 

Figure 8. The effect of number of potential fire spots on the 

success ratio in the small area. 

 
Figure 7. The effect of number of potential fire spots on the 

success ratio in the large area. 
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Sentinel-2 satellite is ten days [26], investigation of all 

fire spots in a large area may take a long time. Thus, 

wildfires may not be detected in their early stages. 

 

7. Conclusion 

The feasibility of employing multiple-payload 

fractionated spacecraft as a surveillance system for 

detecting wildfires at early stages was studied in this 

paper. A dynamic fire-hazard index was introduced for 

identifying potentially hazardous areas. The index is 

employed in conjunction with a neural network, 

consisting of three convolutional models and a fully 

connected layer, for detecting fire in the hazardous areas. 

The numerical simulations showed that combining the 

fire weather index with daily weather information, fuel 

maps, and historical fire records can estimate the fire 

hazard probability more accurately. Through a stochastic 

performance analysis, it was shown that the notion of 

fractionated spacecraft can be logistically viable for a fire 

detection surveillance system in a large area. The results 

revealed that although Sentinel-2, an operational 

monolithic satellite, can be more effective than the 

fractionated spacecraft in detecting fire in a small area, 

wildfires in a large area may not be detected in the early 

stages using a monolithic satellite because of the long 

revisit time. In contrast, the fractionated spacecraft can 

detect more fire points in a shorter time than the 

monolithic satellite over a larger area. 
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