
Towards Online System Identification: Benchmark
of Model Identification Techniques for Variable

Dynamics UAV Applications
Junlin Song

SpaceR Research Group
SnT - University of Luxembourg

Luxembourg, Luxembourg
junlin.song@uni.lu

Pedro J. Sanchez-Cuevas
Advance Centre for

Aerospace Technologies (CATEC)
Seville

psanchez@catec.aero

Miguel Olivares-Mendez
SpaceR Research Group

SnT - University of Luxembourg
Luxembourg, Luxembourg

miguel.olivaresmendez@uni.lu

Abstract—Providing self-modelling capabilities to robotic sys-
tems that could change their dynamics variables during their
natural operation, like aerial manipulators, can significantly
increase model-based algorithm’s resilience and performance.
Some samples of those techniques are model predictive control or
model-based trajectory planning techniques. This paper aims to
benchmark how classical model identification techniques perform
when adapted to be used at run-time. This self-awareness capa-
bility will improve transparency giving the robot the capability
to understand what it can do and how to perform optimally. To
do so, this paper compares four different model identification
techniques and how they perform online in terms of accuracy
and computational cost. The online adaptation of the model
identification methods has been developed generically to apply
to any dynamic system. The methods are numerically evaluated
simulating an Unmanned Aerial Vehicle (UAV) with time-varying
mass. The system has been evaluated in 5 different manoeuvres
with 5 different mass-behaviour. This creates 25 experiments for
each of the four model identification algorithms. In total, this
paper presents the result of 100 studied cases.

Index Terms—Reliability of UAS, UAS modelling, System
identification

I. INTRODUCTION

Several State-Of-The-Art (SOTA) controllers, trajectory
planners, and sensor fusion algorithms use kinematic and
dynamic information of robots to optimize its behavior and
maximize its performance. For instance, Model Predictive
Control (MPC) has gained broad interest in the robotics com-
munity as a tool for motion control of complex and dynamic
systems. The ability to deal with nonlinearities and constraints
has popularized this technique for many robotic applications,
such as quadrotor control [1], [2], autonomous racing [3],
and legged locomotion [4], [5], [6]. These strategies enable
control action optimization for a given cost function over
time. MPC approaches are usually combined with a trajectory
generation phase. In [7], the authors studied the problem
of finding dynamically feasible trajectories and controllers
that drive a quadrotor to the desired state in state space. A

This research was supported by the European Union’s Horizon 2020 project
SESAME (grant agreement No 101017258).

similar problem was reformulated in [8] where the authors
aim to solve the control and the planning problems together
using the model information. However, although model-based
techniques provide optimal results when the used model is
accurate, those techniques could become unsafe, unstable,
and, for sure, not optimal if the used model is not properly
formulated or inaccurate.

Recent applications of aerial robots require changing the
mass or the topology of the robot in the middle of the operation
could make mandatory to update the model in real time. For
instance, a drone that sprays pesticide in a wine-yard [9]
[10], a morphing robot that changes its morphology [11] [12]
or even an aerial manipulator [13], the kinematic and the
dynamic characteristics could change during the operation. In
these cases, an online model identification that can capture
those changes in the dynamic model is needed to maintain
operational safety while feeding the control and planning
approaches with model identification.

This paper analyses different model identification ap-
proaches to capture changes in dynamic variables at runtime.
In order to generalize the different methodologies and be
able to apply them to different robots in general, and aerial
robots in particular, it is essential to remark that the presented
techniques are presented as comprehensive and generic as
possible to consider a variety of dynamic systems. One critical
aspect is to identify the level of abstraction required for the
specific use case. This will mainly depend on the robotic
system and the inputs/outputs available. In this study, we
will address the problem of identifying an aerial robot that
follows the most widespread architecture in the market and
the research community. However, those techniques could be
adapted to identify other robotic systems.

The rest of the paper is structured as follows: Section
II presents the problem and rationale behind the need for
model identification and introduces the generic formulation
of a dynamic system. Section III formulates different model
identification techniques adapted to the UAV-based proposed
use case along with section IV. Section V shows the results

obtained with the different methods, and last, Section VI
presents the conclusions and future works of this research.

II. PROBLEM STATEMENT

A. Rationale

The classical architecture of model-based algorithms follow
the architecture presented in Figure 1. In general terms,
considering the model in the estimation, control and planning
algorithms significantly improve the operation’s optimality and
reliability. However, the presence of inaccuracies in the model
can compromise the entire operation, and, unfortunately, they
are sometimes unavoidable.

Fig. 1. Model-based approach scheme.

The system model is usually calculated offline after col-
lecting information about the actual system during operation.
Nevertheless, sometimes, the maneuvers accomplished during
the identification process are not rich enough to capture the
complete dynamics of the system and some behaviours could
have been remained without modelling. With classical archi-
tecture, the errors produced during the identification process
are present during the entire operation of the system. More-
over, it cannot capture changes in the model while operating.

In this paper, we propose to include the model identification
as a runtime component that could be continuously estimating
and updating the model of the system while working (see
Figure 2). Therefore, we aim to evaluate the capability of
adapting SOTA model identification techniques to be used
online, capturing their performance and computational cost.

Fig. 2. Model-based approach scheme with the online model identification
component.

B. Generic model formulation

A generic system is usually formulated with differential
equations as:

ẋ = f (x, u, p) + nx (1)

The measured variables follow the equation as:

y = h (x) + ny (2)

In previous equations, x is the state vector, u is control
input, p is an unknown time-varying parameter to be identified,
y is the measured variables, f represents the dynamic of the
system, h is the observation model, and nx and ny represent
zero-mean Gaussian noise.

In general, f is a function of the kinematic and dynamic
characteristics of the system. However, in (1), f is evidently
a function of the parameter p, which varies with time. This,
in turn, makes the implementation of the system dynamics
(1) impossible. Consequently, the model-based techniques,
e.g., controllers and planners, require the information of the
variation of p in their derivations to perform satisfactorily.
Otherwise, in those use-cases in which the system changes its
dynamic properties while operating, the safety of the system
could be compromised, and the assumed optimal process will
not be optimal at all.

III. MODEL IDENTIFICATION TECHNIQUES

An Extended Kalman Filter (EKF) [14] [15], a Multi-State
Constraint Kalman Filter (MSCKF) [16], and an Unscented
Kalman Filter (UKF) [17] have been implemented to evaluate
how good are the classical observers capturing changes in the
dynamic. To do so, we have included the dynamic variables
as unknowns in the state vector as indirectly observable vari-
ables. Furthermore, the Sliding Window Least Square (SWLS)
method [18] has also been adapted to evaluate the performance
of this purely mathematical fitting method to capture changes
in the dynamic variables.

The final objective is to benchmark them and evaluate how
these techniques perform the model identification task in dif-
ferent contexts to help future robotics owners and developers
decide which techniques they should use depending on their
use case and the behaviour expected in their robots.

A. Extended Kalman Filter (EKF)

In estimation theory, the Extended Kalman Filter (EKF) is
the nonlinear version of the Kalman filter, which linearizes
about an estimate of the current mean and covariance. Kalman
filtering is an algorithm that provides estimates of some un-
known variables given the measurements observed over time.
It has been demonstrating its usefulness in various applica-
tions. This filter has a relatively simple form and requires small
computational power. This filter can also indirectly estimate
observable variables over time.

The main advantage of this filter is the minimization of
uncertainty effects on the estimated variables.

This filter can be adapted to observe the dynamics of the
system. To do so, we assume that we obtain the state vector
xk at the time k and the corresponding covariance Pk. We
could include indirectly observable variables like the mass in
the state vector to estimate their values.

In the standard estimation process, the Kalman Filter takes
the sensor measurements and a motion model as input to
calculate the state of the system. In the EKF’s case, the process
evaluates the variables in the model, so the EKF takes the
measurements and control actions as the input to predict the

system’s behaviour. The algorithm will compare the prediction
with the actual input to recalculate the dynamic variables and
their uncertainty in the next step-time. In this way, it is able
to estimate the dynamic of the system online.

So, according to the control input uk and the assumed
dynamic equations (1), we could get the state vector xk+1

at the time k + 1 propagating the model as follows:

x← x+ ẋdt
xk+1 = xk + f (xk, uk) dt

(3)

Next, we need to derive the error state dynamic model:

J = ∂f/∂x
δẋ = Jδx

(4)

J is the jacobian matrix of f with respect to x. After
obtaining the matrix J , we can predict the covariance Pk+1

at the time k + 1:

F = exp (Jdt)
Pk+1 = FPkF

T +Qdt
(5)

Where, Q is the preset covariance of state noise.

Q =

 σ2
x0

. . .
σ2
xdim(x)−1

 (6)

The i-th element of the main diagonal corresponds to the
noise variance of the i-th state. All non-diagonal elements are
0.

After receiving the measurement, we need to update the
state vector and covariance:

ŷ = h (x)
H = ∂h/∂x
S = HPHT +R
K = PHTS−1

dx = K (y − ŷ)
x← x+ dx

P ← (I −KH)P (I −KH)
T
+KRKT

(7)

H is the jacobian matrix of h with respect to x. R is the preset
covariance of measurement noise.

R =

 σ2
y0

. . .
σ2
ydim(y)−1

 (8)

The i-th element of the main diagonal corresponds to the noise
variance of the i-th measurement. All non-diagonal elements
are 0.

B. Multi-State Constraint Kalman Filter: MSCKF

The idea of this part draws lessons from [19]. First, define
the following state:

x =
(
xI xC

)
xC =

(
xc1 · · · xcN

) (9)

Where, xI represents the head state,N represents the window
size. We get xci through the clone of xI at different times
when we get measurements, and the corresponding covariance
is:

P =

(
PII PIC

PT
IC PCC

)
(10)

P is the covariance matrix of x. PII is the variance of xI .
PCC is the variance of xC . PIC is the covariance between xI

and xC . How to get P will be further described below. Similar
to EKF, according to the control input uk and dynamic model,
we can get the state vector xk+1 at the time k + 1:

xI ← xI + ẋIdt (11)

Covariance Pk+1 at the time k + 1 :

F = exp (Jdt)
PII ← FPIIF

T +Qdt

P ←
(

PII FPIC

PT
ICF

T PCC

) (12)

where, Q is the preset covariance of state noise. J and Q have
the same meaning as in EKF (see Section III-A).

When receiving the measurement, we can do state augmen-
tation, and the covariance needs to change accordingly:

P =

(
I

∂xc

∂x

)
P

(
I

∂xc

∂x

)T

(13)

Measurement update is similar to EKF, except that we need
to select the measurement in the whole window.

ŷ = h (x)
H = ∂h/∂x
S = HPHT +R
K = PHTS−1

dx = K (y − ŷ)
x← x+ dx

P ← (I −KH)P (I −KH)
T
+KRKT

(14)

where, R is the measurement noise covariance of the whole
window. H and R have the same meaning as in Section III-A.

C. Unscented Kalman Filter: UKF

Here we refer to [20], [21]. We assume that the state vector,
x at the initial time is µ and the corresponding covariance is∑

.
x =

(
µ µ+ γ

√∑
µ− γ

√∑)
(15)

γ is the tuning parameter. According to the control input and
dynamic model, we predict the state vector and covariance:

xi ← xi + ẋidt

µ←
2l∑
i=0

wmxi∑
←

2l∑
i=0

(xi − µ)wc(xi − µ)
T
+Qdt

(16)

Subscript i indicates column number. wm and wc are the
corresponding weights. l is the state dimension. And Q is
preset covariance of state noise. It has the same meaning as
EKF part.

After receiving the measurement, state and covariance up-
date are as follows:

x =
(
µ µ+ γ

√∑
µ− γ

√∑)
ŷ = h (x)
µy = ŷwm

S =
2l∑
i=0

(ŷi − µy)wc(ŷi − µy)
T
+R

K =

(
2l∑
i=0

(xi − µ)wc(ŷi − µy)
T

)
S−1

dµ = K (y − µy)
µ← µ+ dµ∑
←
∑
−KSKT

(17)

Where, R is the preset covariance of measurement noise. It
has the same meaning as EKF part.

D. Sliding Window Least Square: SWLS

The method of least squares is a standard approach in
regression analysis to approximate the solution of over-
determined systems by minimizing the sum of the squares of
the residuals made in the results of each individual equation.
The most important application is in data fitting. Applied to the
online identification of dynamic systems, the algorithm should
consider the input and the output of several step-times to
avoid generating outliers due to the noise or spontaneous bad
measurements of the sensors. Ideally, the least square method
would use all the data collected during the system operation.
However, in real-time applications this might not be applicable
for two reasons. First, the amount of data accumulated could
saturate the computational resources available in the robot.
Second, if the system changes its dynamic variables online,
the information collected in the past might not represent the
robot’s state in a specific step-time. For this reason, this time,
we applied the Sliding Window Least Square method, in which
the LS algorithm is applied with the data of the last n step-
times. In this way, we create a sliding window of data that
is used within the algorithm. Similar approach was previously
presented in [22], [23].

The optimization variables in the sliding window are defined
as follows:

χ =
(
x0 x1 · · · xN

)
(18)

Where, N is the size of the sliding window to be tuned offline
according to the system. Between the two states of the sliding
window, we will integrate the control input to establish their
constraints. In order to avoid repeated integration during op-
timization iteration, we define some following pre-integration
items, such as αbk

bk+1
, βbk

bk+1
, and γbk

bk+1
[23].

Where, k and k + 1 represent the timestamp of adjacent
states in the sliding window. b represents the body frame.

Next, we need to derive the error state dynamic model:

δz =
(
δα δβ δγ

)
δzbki+1 = Fδzbki +Gn

F = ∂zbki+1

/
∂zbki

G = ∂zbki+1

/
∂n

(19)

Then we can propagate the covariance of pre-integration
measurement:

P bk
i+1 = FP bk

i FT +GQGT (20)

The final optimization problem is:

min
χ

{
∥rprior∥2 +

∑∥∥rkP (xk)
∥∥2
Wk

P

+
∑∥∥rkD (xk xk+1

)∥∥2
Wk

D

} (21)

Where, rprior represents the prior constraint, rkP (xk) rep-
resents measurement residual, rkD

(
xk xk+1

)
represents

dynamic residual. W k
P and W k

D are weight matrix, which can
be regarded as the inverse of covariance matrix.

The expression of rkP (xk) is straightforward:

rkP (xk) = y − ŷ = y − h (xk) (22)

The expression of rkD
(
xk xk+1

)
is as follows:

rkD
(
xk xk+1

)
=

 αbk
bk+1
− α̂bk

bk+1

βbk
bk+1
− β̂bk

bk+1

γbk
bk+1
− γ̂bk

bk+1

 (23)

The least square optimization problem is solved by Ceres1.

IV. CASE STUDY

In order to compare the results of the presented model
identification techniques, we will use a particular case of
study that aims to cover the SESAME2 project use cases
in a generic way. In this case, the proposed system is a
UAV that can be commanded in angular velocities and thrust
independently (4 DoF). By default, this is the lower control
loop accessible in the well-known and widely used DJI drones,
and it is also a flight mode present in the standard open source
autopilots, Arducopter and PX4. The mass of the system
will not be constant during the flight (as it happens in the
pesticide spraying operation). Additionally, initial errors have
been introduced in the model to observe if the system is able
to converge to the actual mass value. This system has been
chosen due to its simplicity and its unique dependency on
mass.

Following, the notation, the system’s dynamic model, and
how the dataset have been generated are presented.

A. Notation

Hereinafter, we will express the vector from A to B as
rAB . The coordinates of this vector in the coordinate system
C is expressed as CrAB . We use quaternions to represent the
rotation of rigid bodies, which is a non-singular expression.
For the detailed introduction and properties of quaternion, we
refer to [24]. qBA denote the attitude of a coordinate frame B
with respect to frame A. The corresponding rotation matrix
is R (qBA). The coordinate transformation is expressed as
follows:

Br = R (qBA)Ar (24)

1http://ceres-solver.org/
2https://www.sesame-project.org/

According to quaternion algebra, We need to pay special
attention to the addition of quaternion and vector, q + δ, and
the subtraction between quaternion and quaternion q1 − q2,
because they involve the operation between manifold and
tangent space. Exponential mapping exp (•) maps a vector
in tangent space to quaternion. Logarithmic mapping does the
opposite.

q + δ := q ⊗ exp
(
δ
2

)
q1 − q2 := 2 log

(
q−1
2 ⊗ q1

) (25)

Here, δ is a vector in tangent space. ⊗ represents quaternion
multiplication.

B. Nominal quadrotor dynamic model with variable mass

As was aforementioned, the dynamic system that we want
to model is a UAV that can be commanded in angular rates and
thrust (4 DoF). It is assumed that the estimator can provide
us with the robot’s full pose. There, let us define the world
coordinate system as W , the geometric centre coordinate sys-
tem as B, the centroid system as M , and the IMU coordinate
system as I . Frame B, M and I are coincident. According to
rigid body dynamics, we can get:

W ṙWB = W vB
W v̇B = 1

mR (qWB)T + g
q̇WB = 1

2qWB ⊗ ω
(26)

Where, T represents the thrust on the frame B and ω
represents the angular velocity on the frame B. We don’t know
how the mass changes, so we assume:

ṁ = 0 (27)

Next, we define the following state vector x :

x =

q
r
v
m

 (28)

Where q, r and v represents the attitude, the position and
the linear velocities of the system respectively.

In order to simplify the notation, we delete the subscript in
the dynamic equations, which will not affect the understand-
ing. We can get the angular velocity ω directly from IMU.
However, we cannot measure the real thrust, so we use the
thrust command T d instead of the measured thrust T , which
means that we have the following assumptions:

T d ≈ T (29)

Next, we define our control input u as:

u =

[
T d

ω

]
(30)

At the same time, it is assumed that we can obtain the
following measurements from the state estimator:

y =

 q
r
v

 (31)

This is reasonable. For example, Visual-Inertial Odometry
(VIO) system can output such high-frequency measurements.
Finally, we get the following system equation and measure-
ment equation.

ẋ = f (x, u) + nx =

1
2q ⊗ ω

v
1
mR (q)T d + g

0

+ nx

y = h (x) + ny =

 q
r
v

+ ny

(32)

Where, nx and ny represent zero-mean Gaussian noise.

C. Dataset

In order to generate a populated dataset to assess the
performance of the different model identification techniques, it
was necessary to choose a control strategy to move the robot
following a specific path or trajectories. To do so, we will
follow the work previously presented in [25], [2]. The dataset
generation framework is, therefore, as the one presented in
the Figure 3. We need to set the robot dynamic model and
reference trajectory with this architecture.

Fig. 3. Dataset generation framework

The trajectory generation algorithm will further generate
dynamically feasible trajectories according to the predefined
trajectory. An MPC control approach generates the optimal
control input according to the hypothetical dynamic model,
measurement state and reference state. We use the actual
dynamic model of the robot, the current state and control input
to obtain the subsequent state of the robot.

We have perform 25 different simulations combining five
different trajectories, namely ”random”, ”loop”, ”lemniscate”,
”zigzag”, and ”square”, with five mass behaviours. Moreover,
to have a rich dataset and enabling future model identification
with data-driven approaches, we have simulated each case
trajectory 50 times, making a total of 1250 simulations.

The reference trajectory and mass change curve we designed
are shown in Figure 4.

Fig. 4. Top: Horizontal view (x-y) of the simulated trajectories; Bottom: Mass
behaviour (y-axis) during the time (x-axis) simulated for each trajectory

V. RESULTS

A. Metrics

In order to compare the different techniques, we have
calculated the mean value of the update time and the Root
Mean Square Percentage Error (RMSPE) of the different algo-
rithms for each dataset for 10 randomly selected experiments.
RMSPE is defined as follows.

RMSPE =

√√√√ 1

N

(
N∑
i=1

(
ŷi − yi

yi

)2
)

(33)

Where ŷi is the estimated value and yi is the groundtruth value.
In the tables found at the bottom of Figures 5-9, the first

column under the algorithm name represents the update time
in milliseconds, and the second column is RMSPE. Mass type
0-2 represent the mass change type from left to right in the
first row of the curve graph. Mass types 3-4 represent the mass
change type from left to right in the second row of the curve
graph. Figure 5 to Figure 9 show the relevant results.

B. MSCKF particularization

According to the formulation presented in Section III-B for
MSCKF algorithm, it is necessary to define the following state
before applying the algorithm:

xI =
(
q r v m

)
xci =

(
qi ri vi

) (34)

C. SWLS particularization

For SWLS, the optimization variables in the sliding window
are defined as follows:

xk =
(
qk rk vk mk

)
, k ∈ [0, N] (35)

Where, N is the size of the sliding window. We will
integrate the control input between the two states of the
sliding window to establish their constraints. In order to avoid
repeated integration during optimization iteration, we define
the following pre-integration items:

αbk
bk+1

=
∫ ∫ tk+1

tk
Rbk

bτ
Tdτ2

βbk
bk+1

=
∫ tk+1

tk
Rbk

bτ
Tdτ

γbk
bk+1

=
∫ tk+1

tk
1
2q

bk
bτ
⊗ ωdτ

(36)

Where, tk and tk+1 represent the timestamp of adjacent
states in the sliding window. b represents the body frame.

The propagation process of the pre-integration items are as
follows:

αbk
i+1 = αbk

i + βbk
i dt+ 1

2R
(
γbk
i

)
Tdt2

βbk
i+1 = βbk

i +R
(
γbk
i

)
Tdt

γbk
i+1 = γbk

i ⊗
(

1
1
2ωdt

) (37)

dt represents the time interval between two adjacent control
input.

Next, we can derive the error state dynamic model by
linearize pre-integration items:

δz =
(
δα δβ δγ δm

)
δzbki+1 = Fδzbki +Gn

F = ∂zbki+1

/
∂zbki

G = ∂zbki+1

/
∂n

(38)

The expression of rkD
(
xk xk+1

)
is as follows:

rkD
(
xk xk+1

)
=

αbk
bk+1
− α̂bk

bk+1

βbk
bk+1
− β̂bk

bk+1

γbk
bk+1
− γ̂bk

bk+1

mk+1 −mk

α̂bk
bk+1

= mk+1R
bk
w

(
pwbk+1

− pwbk − vwbkdt−
1
2gdt

2
)

β̂bk
bk+1

= mk+1R
bk
w

(
vwbk+1

− vwbk − gdt
)

γ̂bk
bk+1

= qbkw ⊗ qwbk+1

(39)

D. Loop trajectory results

Figure 5 shows the results obtained in the loop trajectory.
These results show that all the algorithms performed well
enough and could identify the system changes fast and accu-
rately. According to the table, the faster algorithm is the EKF.
This is an expected result because it is the lighter approach to

compute. For this operation, the best performance according
to the RMSPE is the SWLS in most cases. However, it can
be observed how the EKF can overcome the SWLS method in
the case in which the mass is decreasing and growing multiple
times. This is because the SWLS has a more significant delay
in capturing this behaviour.

Fig. 5. Mass estimation (y-axis [kg]) vs time (x-axis [s]) for loop trajectory

E. Zig-zag trajectory results

Figure 6 presents the performance of the different algo-
rithms during the zigzag trajectory. The results are quite
similar to the one obtained in the loop trajectories.Table results
show again that EKF is the lighter and faster approach while
the SWLS is the more accurate one in most cases. However,
SWLS is again unable to capture the behaviour of changing
the mass abruptly several times.

F. Square trajectory results

Figure 7 shows the results obtained during the square
trajectory for the different mass behaviours. These results are
really interesting and promising because most drone-based
applications of SESAME will accomplish a square pattern.
Again the EKF is the faster approach while the SWLS is the
more accurate.

G. Random trajectory results

Figure 8 presents the performance of the algorithm while
following a random trajectory. Although this part of the dataset
was mainly created to enrich the training dataset of the data-
driven approaches, it can be observed that the model-based
algorithm can adequately capture the changes introduced in
the dynamic of the system.

Fig. 6. Mass estimation (y-axis [kg]) vs time (x-axis [s]) for zig-zag trajectory

Fig. 7. Mass estimation (y-axis [kg]) vs time (x-axis [s]) for square trajectory

H. Lemniscate trajectory results

Figure 9 presents the results obtained during the lemniscate
trajectory. Although the results are quantitatively acceptable,
the plots clearly show that the algorithms are not working as
expected. In this case, the main issue is due to the trajectory
itself.

The lemniscate trajectory demands many efforts from the
control perspective, and the control actions are very close
to the limits of the robot. The trajectory is neither linear
nor follows a constant rotational speed nor linear speed.

Fig. 8. Mass estimation (y-axis [kg]) vs time (x-axis [s]) for random trajectory

Fig. 9. Mass estimation (y-axis [kg]) vs time (x-axis [s]) for lemniscate
trajectory

The control inputs are changing frequently and abruptly. The
robotic system cannot follow the references properly, and some
of the required actions are not adequately followed by the
controller. This situation makes the model-based observers
unable to accurately estimate the mass of the system. Figure
10 and Figure 11 compares the control actions of a lemniscate
trajectory with the ones of a loop trajectory. It can be observed
that the order of magnitude, the frequency and the smoothness
of the input signals are very different in both cases.

Fig. 10. Control efforts for lemniscate trajectory

Fig. 11. Control efforts for loop trajectory

VI. CONCLUSIONS

This paper has shown how different model identification
techniques can be adapted to be executed in real-time and
capture changes in the system dynamic.

As a final reflection and considering the presented results,
we can conclude that selecting one model identification tech-
nique will depend on the robotic system and the specific
operation. Quantitatively, the best approaches have been the
EKF and SWLS. However, all of them have performed well
enough.

Depending on the real-time requirements, the available
computational resources, the specific trajectories to be ac-
complished, and previous model information, the robotic user
could decide using this document as a technical guideline.

In future works, we will validate the feasibility of includ-
ing the online model identification component in the overall
robotic architecture (See Figure 2). We will compare how
MPC performs with the classical and the proposed approach in
different scenarios, including one with a system that changes
its dynamic lively. Additionally, we will explore the applica-
tion of data-driven techniques as a online model identification
tool and compare it with the techniques proposed in this work.

ACKNOWLEDGMENT

This research was supported by the European Union’s Hori-
zon 2020 project SESAME (grant agreement No 101017258).

REFERENCES

[1] R. Teo, J. Jang, and C. Tomlin, “Model predictive quadrotor indoor
position control,” in Proc 43rd IEEE Conf. Decision Control, Paradise
Island, Bahamas, vol. 4, pp. 4268–4273, 2004.

[2] D. Falanga, P. Foehn, P. Lu, and D. Scaramuzza, “PAMPC: Perception-
aware model predictive control for quadrotors,” in IEEE/RSJ Int. Conf.
Intell. Robot. Syst. (IROS), 2018.

[3] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” Optimal Control Applications
and Methods, vol. 36, no. 5, pp. 628–647, 2015.

[4] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 4906–4913, IEEE, 2012.

[5] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Ben-
newitz, and N. Mansard, “Whole-body model-predictive control applied
to the hrp-2 humanoid,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3346–3351, IEEE, 2015.

[6] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,
“Real-time motion planning of legged robots: A model predictive
control approach,” in 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids), pp. 577–584, IEEE, 2017.

[7] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” The Interna-
tional Journal of Robotics Research, vol. 31, no. 5, pp. 664–674, 2012.

[8] M. Castillo-Lopez, P. Ludivig, S. A. Sajadi-Alamdari, J. L. Sanchez-
Lopez, M. A. Olivares-Mendez, and H. Voos, “A real-time approach
for chance-constrained motion planning with dynamic obstacles,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 3620–3625, 2020.

[9] D. Yallappa, M. Veerangouda, D. Maski, V. Palled, and M. Bheemanna,
“Development and evaluation of drone mounted sprayer for pesticide
applications to crops,” in 2017 IEEE Global Humanitarian Technology
Conference (GHTC), pp. 1–7, IEEE, 2017.

[10] S. Spoorthi, B. Shadaksharappa, S. Suraj, and V. Manasa, “Freyr
drone: Pesticide/fertilizers spraying drone-an agricultural approach,” in
2017 2nd International Conference on Computing and Communications
Technologies (ICCCT), pp. 252–255, IEEE, 2017.

[11] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza,
“The foldable drone: A morphing quadrotor that can squeeze and fly,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 209–216, 2018.

[12] A. Lopez-Lora, P. J. Sanchez-Cuevas, A. Suárez, A. Garofano-Soldado,
A. Ollero, and G. Heredia, “Mhyro: Modular hybrid robot for contact
inspection and maintenance in oil & gas plants,” in 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
pp. 1268–1275, IEEE, 2020.

[13] A. Ollero, M. Tognon, A. Suarez, D. Lee, and A. Franchi, “Past,
present, and future of aerial robotic manipulators,” IEEE Transactions
on Robotics, 2021.

[14] K. Fujii, “Extended kalman filter,” Refernce Manual, pp. 14–22, 2013.
[15] M. I. Ribeiro, “Kalman and extended kalman filters: Concept, derivation

and properties,” Institute for Systems and Robotics, vol. 43, p. 46, 2004.
[16] A. I. Mourikis, S. I. Roumeliotis, et al., “A multi-state constraint kalman

filter for vision-aided inertial navigation.,” in ICRA, vol. 2, p. 6, 2007.
[17] K. Xiong, H. Zhang, and C. Chan, “Performance evaluation of ukf-based

nonlinear filtering,” Automatica, vol. 42, no. 2, pp. 261–270, 2006.
[18] B.-Y. Choi and Z. Bien, “Sliding-windowed weighted recursive least-

squares method for parameter estimation,” Electronics Letters, vol. 25,
no. 20, pp. 1381–1382, 1989.

[19] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. Kumar, “Robust stereo visual inertial odometry for
fast autonomous flight,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 965–972, 2018.

[20] V. Wüest, V. Kumar, and G. Loianno, “Online estimation of geometric
and inertia parameters for multirotor aerial vehicles,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pp. 1884–1890,
IEEE, 2019.

[21] C. Hertzberg, R. Wagner, U. Frese, and L. Schröder, “Integrating generic
sensor fusion algorithms with sound state representations through encap-
sulation of manifolds,” Information Fusion, vol. 14, no. 1, pp. 57–77,
2013.

[22] Z. Ding, T. Yang, K. Zhang, C. Xu, and F. Gao, “Vid-fusion: Robust
visual-inertial-dynamics odometry for accurate external force estima-
tion,” in 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 14469–14475, IEEE, 2021.

[23] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monocular
visual-inertial state estimator,” IEEE Transactions on Robotics, vol. 34,
no. 4, pp. 1004–1020, 2018.

[24] J. Sola, “Quaternion kinematics for the error-state kalman filter,” arXiv
preprint arXiv:1711.02508, 2017.

[25] G. Torrente, E. Kaufmann, P. Föhn, and D. Scaramuzza, “Data-driven
mpc for quadrotors,” IEEE Robotics and Automation Letters, vol. 6,
no. 2, pp. 3769–3776, 2021.

