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Abstract

We discuss the projectivity of the moduli space of semistable vector
bundles on a curve of genus g ≥ 2. This is a classical result from the
1960s, obtained using geometric invariant theory. We outline a modern
approach that combines the recent machinery of good moduli spaces with
determinantal line bundle techniques. The crucial step producing an
ample line bundle follows an argument by Faltings with improvements by
Esteves–Popa. We hope to promote this approach as a blueprint for other
projectivity arguments.

Dedicated to the memory of
Conjeevaram Srirangachari Seshadri

In [17], Kollár took a modern approach to the construction of the moduli
space Mg of stable curves of genus g ≥ 2 as a projective variety, avoiding methods
from geometric invariant theory. The approach can be summarized in three
steps.

(i). Prove that the stack of stable curves is a proper Deligne–Mumford stack
Mg [7].

(ii). Use the Keel–Mori theorem to show that Mg has a coarse moduli space
Mg → Mg, where Mg is a proper algebraic space [15].

(iii). Prove that some line bundle on Mg descends to an ample line bundle on
Mg [17, 6].

In [5] the projectivity of Mg was established by giving a stack-theoretic treatment
of Kollár’s paper.

We take a similar approach to constructing the moduli space Mss
X(r, d) of

semistable vector bundles of rank r and degree d on a smooth, proper curve X
as a projective variety. There are again three steps in the proof.

(i). Prove that Mss
X(r, d) is a universally closed algebraic stack of finite type

[19].
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(ii). Use an analogue of the Keel–Mori theorem to show that there exists a
good moduli space Mss

X(r, d) → Mss
X(r, d) [2], where Mss

X(r, d) is a proper
algebraic space.

Unlike the case of Mg, the stack Mss
X(r, d) is never Deligne–Mumford

and the morphism to Mss
X(r, d) will identify nonisomorphic vector bundles,

introducing the notion of S-equivalence.

(iii). Prove that a suitable determinantal line bundle on Mss
X(r, d) descends to

an ample line bundle on Mss
X(r, d).

In Sections 1–3 we define and study the moduli stackMss
X(r, d) and establish

steps (i) and (ii). The main points are summarized in Theorems 2.17 and 3.12.
In Section 5 we discuss step (iii) and give a detailed exposition of the

construction of an ample line bundle on Mss
X(r, d) using techniques from Esteves–

Popa [9]. This method is more recent than the first GIT-free construction due
to Faltings [10], which has received expository accounts by Seshadri (and Nori)
in [22] and for a special case by Hein in [13]. All these constructions build upon
the notion of determinantal line bundles, which we introduce in Section 4.

Because the existence results for good moduli spaces from [2] are currently
restricted to characteristic 0, we make that restriction as well.

1 The moduli stack of all vector bundles

Let k be an algebraically closed field of characteristic 0, and let X be a smooth,
projective, connected curve over k.

We denote by CohX the stack of all coherent sheaf on X. For integers r > 0
and d, we let MX(r, d) denote the stack parameterizing vector bundles on X of
rank r and degree d. An object of MX(r, d) over a scheme S is a vector bundle
E on X × S such that for every geometric point SpecK → S, the restriction
E|X×SpecK has rank r and degree d.

Proposition 1.1. The stack MX(r, d) is an algebraic stack, locally of finite
type over k with affine diagonal.

Proof. The stack CohX is algebraic by [23, Tag 09DS]. Given a map T → CohX
corresponding to a sheaf E on T ×X flat over T , the locus Z ⊆ T ×X where E is
not locally free is closed, so U = T \ pr1(Z) ⊆ T is open by properness, showing
that the substack M⊂ CohX parameterizing vector bundles on X is an open
substack. The Hilbert polynomial PE of a coherent sheaf E on X is determined
by its rank and degree, and by the Riemann–Roch theorem it is given by

PE(n) = rk(E)n+ deg(E) + rk(E)(1− g). (1)

It is locally constant in flat families, so by the discussion in [23, Tag 0DNF] there
is an open and closed substack MX(r, d) ⊂M parameterizing vector bundles of
rank r and degree d.

Since CohX is locally of finite type over k by [23, Tag 0DLZ], and has affine
diagonal by [23, Tag 0DLY], so does MX(r, d).
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There is a universal vector bundle Euniv on X ×MX(r, d). Specializing to
the rank-1 case, we obtain the Picard stack PicdX parameterizing line bundles of
degree d on X. In this case the universal bundle is called the Poincaré bundle and
denoted P. The line bundle det(Euniv) on X ×MX(r, d) induces a determinant
morphism

det : MX(r, d)→ PicdX ,

with the property that (idX ×det)∗P ∼= det(Euniv).
Let L be a line bundle on X of degree d corresponding to a closed point

of PicdX , and let [L] : Spec k → PicdX be the corresponding morphism. The
algebraic stack parameterizing vector bundles with fixed determinant L is defined
as the fiber product

MX(r, L) MX(r, d)

Spec k PicdX .

� det

[L]

(2)

Explicitly, an object of MX(r, L) over a k-scheme S is a pair (E , ϕ), where
E is a vector bundle on X × S with rank r and degree d on the fibers, and
ϕ : det E ∼−→ L|X×S is an isomorphism.

An alternative approach to fixing the determinant uses the residual gerbe
BGm ↪→ PicdX instead. We compare these in Example 3.2.

Proposition 1.2. The stack MX(r, L) is an algebraic stack, locally of finite
type over k with affine diagonal.

Proof. This follows by applying [23, Tag 04TF] for the algebraicity and [23, Tag
06FU] for being locally of finite type. To see that MX(r, L) has affine diagonal,
we use the fact that det : MX(r, d)→ PicdX has affine diagonal (because both
stacks do) and that having affine diagonal is stable under base change.

Let X be an algebraic stack. Let x0 ∈ X (k) be a k-point. By [23, Tag
07WZ], the tangent space TX ,x0

to X at x0 is the set of isomorphism classes
of objects in the groupoid Xx0

(k[ε]/(ε2)), where Xx0
denotes the slice category.

Using deformation theory one can prove the following result about the moduli
stacks.

Proposition 1.3.
(i). The algebraic stacks MX(r, d) and MX(r, L) are smooth over k.

(ii). If E is a vector bundle of rank r and ϕ : L ∼= detE is an isomorphism,
then there are identifications of the Zariski tangent space

TMX(r,d),[E]
∼= Ext1

X(E,E), (3)

TMX(r,L),[(E,ϕ)]
∼= ker

(
Ext1

X(E,E)
tr−→ H1(X,OX)

)
. (4)
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Remark 1.4. Let E be a simple vector bundle of rank r and degree d, that is,
dim HomX(E,E) = 1. We will see in Lemma 2.5 that stable bundles are simple.
By the Riemann–Roch theorem, we have

dim Ext1
X(E,E) = dim HomX(E,E)− χ(X,E∨ ⊗ E)

= 1− deg(E∨ ⊗ E)− rk(E∨ ⊗ E)(1− g)

= r2(g − 1) + 1.

Next, note that since we are working over a field of characteristic 0, the trace
map E∨⊗E → OX is split by the section 1

d idE : OX → E∨⊗E ∼= HomX(E,E).

Thus, the surjection Ext1
X(E,E)→ H1(X,OX) in (4) is split, and so its kernel

has dimension

dim Ext1
X(E,E)− dim H1(X,OX) = r2(g − 1) + 1− g

= (r2 − 1)(g − 1).

2 Semistability

In order to obtain a more well-behaved geometric object, we will restrict ourselves
to an open substack Mss

X(r, d) of the stack MX(r, d). This substack parameter-
izes the semistable vector bundles. The Jordan–Hölder and Harder–Narasimhan
filtrations explain how it is sufficient to consider these vector bundles in order to
describe all vector bundles on X:

• the Harder–Narasimhan filtration allows one to uniquely break up any
vector bundles into semistable constituents;

• the Jordan–Hölder filtration allows one to break up a semistable vector
bundle into stable bundles.

The essential properties of semistability, which will be formalized in Theorem 2.17,
are

• openness: Mss
X(r, d) is an open substack of MX(r, d);

• boundedness: Mss
X(r, d) is a quasicompact;

• irreducibility of the semistable locus.

For more information, in particular on the boundedness of semistable sheaves in
higher dimensions and in arbitrary characteristic, see [11].

2.1 Definition and basic properties

Definition 2.1. Given a nonzero vector bundle E on X, we define the slope of
E to be the rational number

µ(E) :=
deg(E)

rk(E)
.
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Recall that on a smooth curve, any subsheaf of a locally free sheaf is locally
free.

Definition 2.2. A vector bundle E on X is

• semistable if, for every nonzero subsheaf E′ ⊂ E, we have µ(E′) ≤ µ(E),

• stable if it is semistable and the only subsheaf E′ ⊂ E with µ(E′) = µ(E)
is E′ = E,

• polystable if it is isomorphic to a finite direct sum
⊕

iEi, where each Ei is
stable with µ(Ei) = µ(E).

Below are some basic properties of semistable vector bundles.

Lemma 2.3. For a line bundle L, a vector bundle E is (semi)stable if and only
if E ⊗ L is (semi)stable.

Proof. Note that, for any vector bundle E, we have

deg(E ⊗ L) = deg(E) + rk(E) · deg(L).

Therefore, by definition of the slope,

µ(E ⊗ L) = µ(E) + deg(L).

Hence, for any subsheaf E′ ⊂ E, we have

µ(E)− µ(E′) = µ(E ⊗ L)− µ(E′ ⊗ L).

By definition, E is (semi)stable if and only if for all E′ ⊂ E, the above quantity is
positive (resp. non-negative), which holds if and only if E⊗L is (semi)stable.

Lemma 2.4. If E and F are semistable vector bundles with µ(E) > µ(F ), then
HomX(E,F ) = 0.

Proof. Suppose that on the contrary E → F is a nonzero map, and let K and
I be its kernel and image respectively. Since E is semistable, µ(K) ≤ µ(E).
Hence,

µ(I) rk(I) = µ(E) rk(E)− µ(K) rk(K)

≥ µ(E) rk(E)− µ(E) rk(K)

= µ(E) rk(I)

so we see that µ(I) ≥ µ(E) > µ(F ). But now I cannot be a subsheaf of F
because F is semistable.

The following is proved similarly.

Lemma 2.5. Any nonzero endomorphism of a stable bundle E is invertible. In
particular, as k is algebraically closed we have EndX(E) ∼= k.
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We will use the following lemma in the proof of Proposition 2.15 to establish
boundedness.

Lemma 2.6. If E is a semistable vector bundle on X and µ(E) > 2g − 1, then
E is globally generated and H1(X,E) = 0.

Proof. Let x ∈ X(k) be a closed point. Let Ox denote the skyscraper sheaf at x.
By taking the sheaf cohomology of the short exact sequence

0→ E ⊗OX(−x)→ E → O⊕ rk(E)
x → 0,

we see that it suffices to show that H1(X,E ⊗OX(−x)) = 0. By Serre duality,
this is equivalent to HomX(E ⊗ OX(−x), ωX) = 0. Now, µ(E ⊗ OX(−x)) =
µ(E) − 1 > 2g − 2 = µ(ωX) so the result follows by Lemma 2.4 since ωX is
semistable as a line bundle.

2.2 Jordan–Hölder and Harder–Narasimhan filtrations

Every semistable vector bundle E on X admits a Jordan–Hölder filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek = E

where each subquotient Gi = Ei/Ei−1 is a stable vector bundle with µ(Gi) =
µ(E). This filtration is not unique, but the list of subquotients is unique by the
following result. See [20] for a proof.

Proposition 2.7 (Jordan–Hölder filtration). Let E be a semistable vector bundle
on X. Suppose that

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ Ek = E

and
0 = E′0 ⊂ E′1 ⊂ E′2 ⊂ · · · ⊂ E′` = E

are two Jordan–Hölder filtrations with associated graded bundles Gi = Fi/Fi−1

and G′i = F ′i/F
′
i−1. We have ` = k, and there exists a permutation σ ∈ Symk

such that G′i
∼= Gσ(i).

Hence the associated graded grE =
⊕k

i=1Gi of a semistable bundle E is well
defined up to isomorphism. This allows us to make the following definition,
where the S refers to Seshadri.

Definition 2.8. Semistable vector bundles E and E′ of the same rank and
degree are called S-equivalent if their associated graded vector bundles are
isomorphic.

We can think of the Jordan–Hölder filtration as stating that semistable vector
bundles are built out of stable vector bundles of the same slope. Meanwhile, the
result below tells us that all vector bundles are built out of semistable bundles
in a unique way. See again [20] for a proof.
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Proposition 2.9 (Harder–Narasimhan filtration). Let F be a vector bundle on
X. There exists a unique filtration of F by subbundles

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk = F

such that Gi = Fi/Fi−1 is semistable for each i and

µ(G1) > µ(G2) > · · · > µ(Gk).

This filtration is called the Harder–Narasimhan filtration.

Example 2.10 (X = P1). By a theorem of Birkhoff and Grothendieck, vec-
tor bundles on X = P1 split as direct sums of line bundles. Writing E ∼=⊕k

i=1OP1(di)
⊕mi with d1 > d2 > · · · > dk, the associated graded bundles of

the Harder–Narasimhan filtration are Gi = OP1(di)
⊕mi and their slopes are

µ(Gi) = di. In particular E is semistable if and only if k = 1, and stable if and
only if it is a line bundle.

2.3 Openness of semistability

We can now show that semistability is an open property in families. We will use

the results from [23, Tag 0DM1] on Quot, where we will denote Quot
P (t)
E/X/B the

object from [23, Tag 0DP6] for a numerical polynomial P (t), a morphism f : X →
B of schemes, and a quasicoherent sheaf E on X.

Proposition 2.11 (Openness of semistability). Let S be a k-scheme and E be
a vector bundle of rank r and relative degree d on X × S → S. The points p ∈ S
for which Ep is semistable form an open subscheme.

Proof. By standard approximation techniques we can assume that S is of finite
type over k. We may also assume that S is connected. We will show that the
locus of points s ∈ S for which Es is not semistable is closed by expressing it as
a finite union of images of proper morphisms. Because our family is flat, the
Hilbert polynomial PEs(t) is independent of p ∈ S.

By definition, Es is not semistable if and only if there exists some subsheaf
E′ ↪→ Es with µ(E′) > d/r. Considering the cokernel of E′ ↪→ Es, we see that
Es is not semistable if and only if Es has a quotient with Hilbert polynomial
PEs(t)− PE′(t) for some E′ with µ(E′) > d/r. In other words, the set of s ∈ S
such that Es is not semistable is the union of images of relative Quot schemes

Quot
Q(t)
E/X×S/S for the projection X × S → S, where Q(t) ranges over the set

{Q(t) = PEs(t)− PE′(t) | ∃s ∈ S, E′ ⊂ Es with µ(E′) > d/r} .

Relative Quot schemes are proper by [23, Tag 0DPC], so to show that the
nonsemistable locus is closed, it suffices to show that the above set of polynomials
is finite.

The Hilbert polynomial PE′(t) is determined by the rank and degree of E′.
Being a subsheaf of E there are only finitely many possibilities for the rank of
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E′. The requirement µ(E′) > d/r puts a lower bound on the degree of E′. It
remains to show that the degrees of all subsheaves of Es as s varies over S are
bounded above.

To see this, choose a finite morphism X → P1 and consider the induced
morphism f : X × S → P1 × S. If E′ ⊂ Ep is a subsheaf, then f∗E

′ ⊂ f∗Ep is a
subsheaf.

According to Example 2.10, vector bundles on P1 split as direct sums of line
bundles. Only finitely many splitting types occur among the f∗Es for s ∈ S, since
otherwise h0(P1, f∗Es) would achieve infinitely many values, which is impossible
by semicontinuity. Moreover, for each vector bundle on P1, the set of Euler
characteristics of all its subsheaves is bounded above.

Because f is finite, χ(X, f∗E
′) = χ(X,E′). It follows that the Euler charac-

teristics of all subsheaves E′ ⊂ Es are bounded above and, hence, the degrees of
all subsheaves E′ ⊂ Es are bounded above.

2.4 Boundedness and irreducibility

To obtain a finite-type moduli space, the objects parameterized by the moduli
problem must be bounded in the following sense.

Definition 2.12 (Boundedness). A collection of isomorphism classes of vector
bundles on X is called bounded if there exists a scheme S of finite type and
a vector bundle F on X × S → S such that every isomorphism class in the
collection is represented by Fs for some k-point s ∈ S.

When ranging over a bounded collection of isomorphism classes, the set of
values of any discrete algebraic invariant must be finite. However, as soon as
the rank is at least 2, fixing the rank and degree is not sufficient to obtain a
bounded family.

Example 2.13 (An unbounded family). Let x ∈ X be a point, and consider
the collection {Fn} of rank r ≥ 2, degree d vector bundles

Fn = OX(−nx)⊕OX((n+ d)x)⊕O⊕(r−2)
X .

The range of values of h1(X,Fn) is unbounded in this family. Hence, the
collection of all isomorphism classes of vector bundles of fixed rank r ≥ 2 and
degree d cannot be bounded.

One important source of bounded families comes from quotients of a fixed
vector bundle.

Example 2.14 (Boundedness of quotients). Fix a vector bundle F on X and

a polynomial P (t) ∈ Z[t]. The Quot scheme Quot
P (t)
F/X/ Spec k parameterizing

quotients of F with Hilbert polynomial P (t) is of finite type by [23, Tag 0DP9].
Therefore, the collection of isomorphism classes of vector bundles that appear as
a quotient of F with Hilbert polynomial P (t) is bounded: restricting the universal

quotient sheaf on X ×Quot
P (t)
F/X/ Spec k to the open locus where the quotient is

locally free provides a family of vector bundles realizing each isomorphism class.
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Example 2.14 helps us see that semistable bundles of fixed rank and degree
are bounded.

Proposition 2.15 (Boundedness of semistability). The collection of isomor-
phism classes of semistable vector bundles of rank r and degree d on X is
bounded.

Proof. Let x ∈ X be a k-point and let n be an integer such that d/r+n > 2g−1.
For every semistable vector bundle E, the vector bundle E⊗OX(nx) is semistable
by Lemma 2.3 and has slope greater than 2g − 1. Hence, by Lemma 2.6, the
vector bundle E ⊗OX(nx) is globally generated and h1(X,E ⊗OX(nx)) = 0.
In other words, E ⊗OX(nx) is a quotient of V ⊗OX where V is a vector space
of dimension h0(X,E ⊗ OX(nx)), and this dimension is independent of E. It
follows that every semistable bundle E of rank r and degree d arises as a quotient

V ⊗OX(−nx)→ E.

Boundedness of this family now follows from Example 2.14 with F = V ⊗
OX(−nx) and P (t) = d+ r(t+ 1− g).

Proposition 2.16 (Irreducibility of the moduli stack). The moduli stackMss
X(r, d)

is irreducible. The same is true for Mss
X(r, L).

Proof. For a closed point x ∈ X(k), Lemma 2.3 says that E is semistable
if and only if E ⊗ OX(x) is semistable. This gives rise to an isomorphism
Mss

X(r, d) → Mss
X(r, d + r). Therefore, it suffices to prove the claim when

d > r(2g − 1). In other words, we may assume that the slope is at least 2g − 1,
and so all semistable bundles of our fixed rank and degree are globally generated
by Lemma 2.6.

We will construct an irreducible variety V ss that maps to Mss
X(r, d) surjec-

tively. Because V ss is a scheme the morphism is automatically representable,
and so we get an induced surjection on the level of topological spaces by [23, Tag
04XI]. But then the topological space is irreducible, and hence so is the stack.
Our space V ss will parameterize semistable extensions of a degree-d line bundle
by a rank-(r − 1) trivial bundle. For a fixed line bundle L, the extensions

0→ Or−1
X → E → L→ 0 (5)

are parameterized by Ext1
X(L,Or−1

X ) = H1(X,L∨)r−1. To parameterize such

extensions of all degree d line bundles, let L be a Poincaré line bundle on X×PicdX
and let π : X × PicdX → PicdX be the projection. By the theorem on cohomology
and base change, the fiber of the vector bundle V = (R1π∗L∨)r−1 over L ∈ PicdX
is the space of extensions H1(X,L∨)r−1, and there is a universal extension on
X × V . By Proposition 2.11, the locus V ss where the universal extension is
semistable is an open subvariety, so we obtain a map V ss →Mss

X(r, d). Clearly
V is irreducible, hence so is the open subvariety V ss.

To show that this map is surjective, we must show that every semistable
bundle E arises as an extension as in (5). By the first paragraph of the proof, E is

9
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globally generated. For such an E, we claim there exists a subspace Γ ⊂ H0(X,E)
of dimension r − 1, so that the evaluation map

Γ⊗OX → E (6)

has rank r− 1 at all points of X. To see this, we use a dimension count. At each
point x ∈ X, we consider the map of vector spaces H0(X,E) → E(x), where
E(x) denotes the fiber of E at x. We wish to select a Γ in the Grassmannian
Gr(r−1,H0(X,E)) which does not meet the kernel nontrivially. Since the kernel
has codimension r, the linear spaces meeting it form a codimension-2 Schubert
variety in Gr(r − 1,H0(X,E)). Varying x over X, we see that the collection of
Γ’s where (6) has rank less than r − 1 has codimension at least 1. Hence, there
exists some Γ where (6) has rank r− 1. For such Γ, we obtain an exact sequence

0→ Γ⊗OX → E → det(E)→ 0.

This shows that E occurs as an extension of a degree d line bundle by a rank-(r−1)
trivial bundle. Hence, E is in the image of V ss →Mss

X(r, d).
The proof forMss

X(r, L) is similar, using an open subscheme of Ext1
X(L,Or−1

X )
surjecting onto the stack.

We summarize the results of this section as follows.

Theorem 2.17. The moduli stacks Mss
X(r, d) and Mss

X(r, L) are irreducible
algebraic stacks, of finite type over k with affine diagonal. They are moreover
smooth, and their Zariski tangent spaces are given in Proposition 1.3.

Remark 2.18. One can show that if the genus of X is at least 2, then for
any integer r > 0 and line bundle L ∈ PicX there exist stable vector bundles
of rank r and determinant L; see, e.g., [21, Lemma 4.3]. Hence the open
substacks Ms

X(r, d) ⊆ Mss
X(r, d) and Ms

X(r, L) ⊆ Mss
X(r, L) of stable bundles

are nonempty and dense.

3 Good moduli spaces

To study the properties of an algebraic stack, we often want to find the best
possible approximation as a scheme or algebraic space. For a Deligne–Mumford
stack such a procedure is given by the Keel–Mori theorem, producing a coarse
moduli space. For an algebraic stack the first author introduced the notion of a
good moduli space in [1] and in [2] criteria to verify its existence were established.
The goal of this section is to briefly discuss how Mss

X(r, d) fits into this general
framework.

The following example explains why the stack Mss
X(r, d) is not Deligne–

Mumford and the Keel–Mori theorem does not apply.

Example 3.1. The automorphism group of any semistable vector bundle con-
tains a canonical copy of Gm acting by scalars, and moreover Aut(F ) = Gm

10



when F is a stable bundle by Lemma 2.5. In particular, the stack Mss
X(r, d) is

not Deligne–Mumford, as the automorphism groups of all points are infinite.
A prototypical example of a strictly semistable vector bundle of rank 2 and

degree 0 is the polystable bundle F = OX ⊕OX . Now Aut(F ) = GL2, so the
dimension of the automorphism group can jump up when going from the stable
locus to the strictly semistable locus.

The automorphism groups do not have to be reductive either. If F fits in a
non-split exact sequence

0→ OX
i−→ F

q−→ OX → 0,

then the map (a, b) 7→ a · idF + ab · i ◦ q gives an an isomorphism Gm × Ga
∼=

Aut(F ). Such extensions are parameterized by the projective space

PExt1
X(OX ,OX) ∼= Pg−1

.

Example 3.2. For Mss
X(r, L) as defined in (2) one has generically a finite

stabilizer, because for a stable vector bundle with fixed determinant the auto-
morphisms need to preserve the isomorphism, and hence are isomorphic to µr.

If instead we took the fiber product along the closed substack BGm ↪→ PicdX
then the resulting closed substack would have the same stabilizers as Mss

X(r, d),
and in particular they would never be finite.

Observe that, with the first definition of Mss
X(r, L), if gcd(r, degL) = 1

then there are no strictly semistable vector bundles, and Mss
X(r, L) is Deligne–

Mumford. In this case Mss
X(r, L) is a µr-gerbe over its coarse moduli space.

With the second definition the stack is rather a Gm-gerbe over this coarse moduli
space.

Example 3.3. The moduli stack Mss
X(r, d) is not separated, despite its many

other nice properties. Indeed, if it were separated, its diagonal would be proper.
But the diagonal is affine, hence it would be finite, and so the stabilizers would
be finite as they are the fibers of the diagonal. This contradicts the previous
example. Likewise, the moduli stack Mss

X(r, L) is not separated if the strictly
semistable locus is nonempty.

Definition 3.4. Let f : X → X be a quasi-compact and quasi-separated
morphism over k, where X is an algebraic stack and X is an algebraic space.
We say that f is a good moduli space if

(i). f is cohomologically affine, i.e., f∗ : Qcoh X → QcohX is exact;

(ii). the morphism OX → f∗OX is an isomorphism.

We now summarize some of the fundamental properties of good moduli spaces
that will be relevant for us. See [1] for a complete statement.

Theorem 3.5. Let X be an algebraic stack of finite type over k, and let
f : X → X be a good moduli space.

11



(i). The map f is surjective, universally closed, and initial for maps to algebraic
spaces.

(ii). The space X is of finite type over k.

(iii). The map f identifies two k-points x, y : Spec k → X if and only if the
closures of {x} and {y} in |X | intersect. In particular, f induces a
bijection on closed points.

(iv). The pullback f∗ induces an equivalence of categories between vector bundles
on X and those vector bundles F on X such that the stabilizer of any
closed point x : Spec k →X acts trivially on x∗F .

The following existence theorem for good moduli spaces is a specialized
version of [2, Theorem A], in the form in which we will apply it. The terms
“S-complete” and “Θ-reductive” in the statement refer to certain valuative criteria
that we will discuss below.

Theorem 3.6. Let X be an algebraic stack of finite type over k with affine
diagonal. There exists a good moduli space X → X where X is a separated
algebraic space over k if and only if

(i). X is S-complete, and

(ii). X is Θ-reductive.

Moreover, X is proper if and only if X is universally closed, or equivalently
satisfies the existence part of the valuative criterion for properness.

3.1 Langton’s semistable reduction theorem

We first discuss the last part of Theorem 3.6. Since the stacks Mss
X(r, d) and

Mss
X(r, L) are quasicompact and have affine diagonal, hence are quasiseparated, it

follows from [23, Tags 0CLW and 0CLX] that universal closedness is equivalent
to the existence part of the valuative criterion for properness.

The valuative criterion states the following. If R is a discrete valuation ring R
with residue field κ and fraction field K, then for every 2-commutative diagram

SpecK X

SpecR Spec k

there exists a field extension K ′/K and a discrete valuation ring R′ ⊆ K ′

dominating R, such that there exists a morphism SpecR′ → X making the
diagram

SpecK ′ SpecK X

SpecR′ SpecR Spec k
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2-commutative.
It turns out that for Mss

X(r, d) and Mss
X(r, L) it is not necessary to consider

field extensions of K, by the following classical theorem of Langton [19].

Theorem 3.7. Let E be a semistable vector bundle of rank r and degree d
on XK . There exists a vector bundle E on XR such that EK ∼= E and Eκ is
semistable. Thus, the stacks Mss

X(r, d) and Mss
X(r, L) are universally closed.

According to Example 3.3, the stack Mss
X(r, d) is not separated, and there

will in general be many extensions of E to XR. However, for any two extensions,
the central fibers will be S-equivalent, as we will see in Theorem 3.12, justifying
the notion of S-equivalence. In particular, over the stable locus Ms

X(r, d) any
two extensions are isomorphic, although not uniquely.

3.2 Θ-reductivity and S-completeness

We now turn to the more contemporary ingredients of Theorem 3.6. Let R
denote a discrete valuation ring with field of fractions K and residue field k, and
let π be a uniformizer. We define the quotient stacks

• ΘR = [SpecR[t]/Gm] where the action has weight −1,

• STR := [(SpecR[s, t]/(st − π))/Gm] where the action has weight 1 on s
and −1 on t.

Both Θ-reductivity and S-completeness are lifting criteria for codimension-2
punctures in ΘR and STR. The notion of Θ-reductivity is encoded by the lifting
criterion in the left diagram, whereas S-completeness is the lifting criterion in
the right diagram:

ΘR \ {0} X

ΘR Spec k

∃!

STR \ {0} X

STR Spec k

∃! (7)

The notion of Θ-reductivity was introduced in [12] and that of S-completeness
in [2, Section 3.5]. If X is an algebraic stack with affine diagonal, then in either
criterion, a lift is automatically unique by [2, Proposition 3.17].

Each of the two lifting criteria encodes the extension of a certain type of
filtration over the puncture, which we will now describe.

3.2.1 Θ-reductivity

We let 0 ∈ ΘR be the unique closed point defined by the vanishing of t and the
uniformizer π ∈ R. Observe that ΘR \ 0 = ΘK ∪SpecK SpecR. We have the
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following two cartesian diagrams which describe the geometry of ΘR:

SpecR BRGm

SpecK ΘR BkGm

ΘK Θk

t6=0 t=0

π 6=0 π=0

(8)

Here the maps on the left are open embeddings and on the right are closed
embeddings.

A morphism ρ : Θ→ CohX corresponds to the data of a coherent sheaf E on
X and a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E. Under this correspondence,
ρ(1) = E and ρ(0) =

⊕
iEi+1/Ei is the associated graded. The map ρ : Θ →

CohX factors through MX(r, d) (resp. Mss
X(r, d)) if and only if E is a vector

bundle (resp. semistable vector bundle) of rank r and degree d and each factor
Ei+1/Ei is a vector bundle (resp. semistable vector bundle of slope µ = d/r).
There are analogous descriptions for morphisms from ΘA for a k-algebra A.

Under this correspondence, the Θ-reductivity of these stacks translates into
a valuative criterion for filtrations. For Mss

X(r, d), Θ-reductivity translates
into the following: for every discrete valuation ring R with fraction field K
and semistable vector bundle E on XR of rank r and degree d, any filtration
0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = EK of the generic fiber where each factor Gi+1/Gi is
semistable of slope µ = d/r extends to a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E
where each factor Ei+1/Ei is a family of semistable vector bundles on X over R.
Note that the factors Gi+1/Gi are semistable of slope d/r for all i if and only if
Gi is semistable of slope d/r for all i if and only if µ(Gi) = d/r for all i.

Proposition 3.8. The stacks CohX , Mss
X(r, d), and Mss

X(r, L) are Θ-reductive.

Proof. First consider CohX . Let E be an R-flat coherent sheaf on XR and let
0 = G0 ⊂ G1 ⊂ · · · ⊂ Gn = EK be a filtration of the generic fiber. By descending
induction starting with j = n, suppose that we have constructed a filtration
Ej ⊂ Ej+1 ⊂ · · · ⊂ En = E extending G•. Since the relative Quot scheme of
quotients of Ej with the same Hilbert polynomial as Gj/Gj−1 is proper over R,
there is a unique subsheaf Ej−1 ⊂ Ej with (Ej−1)K = Gj−1 and Ej/Ej−1 flat
over R. This gives the next step in the filtration E•.

To see thatMss
X(r, d) is Θ-reductive, suppose that E is a family of semistable

vector bundles on XR and G• is a filtration of EK such that the sheaves Gi are
semistable vector bundles with µ(Gi) = d/r. By the previous paragraph, G•
extends to E• over R, and we must show that in the sheaves (Ei)k are semistable
as well. Since each Ei is flat over R, we have µ((Ei)k) = µ(Gi) = d/r, and so
(Ei)k is a subsheaf of the semistable vector bundle Ek of the same slope, hence
a semistable vector bundle itself. The same argument shows that Mss

X(r, L) is
Θ-reductive.
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3.2.2 S-completeness

The stack STR can be viewed as a local model of the quotient [A2/Gm] where A2

has coordinates s and t with weights 1 and −1; indeed, STR is the base change of
the good moduli space [A2/Gm]→ Spec k[st] along SpecR→ Spec k[st] defined
by st 7→ π.

We let 0 ∈ STR be the unique closed point defined by the vanishing of s and
t. Observe that STR \ 0 is the non-separated union SpecR ∪SpecK SpecR. We
have the following two cartesian diagrams which describe the geometry of STR:

SpecR Θk

SpecK STR BkGm

SpecR Θk

s6=0 s=0

t 6=0 t=0

. (9)

Here the maps on the left are open embeddings and those on the right are closed
embeddings.

Remark 3.9. If G is a linear algebraic group over k, then BG is S-complete if
and only if G is reductive (see [2, Proposition 3.45 and Remark 3.46]). Moreover,
as S-completeness is preserved under closed substacks, it follows that every closed
point (corresponding to a polystable object) in an S-complete algebraic stack
with affine diagonal has a reductive stabilizer.

We will see in Lemma 3.11 below that the closed points of Mss
X(r, d) cor-

respond to polystable vector bundles, so although some k-points of Mss
X(r, d)

may have nonreductive stabilizers as in Example 3.1, such points necessarily
correspond to non-polystable bundles.

Proposition 3.10. The stacks CohX , Mss
X(r, d), and Mss

X(r, L) are S-complete.

We omit the proof of this proposition, which can be proven along the same
lines as Proposition 3.8 using the interpretation of morphisms from STR to
Mss

X(r, d) from [2, Remark 3.36].
We have summarized in Table 1 the properties of Mss

X(r, d), MX(r, d), and
CohX discussed in the first three sections.

3.3 Existence of good moduli spaces

In this subsection we will establish the existence and basic properties of good
moduli spaces for the stacks Mss

X(r, d) and Mss
X(r, L), but before doing so we

make an observation regarding their topology.

Lemma 3.11.

(i). If E is a semistable vector bundle, then the corresponding k-point [E] ∈
Mss

X(r, d)(k) contains the point [grE ] in its closure, where grE is the graded
bundle associated to a Jordan–Hölder filtration.
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Property Mss
X(r, d) MX(r, d) CohX

affine diagonal yes yes, yes,
Proposition 1.1 [23, Tag 0DLY]

locally of finite type yes yes, yes,
Proposition 1.1 [23, Tag 0DLZ]

quasicompact yes, no, no
Proposition 2.15 Example 2.13

Θ-reductive yes, no yes,
Proposition 3.8 Proposition 3.8

S-complete yes, no yes,
Proposition 3.10 Proposition 3.10

existence part yes yes yes
of valuative criterion

separated no, no no
Example 3.3

existence of yes, no no
good moduli space Theorem 3.12

Table 1: Properties of the stacks Mss
X(r, d) ⊂MX(r, d) ⊂ CohX

(ii). A point [E] ∈Mss
X(r, d)(k) is closed if and only if E is polystable.

The same holds for the stack Mss
X(r, L).

Proof. (i). If E is semistable but not stable, there exists a non-split exten-
sion 0 → E′ → E → E′′ → 0 of semistable vector bundles of the same
slope. Let E be the universal family over the affine line in Ext1

X(E′′, E′)
spanned by this extension, so that E is a family of semistable vector bundles
on X parameterized by A1 such that Et ∼= E if t 6= 0 and E0 ∼= E′ ⊕ E′′.
The resulting map

[E ] : A1 →Mss
X(r, d)

satisfies t 7→ [E] if t 6= 0 and 0 7→ [E′ ⊕ E′′]. It follows that [E′ ⊕ E′′] is
contained in the closure of [E]. Iterating this construction for E′ and E′′

shows that [grE ] is in the closure of [E].

(ii). For a contradiction, suppose E is a polystable vector bundle such that [E]
is not closed, and let [F ] be in its closure. By (i), [grF ] is in the closure of
[F ] and, since no two points can be in the closure of each other, we must
have E 6∼= grF .

On the other hand, if Ei is stable with the same slope as E, then Ei
appears as a direct summand of E with multiplicity homX(Ei, E) =
dimk HomX(Ei, E) and similarly for grF .

For any Ei, the function homX(Ei,−) is upper semicontinuous in the second
variable, since [grF ] is in the closure of [E], so we have homX(Ei, E) ≤
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homX(Ei, grF ). This means that any stable summand of E appears in grF
with at least the same multiplicity. But E and F have the same rank, so
we must have E ∼= grF , a contradiction. Thus, [E] is closed.

Theorem 3.12.

(i). There exist good moduli spaces

Mss
X(r, d)→ Mss

X(r, d)

Mss
X(r, L)→ Mss

X(r, L).

(ii). These good moduli space maps induce bijections between the k-points of
the good moduli space and S-equivalence classes of semistable sheaves.

(iii). The good moduli spaces Mss
X(r, d) and Mss

X(r, L) are irreducible, proper
algebraic spaces of dimensions

dim Mss
X(r, d) = r2(g − 1) + 1,

dim Mss
X(r, L) = (r2 − 1)(g − 1).

Proof.

(i). This follows from Propositions 3.8 and 3.10 and the first part of Theorem
3.6.

(ii). By Theorem 3.5(iii), two k-points [E], [E′] ∈ Mss
X(r, d) map to the same

point in Mss
X(r, d) if and only if the closures of {[E]} and {[E′]} inMss

X(r, d)
intersect. On the one hand, if E is any semistable vector bundle, then by
Lemma 3.11(i) [E] contains [grE ] in its closure, so both points map to the
same point in Mss

X(r, d). On the other hand, if E and E′ are polystable
and nonisomorphic, then by Lemma 3.11(ii), the corresponding points in
Mss

X(r, d) are closed and distinct, hence map to distinct points in Mss
X(r, d).

(iii). The stacks are irreducible by Proposition 2.16 and the good moduli space
maps are surjective by Theorem 3.5(i), so the good moduli spaces are
irreducible as well. They are proper by Proposition 3.7 and the second
part of Theorem 3.6.

To compute the dimensions, one can show using (ii) and Lemma 2.5 that
over the stable locus Ms

X(r, d) ⊆ Mss
X(r, d) the good moduli space map

is a Gm-gerbe over its image Ms
X(r, d), and similarly for Mss

X(r, L). Since
the stable loci are moreover nonempty by Remark 2.18, the dimensions
now follow from Proposition 1.3 and Remark 1.4.
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4 Determinantal line bundles

Let X be a smooth, projective and connected curve over k. For an algebraic
stack S over k we consider the diagram

X ×S

X S

q p

In this setting we can freely apply cohomology and base change arguments,
because p is representable by schemes. If E is a vector bundle on X ×S , then
the derived direct image Rp∗E is a perfect complex on S with amplitude in
[0, 1]. In fact, something stronger is true. We will use the construction of [14,
Proposition 2.1.10]. Let E be a vector bundle on X ×MX(r, d). Then there
exists a short exact sequence

0→ E−1 → E0 → E → 0

of vector bundles such that R0p∗Ej = 0 and Kj := R1Ej+1 is locally free for
j = 0, 1. In particular, we have a quasi-isomorphism K• := [K0 → K1]→ Rp∗E .
We make the following definition.

Definition 4.1 (Determinants and sections). If E is a vector bundle on X ×S
and [K0 → K1] is a two-term complex of locally free sheaves such that Rp∗E ∼
[K0 → K1], we define the line bundle

det Rp∗E := det(K0)⊗ det(K1)∨.

If rk(Rp∗E) = 0, then rkK0 = rkK1 and the dual (det Rp∗E)∨ is equipped with
a section, locally given by the determinant of the map K0 → K1.

As described in [23, Tag 0FJI], the definition of det Rp∗E is independent of
the choice of quasi-isomorphism with a two-term complex.

We will apply this construction in the case S =MX(r, d) and E = Euniv ⊗
q∗V , where Euniv is the universal vector bundle on X ×MX(r, d) and V is a
vector bundle on X. The universal vector bundle exists tautologically because
we are working with the moduli stack. Consider the diagram

X ×MX(r, d)

X MX(r, d).

q p

Proposition 4.2 (Determinant is multiplicative). If

0→ E ′ → E → E ′′ → 0,

is an exact sequence of vector bundles on X ×MX(r, d), then

det Rp∗E = (det Rp∗E ′)⊗ (det Rp∗E ′′).
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Proof. As before, we can find a two-term complex E• = [E−1 → E0] supported
in degrees [−1, 0] and a quasi-isomorphism E• → E with the properties described
above. We choose E ′• and E ′′• similarly. In fact, it follows from the construction
in the proof of [14, Proposition 2.1.10] that we may choose these resolutions
compatibly, so that we have a short exact sequence

0→ E ′• → E• → E ′′• → 0

of complexes, compatible with the quasi-isomorphisms to the members in our
original exact sequence. Taking cohomology, we find a short exact sequence

0→ K ′• → K• → K ′′• → 0

of complexes of locally free sheaves on MX(r, d). The result follows from
the multiplicativity of the determinant in short exact sequences of locally free
sheaves.

Definition 4.3 (Determinantal line bundles and sections). For a vector bundle
V on X, we define the determinantal line bundle

LV := (det Rp∗(q
∗V ⊗ Euniv))∨

on MX(r, d) associated to V . If χ(X,V ⊗ E) = 0 for all [E] ∈ MX(r, d), or
equivalently by the Riemann–Roch theorem

d rk(V ) + r deg(V ) + r rk(V )(1− g) = 0, (10)

then the rank of Rp∗(q
∗V ⊗ Euniv) is zero and we define the section sV ∈

Γ(MX(r, d),LV ) as in Definition 4.1.

Remark 4.4. Since Rp∗(q
∗V ⊗ Euniv) is perfect, its construction commutes

with base change. In particular, its restriction to a k-point [E] ∈ MX(r, d) is
identified with the two-term complex RΓ(X,E⊗V ). If moreover χ(X,V ⊗E) =
h0(X,V ⊗E)− h1(X,V ⊗E) = 0, we see that indeed rk(Rp∗(q

∗V ⊗Euniv)) = 0.

In order to state some basic properties of the construction in Definition
4.3, we recall that, by the universal property of the Picard stack PicdX , the
determinant det(Euniv) of the universal vector bundle on X ×MX(r, d) induces
a morphism

det : MX(r, d)→ PicdX

such that (det× idX)∗P ∼= det(Euniv), where P is the Poincaré bundle on
PicdX ×X.

Proposition 4.5 (Properties of the determinantal line bundle). The following
hold:

(i). The assignment V 7→ LV induces a group homomorphism

K0(X)→ Pic(MX(r, d)). (11)

Consequently, the isomorphism class of the line bundle LV depends only
on rk(V ) and det(V ).
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(ii). If V and W are vector bundles with equal rank and degree, then there exists
a line bundle N on PicdX such that

LW ∼= LV ⊗ det∗N .

Proof. An exact sequence 0 → V1 → V2 → V3 → 0 of vector bundles on X
induces an exact sequence of vector bundles

0→ q∗V1 ⊗ Euniv → q∗V2 ⊗ Euniv → q∗V3 ⊗ Euniv → 0,

which by Proposition 4.2 induces an isomorphism

LV2
∼= LV1

⊗ LV3
.

Thus, we have a group homomorphism K0(X) → Pic(MX(r, d)). The second
statement follows from the isomorphism K0(X) ∼= Z ⊗ Pic(X) given by V 7→
(rk(V ),det(V )). This proves (i).

By (i), the isomorphism type of LV depends only on the rank rV and
determinant of V , so we may assume that V = O⊕rV −1

X ⊕ OX(D) for some
divisor D on X, and similarly for W . Moreover, writing D = D1 − D2 as a
difference of effective divisors and using standard exact sequences, we see that
[OX(D)] = [OX ] + [OD1 ]− [OD2 ] in K0(X). This implies that the classes of V
and W in K0(X) differ only by the class of a divisor of degree 0. Thus, by the
additivity of the determinantal construction, it suffices to prove that

det Rp∗(Euniv ⊗ q∗Ox) ∼= det∗N ′

for some line bundle N ′ on PicdX , where x ∈ X is a closed point. If we view
Ex = Euniv|Mss

X(r,d)×{x} and Px = P|PicdX ×{x}
as sheaves onMss

X(r, d) and PicdX
respectively, then we have

det Rp∗(Euniv ⊗ q∗Ox) = det Ex = det∗ Px.

This proves (ii).

Definition 4.6. Let E be a vector bundle on X. We say that E is cohomology-
free if h0(X,E) = h1(X,E) = 0.

The following proposition relates cohomology-freeness to the properties of
sections of determinantal line bundles. It will be an essential tool in the ampleness
proof.

Proposition 4.7. If χ(X,E⊗V ) = 0 for all [E] ∈MX(r, d), then the following
are equivalent:

• the section sV ∈ Γ(MX(r, d),LV ) is nonzero at a vector bundle [E] ∈
MX(r, d);

• E ⊗ V is cohomology-free.
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Proof. In the setup of Definition 4.3 the morphism of line bundles det j : det(K0)→
det(K1) is nonzero at the point [E] ∈ MX(r, d) if and only if the morphism
of vector bundles j : K0 → K1 is an isomorphism at [E]. Since the derived
direct image sheaf is the cohomology of this complex, this occurs if and only if
h0(X,E ⊗ V ) = h1(X,E ⊗ V ) = 0.

Remark 4.8. We emphasize that while LV only depends on rk(V ) and det(V ),
the section sV does depend on V itself. We will leverage this fact to produce
enough sections of LV to establish ampleness. Notice also that, under the
assumption χ(X,E⊗V ) = 0, the vanishing of H0(X,E⊗V ) is equivalent to the
vanishing of H1(X,E ⊗ V ).

We now specialize the construction to the open substackMss
X(r, d) ⊆MX(r, d).

As explained in the introduction, our goal is to prove that the proper algebraic
space Mss

X(r, d) obtained in Theorem 3.12 is actually a projective scheme. For
this we need to produce an ample line bundle on it, and the determinantal line
bundle we have constructed a priori lives on Mss

X(r, d). To remedy this with the
following.

Proposition 4.9. The determinantal line bundle LV of Proposition 4.7 associ-
ated to a vector bundle V descends to Mss

X(r, d), that is, there exists a unique
line bundle LV ∈ Pic(Mss

X(r, d)) such that LV ∼= φ∗LV .

Proof. By Theorem 3.5(iv), we must show that stabilizers of Mss
X(r, d) act

trivially on the fibers of LV . By Theorem 3.12(ii), the closed points of Mss
X(r, d)

correspond to polystable bundles, and for a polystable bundle E =
⊕n

j=1E
⊕mj

j ,
where the Ei are pairwise nonisomorphic, we have Aut(E) ∼= GLm1

× · · ·×GLmn
.

The fiber of LV |[E] is identified with

det RΓ(X,E ⊗ V ) =

n∏
i=1

(det Hi(X,E ⊗ V ))⊗(−1)i .

An element (g1, . . . , gn) ∈ Aut(E) acts on

det Hi(X,E ⊗ V ) ∼=
n⊗
j=1

(
det Hi(X,Ej ⊗ V )

)⊗mj

by multiplication with
∏n
j=1 det(g1)dim Hi(X,Ej⊗V ), and thus on LV |[E] by multi-

plication with
∏n
j=1 det(gj)

χ(X,Ej⊗V ). But each Ej has slope equal to d/r, so by
the assumption on V we have χ(X,Ej ⊗ V ) = 0, and so the action is trivial.

Corollary 4.10. For a line bundle L of degree d on X, the restriction of the
determinantal line bundle LV to Mss

X(r, L) only depends on the rank and degree
of V .

Proof. We have commuting diagrams
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Mss
X(r, L) Mss

X(r, d)

Spec k PicdX

� det

[L]

and

Mss
X(r, L) Mss

X(r, d)

Mss
X(r, L) Mss

X(r, d).

where in the second square, both vertical arrows are good moduli space maps.
If V and W are vector bundles of equal rank and degree on X, both satisfying
condition (10), then by Proposition 4.7(ii), there exists a line bundle N on
PicdX such that LW ∼= LV ⊗ det∗N . The left diagram shows that, restricting
to Mss

X(r, L), this isomorphism becomes LW ∼= LV . The right diagram now
shows that the restrictions of LV and LW to Mss

X(r, L) become isomorphic after
pulling back to Mss

X(r, L), so the restrictions must be isomorphic to begin with,
by Theorem 3.5(iv).

Using geometric invariant theory, Drézet–Narasimhan gave in [8, Théorèmes
B, C] the following description of the Picard groups of the good moduli spaces.

Theorem 4.11 (Drézet–Narasimhan). There exist isomorphisms

Pic(Mss
X(r, d)) ∼= Pic(PicdX)⊕ Z,

Pic(Mss
X(r, L)) ∼= Z.

(12)

In the second line Z is generated by the determinantal line bundle LV , where V
is chosen to be of minimal rank.

This explains how the isomorphism type of the line bundle LV on the
good moduli space depends on the invariants of the vector bundle V satisfying
χ(X,E ⊗ V ) = 0, building upon Proposition 4.5.

5 Projectivity

In this section we will prove the following result.

Theorem 5.1. Let X be a smooth projective curve of genus g ≥ 2. The good
moduli spaces Mss

X(r, d) and Mss
X(r, L) are projective varieties of dimension r2(g−

1) + 1 and (r2 − 1)(g − 1) respectively.

We begin by reducing the projectivity of Mss
X(r, d) to that of Mss

X(r, L). The
determinant morphism

det : Mss
X(r, d)→ PicdX

discussed above descends to a map

det : Mss
X(r, d)→ PicdX

of good moduli spaces whose fiber over [L] ∈ PicdX is the moduli space Mss
X(r, L).

It is a classical fact that PicdX is a projective variety isomorphic to the Jacobian
of X. Moreover, since Mss

X(r, d) is a proper algebraic space, to conclude that it
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is a projective scheme, it suffices by [23, Tag 0D36] to produce a line bundle
on it whose restriction to each fiber Mss

X(r, L) is ample. We will show that
the determinantal line bundle LV will work for an arbitrary vector bundle V
satisfying condition (10) below.

From now on, we will fix a line bundle L of degree d on X and focus on the
moduli space Mss

X(r, L).

Setup Denote h = gcd(r, d) and set r1 = r/h and d1 = d/h. Let V be a vector
bundle on X, with invariants

rk(V ) = mr1, deg(V ) = mr1(g − 1)−md1 (13)

for some m ≥ 1. By the Riemann–Roch theorem this ensures that χ(X,V ⊗E) =
0 for a vector bundle E of rank r and degree d. Hence by Section 4 the associated
determinantal line bundle LV on Mss

X(r, L) depends only on rk(V ) and deg(V ),
and comes with a section sV , depending on V , such that sV ([E]) 6= 0 if and only
if V ⊗ E is cohomology-free.

We will prove the theorem using the following two propositions.

Proposition 5.2. Let E be a stable vector bundle of rank r and degree d. For
large enough m, a general vector bundle V with

rk(V ) = mr1, deg(V ) = mr1(g − 1)−md1

satisfies
H0(X,V ⊗ E) = H1(X,V ⊗ E) = 0. (14)

In particular, the determinantal line bundle LV on Mss
X(r, L) is semiample.

Remark 5.3. In the approach of Faltings this statement (albeit for Mss
X(r, d))

corresponds to [10, Theorem I.2] (note that op. cit. is concerned about the
more complicated notion of stable Higgs bundles) and [22, Lemma 3.1], but the
method of proof will be different.

Proposition 5.4. Let E and E′ be polystable vector bundles of rank r and
degree d such that E has a stable summand that is not a summand of E′. There
exists an integer m > 0 and a stable vector bundle V of rank mr1 and degree
mr1(g − 1)−md1 such that

H0(X,V ⊗ E) 6= 0, H0(X,V ⊗ E′) = 0. (15)

In particular, the sections sV of the determinantal line bundle LV on Mss
X(r, L)

separate points determined by polystable bundles for which at least one stable
summand is different.

Remark 5.5. It is not true that for any two polystable bundles E and E′ we can
find a vector bundle V of the appropriate rank and degree for which H0(X,V ⊗
E) 6= 0 and H0(X,V ⊗ E′) = 0. Namely, consider two polystable vector bundles

E = E1 ⊕ E1 ⊕ E2 and E′ = E1 ⊕ E2 ⊕ E2,

23

https://stacks.math.columbia.edu/tag/0D36


where E1 and E2 are nonisomorphic stable vector bundles of the same rank and
degree. However, it can be shown that sections of the form sV span the space of
global sections of LV for m� 0 and induce a closed embedding Mss

X(r, d) ↪→ PN ;
see [3, Corollary 7.15].

Remark 5.6. The method of Faltings (see [10, Theorem I.4] and [22, Lemma 4.2])
takes a different approach at this point. He shows that, given a map C →
Mss

X(r, d) from a smooth projective curve C corresponding to a family E of
semistable vector bundles on X, the degree of the determinantal line bundle LV
is nonnegative and is zero if and only if all the fibers {Et}t∈C are S-equivalent.
This allows one to conclude that the morphism Mss

X(r, d)→ PN has finite fibers,
and then the argument can proceed as in the proof of Theorem 5.1. Interestingly,
Faltings’s argument uses stability of vector bundles on the curve C.

Proof of Theorem 5.1. By Proposition 5.2 the determinantal line bundle LV
associated to the appropriate choice of V is semiample, so choose some power for
which it is basepoint-free and obtain a morphism φ : Mss

X(r, d)→ PN for some N .
By Proposition 5.4 the morphism is actually quasi-finite. Indeed, for a given

polystable bundle E = E⊕r11 ⊕· · ·⊕E⊕rss where the E1, . . . , Es are nonisomorphic
stable bundles, there are only finitely many other polystable bundles whose stable
summands are precisely E1, . . . , Es, and for any other polystable bundle E′, there
exists a section sV separating E and E′.

Since Mss
X(r, d) is a proper algebraic space, the morphism Mss

X(r, d)→ PN is
proper by [23, Tag 04NX] and hence finite by [23, Tag 0A4X]. But then it is
also affine, hence representable, so Mss

X(r, d) is a scheme. Finally, pulling back
an ample line bundle on PN along the affine morphism produces an ample line
bundle on Mss

X(r, d), by [23, Tag 0892].

We are left with proving Propositions 5.2 and 5.4. Their proofs will be based
on a dimension-counting argument inspired by [9] (see also [18, Section 5] for
similar methods), where the authors actually prove a more refined result that
yields an effective bound on the rank of V in the theorem. To get started, we
will need the following lemma, discussed in [4, Remark 4.2].

Lemma 5.7. If {Fα}α∈Λ is a bounded family of vector bundles of rank r on X,
there exists a scheme S of finite type over k of dimension at most r2(g − 1) + 1
and a vector bundle F on S ×X such that each Fα appears as the fiber of F
over some point s ∈ S.

In fact, the stable bundles of rank r and degree d can be parameterized by a
smooth variety of dimension r2(g− 1) + 1, and any bounded family of non-stable
bundles by a variety of dimension at most r2(g − 1).

The following lemma will be the technical heart for the proof of both propo-
sitions. We will apply it for ε = −1, 0, 1, and think of it as a “fudge factor”
perturbing the equality χ(X,E ⊗ V ) = 0 for ε = 0.

Lemma 5.8. Let E be a vector bundle of rank r and degree d on X, and let ε
be an integer. Let m be a sufficiently large integer and V a general stable vector
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bundle with

rk(V ) = mr1, deg(V ) = mr1(g − 1)−md1 + ε.

(i). There exist no maps V ∨ → E whose image F has slope µ(F ) < µ(E).

(ii). If moreover E is stable and ε ≤ 0, there exist no nonzero maps V ∨ → E.

Proof. We can assume that rk(V ) > r. Note that V ∨ satisfies

rk(V ∨) = mr1, deg(V ∨) = mr1(1− g) +md1 − ε.

If V ∨ → E is a map with image F , then, since V ∨ is stable, we must have

µ(F ) > µ(V ∨) = µ(E)− g + 1− ε

mr1
≥ µ(E)− g + 1− ε.

Thus, there are only finitely many options for the slope of the image F such
that µ(F ) ≤ µ(E). Since moreover we must have 1 ≤ rk(F ) ≤ r, there are only
finitely many options for the rank and degree of F .

To prove (i), fix integers 1 ≤ k ≤ r and l with l/k < µ(E). We will find an
upper bound for the dimension of a variety that parameterizes all stable bundles
V such that there exists a map V ∨ → E whose image F has rank k and degree
l. Any such V ∨ fits into an exact sequence

0 G V ∨ F 0

E

(16)

where G satisfies

rk(G) = mr1 − k, deg(G) = mr1(1− g) +md1 − ε− l.

The possible sheaves F that can appear in (16) form a bounded family since
they are all subsheaves of E of fixed rank and degree. By Lemma 5.7 they are
parameterized by a scheme U1 of finite type over k with

dimU1 ≤ k2(g − 1) + 1.

Similarly, since the family of stable bundles of fixed rank and degree is bounded,
the sheaves G that can appear in (16) form a bounded family and so by Lemma
5.7 are parameterized by a scheme U2 with

dimU2 ≤ (mr1 − k)2(g − 1) + 1.

Note that since V ∨ in (16) is stable, we must have HomX(F,G) = 0, because
for any nonzero map F → G the composition

V ∨ � F → G ↪→ V ∨
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would give a nonzero endomorphism of V ∨ that is not an isomorphism. Now,
for a fixed F and G, the possible V ∨ appearing in (16) are parameterized by an
open subset of PExt1

X(F,G). By the Riemann–Roch theorem we have

dim Ext1
X(F,G)

= −χ(X,F∨ ⊗G) = −deg(F∨ ⊗G)− rk(F∨ ⊗G)(1− g)

= deg(F ) rk(G)− rk(F ) deg(G) + rk(F ) rk(G)(g − 1)

= l(mr1 − k)− k(mr1(1− g) +md1 − ε− l) + k(mr1 − k)(g − 1)

= (lr1 − kd1)m+ 2kr1(g − 1)m− k2(g − 1) + kε.

Note that by our assumption on k and l, we have

lr1 − kd1 = kr1

(
l

k
− d1

r1

)
= kr1(µ(F )− µ(E)) < 0.

Thus, the possible V ∨ that could appear are parameterized by an open subset
of a projective bundle P over an open subset U ⊆ U1 × U2 of dimension

dimP ≤ dimU1 + dimU2 + dim Ext1
X(F,G)− 1

≤ k2(g − 1) + 1 + (mr1 − k)2(g − 1) + 1

+ kr1(µ(F )− µ(E))m+ 2kr1(1− g)m− k2(g − 1)− kε− 1

= (mr1)2(g − 1) + kr1(µ(F )− µ(E))m+ k2(g − 1) + kε+ 1.

Since the coefficient of m in the last expression is negative, we see that for large
enough m, we have dimP < (mr1)2(g − 1) + 1, where by Theorem 3.12 the
right-hand side is the dimension of the moduli space of stable bundles of rank
mr1 and fixed degree. Thus, a general stable bundle V cannot appear in an
extension of the form (16). This proves (i).

To prove (ii), assume that E is stable and ε ≤ 0. By (i), if V is a general
stable vector bundle of the given rank and degree and m is sufficiently large,
there are no maps V ∨ → E whose image has slope less than µ(E). Thus, since
E is stable, any nonzero map must be surjective, and so we are led to estimate
the dimension of a variety parameterizing all stable bundles V such that there
exists a short exact sequence

0→ G→ V ∨ → E → 0.

Such V ∨ are parameterized by a projective bundle P over a scheme U2, where
U2 parameterizes bundles G with

rk(G) = mr1 − r, deg(G) = mr1(1− g) +md1 − ε− d

and again HomX(E,G) = 0 since V ∨ is stable. The fiber of P over [G] ∈ U2 is
PExt1

X(E,G), and the dimension calculations from above apply, so we have

dimP ≤ dimU2 + dim Ext1
X(E,G)− 1

= (mr1 − r)2(g − 1) + 1 + 2rr1(g − 1)m− r2(g − 1) + rε− 1

= (mr1)2(g − 1) + rε.
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Since ε ≤ 0, we have dimP < (mr1)2(g − 1) + 1, where the left-hand side is
the dimension of the moduli space of stable bundles of rank mr1 by Theorem
3.12.

Proof of Proposition 5.2. Applying Lemma 5.8 with ε = 0 to a stable vector
bundle E produces an open subset in the relevant moduli space such that any V
in the open subset satisfies the first claim of the proposition.

Now let E be a polystable vector bundle corresponding to a point in Mss
X(r, L).

Taking the intersection of the open subsets for all the stable summands of E
produces a nonempty open subset where one can find a vector bundle V such
that Hi(X,E ⊗ V ) = 0 for i = 0, 1. Hence the characterization from Proposition
4.7 shows that the associated section sV does not vanish at [E] ∈ Mss

X(r, L).

Lemma 5.9. Let E0, E1, . . . , En be stable vector bundles of slope µ = r/d.
Denote the rank of Ei by ki. For m sufficiently large, a general stable vector
bundle V with

rk(V ) = mr1 and deg(V ) = mr1(g − 1)−md1 + 1

satisfies the following:

(i) dim HomX(V ∨, Ei) = ki, or equivalently Ext1
X(V ∨, Ei) = 0;

(ii) for 0 ≤ i ≤ n, every nonzero map V ∨ → Ei is surjective;

(iii) for 1 ≤ i ≤ n, for all nonzero maps V ∨ → E0 and V ∨ → Ei, the induced
map V ∨ → E0 ⊕ Ei is surjective.

Proof. Note first that µ = d1/r1 = deg(Ei)/ki. We have

dim HomX(V ∨, Ei) = h0(V ⊗ Ei) = χ(X,V ⊗ Ei) + h1(X,V ⊗ Ei),

and by the Riemann–Roch theorem,

χ(X,V ⊗ Ei) = deg(V ⊗ Ei) + rk(V ⊗ Ei)(1− g)

= deg(V ) rk(Ei) + rk(V ) deg(Ei) + rk(V ) rk(Ei)(1− g)

= (mr1(g − 1)−md1 + 1)ki +mr1kiµ+mr1ki(1− g)

= ki.

To obtain (i) we must show that for a general stable V we have H1(X,V ⊗Ei) = 0
for 0 ≤ i ≤ n. By Serre duality, we have

h1(X,V ⊗ Ei) = h0(X,V ∨ ⊗ ωX ⊗ E∨i ) = dim HomX(V ⊗ ω∨X , E∨i ).

Now V ∨ ⊗ ωX is a general stable bundle of rank mr1 and degree

deg(V ∨ ⊗ ωX) = −deg(V ) + rk(V ) deg(ωX)

= mr1(1− g) +md1 − 1 +mr1(2g − 2)

= mr1(g − 1) +md1 − 1,
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and E∨i is a stable bundle of slope −d1/r1, so we may apply Lemma 5.8(ii) with
ε = −1 to each E∨i to conclude that, for sufficiently large m and general stable
V , we have HomX(V ⊗ ω∨X , E∨i ) = 0 for each i. This gives (i).

By applying Lemma 5.8(i) with ε = 1 to each Ei and by increasing m if
necessary, we may assume that for general stable V the image of every nonzero
map V ∨ → Ei has slope equal to µ, and, since Ei is stable, such a map must be
surjective. This gives (ii).

Finally, by applying Lemma 5.8(i) to each E0⊕Ei for 1 ≤ i ≤ n and increasing
m if necessary, we may assume that for general stable V , every nonzero map
V ∨ → E0 ⊕ Ei has image with slope equal to µ. For such a V and two nonzero
maps V ∨ → E0 and V ∨ → Ei, the image F ⊆ E0 ⊕ Ei of the induced map
V ∨ → E0 ⊕ Ei must thus have slope µ(F ) = µ, and moreover F surjects onto
both summands. But the only nonzero subsheaves of E0 ⊕ Ei of slope µ are E0,
Ei, and E0 ⊕ Ei and, since E0 and Ei are by assumption nonisomorphic, we
must have F = E0 ⊕ Ei. This gives (iii).

Before we give the proof of Proposition 5.4 we introduce a method for
constructing new vector bundles out of old ones.

Definition 5.10. Let E be a vector bundle on X and let x ∈ X(k) be a closed
point. Denote by Ox the skyscraper sheaf at x and E(x) the fiber of E at x.
Let α ∈ HomX(E,Ox) = E(x)∨ be a nonzero morphism. The elementary
transformation of E at x associated to α is the vector bundle E′ defined as the
kernel of α, so that we have the short exact sequence

0→ E′ → E
α→ Ox → 0. (17)

The kernel of α does not change under rescaling, so elementary transforma-
tions of E at x correspond to closed points of PE(x)∨.

If φ : F → E is a morphism, then imφ(x) is a subspace of E(x), while kerα(x)
is a hyperplane in E(x), which we will denote by H. If imφ(x) ⊆ H then
the composition F

φ−→ E
α−→ Ox vanishes and so F → E factors through E′.

Conversely, if imφ(x) is not contained in H then F → E does not factor
through E′.

Proof of Proposition 5.4. Let E1, . . . , En be the stable summands of E′, and let
E0 be a stable summand of E not isomorphic to any of the Ei. As before, let ki
denote the rank of Ei. It suffices to find a vector bundle F such that

H0(X,F ⊗ E0) 6= 0 but H0(X,F ⊗ Ei) = 0 for i = 1, . . . , n.

Let V be a stable vector bundle satisfying the conditions of Lemma 5.9, and
fix a nonzero map φ : E∨0 → V . The goal is to find a subsheaf F ⊂ V of degree
deg(F ) = deg(V )− 1 such that

• φ factors through F , but

• for i = 1, . . . , n, no nonzero map E∨i → V factors through F .
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Let Q denote the cokernel of φ. It is locally free since by Lemma 5.9(ii)
φ is the dual of a surjective map V ∨ → E0. Note that, for any nonzero map
ψi : E

∨
i → V , the induced map E∨0 ⊕E∨i → V is dual to a surjection by Lemma

5.9(iii) and hence injective. The inclusions

E∨0 ↪→ E∨0 ⊕ E∨i
(φ,ψi)
↪→ V

induce a short exact sequence

0→ E∨i
ψi−→ Q→ V/E∨0 ⊕ E∨i → 0,

and so the composition ψi : E
∨
i → V → Q is injective with locally free cokernel,

from which it follows that the restriction of ψi to a fiber is also injective.
Let x ∈ X be a closed point, let Q(x) and V (x) denote the fibers of Q

and V at x respectively, and let Grass(ki, Q(x)) denote the Grassmannian of
ki-dimensional subspaces of the vector space Q(x). Let Mi ⊆ Grass(ki, Q(x))
denote the image of the morphism

PHomX(E∨i , V )→ Grass(ki, Q(x))

that sends a nonzero map ψi to its image under the composition

E∨i
ψi−→ Q→ Q(x).

This morphism is well defined, because in the previous paragraph we established
that ψi(x) is injective. We have dimMi ≤ ki − 1 by Lemma 5.9(i).

For a hyperplane H ⊆ Q(x), let ZH,i ⊆ Grass(ki, Q(x)) denote the Schubert
variety parameterizing subspaces contained in H. The codimension of ZH,i in
Grass(ki, Q(x)) is ki, and so the expected dimension of the intersection Mi∩ZH,i
is −1. Thus, by the Bertini–Kleiman theorem [16, Corollary 4(i)] we obtain for
the general hyperplane H that Mi ∩ ZH,i is empty for i = 1, . . . , n. Let us fix
one such hyperplane H.

Let F denote the elementary transformation of V at x defined by the sub-
space H, i.e., it is the kernel of the morphism V → Ox determined by the
composition

V → V (x)→ Q(x)→ Q(x)/H.

By construction φ : E∨0 → V factors through F , and so

H0(X,E0 ⊗ F ) = HomX(E∨0 , F ) 6= 0.

On the other hand, no nonzero map E∨i → V factors through F , as the compo-
sition

E∨i (x)
ψi(x)−−−→ V (x)→ Q(x)/H

is nonzero by the choice of H. Thus,

H0(X,Ei ⊗ F ) = HomX(E∨i , F ) = 0 for i = 1, . . . , n.

Since rk(F ) = rk(V ) and deg(F ) = deg(V )− 1, this completes the proof.
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