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DERIVED CATEGORIES OF THE CAYLEY PLANE

AND THE COADJOINT GRASSMANNIAN OF TYPE F

PIETER BELMANS, ALEXANDER KUZNETSOV, AND MAXIM SMIRNOV

Abstract. For the derived category of the Cayley plane, which is the cominuscule Grass-
mannian of Dynkin type E6, a full Lefschetz exceptional collection was constructed by Faenzi
and Manivel. A general hyperplane section of the Cayley plane is the coadjoint Grassman-
nian of Dynkin type F4. We show that the restriction of the Faenzi–Manivel collection to
such a hyperplane section gives a full Lefschetz exceptional collection, providing the first
example of a full exceptional collection on a homogeneous variety of Dynkin type F.

We also describe the residual categories of these Lefschetz collections, confirming conjec-
tures of the second and third named author for the Cayley plane and its hyperplane section.
The latter description is based on a general result of independent interest, relating residual
categories of a variety and its hyperplane section.

1. Introduction

Rational homogeneous varieties form an important and well-studied class of varieties,
whose geometry can be understood using the representation theory of algebraic groups. The
derived category of such a variety is conjectured to have a full exceptional collection, and in
many instances a construction is known. For an overview of the state-of-the art (from a few
years ago), one is referred to [17, §1.1]. The main advances since then are [6, 7, 19], where
exceptional collections were constructed on some homogeneous varieties of symplectic and
orthogonal groups.

The part of the story corresponding to classical groups (Dynkin types A, B, C, and D)
and the exceptional group of type G2 is relatively well studied, see [17] and [11, §6.4]. For
exceptional groups of Dynkin types E and F on the contrary, very little is known. The only
homogeneous variety for these types that was known to have a full exceptional collection is
the cominuscule E6-Grassmannian (also called the Cayley plane) [4].

The main result of this paper is the construction of a full exceptional collection for the
coadjoint F4-Grassmannian (see (1.3) below and Theorem 4.11 in the body of the paper for
a more precise statement).

Theorem 1.1. Let Y be the coadjoint Grassmannian of Dynkin type F4. The derived cat-

egory Db(Y ) has a full exceptional collection of length 24, consisting of equivariant vector

bundles.
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Excellence Project “5-100”. M.S. was partially supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) — Projektnummer 448537907.

1

http://arxiv.org/abs/2005.01989v2


Note that the big quantum cohomology ring of Y is generically semisimple [23, Theo-
rem 5.3.2], so Theorem 1.1 provides yet another instance where the first part of Dubrovin’s
conjecture is known to hold.

Our approach is based on the folding relation between Dynkin diagrams of type E6 and F4

1

2

3 4 5 6
=

1 2 3 4
. (1.1)

This provides a relation between representations of groups of type E6 and F4, and as a
consequence, between their homogeneous varieties. It takes the simplest form for the Cayley
plane

X = E6/P1 ⊂ P
26

and the coadjoint Grassmannian of Dynkin type F4

Y = F4/P4 ⊂ P
25.

In this case Y is isomorphic to a generic hyperplane section of X , see [20, §6.3] and [26,
§III.2.5.F]. The embedding Y →֒ X allows us to use the results [21, 4] of Faenzi and Manivel
on the derived category of X to describe the derived category of Y .

More precisely, we do the following. The exceptional collection on X constructed in [4]
can be rewritten (see Theorem 3.1) as

Db(X) = 〈OX ,E
∨
1 ,E

∨
2 ; OX(1),E

∨
1 (1),E

∨
2 (1); OX(2),E

∨
1 (2),E

∨
2 (2);

OX(3),E
∨
1 (3); . . . ; OX(11),E

∨
1 (11)〉, (1.2)

where E1 and E2 are equivariant vector bundles of ranks 10 and 54. Note that this is a
Lefschetz collection, a notion introduced in [12] in the context of homological projective
duality, see also [14, 15], or §2.1 below. In other words, it is split into blocks (separated
in (1.2) by semicolons, so that we have three blocks of length 3 and nine blocks of length 2,
altogether 27 bundles), which are related via twists by OX(1).

Lefschetz collections are known to behave well with respect to hyperplane sections: if one
removes the first block and restricts the others to the hyperplane section, we again obtain
an exceptional collection, although not full in general, see [14, Proposition 2.4]. We show
that in the case of the Lefschetz collection (1.2) for the Cayley plane the restricted collection
on Y is in fact full, hence we have a full exceptional collection

Db(Y ) = 〈OY ,E
∨
1 |Y ,E

∨
2 |Y ; OY (1),E

∨
1 (1)|Y ,E

∨
2 (1)|Y ;

OY (2),E
∨
1 (2)|Y ; . . . ; OY (10),E

∨
1 (10)|Y 〉. (1.3)

To prove this we verify in Proposition 4.9 that the vector bundle E∨
2 (2)|Y belongs to the

right-hand side of (1.3), and then appeal to an argument of Samokhin from the proof of [25,
Theorem 2.3] (see Theorem 2.2) to check that equality holds in (1.3). This proves Theo-
rem 1.1.

This result has a natural interpretation from the point of view of homological projective
duality. Indeed, it is equivalent to saying that the HPD part of the derived category of any
smooth hyperplane section of the Cayley plane X vanishes. This means that the homological
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projective dual variety is supported over the classical projective dual hypersurface of X , the
Cartan cubic, see [8]. Thus, it is natural to suggest the following

Conjecture 1.2. The homological projective dual variety of the Cayley plane is a non-

commutative resolution of the Cartan cubic hypersurface in P
26.

Note that the Cayley plane is one of the four Severi varieties [26]. Each Severi variety has
a singular cubic hypersurface as its classical projective dual variety, and in the two out of the
other three cases, for Gr(2, 6) and P

2×P
2, the homological projective dual varieties are non-

commutative resolutions of the corresponding cubic hypersurfaces, the Pfaffian hypersurface
in P

14 and the determinantal hypersurface in P
8, see [10, Theorem 1] and [16, Theorem C.1,

Remark C.2]. Thus, the Cayley plane is an analogue of these two simpler cases.
In the case of the last Severi variety, the double Veronese embedding of P2, the analogy

partially fails — the homologically projective dual variety is given by a sheaf of noncommu-
tative algebras over P5, which are generically Morita-trivial and whose discriminant locus is
the symmetric determinantal cubic hypersurface (the classical projective dual of the Veronese
surface), see [13].

The second result of this paper is a description of the residual categories for the Lefschetz
collections (1.2) and (1.3).

The notion of a residual category was introduced in [18], see §2.2 for an overview. It
is an invariant of a full Lefschetz collection, which vanishes if and only if the collection is
rectangular, i.e., all blocks in the collection are the same.

In [18, Conjecture 1.12] a conjecture relating the structure of the residual category and
the small quantum cohomology ring of a variety was suggested: when the small quantum
cohomology ring is generically semisimple, it predicts that the residual category is generated
by a completely orthogonal exceptional collection. For the Cayley plane the small quantum
cohomology is known to be generically semisimple [1, Corollary 1.2], and we verify that the
prediction for the residual category indeed holds.

Theorem 1.3. The residual category of the Lefschetz collection (1.2) on the Cayley plane

is generated by three completely orthogonal exceptional bundles.

The small quantum cohomology of the coadjoint Grassmannian of type F4 was studied
in [2, Proposition 5.3] and is known not to be generically semisimple, so [18, Conjecture 1.12]
is not applicable here. Still, a more elaborate conjecture [19, Conjecture 1.1] can be applied
in such a situation. In the case of coadjoint Grassmannians this conjecture was made more
precise in [19, Conjecture 1.5]; and we verify that its prediction holds in type F4.

Theorem 1.4. The residual category of the Lefschetz collection (1.3) on the coadjoint Grass-

mannian of type F4 is equivalent to the derived category of the Dynkin quiver of type A2.

Precise versions of these two theorems can be found in Theorem 3.8 and Theorem 4.12 in
the body of the paper.

We prove Theorem 1.3 by an explicit calculation, see §3.2, analogous to that of [3, Theo-
rem 9.5]. In particular, we describe explicitly the three exceptional bundles generating the
residual category.

On the other hand, we deduce Theorem 1.4 from Theorem 1.1, Theorem 1.3, and a gen-
eral result of independent interest, Theorem 2.6, which says that if the derived category
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of a smooth projective variety X has a Lefschetz decomposition whose residual category
is generated by a completely orthogonal exceptional collection and the derived category of
a hyperplane section Y ⊂ X is generated by the restricted Lefschetz collection, then the
residual category of Y is a product of derived categories of Dynkin quivers of type A.

To finish the introduction we want to point out that the similarity between the Cayley
plane and the Severi variety Gr(2, 6) (which is a homogeneous variety of Dynkin type A5)
persists on the level of residual categories and hyperplane sections:

• The Grassmannian Gr(2, 6) has a Lefschetz collection with three blocks of length 3
and three blocks of length 2 [14, Theorem 4.1] and the residual category of Gr(2, 6)
is generated by 3 completely orthogonal exceptional bundles [3, Theorem 9.5].

• Smooth hyperplane sections IGr(2, 6) ⊂ Gr(2, 6) are homogeneous varieties that cor-
respond to the folding of the Dynkin diagram A5 into the Dynkin diagram C3:

1 2 3 4 5
=

1 2 3
.

• The restricted Lefschetz collection of Gr(2, 6) (with two blocks of length 3 and three
blocks of length 2) on IGr(2, 6) is full [14, Theorem 5.1] and the residual category
of IGr(2, 6) is equivalent to the derived category of representations of the Dynkin
quiver of type A2 [3, Theorem 9.6].

Of course, the last statement could be also deduced from Theorem 2.6 in the same way as
Theorem 1.4.

The paper is organized as follows. In §2 we recall definitions and basic facts about Lefschetz
collections and their residual categories, and prove Theorems 2.2 and 2.6. In §3 we collect
some facts about vector bundles on the Cayley plane and prove Theorem 3.8, which is a
precise version of Theorem 1.3. Finally, in §4 we prove Theorems 4.11 and 4.12, which are
precise versions of Theorems 1.1 and 1.4. In Appendix A we collect some computations with
weight lattices that are used in the body of the paper.

Conventions. Throughout we work over an algebraically closed base field k of charac-
teristic 0. All functors between derived categories are implicitly derived.

2. Lefschetz decompositions and residual categories

We start with a brief reminder of Lefschetz decompositions and their residual categories.
Then in Theorem 2.6 we prove, under appropriate assumptions, a general result relating the
residual categories of a variety and a hyperplane section.

2.1. Lefschetz decompositions. Let X ⊂ P(V ) be a smooth projective variety. A Lef-

schetz decomposition [12] of Db(X) is a semiorthogonal decomposition of the form

Db(X) = 〈A0,A1(1), . . . ,Am−1(m− 1)〉, (2.1)

where the categories Ap form a chain

0 6= Am−1 ⊆ · · · ⊆ A1 ⊆ A0 (2.2)

in Db(X) and Ap(t) = Ap ⊗ OP(V )(t)|X . The integer m is called the length of the Lefschetz
decomposition.

4



If the first component A0 of a Lefschetz decomposition is generated by an exceptional
collection

A0 = 〈E1, . . . , Ek〉

which is compatible with the Lefschetz chain (2.2), i.e.,

Ap = 〈E1, . . . , Ekp〉

for a non-increasing sequence k = k0 ≥ k1 ≥ · · · ≥ km−1 > 0 we say that

(E1, . . . , Ek0 ; E1(1), . . . , Ek1(1); . . . ; E1(m− 1), . . . , Ekm−1
(m− 1))

is a Lefschetz collection in Db(X).
More generally, if D is an admissible subcategory of Db(X) for a smooth and proper

variety X (one could also work with smooth and proper DG-categories, but we do not need
this level of generality) and τ : D → D is an autoequivalence, a Lefschetz decomposition
of D with respect to τ is a semiorthogonal decomposition of the form

D = 〈A0, τ(A1), . . . , τ
m−1(Am−1)〉,

where the categories Ap form a chain of admissible subcategories in D, similar to (2.2).
Lefschetz decompositions of projective varieties are useful for many reasons, see [15] for a

survey. One of the most important properties is their compatibility with hyperplane sections.

Lemma 2.1 ([14, Proposition 2.4]). Let (2.1) be a Lefschetz decomposition and let i : Y →֒ X
be a hyperplane section. The derived pullback functor

i∗ : Db(X) → Db(Y )

is fully faithful on the components Ap for p ≥ 1. Moreover, if

Āp = i∗(Ap), 1 ≤ p ≤ m− 1 (2.3)

then the subcategories Āp(p− 1), 1 ≤ p ≤ m− 1, are semiorthogonal in Db(Y ).

The lemma implies that there is an admissible subcategory D ⊂ Db(Y ) and a Lefschetz
decomposition

D = 〈Ā1, Ā2(1), . . . , Ām−1(m− 2)〉. (2.4)

We will call this the restricted Lefschetz decomposition. If D = Db(Y ) we say that the
restricted Lefschetz decomposition generates Db(Y ).

The following result, proved in a particular case by Samokhin, can be used to check that the
restricted Lefschetz decomposition generates Db(Y ). We denote by 〈F,G〉 the triangulated
subcategory generated by an exceptional pair (F,G).

Theorem 2.2 (cf. [25, Theorem 2.3]). Let i : Y →֒ X be a closed embedding of a proper

subvariety and let (F,G) be an exceptional pair of coherent sheaves on X with F torsion-free.

Consider the full subcategory

C := {C ∈ Db(Y ) | i∗C ∈ 〈F,G〉}.

If the morphism of Grothendieck groups K0(C) → K0(Y ) induced by the embedding of cate-

gories C →֒ Db(Y ) is zero, then C = 0.
5



Proof. Take any object C ∈ C ⊂ Db(Y ) and denote by Ht(C) its cohomology sheaf in
degree t ∈ Z. The decomposition triangle

B• ⊗ G → i∗C → A• ⊗ F ,

for the exceptional pair 〈F,G〉, where A• and B• are graded vector spaces, gives a long exact
sequence of cohomology sheaves

· · · → At−1 ⊗ F → Bt ⊗ G → Ht(i∗C) → At ⊗ F → . . .

The morphism Ht(i∗C) → At ⊗ F is zero, because Ht(i∗C) ∼= i∗H
t(C) is a torsion sheaf

on X and F is torsion-free. Therefore, the sequence splits into short exact sequences

0 → At−1 ⊗ F → Bt ⊗ G → i∗H
t(C) → 0.

In particular, it follows that Ht(C) ∈ C for each t.
IfHt(C) 6= 0 for some t then for n ≫ 0 the sheafHt(C)⊗OY (n) has zero higher cohomology

and nonzero global sections, hence Ht(C) is not numerically orthogonal to OY (−n), hence its
class in K0(Y ) is non-zero. This contradicts the assumption about the Grothendieck groups,
therefore Ht(C) = 0 for each t, and hence C = 0. �

2.2. Residual categories. Let X be a smooth projective variety with Db(X) endowed with
a Lefschetz decomposition (2.1). Assume ωX

∼= OX(−m), where m is the length of (2.1).

Definition 2.3 ([18, Definition 2.7]). The residual category of (2.1) is defined as

R = 〈Am−1,Am−1(1), . . . ,Am−1(m− 1)〉⊥. (2.5)

The residual category is an admissible subcategory of Db(X), and measures the difference
between the smallest block Am−1 and the others.

It was shown in [18, Theorem 2.8] that R is endowed with a natural autoequivalence

τ : R → R, R 7→ LAm−1
(R(1)), (2.6)

called the induced polarization of R, where L stands for the left mutation functor, which
enjoys the property τm ∼= S

−1
R
[dimX ], where SR is the Serre functor of R; this property is

analogous to the relation between the twist functor and the Serre functor of Db(X).
The following result relates Lefschetz decompositions of the residual category R with

respect to the induced polarization τ to Lefschetz decompositions of Db(X).

Proposition 2.4 ([18, Proposition 2.10]). Let X be a smooth projective variety such that

ωX
∼= OX(−m), and let B be an admissible subcategory of Db(X) such that

(B,B(1), . . . ,B(m− 1))

is a semiorthogonal collection of subcategories. Let R be the residual category, i.e.

R := 〈B,B(1), . . . ,B(m− 1)〉⊥.

Then there exists a bijection between the sets of

• Lefschetz decompositions of the category R with respect to the induced polarisation τ ;
and

• Lefschetz decompositions of the category Db(X) with respect to OX(1) such that

B ⊆ Am−1.
6



The bijection takes a Lefschetz decomposition

R = 〈C0, τ(C1), . . . , τ
m−1(Cm−1)〉

to the Lefschetz decomposition (2.1) with Ap := 〈Cp,B〉.

2.3. Residual categories of hyperplane sections. As before, let X be a smooth projec-
tive variety with a Lefschetz decomposition (2.1) and ωX

∼= OX(−m). Let i : Y →֒ X be
a smooth hyperplane section. In general, the restricted Lefschetz decomposition (2.4) of D
can be extended to a Lefschetz decomposition of Db(Y )

Db(Y ) = 〈Ā+
1 , Ā2(1), . . . , Ām−1(m− 2)〉

by replacing its first component Ā1 by the bigger category

Ā+
1 := 〈Ā2(1), . . . , Ām−1(m− 2)〉⊥.

Let R ⊂ Db(X) and R̄ ⊂ Db(Y ) be the corresponding residual categories.

Lemma 2.5. Assume m > 1. The restriction functor i∗ : Db(X) → Db(Y ) is compatible

with the residual categories, i.e., i∗(R) ⊂ R̄. Moreover, the induced polarizations τ : R → R

and τ̄ : R̄ → R̄ are related via the natural isomorphism

i∗ ◦ τ ∼= τ̄ ◦ i∗.

Proof. Note that ωX
∼= OX(−m) implies ωY

∼= OY (1−m). Recall that R is defined by (2.5)
and analogously

R̄ = 〈Ām−1, Ām−1(1), . . . , Ām−1(m− 2)〉⊥.

To prove the inclusion i∗(R) ⊂ R̄ we must show that if R ∈ R then for any object A ∈ Am−1

and any 0 ≤ t ≤ m− 2 we have HomY (i
∗A(t), i∗R) = 0.

Indeed, the pullback–pushforward adjunction and projection formula imply

HomY (i
∗A(t), i∗R) ∼= HomX(A(t), i∗i

∗R) ∼= HomX(A(t), R ⊗ OY ). (2.7)

Using the divisor short exact sequence

0 → OX(−1) → OX → OY → 0 (2.8)

the vanishing of the spaces in (2.7) follows from the two vanishings

HomX(A(t), R) = 0, HomX(A(t), R(−1)) ∼= HomX(A(t + 1), R) = 0,

both of which hold by definition of R.
For the second claim, we take any R ∈ R and consider the mutation triangle

A → R(1) → τ(R)

for R(1), where A ∈ Am−1. Applying i∗ we obtain the triangle

i∗A → (i∗R)(1) → i∗(τ(R)).

Since m > 1; i∗A ∈ i∗Am−1 = Ām−1 and i∗(τ(R)) ∈ i∗R ⊂ R̄, it follows that this is the
mutation triangle for (i∗R)(1), hence τ̄(i∗R) ∼= i∗(τ(R)). �

The main result of this section is the following
7



Theorem 2.6. Assume that the restricted Lefschetz decomposition generates the categoryDb(Y ),
i.e.,

Db(Y ) = 〈Ā1, Ā2(1), . . . , Ām−1(m− 2)〉. (2.9)

Assume moreover that the residual category R of Db(X) is generated by a completely orthog-

onal exceptional collection

R = 〈R1, . . . , Rn〉, Ext•X(Ri, Rj) = 0 ∀i 6= j. (2.10)

Then there exists a partition n =
∑r

i=1 ni with ni ≥ 2 for all i and an equivalence

R̄ ∼= Db(An1−1)×Db(An2−1)× · · · ×Db(Anr−1).

with a product of derived categories of quivers of Dynkin type Ani−1.

Proof. Any autoequivalence of a category generated by a completely orthogonal exceptional
collection is a composition of a permutation and shifts of objects of the collection. Applying
this observation to the induced polarization τ of R (see (2.6)) we conclude that there is a
set decomposition

{1, 2, . . . , n} = S1 ⊔ S2 ⊔ · · · ⊔ Sr

and a cyclic ordering of each of the sets Sj (which encode the cycle type of the permutation)
such that

τ(Rsj )
∼= Rsj+1[dsj ], dsj ∈ Z, (2.11)

where we assume that sj ∈ Sj and sj + 1 denotes the next element in the cyclic ordering
of Sj . We set nj := |Sj|. Note that for each j we can shift the objects Rsj in such a way
that dsj = 0 for all sj ∈ Sj but one.

By Proposition 2.4 the Lefschetz decomposition (2.1) of Db(X) corresponds to a Lefschetz
decomposition of R with respect to τ . Since any admissible subcategory of a category
generated by a completely orthogonal exceptional collection is generated by a subcollection,
it follows that there is a linear ordering

Sj = (sj,0, sj,1, . . . , sj,nj−1)

compatible with the cyclic ordering defined above (i.e., sj,p+1 = sj,p+1) such that the induced
Lefschetz decomposition takes the form

R = 〈C0, τ(C1), . . . , τ
m−1(Cm−1)〉,

where for 0 ≤ p ≤ m− 1 we have

Cp =
〈

{Rsj,0 | j : p < nj}
〉

and τ p(Cp) =
〈

{Rsj,p | j : p < nj}
〉

.

Using Proposition 2.4 we can rewrite (2.1) as

Ap = 〈Cp,Am−1〉 for 0 ≤ p ≤ m− 1. (2.12)

By Lemma 2.1 the functor i∗ is fully faithful on Ap for p ≥ 1, hence

Āp =
〈

C̄p, Ām−1

〉

, 1 ≤ p ≤ m− 1,

where

C̄p =
〈

{i∗Rsj,0 | j : p < nj}
〉

.
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Applying Proposition 2.4 again, we conclude from (2.9) that

R̄ = 〈C̄1, τ̄(C̄2), . . . , τ̄
m−2(C̄m−1)〉.

It will be convenient to replace this decomposition by

R̄ = 〈τ̄(C̄1), τ̄
2(C̄2), . . . , τ̄

m−1(C̄m−1)〉, (2.13)

Moreover, by (2.11) and Lemma 2.5 we conclude that, shifting the objects Rsj,p appropriately
to kill the shifts dsj,p for 0 ≤ p < nj − 1, we have

τ̄(i∗Rsj,p) =

{

i∗Rsj,p+1
, if 0 ≤ p < nj − 1,

i∗Rsj,0 [dj], if p = nj − 1,
(2.14)

for some dj ∈ Z, hence

τ̄ p(C̄p) =
〈

{i∗Rsj,p | j : p < nj}
〉

. (2.15)

In other words, R̄ is generated by i∗Rsj,p with 1 ≤ j ≤ r and 1 ≤ p ≤ nj − 1. It remains to
compute Ext’s between the objects i∗Rsj,p and show that nj ≥ 2 for all j.

As in the proof of Lemma 2.5, by the adjunction and projection formula we have a distin-
guished triangle

Ext•X(Rsj,p(1), Rsk,q) → Ext•X(Rsj,p , Rsk,q) → Ext•Y (i
∗Rsj,p, i

∗Rsk,q).

Let us compute the first two terms of this triangle.

(1) Ext•X(Rsj,p(1), Rsk,q): by the definition (2.6) of τ there is a distinguished triangle

A → Rsj,p(1) → τ(Rsj,p),

where A ∈ Am−1. Since by definition of R we have Ext•X(Am−1,R) = 0, we conclude
that

Ext•X(Rsj,p(1), Rsk,q)
∼= Ext•X(τ(Rsj,p), Rsk,q).

It follows from (2.14) that for q ≥ 1 this Ext-space is non-zero if and only if j = k
and p = q− 1. Moreover, in this case the space is 1-dimensional and sits in degree 0.

(2) Ext•X(Rsj,p, Rsk,q): similarly this space is non-zero if and only if j = k and p = q; and
again, in this case the space is 1-dimensional and sits in degree 0.

This proves that for q ≥ 1 and any p we have

Ext•Y (i
∗Rsj,p, i

∗Rsk,q) =











k, if j = k, p = q,

k[1], if j = k, p = q − 1,

0, otherwise.

(2.16)

In particular, if nj = 1 for some j then the object i∗Rsj,0 is orthogonal to i∗Rsk,q with q ≥ 1

and any k, hence by (2.13) and (2.15) to the entire category R̄. Since by Lemma 2.5 we
have i∗Rsj,0 ∈ R̄, it follows that i∗Rsj,0 = 0. On the other hand, since i is the embedding of
a hyperplane section, it follows that Rsj,0 has 0-dimensional support. It is easy to see that
for an exceptional object this is impossible; this proves that nj ≥ 2 for each j.

Finally, it follows from (2.16) that the subcategory R̄j ⊂ R̄ generated by i∗Rsj,p with
fixed j and 1 ≤ p ≤ nj−1 is equivalent to the derived category of the quiver Anj−1 (with the
equivalence defined by sending the object i∗Rsj,p[−2p] to the simple object of the p-th vertex
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of the quiver) and that the subcategories R̄j and R̄k are completely orthogonal for j 6= k.
Since by (2.13) and (2.15) the objects i∗Rsj,p generate R̄, the theorem follows. �

Remark 2.7. It follows from (2.16) that for each j the object i∗Rsj,0 belongs to the com-

ponent R̄j of the residual category R̄ and that under the constructed equivalence of cat-
egories R̄j

∼= Db(Anj−1) it corresponds (up to shift) to the projective module of the first
vertex of the quiver.

Moreover, one can identify the autoequivalence of Db(Anj−1) corresponding to τ̄ . Recall

from [22, Theorem 0.1(2) and Table I] that the group of autoequivalences of Db(Anj−1) is
generated by the shift functor and the Auslander–Reiten translation τAR that acts by

Sj,1 7→ Sj,2 7→ · · · 7→ Sj,nj−1 7→ Pj,1[−1],

where Sj,p and Pj,p are the simple and projective modules of the p-th vertex of the quiver Anj−1.
Using (2.14) we conclude that

τ̄ |R̄j

∼= τAR ◦ [2].

Remark 2.8. We expect that an analogue of Theorem 2.6 exists for quantum cohomology,
where the role of the residual categories is played by certain decomposition factors of the
small quantum cohomology ring, denoted by κ−1(0) in [19, Conjecture 1.1]. The derived
categories of Dynkin quivers of type A in the residual category of a hyperplane section should
correspond to Milnor algebras of isolated hypersurface singularities of type A appearing in
the quantum cohomology. The hyperplane sections

IGr(2, 2n) ⊂ Gr(2, 2n), F4/P4 ⊂ E6/P1 and Fl(1, n;n+ 1) ⊂ P
n × P

n

provide some evidence for this expectation (see [3, 19, 23, 24]).

3. The Cayley plane

Let G be the simple simply connected algebraic group of Dynkin type E6. Let P1 ⊂ G
be the maximal parabolic subgroup associated with the first vertex of its Dynkin diagram,
where we use the following numbering

1

2

3 4 5 6
. (3.1)

Let
X = G/P1

be the Cayley plane. This is the smallest homogeneous variety of the group G; it is the
(co)minuscule Grassmannian of type E6. We have

ωX
∼= OX(−12), dimX = 16. (3.2)

The fundamental weights of the group G are denoted ω1, . . . , ω6 as in Appendix A.
Let V = V ω1

G be the fundamental representation of G associated with the first vertex of
the Dynkin diagram. Then dim V = 27 and

X ⊂ P(V ∨)

is the orbit under G of the highest weight vector. We denote by OX(1) the line bundle on X
corresponding to the above projective embedding.

10



3.1. Vector bundles on X. In what follows we denote by V λ
G the irreducible representation

of G with highest weight λ. Similarly, we denote by Uλ the G-equivariant vector bundle on X
associated with the irreducible representation with the highest weight λ of the Levi group L
of the parabolic P1. Note that

Utω1 ∼= OX(t)

for all t ∈ Z.
Following [21, 4] we consider the triple of irreducible G-equivariant vector bundles on X

E0 = OX , E1 = (Uω6)∨, E2 = (U2ω6)∨. (3.3)

Note that the rank of E1 is 10 and the rank of E2 is 54. The main result of [4] is the following
construction of a full Lefschetz collection in Db(X). Let

Ap =

{

〈OX ,E
∨
1 ,E

∨
2 〉, 0 ≤ p ≤ 2

〈OX ,E
∨
1 〉, 3 ≤ p ≤ 11.

(3.4)

The following result is essentially due to Faenzi–Manivel [4], we just rearrange their ex-
ceptional collection slightly for convenience of further use.

Theorem 3.1 ([4]). There is a semiorthogonal decomposition

Db(X) = 〈A0,A1(1), . . . ,A11(11)〉. (3.5)

Proof. By [4] the category Db(X) has a full exceptional collection

(E2,E1,OX ; E2(1),E1(1),OX(1); E2(2),E1(2),OX(2);E1(3),OX(3); . . . ; E1(11),OX(11)).

Using dualization we obtain the full exceptional collection

(OX(−11),E∨
1 (−11); . . . ; OX(−3),E∨

1 (−3);

OX(−2),E∨
1 (−2),E∨

2 (−2); OX(−1),E∨
1 (−1),E∨

2 (−1); OX ,E
∨
1 ,E

∨
2 ).

Mutating the first 18 bundles (i.e., the first line above) to the right of the last 9 bundles (the
second line) we get the full exceptional collection

(OX(−2),E∨
1 (−2),E∨

2 (−2); OX(−1),E∨
1 (−1),E∨

2 (−1); OX ,E
∨
1 ,E

∨
2 ;

OX(1),E
∨
1 (1); . . . ; OX(9),E

∨
1 (9)).

Finally, after the OX(2)-twist we get (3.5). �

Now we discuss several properties of the bundles E1 and E2 that will become useful later.

Lemma 3.2. There is a G-equivariant embedding of vector bundles

E1 →֒ V ⊗ OX .

Proof. The bundle E∨
1 by definition corresponds to a dominant weight of G, hence it is

globally generated. Moreover, by the Borel–Weil–Bott theorem

H0(X,E∨
1 ) = H0(X,Uω6) = V ω6

G
∼= V ∨,

and the latter isomorphism is a particular case of the general property of representations
of G — the highest weight of the dual representation is obtained by the folding involution
(pictured in (1.1)). Thus, we have an equivariant epimorphism V ∨ ⊗ OX ։ E∨

1 . Dualizing
it we obtain the required embedding. �

11



Lemma 3.3 ([21, 4]). We have a G-equivariant direct sum decomposition

S2
E1

∼= E2 ⊕ OX(−1). (3.6)

The projection to the second summand of (3.6) defines a G-equivariant quadratic form

q : S2
E1 → OX(−1); it induces G-equivariant isomorphisms

E∨
1
∼= E1(1) (3.7)

and

E∨
2
∼= E2(2). (3.8)

Proof. The decomposition (3.6) follows from [4, (1)].
To prove (3.7) note that the embedding OX(−1) →֒ S2

E1 induces a non-trivial G-equivari-
ant morphism E∨

1 (−1) → E1. But any non-trivial equivariant morphism between irreducible
equivariant bundles is an isomorphism.

To prove (3.8) we take the symmetric square of the isomorphism (3.7) and use (3.6). �

Recall that there is a unique (up to rescaling) G-invariant cubic form

C ∈ S3 V ∨

(which is sometimes called the Cartan cubic), see [8, §2.1] and [9, Theorem 3.3] for an explicit
formula. Below we often consider C as a symmetric trilinear form.

Consider the associated morphism of vector bundles

V ⊗ OP(V )
C

−−→ V ∨ ⊗ OP(V )(1) (3.9)

on P(V ) defined at point y ∈ P(V ) by v 7→ C(v, y) ∈ V ∨. Note that the morphism (3.9) is
symmetrically self-dual (up to twist), since the trilinear form C is symmetric. Furthermore,
the map (3.9) is generically invertible over P(V ), see [8, proof of Proposition 2.5].

Denote by
h ∈ H0(X × P(V ),OX(1)⊠ OP(V )(1))

the restriction of the equation of the universal hyperplane to

X × P(V ) ⊂ P(V ∨)× P(V ).

Lemma 3.4. Consider the product X × P(V ). The diagram

V ⊗ OX ⊠ OP(V )
id⊠C // V ∨ ⊗ OX ⊠ OP(V )(1)

%%❑❑
❑❑

❑❑
❑❑

❑❑

E1 ⊠ OP(V )

==
③③③③③③③③
q⊠id // E∨

1 (−1)⊠ OP(V )
h // E∨

1 ⊠ OP(V )(1)

(3.10)

(where the left diagonal arrow is the embedding of Lemma 3.2 and the right diagonal arrow

is its dual) is commutative up to rescaling.

Proof. The morphisms in (3.10) are G-equivariant, hence so are their compositions. More-
over, the compositions are symmetrically self-dual (because C and q are), and using (3.6) it
is easy to see that the space

H0(X × P(V ), S2 E∨
1 ⊠ OP(V )(1)) ∼= H0(X,U2ω6 ⊕ OX(1))⊗ H0(P(V ),OP(V )(1))

∼= (V 2ω6

G ⊕ V )⊗ V ∨
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of symmetrically self-dual maps E1⊠OP(V ) → E∨
1⊠OP(V )(1) contains the trivial representation

with multiplicity 1. Therefore, the two compositions are proportional to each other. �

Remark 3.5. It is easy to show that the two compositions in (3.10) are non-zero; in particular,
rescaling q or C appropriately we may assume that (3.10) is commutative on the nose.

Lemma 3.6. The bundle ∧2E∨
1 (1) belongs to the subcategory

⊥(A0(−1)) = 〈A1,A2(1), . . . ,A11(10)〉.

Proof. This follows from [4, Lemma 5]. �

3.2. Residual category. In this section we compute the residual category of the Lefschetz
collection (3.4). We follow the strategy of [3, §9]. Recall from [4, Lemma 4] that there exists
an exact sequence

0 → E2(−1) → V ⊗ E1(−1) → W ⊗ OX(−1) → W∨ ⊗ OX → V ∨ ⊗ E∨
1 → E∨

2 → 0, (3.11)

where
W = ∧2V ⊕ V ∨.

Note that this complex is self-dual up to twist.
Define the sheaves Fi for 0 ≤ i ≤ 2 by the following left truncations

0 → E2(−1) → V ⊗ E1(−1) → W ⊗ OX(−1) → F0 → 0,

0 → E2(−1) → V ⊗ E1(−1) → F1 → 0,

0 → E2(−1) → F2 → 0

(3.12)

of (3.11). Since (3.11) is exact, its right truncations provide alternative resolutions of the
sheaves Fi:

0 → F0 → W∨ ⊗ OX → V ∨ ⊗ E∨
1 → E∨

2 → 0,

0 → F1 → W ⊗ OX(−1) → W∨ ⊗ OX → V ∨ ⊗ E
∨
1 → E

∨
2 → 0,

0 → F2 → V ⊗ E1(−1) → W ⊗ OX(−1) → W∨ ⊗ OX → V ∨ ⊗ E∨
1 → E∨

2 → 0.

(3.13)

Note that it follows from (3.13) that the sheaves Fi are locally free.
The key computation is given in the next lemma.

Lemma 3.7. Set B = 〈OX ,E
∨
1 〉. We have

L〈B,...,B(i)〉(E
∨
2 (i)) = Fi(i)[2 + i] for 0 ≤ i ≤ 2, (3.14)

where L stands for the left mutation functor.

Proof. To prove (3.14) it is enough to check the following two facts for 0 ≤ i ≤ 2:

(1) The sheaf Fi(i) lies in 〈B, . . . ,B(i)〉⊥.
(2) There is a morphism E∨

2 (i) → Fi(i)[2 + i], whose cone lies in 〈B, . . . ,B(i)〉.

To show the first assertion we note that we have isomorphisms E2(−1) ∼= E∨
2 (−3) by (3.8)

and E1(−1) ∼= E∨
1 (−2) by (3.7). Therefore, (3.12) gives the inclusions

F0 ∈ 〈A0(−3),A0(−2),A0(−1)〉,

F1(1) ∈ 〈A0(−2),A0(−1)〉,

F2(2) ∈ A0(−1).
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Now considering the twist of (3.5) by OX(i− 3) and then using the semiorthogonality of the
resulting decomposition, we obtain (1).

To show the second fact we just use (3.13) twisted by OX(i). �

Now we can state and prove a more precise version of Theorem 1.3.

Theorem 3.8. The residual category R of Db(X) with respect to the Lefschetz decomposi-

tion (3.5) is generated by the completely orthogonal exceptional triple

(F0, F1(1), F2(2))

of vector bundles defined by the exact sequences (3.12) or (3.13). Moreover, the induced

polarization τ of R acts by

τ(F0) ∼= F1(1)[1], τ(F1(1)) ∼= F2(2)[1], τ(F2(2)) ∼= F0[2]. (3.15)

In particular, τ 3 ∼= [4].

Proof. Recall that the residual category is defined as the orthogonal of the rectangular part
of the Lefschetz collection. More precisely, if we write B = 〈OX ,E

∨
1 〉, then

R = 〈B,B(1) . . . ,B(11)〉⊥. (3.16)

Therefore, R is generated by the projections to R of the objects E∨
2 , E

∨
2 (1), E

∨
2 (2) from (3.4)

that do not belong to the rectangular part, i.e.,

R = 〈LB(E
∨
2 ),L〈B,B(1)〉(E

∨
2 (1)),L〈B,B(1),B(2)〉(E

∨
2 (2))〉.

Applying Lemma 3.7 we deduce the equality

R = 〈F0, F1(1), F2(2)〉.

The first two isomorphisms of (3.15) follow from (3.14) and [18, (2.4)] and the third iso-
morphism is evident, because F2(2) ∼= E2(1) ∼= E∨

2 (−1) by (3.12) and (3.8). The identifica-
tion τ 3 ∼= [4] is then immediate.

Let us prove that the collection (F0, F1(1), F2(2)) is completely orthogonal. Indeed, it is an
exceptional collection by construction, and applying the autoequivalence τ and using (3.15),
we conclude that the collections (F1(1)[1], F2(2)[1], F0[2]) and (F2(2)[2], F0[3], F1(1)[3]) are
exceptional as well, hence the claim. �

4. The coadjoint Grassmannian of type F4

Now let Ḡ be the simple simply connected algebraic group of Dynkin type F4. Let P̄4 ⊂ Ḡ
be the maximal parabolic subgroup associated with the fourth vertex of its Dynkin diagram,
where we use the following numbering

1 2 3 4
(4.1)

Let

Y = Ḡ/P̄4

be the corresponding homogeneous variety; it is the coadjoint Grassmannian of type F4. We
have

ωY
∼= OY (−11), dimY = 15. (4.2)
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As we mentioned in the Introduction, Y can be identified with a hyperplane section
of X ⊂ P(V ∨) corresponding to a general point

v0 ∈ P(V ).

In particular, the group Ḡ can be identified with (the connected component of) the stabilizer
of v0 in G. We have natural inclusions

Ḡ →֒ G (4.3)

and

i : Y →֒ X ; (4.4)

the inclusion i is Ḡ-equivariant.

4.1. Vector bundles on Y . We consider the triple of Ḡ-equivariant vector bundles

Ē0 = E0|Y = OY , Ē1 = E1|Y , Ē2 = E2|Y , (4.5)

where the bundles Ei were defined in (3.3).
In what follows we denote by V λ

Ḡ
the irreducible representation of the group Ḡ with the

highest weight λ. Similarly, we denote by Ūλ the Ḡ-equivariant vector bundle associated
with the irreducible representation with the highest weight λ of the Levi group L̄ of the
parabolic P̄4. The fundamental weights of Ḡ are denoted ω̄1, . . . , ω̄4 as in Appendix A. Note
that

Ū
tω̄4 ∼= OY (t)

for all t ∈ Z.
For any G-dominant weight λ the restriction V λ

G |Ḡ is a representation of Ḡ. It is not
irreducible in general; for instance, V |Ḡ ∼= V ω̄4

Ḡ
⊕ k by Lemma A.1. Similarly, for any L-

dominant weight λ the restriction Uλ|Y is a Ḡ-equivariant bundle, not irreducible in general.
Below we describe the irreducible factors of the bundles Ē1 and Ē2. Recall that a 3-term

complex sitting in degrees −1, 0, 1 and exact in the first and last terms is called a monad.

Lemma 4.1. (1) There is a monad

OY → Ē∨
1 → OY (1) (4.6)

whose middle cohomology is isomorphic to Ūω̄3(−1).
(2) There is a monad

Ē∨
1 → Ē∨

2 ⊕ OY (1)⊕ OY (1) → Ē∨
1 (1) (4.7)

whose middle cohomology is isomorphic to Ū2ω̄3(−2)⊕ OY (1).
(3) There is a complex

OY → Ē∨
1 → ∧2Ē∨

1 ⊕ OY (1) → Ē∨
1 (1) → OY (2) (4.8)

whose only cohomology is isomorphic to Ūω̄2(−1)⊕ Ūω̄1.

Proof. By Lemma A.1 the bundle Ē∨
1 has a Ḡ-equivariant filtration with factors OY , Ū

ω̄3(−1),
and OY (1) (precisely in this order). This is equivalent to the first assertion of the lemma.

The complexes (4.7) and (4.8) are obtained as the symmetric and exterior square of (4.6);
moreover, (3.6) is used to rewrite the middle term of (4.7) and Lemma A.3 to identify the
cohomology. �
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Remark 4.2. In [17] a method to construct exceptional objects in derived categories of ho-
mogeneous varieties of simple algebraic groups as iterated extensions of irreducible vector
bundles was given. This construction can be interpreted in terms of right mutations in the
equivariant derived category. As a starting point it takes what is called “an exceptional
block B” of weights; the resulting bundles are then extensions of irreducible bundles with
weights in the block B. Here we want to point out that the sets of weights

{0, ω̄3 − ω̄4, ω̄4} and {0, ω̄3 − ω̄4, ω̄4, 2ω̄3 − 2ω̄4, ω̄3, 2ω̄4}

that by Lemma 4.1(1) and (2) correspond to irreducible factors of the bundles Ē∨
1 and Ē∨

2 do

not form exceptional blocks. Therefore, it is unclear whether one could obtain these bundles
by the construction of [17].

Note that every representation of Ḡ is self-dual (because the longest element of the Weyl
group of type F4 acts on the weight lattice as −1). In the case of the representation V |Ḡ
the self-duality isomorphism can be made explicit by means of the trilinear form C defined
in §3.1. Recall that v0 ∈ V is the Ḡ-invariant vector that defines the hyperplane cutting
out Y in X .

Lemma 4.3. The quadratic form C0 := C(v0,−,−) ∈ S2 V ∨ is Ḡ-invariant and non-

degenerate.

Proof. The form C0 is Ḡ-invariant because C is G-invariant and v0 is Ḡ-invariant by defini-
tion. Non-degeneracy of C0 follows from generic non-degeneracy of (3.9) since the point v0
is general. �

Restricting the embedding E1 →֒ V ⊗ OX of Lemma 3.2 to Y we obtain a Ḡ-equivariant
embedding Ē1 →֒ V ⊗ OY .

Lemma 4.4. The subbundle Ē1 →֒ V ⊗ OY is C0-isotropic.

Proof. The assertion follows easily from commutativity of the diagram (3.10) since the equa-
tion h of the universal hyperplane section ofX vanishes on the subvariety Y × {v0} ⊂ X × P(V ).

�

The following lemma is crucial for what follows.

Lemma 4.5. (1) There is a monad

Ē∨
1 (−1) → V ⊗ OY → Ē∨

1 (4.9)

whose middle cohomology is isomorphic to Ūω̄1(−1).
(2) There is a complex

S2
Ē∨
1 (−2) → V ⊗ Ē∨

1 (−1) →
(

∧2 V ⊗OY

)

⊕
(

Ē∨
1 ⊗ Ē∨

1 (−1)
)

→ V ⊗ Ē∨
1 → S2

Ē∨
1 (4.10)

whose only cohomology is isomorphic to Ūω̄2(−2).

Proof. The first morphism in (4.9) is defined in Lemma 4.4 (using the identification of bun-
dles Ē∨

1 (−1) ∼= Ē1 of (3.7)); in particular it is injective. The second morphism in (4.9) is

the composition of the dual of the first with C0 : V ⊗ OY
∼

−−→ V ∨ ⊗ OY , in particular it is
surjective. The composition of these morphisms is zero because the subbundle Ē1 ⊂ V ⊗OY
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is C0-isotropic. The description of the cohomology bundle of (4.9) follows from Lemma A.2
combined with Lemma A.1.

The complex (4.10) is the exterior square of (4.9) and the description of its cohomology
sheaf follows from Lemma A.4. �

4.2. Proof of Theorems 1.1 and 1.4. We define the subcategories Āp ⊂ Db(Y ) by

Āp = i∗(Ap) =

{

〈O, Ē∨
1 , Ē

∨
2 〉, 1 ≤ p ≤ 2,

〈O, Ē∨
1 〉, 3 ≤ p ≤ 11.

(4.11)

Applying Lemma 2.1 to (3.5) we obtain the following

Lemma 4.6. The pullback functor i∗ : Db(X) → Db(Y ) is fully faithful on the categories Ap

for 1 ≤ p ≤ 11, and the collection of subcategories

Ā1, Ā2(1), . . . , Ā11(10) ⊂ Db(Y )

is semiorthogonal. In particular, the bundles (OY , Ē1, Ē2) on Y form an exceptional triple.

We denote by
D := 〈Ā1, Ā2(1), . . . , Ā11(10)〉 ⊂ Db(Y ) (4.12)

the subcategory generated by the Āp(p−1) with 1 ≤ p ≤ 11. To prove Theorem 1.1 we need
to show that D = Db(Y ). We start by showing that some particular equivariant bundles
belong to D.

Lemma 4.7. We have ∧2Ē∨
1 (1) ∈ D.

Proof. We will use Lemma 3.6 for this. Indeed, by definition of a semiorthogonal decompo-
sition we have a sequence of morphisms in Db(X)

0 = F11 → F10 → · · · → F0 = ∧2E∨
1 (1),

such that Cone(Fp → Fp−1) ∈ Ap(p− 1), where 1 ≤ p ≤ 11. Applying the functor i∗ we get
a sequence of morphisms in Db(Y )

0 = i∗F11 → i∗F10 → · · · → i∗F0 = i∗(∧2E∨
1 (1)) = ∧2Ē∨

1 (1),

such that Cone(i∗Fp → i∗Fp−1) ∈ i∗Ap(p − 1) = Āp(p − 1). This means that we have the
required containment ∧2Ē∨

1 (1) ∈ D, which finishes the proof. �

Lemma 4.8. We have

Ūω̄1(1), Ūω̄2 ∈ D.

Proof. The first containment follows from the monad (4.9) twisted by OY (2). The second
containment follows from (4.8) twisted by OY (1) combined with Lemma 4.7 and the first
containment. �

Proposition 4.9. We have

Ē∨
2 (2) ∈ D.

Proof. Consider the complex (4.10) twisted by OY (2). By Lemma 4.8 its cohomology Ūω̄2 is
contained in the category D. Moreover, by Lemma 4.7 (note Ē∨

1 ⊗ Ē∨
1
∼= ∧2Ē∨

1 ⊕ Ē∨
2 ⊕OY (1))

its first four terms are in D. Therefore, its last term S2
Ē1(2) ∼= Ē∨

2 (2)⊕ OY (3) is also in D.
Since OY (3) ∈ D, we conclude that Ē∨

2 (2) is in D as well. �
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Remark 4.10. In fact, the decomposition of Ē∨
2 (2) with respect to the right-hand side of (4.12)

can be made more precise: one can show that there is an exact sequence

0 → Ē∨
2 → V ⊗ Ē∨

1 (1) → W ⊗ OY (2)⊕ Ē∨
2 (1) → V ⊗ Ē∨

1 (2) → Ē∨
2 (2) → 0,

where W = ∧2V ⊕ V . It is instructive to compare this with (3.11).

Now we are ready to prove the following more precise version of Theorem 1.1. Recall
from (4.11) the definition of the categories Āp.

Theorem 4.11. We have a Lefschetz decomposition

Db(Y ) = 〈Ā1, Ā2(1), . . . , Ā11(10)〉. (4.13)

In particular, Db(Y ) is generated by the exceptional collection (1.3) of length 24.

Proof. By (4.12) we need to show that D = Db(Y ). By Lemma 4.6 the category D is
generated by an exceptional collection, hence it is admissible, so we obtain a semiorthogonal
decomposition

Db(Y ) = 〈D⊥,D〉,

and so we need to show that D⊥ = 0. We will deduce this from Theorem 2.2.
First, note that

K0(Y ) = K0(D)⊕K0(D
⊥).

Since Y is a homogeneous variety, the left-hand side is a free abelian group of rank equal
to the index of the Weyl group of L̄ in the Weyl group of Ḡ, which is equal to 24. On the
other hand, the first summand in the right-hand side is also a free abelian group of rank 24,
because D is generated by 24 exceptional objects. Therefore,

K0(D
⊥) = 0.

Let us show that

D⊥ = {C ∈ Db(Y ) | i∗C ∈ 〈OX(−1),E∨
1 (−1)〉}. (4.14)

Indeed, assume C ∈ D⊥. By definition of D we have

HomY (i
∗Ap(p− 1), C) = 0 for 1 ≤ p ≤ 11

and then by adjunction we obtain

HomX(Ap(p− 1), i∗C) = 0 for 1 ≤ p ≤ 11.

Then (3.5) implies that i∗C ∈ A0(−1) = 〈OX(−1),E∨
1 (−1),E∨

2 (−1)〉. Moreover, since we
have i∗E∨

2 (2) = Ē∨
2 (2) ∈ D by Lemma 4.9, the same argument proves that

HomX(E
∨
2 (2), i∗C) = 0.

Using (3.11) and the isomorphisms (3.7) and (3.8), we deduce

HomX(E
∨
2 (−1), i∗C) = 0.

This proves that i∗C ∈ 〈OX(−1),E∨
1 (−1)〉.

Conversely, if i∗C ∈ 〈OX(−1),E∨
1 (−1)〉 ⊂ A0(−1), then using (3.5) and the adjunction as

above, we deduce that C ∈ D⊥.
This shows that the assumptions of Theorem 2.2 are satisfied for the category C = D⊥

and the exceptional pair (OX(−1),E∨
1 (−1)). Therefore D⊥ = 0. �
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Now we can also give a proof of the following more precise version of Theorem 1.4. Recall
the bundles Fi defined by (3.12) or (3.13).

Theorem 4.12. The residual category R̄ of Db(Y ) is generated by the exceptional pair of

vector bundles (i∗F1(1), i
∗F2(2)). Moreover, there is an equivalence

R̄ ∼= Db(A2)

with the derived category of the quiver of Dynkin type A2, such that the objects i∗F1(1)[−1]
and i∗F2(2)[−2] correspond to the simple modules, and the induced polarization τ̄ acts as the

Auslander–Reiten translation composed with the shift by 2.

Proof. We apply Theorem 2.6 to the Cayley plane X and its hyperplane section Y . By
Theorem 4.11 the restricted Lefschetz decomposition generates Db(Y ) and by Theorem 3.8
the residual category R of Db(X) is generated by a completely orthogonal exceptional col-
lection (F0, F1(1), F2(2)). Therefore, the residual category R̄ of Db(Y ) is equivalent to a
product of derived categories of Dynkin quivers of type A. It remains to understand the
types of these quivers explicitly.

As the proof of Theorem 2.6 shows the types are encoded in the action of the induced
polarization τ of R on the set of objects (F0, F1(1), F2(2)). Using (3.15) we conclude that
R̄ ∼= Db(A2) and that the simple modules of the path algebra of the quiver A2 correspond
to the objects i∗F1(1)[−1] and i∗F2(2)[−2]. The final claim follows from Remark 2.7. �

Appendix A. Computations in weight lattices

A.1. Restriction of weights. Consider the commutative diagram of simple algebraic groups

E6 F4
oo

D5

OO

D4
oo B3.oo

OO

Here the upper horizontal arrow is the embedding Ḡ →֒ G, as the stabilizer of a general vector
v0 ∈ V ω1

G ; the vertical arrows are the embeddings of the semisimple parts of the Levi groups L
and L̄ of the parabolic subgroups P1 ⊂ G and P̄4 ⊂ Ḡ, respectively (their Dynkin diagrams
are obtained by removing the vertices 1 and 4 from (3.1) and (4.1), respectively); and the
arrows in the bottom row are the standard embeddings Spin(7) →֒ Spin(8) →֒ Spin(10).

The morphisms on weight lattices induced by the above morphisms of groups can be
described by the commutative diagram

1

2

3 4 5 6
+3

��

2 4 3, 5 1, 6

��
2

3 4 5 6
//

2

3 4 5
+3
2 4 3, 5

(A.1)

where the labels i1, . . . , ik on a vertex of a diagram mean that the fundamental weights ωi1 ,
. . . , ωik of E6 go to the fundamental weight of this vertex; moreover, if a label i does not
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appear on a diagram, then the fundamental weight ωi of E6 goes to zero. For example, the
morphism from the weight lattice of E6 to that of F4 is given by

(ω1, ω2, ω3, ω4, ω5, ω6) 7→ (ω̄4, ω̄1, ω̄3, ω̄2, ω̄3, ω̄4). (A.2)

The double arrows in the diagram mean that the corresponding maps are foldings [5, §3.6].
We use the notations of §3.1 and §4.1 for representations and equivariant vector bundles.

Using diagram (A.1) it is easy to prove the following

Lemma A.1. We have V ω1

G |Ḡ = V ω̄4

Ḡ
⊕ k. Moreover, Uω6|Y has a Ḡ-equivariant filtration

with factors OY , Ū
ω̄3(−1), OY (1).

Proof. The weights in the 27-dimensional representation V = V ω1

G are

ω1, ω3 − ω1, . . . , ω3 − ω5, . . . , ω6 − ω5, −ω6

(see (A.3) for a more detailed picture). By (A.2) the weights of its restriction to Ḡ are

ω̄4, ω̄3 − ω̄4, . . . , 0, . . . , ω̄4 − ω̄3,−ω̄4.

In particular, the highest weight ω1 of V goes to the weight ω̄4, which is hence the highest
weight of the principal irreducible summand of V |Ḡ. Since the dimension of this summand
is dim(V ω̄4

Ḡ
) = 26, it follows that the other summand is 1-dimensional, hence trivial. Its

highest weight 0 is the image of the weight ω3 − ω5 in V .
Similarly, the bundle Uω6 corresponds to the representation V ω6

L of the Levi group L of
Dynkin type D5 with the highest weight ω6. The diagram of L-weights of this representation
is

ω6

ω5 − ω6 ω1 − ω5 + ω6

ω1 − ω6

By (A.2) the diagram of weights of its restriction to L̄ is

ω̄4

ω̄3 − ω̄4 2ω̄4 − ω̄3

0

The only B3-dominant (i.e., those with ω̄1, ω̄2, and ω̄3 appearing with non-negative coeffi-
cients) weights in this list are ω̄4, ω̄3 − ω̄4, and 0; the corresponding representations of B3,
marked in gray, have dimensions 1, 8, and 1, that sum up to 10, the rank of Uω6. This means
that the corresponding vector bundles Ūω̄4 = OY (1), Ū

ω̄3−ω̄4 = Ūω̄3(−1), and Ū0 = OY are
the factors of a Ḡ-equivariant filtration of Uω6 |Y . �

A similar argument proves the following

Lemma A.2. The trivial vector bundle V ⊗ OY has a Ḡ-equivariant filtration with fac-

tors OY (−1), Ūω̄3(−2), OY , OY , Ū
ω̄1(−1), Ūω̄3(−1), OY (1).
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Proof. The next picture shows the diagram of G-weights of V = V ω1

G :

ω1

ω3 − ω1

ω2 − ω6 ω3 − ω5

−ω6

ω6 − ω1

ω5 − ω1 − ω6

(A.3)

The labeled weights are the only G-weights of V that project to B3-dominant weights of Ḡ.
By (A.2) the resulting weights of Ḡ are

ω̄4, ω̄3 − ω̄4, ω̄1 − ω̄4, 0, 0, ω̄3 − 2ω̄4, −ω̄4,

and these provide the required factors of the Ḡ-equivariant filtration, marked with gray. �

A.2. Symmetric and exterior squares of representations. We need the following

Lemma A.3. We have isomorphisms

S2
Ūω̄3 ∼= Ū2ω̄3 ⊕ OY (3) and ∧2 Ūω̄3 = Ūω̄2(1)⊕ Ūω̄1(2).

Proof. The weights of the representation of L̄ with the highest weight ω̄3 are

ω̄3, ω̄2 − ω̄3 + ω̄4, ω̄1 − ω̄2 + ω̄3 + ω̄4, −ω̄1 + ω̄3 + ω̄4,

ω̄1 − ω̄3 + 2ω̄4, −ω̄1 + ω̄2 − ω̄3 + 2ω̄4, −ω̄2 + ω̄3 + 2ω̄4, −ω̄3 + 3ω̄4.

The weights of the tensor product Ūω̄3 ⊗ Ūω̄3 are pairwise sums of the above weights; poten-
tial highest weights of the irreducible summands among these are the sums of the highest
weight ω̄3 and another weight. The only B3-dominant weights among these are the weights

2ω̄3, ω̄2 + ω̄4, ω̄1 + 2ω̄4, 3ω̄4.

The corresponding vector bundles Ū2ω̄3 , Ūω̄2(1), Ūω̄1(2), O(3) have ranks 35, 21, 7, and 1,
respectively; they sum up to 64, the rank of Ūω̄3 ⊗ Ūω̄3, hence

Ūω̄3 ⊗ Ūω̄3 ∼= Ū2ω̄3 ⊕ Ūω̄2(1)⊕ Ūω̄1(2)⊕ O(3).

The only way to cook up the rank-36 and the rank-28 summands S2
Ūω̄3 and ∧2Ūω̄3 out of

these four gives the lemma. �

A similar argument proves

Lemma A.4. We have an isomorphism

∧2Ūω̄1 = Ūω̄2 .

References

[1] P.-E. Chaput, L. Manivel, N. Perrin, Quantum cohomology of minuscule homogeneous spaces III. Semi-
simplicity and consequences, Canadian Journal of Mathematics. Journal Canadien de Mathématiques,
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