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Abstract

A classical result of Bondal–Orlov states that a standard flip in birational ge-
ometry gives rise to a fully faithful functor between derived categories of coher-
ent sheaves. We complete their embedding into a semiorthogonal decomposition
by describing the complement. As an application, we can lift the “quadratic Fano
correspondence” (due to Galkin–Shinder) in the Grothendieck ring of varieties
between a smooth cubic hypersurface, its Fano variety of lines, and its Hilbert
square, to a semiorthogonal decomposition.

We also show that the Hilbert square of a cubic hypersurface of dimension
at least 3 is again a Fano variety, so in particular the Fano variety of lines on a
cubic hypersurface is a Fano visitor. The most interesting case is that of a cubic
fourfold, where this exhibits the first higher-dimensional hyperkähler variety as
a Fano visitor.
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1 Introduction

Derived categories of flips

The (conjectural) interaction between birational geometry and derived categories is
largely based on the DK-hypothesis [22]. This hypothesis predicts that K-equivalent
varieties X and Y are D-equivalent, i.e. their derived categories of coherent sheaves
are equivalent as triangulated categories. Here K-equivalence means the existence of
a diagram

(1)
Z

X Y

f д

of birational morphisms between smooth projective varieties, such that f ∗KX ∼lin д
∗KY .

If on the other hand we have a K-inequality, i.e. f ∗KX +D ∼lin д
∗KY for some effective

divisorD onZ , then it predicts the existence of a fully faithful functorDb(Y ) ֒→ D
b(X ).

We will study the case of a specific K-inequality, where we complete the fully faithful
functor predicted by the DK-hypothesis into a semiorthogonal decomposition, i.e. we
explicitly describe the complement. The special instance of a birational transforma-
tion we are interested in is that of a (standard) flip. We recall the setup: let F be a
smooth projective variety defined over an algebraically closed field k of characteristic
zero. Let k and ℓ be two positive integers. Let V be a vector bundle of rank k + 1 on F ,
denote Z ≔ P(V) and let π : Z → F be the associated projective bundle.

LetX be a smooth projective variety containing Z as a closed subvariety such that the
restriction of the normal bundle NZ /X to each fiber of π is isomorphic to O(−1)⊕ℓ+1.
In other words, NZ /X ≃ Oπ (−1) ⊗ π ∗V′ for some vector bundle V′ of rank ℓ + 1 on F .

Let τ : X̃ → X be the blow up of X along the smooth center Z , then the exceptional
divisor E is isomorphic to P(V)×F P(V

′)with normal bundle NE/X̃ ≃ O(−1,−1). There-
fore we can contract E along the other direction, E → Z ′

≔ P(V′), which identifies E
as the projectivization of the vector bundle π ′∗(V′), where π ′ : Z ′ → F is the natural
projection. We summarize the situation in the following diagram.

(2)

E

X̃

Z X X ′ Z ′

F

j

p p′

τ τ ′

i

π

ϕ i ′

π ′

Here the birational transformϕ is called a standard flip (resp. standard flopwhenk = ℓ)
while the inner triangle is its resolution; the upper two trapezoids are blowup dia-
grams and the outer square is cartesian. Observe that π andp ′ are Pk -bundles while π ′

and p are Pℓ-bundles. We will refer to (2) as a standard flip diagram.
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By symmetry, we are free to assume that k ≥ ℓ. According to the general conjecture
on derived categories under birational transformations discussed above, the derived
category of X ′ is expected to be “smaller” than that of X . Bondal–Orlov established
this in the above setting of standard flips [12, theorem 3.6].

Theorem 1 (Bondal–Orlov). Assume a standard flip diagram (2) is given, with k ≥ ℓ.
The functor

(3) Rτ∗ ◦ Lτ
′∗ : Db(X ′) → D

b(X )

is fully faithful. Moreover, if k = ℓ, this functor is an equivalence of triangulated
categories.

The first goal of this paper is to identify the complement of Db(X ′) inside Db(X ), thus
completing theorem 1 into a semiorthogonal decomposition. This specific question
was stated in [37, remarque 4.5], and the following theorem accomplishes this.

Theorem A. Assume a standard flip diagram (2) is given, with k > ℓ.

(i) For every integerm, the functor

(4) Φm : Db(F ) → D
b(X ) : E 7→ i∗(π

∗(E) ⊗ Oπ (m)),

is fully faithful.

(ii) We have the following semiorthogonal decomposition of Db(X ):

(5) D
b(X ) = 〈Φ−k+ℓ(D

b(F )), . . . ,Φ−1(D
b(F )),Rτ∗ ◦ Lτ

′∗
D
b(X ′)〉.

In fact, part (i) of theorem A follows from a more general fully faithfulness criterion
for EZ-type functors which might be of independent interest, see proposition 3.

For the application in theorem B below we only need theorem A(ii) for ℓ = 1. In
this case a more elegant proof is possible, which moreover gives the slightly stronger
result that compares the category D

b(X ) and the components of (5) as subcategories
in D

b(X̃ ), and not only after applying Rτ∗. This will be discussed in appendix A.

Note also that the case ℓ = 0 of theorem A is exactly Orlov’s blowup formula [35,
theorem 4.3].

More recently, [1] and [21] discusses the behavior of derived categories under flops
(but not flips), and [20] discusses the behavior of Chow groups under standard flips.
Kawamata has proven analogous results in the toric and toroidal case, see [23, theo-
rem 6.1], [24, theorem 1] and [25, theorem 1].

Remark 2. By mutating the first few terms of (5) to the far right, we get a series of
similar semiorthogonal decompositions: for any integer 0 ≤ m ≤ k − ℓ, we have

(6)

D
b(X ) = 〈Φ−m(D

b(F )), . . . ,Φ−1(D
b(F )),Rτ∗◦Lτ

′∗(Db(X ′)),Φ0(D
b(F )), . . . ,Φk−ℓ−m−1(D

b(F ))〉.

Smooth cubic hypersurfaces: quadratic Fano correspondence

As an illustration of the usefulness of theorem A, we will consider a smooth cubic
hypersurface Y ⊂ Pn+1. Building upon insights of Galkin–Shinder [15] and Voisin

3



[43], we show in corollary 15 that the quadratic Fano correspondence

(7)

P2 Y [2]

F(Y )

obtained from the universal family (or Fano correspondence)

(8)

P Y

F(Y )

by taking the relative Hilbert square of P → Y gives a standard flip diagram where X
is the Hilbert square of Y and F the Fano variety F(Y ) of lines on Y . The role of X ′

is played by a certain Pn-bundle over Y . For more on the terminology and notation,
one is referred to section 4. An excellent reference for more background on cubic
hypersurfaces is [18].

This brings us to the second main result.

TheoremB. LetY ⊂ Pn+1 be a smooth cubic hypersurface. Let F(Y ) be its Fano variety
of lines and Y [2] be its Hilbert square. Then there is a semiorthogonal decomposition

(9) D
b(Y [2]) = 〈Db(F(Y )),Db(Y ), . . . ,Db(Y )

︸                ︷︷                ︸

n + 1 copies

〉.

For the precise form of the functors one is referred to section 4.

This is a derived categorical version, of a comparison between the Fano variety of
lines and the Hilbert square of a cubic hypersurface, which was known to hold in
various contexts, such as cohomology, classes in the Grothendieck ring of varieties,
or (rational) Chow motives. In section 4 we discuss these.

Fano visitors

Using theorem B we can study the Fano visitor problem for the Fano variety of lines
on a cubic hypersurface. Recall that a smooth projective variety X is said to be a
Fano visitor if there exists a smooth projective Fano variety Y and a fully faithful
functor Db(X ) ֒→ D

b(Y ). In this case we call Y a Fano host for X .

Bondal raised the question whether every smooth projective variety is a Fano visitor.
A positive answer would imply that (additive invariants of) derived categories of Fano
varieties are as complicated as those of arbitrary varieties. This question has been
addressed in [27, 8, 6, 34, 30, 14] for various families of varieties, in particular it is
known that curves, Enriques surfaces and complete intersections are Fano visitors.

To study the Fano visitor problem for Fano varieties of lines1, we prove the following
result.

1To avoid any confusion with other usages of the name Fano, we will always write “Fano variety of
lines” in full when we refer to F(Y ), where Y is a cubic hypersurface.
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Theorem C. Let n ≥ 3. Let Y be Pn , or a smooth quadric (resp. cubic) hypersurface
in Pn+1. Then Y [2] is Fano.

This is in contrast to the case of smooth projective surface S , in which case the Hilbert
scheme S [m] ofm points is never a Fano variety. We immediately obtain the following
corollary to theorem B and theorem C.

Corollary D. Let Y be a smooth cubic hypersurface of dimension n = 3, 4. Then the
Fano variety of lines F(Y ) is a Fano visitor with Fano host Db(Y [2]).

This is the first construction (to our knowledge) of a Fano host for a surface of general
type which is not a complete intersection or a product of curves (for n = 3), and
the first construction of a Fano host for a (higher-dimensional) hyperkähler variety
(for n = 4). For n ≥ 5 the Fano variety of lines is itself a Fano variety, so the Fano
visitor problem is trivial.

Conventions Throughout we will assume that k is an algebraically closed field of
characteristic 0.

Acknowledgements We want to thank Sergey Galkin, Daniel Huybrechts, Robert
Laterveer, Will Sawin and Mingmin Shen for helpful discussions.

The results in this article were conceived during the “Problems and recent develop-
ments in hyperkähler geometry” research seminar, organised by Daniel Huybrechts,
and we heartily thank him.

The first author is partially supported by a postdoctoral fellowship from the Research
Foundation—Flanders (FWO). The third author is supported by a postdoctoral fellow-
ship from the Research Foundation—Flanders (FWO).

2 A fully faithfulness criterion for EZ-type functors

Let F ,Z and X be smooth projective varieties. Assume there is a smooth proper mor-
phism π : Z → F and a closed immersion i : Z → X as in the following diagram.

(10)
Z X

F

i

π

Let c be the codimension of Z in X . The following result is inspired by [16, Theo-
rem 2.1], in the formulation of [1, Theorem 1.3]. The terminology EZ-type is taken
from [16], where the diagram (10) is denoted with E instead of F .

Proposition 3. Assume that for every fiber P of π and all integers p,q with p +q > 0,

(11) Hp (P,
∧q

N′) = 0,

where N′
≔ NZ /X |P is the restriction of the normal bundle of Z in X to P . Then for

every line bundle L on Z , the functor

(12) Φ : Db(F ) → D
b(X ) : E 7→ i∗(π

∗(E) ⊗ L),
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is fully faithful.

Its proof is an application of the Bondal–Orlov criterion for fully faithfulness [12,
Theorem 1.1], which we will quickly recall.

Proposition 4 (Bondal–Orlov criterion). Let X and Y be smooth projective varieties,
andE an object inDb(X×Y ). The corresponding Fourier–Mukai functorΦE : Db(X ) → D

b(Y )

is fully faithful if and only if for all closed points x , x ′ ∈ X we have that

(i) HomY (ΦE(Ox ),ΦE(Ox )) � k;

(ii) HomY (ΦE(Ox ),ΦE(Ox )[m]) � 0 for allm < [0, dimX ];

(iii) HomY (ΦE(Ox ),ΦE(Ox ′)[m]) � 0 for allm ∈ Z and x , x ′;

where Ox denotes the skyscraper sheaf at x .

Proof of proposition 3. For a (closed) point x in F , denote by P ≔ π−1(x) the fiber. We
denote j : P ֒→ X for the closed immersion obtained by composition with i . Then,
Φ(Ox ) = i∗(OP ⊗ L) = j∗(L|P ).

Let us first check (iii) of proposition 4. Let P ′ denote the fiber π−1(x ′) for x , x ′ in F .
Since P ∩ P ′ = ∅, the objects j∗(L|P ) and j∗(L|P ′) have disjoint support, hence they
are completely orthogonal.

To check (i) and (ii), we have by adjunction that

(13) HomX (j∗(L|P ), j∗(L|P )[m]) � HomP (L|P , j
! ◦ j∗(L|P )[m]).

By [17, Corollary 11.2 and Proposition 11.8], the cohomology sheaves of the com-
plex Lj∗ ◦ j∗(L|P ) are given by

(14) H−s (Lj∗ ◦ j∗(L|P )) � L|P ⊗
∧s

N∨ for s = 0, . . . , c + dim F ,

whereN ≔ NP/X is the normal bundle ofP inX . As j ! andLj∗ are related byGrothendieck
duality, we have that

(15) j !◦j∗(L|P ) = Lj∗◦j∗(L|P )⊗ωj [dimP−dimX ] = Lj∗◦j∗(L|P )⊗det(N)[− dim F−c]

and this object has cohomology sheaves

(16) Hs (j ! ◦ j∗(L|P )) � L|P ⊗
∧s

N for s = 0, . . . , c + dim F .

We can compute the right-hand side of (13) via the hypercohomology spectral se-
quence and we obtain the spectral sequence

(17)

E
p,q
2 = Hp (P,Hq (j !◦j∗(L|P )⊗L

−1 |P )) = Hp (P,
∧q

N) ⇒ HomX (j∗(L|P ), j∗(L|P )[p+q]).

Hence (i), and (ii) form < 0 follow immediately.

To check (ii) form > dim F , consider the following identification of the short exact
sequence of normal bundles

(18)

0 NP/Z NP/X NZ /X |P 0

0 O⊕ dim F
P

N N′ 0
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as the first term is isomorphic to OP ⊗k TxF . Therefore, for any positive integer q, the
bundle

∧q
N is a successive extension of direct sums of exterior powers of N′. From

the vanishing hypothesis, we see that Hp (P,
∧q

N) = 0 for all p + q > dim F . As a
result, Ep,q∞ = 0 for all p + q > dim F , and we are done. �

2.1 Some applications

Wewill briefly discuss a few situations where this criterion applies, before proceeding
with the setting of standard flips in section 3.

Orlov’s blowup formula The easiest setting where one can apply proposition 3
is that of the usual blowup of a smooth projective variety X in a smooth center Z of
codimension c ≥ 2, i.e. we consider the diagram

(19)

E BlZ X

Z

i

π

where i denotes the inclusion of the exceptional divisor E. Then the vanishing con-
dition (11) is clearly satisfied as we have the identification N′

� OP (−1) using the
notation of proposition 3, and we see that the functor

(20) Φm : Db(Z ) → D
b(BlZ X ) : E 7→ i∗(π

∗(E) ⊗ OE (mE))

is fully faithful for everym ∈ Z, recovering [35, assertion 4.2(i)], which is one of the
ingredients for Orlov’s blowup formula.

Krug–Ploog–Sosna’s cyclic quotient singularities More interestingly, proposi-
tion 3 also applies to the “singular” blowups of [28], for cyclic quotient singularities.
The setting, using the notation of op. cit., is as follows. LetY denote a smooth quasipro-
jective variety with an action of a cyclic group G � µm . Then the fixed point lo-
cus S ⊂ Y (of codimensionn) is smooth and the quotientY/G has rational singularities.
We further assume that only the isotropy groups 1 and G occur, and that a generator
ofG acts on the normal bundle NS/Y by multiplication with a fixed primitivemth root
of unity.

In this case there is a diagram

(21)

Z ≔ P(NS/Y ) X ≔ BlS (Y/G) � (BlS Y )/G

S

i

π

of smooth projective varieties. Here Y/G has cyclic quotient singularities, and the
“singular blowup” BlS (Y/G) is a resolution of singularities.

By [28, lemma 4.10(ii) and (vi)], we have that

(22) NZ /X |P � OPn−1(−m)

7



for every fiber P of π , so proposition 3 applies as soon as n > m and one obtains fully
faithful functors

(23) Θβ : D
b(S) → D

b(BlS (Y/G)) : E 7→ i∗(π
∗(E) ⊗ Oπ (β)),

for β ∈ Z, as in [28, theorem 4.1(ii)], which is one of the ingredients for the Krug–
Ploog–Sosna semiorthogonal decomposition.

A particularly relevant example for this paper is given by taking Y ≔ S × S with S a
smooth projective variety, and G = µ2 acting via transposition; in this case X � S [2].

Proposition 5 (Krug–Ploog–Sosna). Let S be a smooth projective variety of dimen-
sion n ≥ 2. Then there exists a semiorthogonal decomposition

(24) D
b(S [2]) = 〈Db

µ2
(S2),Db(S), . . . ,Db(S)

︸               ︷︷               ︸

n − 2 copies

〉.

Cayley’s trick A third application is Cayley’s trick, which gives a relationship be-
tween a complete intersection and a canonically associated hypersurface in a projec-
tive bundle. This relationship can be studied at different levels, and the name “Cayley’s
trick” originates from [19] where it was used to study cohomology. In [27] Cayley’s
trick was used on the level of derived categories to study Fano visitors as in section 5.3,
and we will now explain how to obtain part of their semiorthogonal decomposition.

Let E denote a vector bundle of rank r on a smooth variety Y , and s ∈ H0(Y ,E) a
regular section with smooth projective zero locus Z(s). By the isomorphism

(25) H0(Y ,E) � H0(P(E∨),OP(E∨)(1)),

the section s also defines a section fs ∈ H0(P(E∨),OP(E∨)(1)) and we denote Z(fs ) its
zero locus, which defines a hypersurface in P(E∨). In particular, there is a cartesian
diagram

(26)

Z ≔ P(NZ(s)/Y ) X ≔ Z(fs )

Z(s) Y

i

π
�

where X → Y is a Pr−2-bundle over Y\Z(s) and the restriction π is a Pr−1-bundle. In
this case, the normal bundle is

(27) NZ /X |P � ΩPr−1(1),

for a fiber P � Pr−1 of π , and proposition 3 applies by Bott vanishing. This yields fully
faithful functors

(28) Φ : Db(Z(s)) → D
b(Z(fs )) : E 7→ i∗(π

∗(E) ⊗ L),

for every line bundle L on P(NZ(s)/Y ), recovering part of [36, proposition 2.10].
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3 A semiorthogonal decomposition for standardflips

In this section we prove theorem A. Part (i) follows immediately from proposition 3.

The proof of part (ii) of theorem A is more interesting, and is very much inspired
by Kuznetsov’s homological projective duality [31] and its interpretation by Thomas
[41]. In the case ℓ = 1, a slightly different (and shorter) proof of a stronger statement
is given in appendix A.

The semiorthogonal decomposition (5) will be established in several steps:

1. The fully faithfulness of the functor Φm on D
b(F ) follows from proposition 3.

2. The fully faithfulness of the functor Rτ∗ ◦ Lτ ′∗ on D
b(X ′) is Bondal–Orlov’s

theorem, see theorem 1 and also remark 10.

3. The semiorthogonality of the subcategories in (5) is the combination of propo-
sition 8 and proposition 9.

4. The completeness of the semiorthogonal decomposition (5) is corollary 12.

Let us first introduce some notation. Assume we are given a standard flip diagram (2).
For integers a,b ∈ Z, denote by

(29) O(a,b) ≔ p∗Oπ (a) ⊗ p ′∗Oπ ′(b),

which is a line bundle on E. We then define the following triangulated subcategory
of Db(X̃ ):

(30) A(a,b) ≔ j∗(p
∗ ◦ π ∗

D
b(F ) ⊗ O(a,b)).

We note first that the components

(31) Φm(D
b(F )) ≔ i∗(π

∗(Db(F )) ⊗ Oπ (m)),

form ∈ Z appearing in the decomposition (5) can be expressed in terms of the cate-
gories just defined, by the following lemma.

Lemma 6. For everym ∈ Z we have the identification of subcategories

(32) Φm(D
b(F )) = Rτ∗A(m, 0)

in D
b(X ).

Proof. This follows from the computation

(33)

Rτ∗A(m, 0) = Rτ∗ ◦ j∗(p
∗ ◦ π ∗

D
b(F ) ⊗ p∗Oπ (m))

= i∗ ◦ Rp∗ ◦ p
∗(π ∗

D
b(F ) ⊗ Oπ (m))

= i∗(π
∗
D
b(F ) ⊗ Oπ (m))

= Φm(D
b(F )).

�

9



For convenience, we also define the following subcategories which are equivalent
to D

b(Z ′) and D
b(Z ) respectively.

(34)
A(a,⋆) ≔ j∗(p

∗Oπ (a) ⊗ p
′∗
D
b(Z ′)),

A(⋆,b) ≔ j∗(p
∗
D
b(Z ) ⊗ p ′∗Oπ ′(b)).

ByOrlov’s projective bundle formula [35, theorem 2.6], there are the following semiorthog-
onal decompositions for everym ∈ Z:

(35) A(a,⋆) = 〈A(a,m − l),A(a,m − l + 1), . . . ,A(a,m)〉.

Similarly we have the decompositions

(36) A(⋆,b) = 〈A(m − k,b),A(m − k + 1,b), . . . ,A(m,b)〉.

Applying Orlov’s blowup formula [35, theorem 4.3] to the blowup τ : X̃ → X , we have
the semiorthogonal decomposition:

(37) D
b(X̃ ) = 〈A(⋆,−l),A(⋆,−l + 1), . . . ,A(⋆,−1), Lτ ∗Db(X )〉.

Similarly, applying the blowup formula to τ ′ : X̃ → X , we have

(38) D
b(X̃ ) = 〈A(−k,⋆),A(−k + 1,⋆), . . . ,A(−1,⋆), Lτ ′∗Db(X ′)〉.

Inserting appropriately chosen (35) and (36) into (37) and (38) we get different semiorthog-
onal decompositions of Db(X̃ ). The main theme of the proof is to compare them. The
following vanishing result plays a central role in the argument, and is similar to [41,
lemma 4.3], but we are not in the setting of homological projective duality context.

Lemma 7. Let a1,a2,b1,b2 be integers. Then RHomX̃ (A(a1,b1),A(a2,b2)) = 0 in any
of the following cases:

• 1 ≤ a1 − a2 ≤ k − 1,

• 1 ≤ b1 − b2 ≤ ℓ − 1,

• a1 − a2 = k and 0 ≤ b1 − b2 ≤ ℓ − 1,

• b1 − b2 = ℓ and 0 ≤ a1 − a2 ≤ k − 1.

Proof. For arbitrary F1,F2 ∈ D
b(F ), by adjunction,

(39)
RHom (j∗(p

∗ ◦ π ∗
F1 ⊗ O(a1,b1)), j∗(p

∗ ◦ π ∗
F2 ⊗ O(a2,b2)))

= RHom (Lj∗ ◦ j∗(p
∗ ◦ π ∗F1 ⊗ O(a1,b1)),p

∗ ◦ π ∗F2 ⊗ O(a2,b2))

By [17, Corollary 11.4(ii)], there is a distinguished triangle:

(40)

p∗◦π ∗F1⊗O(a1,b1)⊗OE (−E)[1] → Lj∗◦j∗(p
∗◦π ∗F1⊗O(a1,b1)) → p∗◦π ∗F1⊗O(a1,b1)

+1
−−→

Since OE (E) = O(−1,−1), this triangle reduces to

(41)

10



p∗◦π ∗
F1⊗O(a1+1,b1+1)[1] → Lj∗◦j∗(p

∗π ∗
F1⊗O(a1,b1)) → p∗◦π ∗

F1⊗O(a1,b1)
+1
−−→

Applying the functor RHom(−,p∗ ◦π ∗F2 ⊗O(a2,b2)), we see that (the right-hand side
of) (39) is the cone of the morphism

(42)

RHom(p∗◦π ∗F1⊗O(a1+1,b1+1)[2],p
∗◦π ∗F2⊗O(a2,b2))

f
−→ RHom(p∗◦π ∗F1⊗O(a1,b1),p

∗◦π ∗F2⊗O(a2,b2))

or equivalently the cone of

(43)

RHom(p∗◦π ∗F1[2],p
∗◦π ∗F2⊗O(a2−a1−1,b2−b1−1))

f
−→ RHom(p∗◦π ∗F1,p

∗π ∗F2⊗O(a2−a1,b2−b1)).

Now note that for all a,b ∈ Z,

(44)

RHom(p∗ ◦ π ∗
F1,p

∗ ◦ π ∗
F2 ⊗ O(a,b))

= RHom(p∗ ◦ π ∗F1,p
∗ ◦ π ∗F2 ⊗ p

∗Oπ (a) ⊗ p
′∗Oπ ′(b))

= RHom(π ∗
F1, π

∗
F2 ⊗ Oπ (a) ⊗ Rp∗ ◦ p

′∗
Oπ ′(b))

= RHom(π ∗F1, π
∗F2 ⊗ Oπ (a) ⊗ π ∗ ◦ Rπ ′

∗Oπ ′(b))

= RHom(F1,F2 ⊗ Rπ∗Oπ (a) ⊗ Rπ ′
∗Oπ ′(b)),

which vanishes when a ∈ [−k,−1] or b ∈ [−ℓ,−1]. Therefore, in each of the cases in
the statement, both the source and the target of f vanish, hence also the cone. �

3.1 Semiorthogonality

We will first prove that the subcategories in (5) are semiorthogonal. As e.g. in the
proof of Orlov’s blowup formula, this falls apart into two statements:

(i) the semiorthogonality of the subcategories Φ−k+ℓ(D
b(F )), . . . ,Φ−1(D

b(F ));

(ii) the semiorthogonality of the pairΦm(Db(F )),Rτ∗◦Lτ
′∗
D
b(X ′) form = −k+ℓ, . . . ,−1.

Let us first prove (i).

Proposition 8. If m′ < m are two integers such that m − m′ < k − ℓ, then for
all E,F ∈ D

b(F ), we have

(45) RHomX (Φm(E),Φm′(F)) = 0.

Proof. It suffices to prove this for E andF coherent sheaves, by the standard dévissage
argument for bounded complexes of coherent sheaves. By adjunction,

(46)
RHom(Φm(E),Φm′(F)) � RHom (i∗(π

∗E ⊗ Oπ (m)), i∗(π
∗F ⊗ Oπ (m

′)))

� RHom
(

π ∗E ⊗ Oπ (m), i ! ◦ i∗(π
∗F ⊗ Oπ (m

′))
)

.

To show this space vanishes, it suffices to show that

(47) RHom
(

π ∗E ⊗ Oπ (m),Hq(i ! ◦ i∗(π
∗F ⊗ Oπ (m

′))[∗]
)

= 0,
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for all q ∈ Z. By [1, lemma 1.4], the Fourier–Mukai kernel of i ! ◦ i∗ : Db(Z ) → D
b(Z )

has cohomology sheavesHq
= ∆Z ,∗(

∧q
N), whereN ≔ NZ /X � Oπ (−1)⊗π ∗(V′) for

some vector bundle V′ on F of rank ℓ + 1 by the standing hypothesis. We then find:

(48)

RHom
(

π ∗E ⊗ Oπ (m),Hq(i ! ◦ i∗(π
∗F ⊗ Oπ (m

′))[∗]
)

� RHom
(

π ∗
E, π ∗

F ⊗ Oπ (m
′ −m) ⊗

∧q
N[∗]

)

� RHom
(

π ∗E, π ∗F ⊗ Oπ (m
′ −m) ⊗ Oπ (−q) ⊗

∧q
π ∗(V′)[∗]

)

� RHom
(

π ∗E, π ∗(F ⊗
∧q

V′) ⊗ Oπ (m
′ −m − q)[∗]

)

As rkV′
= ℓ + 1, this space is zero except possibly for 0 ≤ q ≤ ℓ + 1. Combined with

the assumption thatm′ −m ∈ [ℓ − k + 1,−1], we see thatm′ −m − q ∈ [−k,−1].

Now π ∗E ∈ π ∗
D
b(F )whilst π ∗(F⊗

∧q
V′)⊗Oπ (m

′−m−q) ∈ π ∗
D
b(F )⊗Oπ (m

′−m−q),
so using the semiorthogonality inOrlov’s projective bundle formula,we deduce that (47)
vanishes, and the proposition follows. �

Let us show the remaining semiorthogonality. We use an argument from the original
proof of theorem 1 of Bondal–Orlov from [12, theorem 3.6]. For the convenience of
the reader, we give a complete proof.

Proposition 9. For all integersm ∈ [−k+ℓ,−1], and for allF ∈ D
b(X ′) andG ∈ D

b(F ),
we have

(49) RHomX (Rτ∗ ◦ Lτ
′∗(F),Φm(G)) = 0.

Proof. By lemma 6, we are to show that RHomX (Rτ∗ ◦ Lτ
′∗
D
b(X ′),Rτ∗A(m, 0)) = 0.

By adjunction, it is enough to show that

(50) RHomX̃ (Lτ
∗ ◦ Rτ∗ ◦ Lτ

′∗
D
b(X ′),A(m, 0)) = 0.

Take any E ∈ Lτ ′∗ Db(X ′), viewed as an object in D
b(X̃ ). Then Lτ ∗ ◦Rτ∗(E) is its right

projection to the component Lτ ∗Db(X )with respect to the semiorthogonal decompo-
sition (37).

Using (36), we will use the following version of (37):

(51)

D
b(X̃ ) = 〈A(−k,−ℓ),A(−k + 1,−ℓ), . . . ,A(−1,−ℓ),A(0,−ℓ);

A(−k + 1,−ℓ + 1), . . . ,A(0,−ℓ + 1),A(1,−ℓ + 1);

. . . ;

A(−k + ℓ − 1,−1),A(−k + ℓ,−1), . . . ,A(ℓ − 1,−1);

Lτ ∗ Db(X )〉.

In figure 1a we make the order of terms A(i, j) explicit in the case of k = 6 and ℓ = 4.

The virtue of this decomposition is that, thanks to lemma 7, among all the components
appearing above, there are no Hom’s from A(a,b) to A(a′,b ′) with a ≥ 0 and a′ < 0.
Therefore, we can rearrange the order of the components to obtain the following
semiorthogonal decomposition

(52) D
b(X̃ ) = 〈D1,D2, Lτ

∗
D
b(X )〉,

12



Figure 1: Visualising the mutation of the semiorthogonal decomposition in (51),
for k = 6 and ℓ = 4.

k

ℓ

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

(a) Before the mutation

D1 D2

k

ℓ

1 2 3 4 5 6

7 8 9 10 11

12 13 14 15

16 17 18

19

20 21

22 23 24

25 26 27 28

(b) After the mutation, with the grouping according to (53)

where

(53)

D1 ≔ 〈A(−k,−ℓ), . . . ,A(−1,−ℓ);A(−k + 1,−ℓ + 1), . . . ,A(−1,−ℓ + 1);

. . . ;A(−k + ℓ − 1,−1), . . . ,A(−1,−1)〉,

D2 ≔ 〈A(0,−ℓ);A(0,−ℓ + 1),A(1,−ℓ + 1); . . . ;A(0,−1), . . . ,A(ℓ − 1,−1)〉.

See figure 1b for the order of the terms A(i, j) after the mutation for the case k = 6
and ℓ = 4.

Since D1 ⊂ 〈A(−k,⋆), . . . ,A(−1,⋆)〉, using the semiorthogonality of (38), we see
that E ∈ ⊥D1 = 〈D2, Lτ

∗
D
b(X )〉.

We deduce that there is an object E′ ∈ D2 fitting into the following distinguished
triangle

(54) Lτ ∗ ◦ Rτ∗E → E → E′ +1−−→ .

Therefore, to show that RHomX̃ (Lτ
∗ ◦ Rτ∗E,A(m, 0)) = 0 for allm ∈ [−k + ℓ,−1], it

suffices to show that there is no morphism from E or E′ to A(m, 0).
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For the vanishing of RHomX (E,A(m, 0)), it suffices to apply the semiorthogonality
from (38).

For the second vanishing, since E′ ∈ D2, to see that RHomX (E
′,A(m, 0)) = 0, it is

enough to check that

(55) RHomX (A(a,b),A(m, 0)) = 0

for any (a,b) with ℓ − 1 ≥ a ≥ 0 and −1 ≥ b ≥ a − ℓ. But this holds by lemma 7, since
a −m ≤ ℓ − 1 − (−k + ℓ) = k − 1.

The vanishing (50) is proved and so is the proposition. �

Remark 10 (Bondal–Orlov’s fully faithfulness). In the literature the proof of theo-
rem 1 is given only in the case that F is a point (see e.g. [17, proposition 11.23], or
the original [12, theorem 3.6]), but fully faithfulness of the functor Rτ∗ ◦ Lτ ′∗ in the
general case follows with hardly any extra work. Indeed, by adjunction and the fully
faithfulness of Lτ ′∗, we are reduced to show that for all E,F ∈ Lτ ′∗ Db(X ′), the natural
map Hom(E,F) → Hom(Lτ ∗ ◦ Rτ∗E,F) is an isomorphism.

Keeping the notation from the proof of proposition 9, it is enough to show thatHom(E′,F) = 0.
By adjunction, this amounts to the vanishing Rτ ′∗

(

A(a,b) ⊗ ω∨
τ ′

)

= 0 for all (a,b)with
ℓ − 1 ≥ a ≥ 0 and −1 ≥ b ≥ a − ℓ, which follows again from lemma 7. We stress that
this is the original proof of Bondal–Orlov.

3.2 Generation

We followThomas’ presentation in [41] of Kuznetsov’s argument for “mutation-cancellation”,
which is initially in the context of homological projective duality [31]. This will be
used to show that the sequence of subcategories in (5), shown to be semiorthogonal
in the previous section, moreover generate the category D

b(X ). The main result of
this section is the following.

Proposition 11. For allm ∈ [−k,−k + ℓ − 1], the subcategory A(m, 0) is in the trian-
gulated subcategory of Db(X̃ ) generated by the following subcategories:

(56) A(⋆,−ℓ), . . . ,A(⋆,−1);A(−k + ℓ, 0), . . . ,A(−1, 0), Lτ ′∗Db(X ′).

Assuming this proposition, let us deduce the generation part in theorem A(ii).

Corollary 12. The triangulated category D
b(X ) is generated by the subcategories

(57) Φ−k+ℓ(D
b(F )), . . . ,Φ−1(D

b(F )),Rτ∗ ◦ Lτ
′∗(Db(X ′))

Proof. Let C ⊂ D
b(X̃ ) be the triangulated subcategory generated by the subcategories

in (56). By definition, C contains A(a,b) for all a ∈ [−k,−1] and b ∈ [−l ,−1].

Thanks to proposition 11, C also contains A(−k, 0), . . . ,A(−1, 0). Therefore, C con-
tains A(a,b) for all a ∈ [−k,−1] and b ∈ [−ℓ, 0]. By (35) (with m = 0), C con-
tains A(a,⋆) for all a ∈ [−k,−1]. By (38), we deduce that in fact

(58) C = D
b(X̃ ),
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i.e. Db(X̃ ) is generated by the subcategories in (56). Applying the projection func-
tor Rτ∗, one finds that Db(X ) is generated by the subcategories

(59) Rτ∗A(⋆,−l), . . . ,Rτ∗A(⋆,−1);Rτ∗A(−k+ℓ, 0), . . . ,Rτ∗A(−1, 0),Rτ∗◦Lτ
′∗
D
b(X ′).

However, the first ℓ terms are zero by (37), and the nextk−ℓ terms are in factΦ−k+ℓ(D
b(F )), . . . ,Φ−1(D

b(F ))

by lemma 6. We get the desired generation. �

Proof of proposition 11. Let C ⊂ D
b(X̃ ) be the triangulated subcategory generated

by (56).

We proceed by descending induction onm. The induction hypothesis is that

(60) A(m + 1, 0), . . . ,A(−1, 0) ⊂ C.

For all a ∈ [m + 1,−1], we have that

(61) A(a,−ℓ), . . . ,A(a,−1) ⊂ C.

Combined with the induction hypothesis that A(a, 0) ⊂ C and with (35), we have

(62) A(a,⋆) ⊂ C for all a ∈ [m + 1,−1].

Recall that similar to remark 2, but now for the classical case of Orlov’s blowup for-
mula, we have also the semiorthogonal decomposition

(63) D
b(X̃ ) = 〈A(m + 1,⋆), . . . ,A(−1,⋆), Lτ ′∗Db(X ′),A(0,⋆), . . . ,A(m + k,⋆)〉.

Now for any object E ∈ A(m, 0), there is a distinguished triangle

(64) E
′ → E → E

′′ +1−−→,

with

E′ ∈ 〈A(0,⋆), . . . ,A(m + k,⋆)〉(65)

E′′ ∈ 〈A(m + 1,⋆), . . . ,A(−1,⋆), Lτ ′∗Db(X ′)〉.(66)

By (62), E′′ ∈ C. Hence to show that E ∈ C, it suffices to show that E′ ∈ C.

We expand (65) using the projective bundle formula (35) as

(67)
E′ ∈ 〈A(0,−ℓ − 1), . . . ,A(0,−1);A(1,−ℓ − 1), . . . ,A(1,−1);

. . . ;A(m + k,−ℓ − 1), . . . ,A(m + k,−1)〉.

For any (a,b) with a ∈ [0,m + k] and b ∈ [−ℓ − 1,−1], let us denote by E(a,b) the
projection of E′ in A(a,b). We will show by induction that

(68) E(a,b) = 0 for any a ∈ [0,m + k] and b ∈ [−ℓ − 1,−ℓ − 1 + a].

The induction is with the descending order on a and, for fixed a, with ascending order
on b. Assuming that E(a′,b ′) = 0 for allm +k ≥ a′ > a, or a′ = a and −ℓ− 1 ≤ b ′ < b,
let us show E(a,b) = 0. We have that

(69) RHomX (E
′′
,A(a − k,b + 1)) = 0.
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Indeed, on one hand,E′′ ∈ 〈A(m+1,⋆), . . . ,A(−1,⋆), Lτ ′∗Db(X ′)〉; on the other hand,
A(a−k,b+1) ∈ 〈A(−k,⋆), . . . ,A(m,⋆)〉, since a−k ∈ [−k,m]. The vanishing follows
from the semiorthogonality in (38).

The second required vanishing result is that

(70) RHomX (E,A(a − k,b + 1)) = 0.

Indeed, E ∈ A(m, 0) and the vanishing follows from lemma 7. To see this, observe that
we always have a − k ≤ m. If a − k < m, it is fine by lemma 7. If a − k = m, then
b + 1 ∈ [−ℓ,−ℓ +m + k] ⊂ [−ℓ,−1], which is again covered by lemma 7.

Consequently, RHom(E′,A(a − k,b + 1)) = 0. However, by lemma 7, a non-zero mor-
phism from E(a′,b ′) to A(a − k,b + 1) only exists when a′ > a, or a′ = a and b ′ ≤ b.
But by the induction hypothesis, E(a′,b ′) = 0 for all a′ > a, or a′ = a and b ′ < b.
Therefore, we deduce that

(71) RHomX (E(a,b),A(a − k,b + 1)) = 0.

Now write E(a,b) = j∗(p∗ ◦ π ∗F ⊗ O(a,b)) for some F ∈ D
b(F ). We define

(72) G ≔ j∗(p
∗ ◦ π ∗F ⊗ O(a − k,b + 1))[k + 1],

which is in A(a − k,b + 1). Making use of the triangle (40) and

(73) RHomE (p
∗ ◦ π ∗F ⊗ O(a,b),p∗ ◦ π ∗F ⊗ O(a − k,b + 1)[k + 1]) = 0,

we find

(74)

RHom(E(a,b),G)

� RHomE (Lj
∗ ◦ j∗(p

∗ ◦ π ∗
F ⊗ O(a,b)),p∗ ◦ π ∗

F ⊗ O(a − k,b + 1)[k + 1])

� RHomE (p
∗ ◦ π ∗F ⊗ O(a + 1,b + 1))[1],p∗ ◦ π ∗F ⊗ O(a − k,b + 1)[k + 1])

which contains the element ψ ≔ idp∗◦π ∗F ⊗p∗(α) ⊗ p ′∗(idOπ ′ (b+1)), where α is a non-
zero element in

(75)

RHom(Oπ (a + 1),Oπ (a − k)[k]) � Hk (Z ,Oπ (−k − 1))

� H0(F ,Rkπ∗Oπ (−k − 1))

� k.

Then (71) implies that ψ must be zero. This is only possible if p∗ ◦ π ∗F is itself zero.
Hence E(a,b) = 0. The induction for (68) is complete.

In particular, the components E(a,−ℓ − 1) of E′ vanish for a ∈ [0,m + k]. There-
fore E′ ∈ 〈A(⋆,−ℓ), . . . ,A(⋆,−1)〉, hence is contained in C. As we see above, this
implies E ∈ C. In other words, A(m, 0) ⊂ C. The induction onm is complete and the
proposition is proved. �

4 Application: quadratic Fano correspondence for cu-

bic hypersurfaces

In this section we show there is a standard flip diagram associated to a smooth cubic
hypersurface, so that theorem B follows from theorem A. In corollary 18, we use this
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result and [20, theorem 3.4] to deduce a corresponding isomorphism of Chowmotives,
generalizing [32, theorem 5].

We now recall the setup for the quadratic Fano correspondence for cubic hypersurfaces.
Let n ≥ 2, and let Y ⊂ Pn+1 be a smooth cubic hypersurface. Denote F ≔ F(Y ) the
Fano variety of lines on Y and Y [2] the Hilbert scheme of two points on Y , which
will be discussed more explicitly in section 5. Galkin–Shinder [15, §5] and Voisin [43]
established the existence of the following diagram:

(76)

E

D

P2 Y [2] PY P

F

j

p p′

τ τ ′

i

π

ϕ i ′

π ′

In this diagram, we use the following notation:

• π ′ : P → F is the universal P1-bundle;

• π : P2 ≔ P [2]/F → F is the relative Hilbert square of π ′, which is a P2-bundle;

• PY ≔ P(TPn+1 |Y ) → Y is the projectivization of the restriction to Y of the
tangent bundle of the projective space Pn+1, which is a Pn-bundle overY , and PY
parametrises a point on Y together with a line in Pn+1 passing through it;

• D ≔ {(L, z, x) ∈ Gr(2,n+2)×Y [2]×Y | z ⊂ L, x ∈ L, and if L 1 Y , z+x = Y ∩L},
where Gr(2,n + 2) = Gr(P1, Pn+1);

• given a point (L, z, x) of D, the morphism τ maps it to z ∈ Y [2] while the mor-
phism τ ′ maps it to (L, x) ∈ PY ;

• E ≔ {(L, z, x) ∈ D | L ⊂ Y } is a divisor in D;

• ϕ is the Galkin–Shinder map [15, (5.3)] which sends z ∈ Y [2] to (L, x) ∈ PY ,
where L is the line determined (i.e. spanned) by z, and x is the residual intersec-
tion point of L with Y , i.e. L ∩ Y = z + x , when L is not completely contained
in Y ;

• by Voisin [43, proposition 2.9] the upper two trapezoids are blowup diagrams,
and in particular all varieties appearing above are smooth and projective;

• the outer square is cartesian, and observe that π and p ′ are P2-bundles while π ′

and p are P1-bundles.

Denote by S the restriction of the tautological rank-2 bundle over the Grassman-
nianGr(2,n+2) to F . Note that since S is of rank 2, there is a canonical F -isomorphism P(S) ≃ P(S∨).

In corollary 15 we will show that this diagram is in fact a standard flip diagram, as
in (2).

Lemma 13. The natural morphism i : P2 → Y [2] is a closed immersion.
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Proof. Let us describe more carefully the morphism i . Let [L] ∈ F be a point repre-
senting (by abuse of notation) a line L ⊂ Y . Then for two distinct points x ,y ∈ L, the
morphism i sends x +y to the length-2 subscheme {x ,y} ∈ Y [2]; while for the double
point 2x ∈ L[2], it sends it to the length-2 subscheme of Y supported on x with the
tangent direction given by the 1-dimensional subspace TxL ⊂ TxY .

Now observe that if L1 , L2 are two distinct points in F , then L[2]1 ∩ L
[2]
2 = ∅. To see

this, we discuss the two possibilities:

• if L1 ∩ L2 = ∅, then this is immediate;

• if L1 ∩ L2 = {z}, then points on L
[2]
1 and L

[2]
2 whose support contains z are

distinguished by the support of the second point, or the tangent direction.

�

Lemma 14.We have the following descriptions for the normal bundles of i and i ′:

(i) NP2/Y [2] � Oπ (−1) ⊗ π ∗(S).

(ii) NP/PY � Oπ ′(−1) ⊗ π ′∗(Sym2 S).

Proof. We will use the construction of Voisin in the proof of [43, Proposition 2.9],
which we recall now. Denote Gr ≔ Gr(P1, Pn+1). Let σ : Q → Gr be the univer-
sal P1-bundle associated to the tautological rank-2 vector bundle.

For (i), pulling back the P1-bundle using the natural morphism Y [2] → Gr, we obtain
the morphism σ1 : Q1 → Y [2]. Denote the evaluation morphism e1 : Q1 → P. Then the
preimage e−11 (Y ) is a divisor inQ1 of degree 3 over Y [2], with one componentD1 being
the universal subscheme D1 and the other component exactly D. We can summarise
the notation as

(77)

Y P

D1 ∪ D e−11 (Y ) Q1 Q

Y [2] Gr

e1

σ1 σ

.

ThenP2 is the zero set of a regular section of the rank-2 vector bundleσ1,∗(Oσ1(3)⊗OQ1(−D1)).
Therefore the normal bundle of P2 inside Y [2] is its restriction to P2, which is

(78) pr1,∗
(

pr∗2 Oϖ (3) ⊗ O(−U)
)

where U is the universal subscheme (i.e. the restriction of D1) in the diagram

(79)

U P2 ×F P(S
∨) P(S∨)

P2 F

pr2

pr1 ϖ

π

Let us compute this vector bundle (78).
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First, for any [L] ∈ F , the bundle (78) restricted to π−1(L) � L[2] is given by

(80) pr1,∗
(

pr∗2 OL(3) ⊗ OL[2]×L(−U )
)

where U is the universal subscheme (the fiber of D1 over L) in the diagram

(81)
U L[2] × L L

L[2]

pr2

pr1

and U � L × L, so that U → L[2] is the quotient by the involution and U → L is the
projection on the first factor. We obtain that

(82) OL[2]×L(U ) � OP2×P1(1, 2).

Indeed, in the Chow ring of P2 ×P1 we compute thatU · ({z} ×L) = 2 for z ∈ L[2], and
we have thatU |L[2]×{x } � OL[2](1) for x ∈ L.

Next, globalizing the computation, we have thatO(U) � pr∗1 Oπ (1)⊗pr∗2 Oϖ (2). In fact,
via the identification P2 = P(Sym2 S) → F , U corresponds to the canonical element in

(83) H0(P2 ×F P(S
∨), pr∗1 Oπ (1) ⊗ pr∗2 Oϖ (2)) � H0(F , Sym2 S∨ ⊗ Sym2 S).

As a result, we can compute the normal bundle via the identification (78) as

(84)

NP2/Y [2] � pr1,∗
(

pr∗2 Oϖ (3) ⊗ O(−U)
)

� pr1,∗
(

pr∗1 Oπ (−1) ⊗ pr∗2 Oϖ (1)
)

� Oπ (−1) ⊗ pr1,∗
(

pr∗2 Oϖ (1)
)

� Oπ (−1) ⊗ π ∗ (ϖ∗Oϖ (1))

� Oπ (−1) ⊗ π ∗S.

Similarly for (ii), the base change of σ : Q → Gr by the natural morphism PY → Gr
is a P1-bundle σ2 : Q2 → PY , which is endowed with a canonical section. Denote the
evaluation morphism e2 : Q2 → P. Then the preimage e−12 (Y ) is a divisor in Q2 of
degree 3 over PY , with one component D2 being the image of the canonical section
of σ2 and the other component exactly D. We can summarise the notation as

(85)

Y P

D2 ∪ D e−12 (Y ) Q2 Q

PY Gr

e2

σ2 σ

.

ThenP is the zero set of a regular section of the rank-3 vector bundleσ2,∗(Oσ2(3)⊗OQ2(−D2)).
Therefore the normal bundle of P inside PY is its restriction to P , which is

(86) pr1,∗
(

pr∗2 Oϖ (3) ⊗ O(−I)
)
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where I is the incidence subscheme (i.e. the restriction of D2) in the diagram

(87)

I P ×F P(S
∨) P(S∨)

P F

pr2

pr1 ϖ

π ′

As before we compute thatO(I) � pr∗1 Oπ ′(1)⊗pr∗2 Oϖ (1). As a result, we can compute
the normal bundle via the identification (86) as

(88)

NP/PY � pr1,∗
(

pr∗2 Oϖ (3) ⊗ O(−I)
)

� pr1,∗
(

pr∗1 Oπ ′(−1) ⊗ pr∗2 Oϖ (2)
)

� Oπ ′(−1) ⊗ pr1,∗
(

pr∗2 Oϖ (2)
)

� Oπ ′(−1) ⊗ π ′∗ (ϖ∗Oϖ (2))

� Oπ ′(−1) ⊗ π ′∗ Sym2 S.

and we are done. �

Corollary 15. The diagram (76) is a standard flip diagram.

Proof. Indeed, thanks to lemma 14, we take in the notation of (2), X ≔ Y [2], X ′
≔ PY ,

Z ≔ P2, Z ′
≔ P , D ≔ X̃ , k = 2, ℓ = 1, V = Sym2 S and V′

= S. �

Hence we obtain the following.

Proof of theorem B. By corollary 15, we can apply theorem A to the diagram (76) to
get semiorthogonal decompositions

(89)
D
b(Y [2]) = 〈Φ−1(D

b(F )),Rτ∗ ◦ Lτ
′∗
D
b(PY )〉

= 〈Rτ∗ ◦ Lτ
′∗
D
b(PY ),Φ0(D

b(F ))〉

where Φm(−) = i∗(π
∗(−) ⊗ Oπ (m)) : Db(F ) → D

b(Y [2]) is the fully faithful functor
from (4).

We can now further decompose the Pn-bundle PY → Y using the projective bundle
formula, and conclude. �

Remark 16 (Grothendieck ring of categories). The Y -F(Y )-relation from [15, theo-
rem 5.1] is the equality

(90) [Y [2]] = [Pn][Y ] + L2[F(Y )]

in the Grothendieck ring of varieties K0(Var/k), for a cubic hypersurface Y ֒→ Pn+1.

Taking the motivic measure in the Grothendieck ring of dg categories K0(dgCat/k)
from [11] gives the relation

(91) [Db(Y [2])] = (n + 1)[Db(Y )] + [Db(F(Y ))],

which is suggestive of a semiorthogonal decomposition of the form (9), and theorem B
indeed provides this.
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Remark 17 (An isomorphism of Chow motives). Using Jiang’s analysis of the Chow
theory of a standard flip diagram in [20], we can obtain the following improvement of
Laterveer’s result in [32, theorem 5] to integral coefficients. For a smooth scheme X
over some ground field k, we write h(X ) = (X ,∆X ) for the motive of X in the rigid
tensor category of Chow motives over k, see [33]. By h(X )(−i) we denote the mo-
tive h(X ) ⊗ Li , where L = (P1, [P1 × {0}]) is the Lefschetz motive.

Corollary 18. For an arbitrary base field k, there is an isomorphism of Chowmotives
(with integral coefficients) over k:

(92) h(F )(−2) ⊕
n⊕

i=0

h(Y )(−i)
�

−→ h(Y [2]),

where the isomorphism is given by

(93)

(

i∗ ◦ π
∗
,

n⊕

i=0

τ∗ ◦ τ
′∗ ◦ ·c1(Ou (1))

i ◦ u∗

)

where u : PY → Y the Pn-bundle and the other notation is as in (76).

Proof. It suffices to combine corollary 15 with [20, corollary 3.8]. �

5 Hilbert squares of low-degree hypersurfaces

Let X be a smooth projective variety of dimension n = dimX . Then its Hilbert square
(which is short-hand for the Hilbert scheme of length-2 subschemes) X [2] is a smooth
projective variety of dimension 2n [13, theorem 3.0.1]. Throughout we will assume
that n ≥ 2, with the main focus being on n ≥ 3. For the benefit of the reader we will
recall its relevant properties.

It has the following explicit description:

(94)

X [2]

Bl∆(X × X ) E

X × X X

q

τ �

∆

where the square is the cartesian blowup square, and q is the quotient by the Z/2Z-ac-
tion on Bl∆(X × X ).

We can consider q as a double cover, and we need to describe it more explicitly. We
have that

(95) Pic(X [2]) � Pic(X ) ⊕ Z[δ ]

for the divisor δ which is half of the divisor D on X [2] parametrising non-reduced
length-2 subschemes. The double cover is branched along D, and we have the follow-
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ing picture

(96)

E 2E Bl∆(X × X )

D X [2]

�
� q

where 2E is the second infinitesimal neighbourhood of the exceptional divisor E.

By [3, lemma I.17.1] we have that the description as a double cover gives the identifi-
cations

ωBl∆(X×X ) � q
∗
(

ωX [2] ⊗ OX [2](δ )
)

(97)

q∗(OX [2](δ )) � OBl∆(X×X )(E)(98)

whilst the description as a blowup gives the identification

(99) ωBl∆(X×X ) � τ
∗(ωX×X ) ⊗ OBl∆(X×X )((n − 1)E).

TheHilbert square is a resolution of singularities, via theHilbert–ChowmorphismX [2] → Sym2 X ,
sending a length-2 subscheme to the cycle it is supported on. The resolution is crepant
if n = 2, but fails to be crepant for n ≥ 3. To see this, observe that the Hilbert–Chow
morphism fits in the commutative diagram

(100)

Bl∆(X × X ) X × X

X [2] Sym2 X

τ

q

which allows us to compare the canonical bundles. We conclude that it is crepant if
and only if the multiplicity of the contribution of δ in the double cover agrees with
that of the exceptional divisor in the blowup, which happens if and only if n = 2.

We will now use this description of the Hilbert square to prove that in some cases the
Hilbert square of a Fano variety is again Fano. This possibility was suggested in [38],
and later used in [39, lemma 2.9], for X = Pn where n ≥ 3. We will amplify this result
to also cover low-degree hypersurfaces.

5.1 Projective space

We will recall the setup and proof of [39, lemma 2.9]. We will use the notation of (94)
for X = Pn . Consider the morphism

(101) φ : Bl∆(P
n × Pn) → Pn × Pn × Gr(2,n + 1)

which is the product of the blowup τ and the morphism which sends a point on the
blowup to the line in Pn spanned by two distinct points or a point together with a tan-
gent direction, which gives a point on the Grassmannian Gr(2,n + 1). It is quasi-finite
by construction (its fibres are either empty or singletons), hence by [40, tag 02LS] it is
actually finite. By Zariski’s main theorem we can conclude it is a closed immersion.
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We have that Pic(Pn × Pn × Gr(2,n + 1)) � Z⊕3 and we will denote

(102) OPn×Pn×Gr(2,n+1)(i, j,k) ≔ OPn (i) ⊠ OPn (j) ⊠ OGr(2,n+1)(k),

here OGr(2,n+1)(1) is the Plücker line bundle. The line bundles OPn×Pn×Gr(2,n+1)(i, j,k)
are ample if and only if i, j,k ≥ 1, and because φ is finite (so in particular affine)
ampleness is preserved under pullback.

We have the identifications

(103)
φ∗(OPn×Pn×Gr(2,n+1)(1, 1, 0)) � τ

∗ (OPn×Pn (1, 1))

φ∗(OPn×Pn×Gr(2,n+1)(0, 0, 1)) � τ
∗ (OPn×Pn (1, 1)) ⊗ OBl∆(Pn×Pn)(−E),

where the second isomorphism is obtained by considering Plücker coordinates in
terms of bilinear forms (so as sections of OPn×Pn (1, 1)) which are non-vanishing on
the diagonal. We then obtain the following proposition, which is also [39, lemma 2.9].

Proposition 19 (Sawin). Let n ≥ 3. Then Pn[2] is Fano.

Proof. By (97) and (98) we have the identification

(104)

q∗(ω∨
Pn[2]

)

� ω∨
Bl∆(Pn×Pn )

⊗ q∗(OPn[2](δ ))

� ω∨
Bl∆(Pn×Pn )

⊗ OBl∆(Pn×Pn)(E).

By (99) we can further rewrite this as

(105) � τ ∗ (OPn×Pn (n + 1,n + 1)) ⊗ OBl∆(Pn×Pn)((2 − n)E).

But using (103) we can realise this line bundle as

(106) � φ∗
(

OPn×Pn×Gr(2,n+1)(3, 3,n − 2)
)

and hence it is ample if and only if n ≥ 3.

To conclude, by [40, tag 0B5V] we know that ω∨
Pn[2]

is ample if and only if q∗(ω∨
Pn[2]

) is
ample, and we are done. �

5.2 Quadrics and cubic hypersurfaces

We will now bootstrap from the result in proposition 19 to show that low-degree
hypersurfaces again give rise to Hilbert squares which are Fano.

We will extend the notation of (94) for X ֒→ Pn+1 a hypersurface of degree d = 2, 3
by decorating the morphisms involving Pn+1. By functoriality of the Hibert scheme
construction we obtain the following diagram.

(107)

X [2]
P
n+1[2]

E Bl∆(X × X ) Bl∆(Pn+1 × Pn+1) E ′

X X × X P
n+1 × Pn+1 P

n+1

ı

q

τ

q′

τ ′

∆ ∆
′

.
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Proposition 20. Let n ≥ 3 and d = 1, 2, 3. LetX ⊆ Pn+1 be a hypersurface of degree d .
Then X [2] is Fano.

Proof. Observe thatwe have Pic(X×X ) � PicX⊕PicX , andwewill writeOX×X (i, j) ≔ OX (i)⊠OX (j).

By the adjunction formula we have ωX � OX (−n − 2 + d). As in the proof of proposi-
tion 19, using (97), (98) and (99) we have the isomorphism

(108) q∗
(

ωX [2]

)

� τ ∗(OX×X (−n − 2 + d,−n − 2 + d)) ⊗ OBl∆(X×X )((n − 2)E).

Now, by the blowup closure lemma from [42, lemma 22.2.6]we get that the exceptional
divisor E of Bl∆(X×X ) is the restriction of the exceptional divisor E ′ on Bl∆′(Pn+1×Pn+1),
so we have an isomorphism

(109)
τ ∗(OX×X (n − 2,n − 2)) ⊗ OBl∆(X×X )((2 − n)E)

� ı∗
(

τ ′∗(OPn+1×Pn+1(n − 2,n − 2)) ⊗ OBl∆′ (Pn+1×Pn+1)((2 − n)E
′)
)

.

Next we consider the composition of the morphism φ (now for Pn+1) with the inclu-
sion ı, which allows us to further rewrite this line bundle as

(110) � ı∗ ◦ φ∗
(

OPn+1×Pn+1×Gr(2,n+2)(0, 0,n − 2)
)

.

Combining this with the isomorphism

(111) τ ∗ (OX×X (4 − d, 4 − d)) � ı
∗ ◦ φ∗

(

OPn+1×Pn+1×Gr(2,n+2)(4 − d, 4 − d, 0)
)

we obtain after dualising the isomorphism

(112) q∗
(

ω∨
X [2]

)

� ı∗ ◦ φ∗
(

OPn+1×Pn+1×Gr(2,n+2)(4 − d, 4 − d,n − 2)
)

.

Hence we see that q∗(ω∨
X [2] ) is ample as soon as d ≤ 3 and n ≥ 3, because φ ◦ ı is a

again finite morphism.

We can now conclude as in the proof of proposition 19, as by [40, tag 0B5V] we know
that ω∨

X [2] is ample if and only if q∗(ω∨
X [2] ) is ample. �

Remark 21 (Geometric properties of the Hilbert squares). By [5, theorem C] we can
understand the deformation theory of these Fano Hilbert squares. We have that Pn

and Qn are rigid, and therefore so are Pn [2] and Qn [2]. Cubic hypersurfaces of dimen-
sion n on the other hand come in a family of dimension

(n+2
3

)

, and so do their Hilbert
squares.

Finally, by [7, theorem 4] we have that the automorphism group of Pn [2] is isomorphic
to that Pn , i.e. is given by PGLn+1. It would be interesting to understand the automor-
phism groups of Hilbert squares (and especially those which are again Fano) more
generally.

5.3 Application: the Fano variety of lines is a Fano visitor

As discussed in the introduction, the Fano visitor problem for a smooth projective
variety X asks for the construction of a fully faithful functorDb(X ) ֒→ D

b(Y ) into the
derived category of a smooth projective Fano variety Y . In this case we call X a Fano
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visitor and Y the Fano host. We will study this for the Fano variety of lines on a cubic
hypersurface.

Now letY ⊂ Pn+1 be a smooth cubic hypersurface. By theoremBwe have thatDb(F(Y ))
is an admissible subcategory of Db(Y [2]), whilst Y [2] is Fano if n ≥ 3 by theorem C.
This proves corollary D. In fact, if n ≥ 5 then F(Y ) is itself a Fano variety, which is why
we are only interested in n = 3, 4 for the Fano visitor problem [2, proposition 1.8].

Cubic threefolds If n = 3, then F(Y ) is a smooth projective surface of general type
[2, proposition 1.21], whose Hodge diamond is

(113)

1
5 5

10 25 10
5 5

1

.

As far as we know this is the first construction of a Fano host for a surface of general
type which is not a complete intersection or a product of curves.

Observe that ωF(Y ) � OF(Y )(1) is a very ample line bundle (as it is the restriction

of O
P(
n+2
2 )−1

(1) along the closed immersions F(Y ) ֒→ Gr(2,n + 2) ֒→ P(
n+2
2 )−1), hence

by [26, corollary 1.5] we have that Db(F(Y )) is indecomposable.

Cubic fourfolds If n = 4, then the Fano variety of lines on a cubic fourfold is a 4-di-
mensional hyperkähler variety, deformation equivalent to the Hilbert square of a K3
surface [4]. Hence we have constructed Fano hosts for the complete 20-dimensional
family of hyperkählers arising from Fano varieties for cubic fourfolds. As Db(F(Y )) is
Calabi–Yau, it is indecomposable.

It is still an interesting question to find a Fano host for other 20-dimensional families
of hyperkähler 4-folds deformation equivalent to the Hilbert square of a K3 surface.

Higher dimensions If n ≥ 5, then the Fano variety of lines is itself a Fano variety,
and the interesting question is to find a natural semiorthogonal decomposition for it,
rather than embed it in the derived categoryof a Fano variety. We do not address this
here.

Cubic surfaces If n = 2, then Y [2] is not a Fano variety, because the Hilbert–Chow
morphism is a crepant resolution of singularities of Sym2 Y , but it is log Fano [9, corol-
lary 3]. Theorem B still applies though, and we obtain a semiorthogonal decomposi-
tion

(114) D
b(Y [2]) = 〈Db(F(Y )),Db(Y ),Db(Y ),Db(Y )〉,

which can be refined into a full exceptional collection of length 54.

As F(Y ) consists of 27 points, we obtain 27 completely orthogonal objects in D
b(Y [2]).

These are the structure sheaves of the P2’s embedded inY [2]which parametrise 2 points
on each of the 27 lines. Alternatively, consider the natural morphism Y [2] → Gr(2, 4)
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sending 2 points to the line they span in P3. This morphism is generically finite of
degree

(3
2

)

= 3 onto its image, and the 27 completely orthogonal objects correspond
to the locus where the morphism is not finite.
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A Short proof of theorem A(ii) for ℓ = 1

In this appendix we give a short proof of theorem A(ii) when ℓ = 1. This proof has
the added benefit of comparing the category D

b(X ) to the components of (5) as sub-
categories in D

b(X̃ ), and not only after applying Rτ∗.

Assumewe are given a standard flip diagram (2) with ℓ = 1.We recall some of the nota-
tion introduced in section 3. Leta,b ∈ Z, thenwe denote byO(a,b) ≔ p∗Oπ (a)⊗p

′∗Oπ ′(b),
which is a line bundle on E. We will consider the following triangulated subcategory
of Db(X̃ ):

(115)
A(a,b) ≔ j∗(p

∗ ◦ π ∗(Db(F ) ⊗ O(a,b))

= j∗(p
′∗ ◦ π ′∗(Db(F ) ⊗ O(a,b)).

As X̃ is the blow up of X along Z (which has codimension 2 by assumption), Orlov’s
blowup formula [35, theorem 4.3] gives a semiorthogonal decomposition

(116) D
b(X̃ ) = 〈j∗(p

∗(Db(Z )) ⊗ OE (E)), Lτ
∗
D
b(X )〉.

Using the fact that Z is a Pk -bundle over F by (2), the first component in (116) can be
further decomposed using Orlov’s projective bundle formula [35, theorem 2.6] using
our notation as

(117) j∗(p
∗(Db(Z )) ⊗ OE (E)) = 〈A(−k,−1),A(−k + 1,−1), . . . ,A(0,−1)〉.

Combining (116) with (117), we have the following semiorthogonal decomposition:

(118) D
b(X̃ ) = 〈A(−k,−1),A(−k + 1,−1), . . . ,A(0,−1), Lτ ∗Db(X )〉.

Here all the components except the last one are equivalent to D
b(F ) via the defining

functors.

Similarly, using the fact that X̃ is also the blowup of X ′ along Z ′ and that Z ′ is a
P
1-bundle over F , we get a second semiorthogonal decomposition:

(119)

D
b(X̃ ) = 〈A(−k,−1),A(−k, 0),A(−k+1,−1),A(−k+1, 0), . . . ,A(−1,−1),A(−1, 0), Lτ ′∗Db(X ′)〉.

Again all the components of (119) except the last one are equivalent to D
b(F ).

To compare (118) and (119), we perform a sequence of mutations on (119).

First we mutate A(−k, 0) to the left. The resulting semiorthogonal decomposition is

(120)

D
b(X̃ ) = 〈A(−k,−2),A(−k,−1),A(−k+1,−1),A(−k+1, 0), . . . ,A(−1,−1),A(−1, 0), Lτ ′∗(Db(X ′))〉.

Next we mutate A(−k,−2) to the far right. By [10, Proposition 3.6], the resulting de-
composition is

(121)
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D
b(X̃ ) = 〈A(−k,−1),A(−k+1,−1),A(−k+1, 0), . . . ,A(−1,−1),A(−1, 0), Lτ ′∗Db(X ′), S−1

X̃
A(−k,−2)〉,

where SX̃ = −⊗ωX̃ [dim X̃ ] is the Serre functor ofDb(X̃ ).We can easily computeS−1
X̃

A(−k,−2)
as follows

(122)

S
−1
X̃

A(−k,−2) = A(−k,−2) ⊗ ω∨

X̃

= j∗(p
∗ ◦ π ∗(Db(F )) ⊗ O(−k,−2)) ⊗ ω∨

X̃

= j∗(p
∗ ◦ π ∗(Db(F )) ⊗ O(−k,−2) ⊗ ωX̃ |

∨
E )

= j∗(p
∗ ◦ π ∗(Db(F )) ⊗ O(−k,−2) ⊗ ω∨

E ⊗ OE (E))

= j∗(p
∗ ◦ π ∗(Db(F )) ⊗ O(−k,−2) ⊗ O(k + 1, 2) ⊗ O(−1,−1))

= j∗(p
∗ ◦ π ∗(Db(F )) ⊗ O(0,−1))

= A(0,−1).

The result of the mutation is therefore

(123)

D
b(X̃ ) = 〈A(−k,−1),A(−k+1,−1),A(−k+1, 0), . . . ,A(−1,−1),A(−1, 0), Lτ ′∗(Db(X ′)),A(0,−1)〉,

Then for eachm = −k + 1, . . . ,−2, we right mutate the component A(m, 0) through
each of the categoriesA(m,−1),A(m+1,−1), . . . ,A(−1,−1). Lacking control over the
resulting category, we denote the result for now as

(124)
D
b(X̃ ) = 〈A(−k,−1),A(−k + 1,−1), . . . ,A(−1,−1),

B(−k + 1, 0), . . . ,B(−2, 0),A(−1, 0), Lτ ′∗Db(X ′),A(0,−1)〉,

where for all −k + 1 ≤ m ≤ −2, we denote

(125)
B(m, 0) ≔ R〈A(m,−1),A(m+1,−1), ...,A(−1,−1)〉A(m, 0)

= RA(−1,−1) ◦ · · · ◦ RA(m+1,−1) ◦ RA(m,−1)A(m, 0).

The identification of the mutation through the subcategory generated by a sequence
of subcategories and the composition of mutations follows from e.g. [29, lemma 2.2(i)].

Finallywe rightmutate the subcategory 〈B(−k+1, 0), . . . ,B(−2, 0),A(−1, 0), Lτ ′∗Db(X ′)〉

through A(0,−1). The result is

(126)

D
b(X̃ ) = 〈A(−k,−1),A(−k + 1,−1), . . . ,A(−1,−1),A(0,−1),

RA(0,−1)B(−k + 1, 0), . . . ,RA(0,−1)B(−2, 0),RA(0,−1)A(−1, 0),RA(0,−1)Lτ
′∗
D
b(X ′)〉.

As mutations induce equivalences between the original and the mutated components,
in the previous decomposition, each component except the last one is equivalent
to D

b(F ).

Comparing the semiorthogonal decomposition (118) with the mutated semiorthogo-
nal decomposition (126) obtained in the last step, we deduce the following equality of
subcategories of Db(X̃ ):

(127)
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Lτ ∗ Db(X ) = 〈RA(0,−1)B(−k+1, 0), . . . ,RA(0,−1)B(−2, 0),RA(0,−1)A(−1, 0),RA(0,−1)Lτ
′∗
D
b(X ′)〉.

By construction, each component except the last one is equivalent to Db(F ).

By the fully faithfulness ofLτ ∗ : Db(X ) → D
b(X̃ ), its right adjointRτ∗ : Db(X̃ ) → D

b(X )

induces an equivalence between Lτ ∗ Db(X ) and D
b(X ). Applying this equivalence

to (127), we get a semiorthogonal decomposition

(128)

D
b(X ) = 〈Rτ∗RA(0,−1)B(−k+1, 0), . . . ,Rτ∗RA(0,−1)B(−2, 0),Rτ∗RA(0,−1)A(−1, 0),Rτ∗RA(0,−1)Lτ

′∗
D
b(X ′)〉.

It remains to compute the components appearing in this decomposition. We do this
via the following trivial lemma, which says that if a functor annihilates a subcategory,
then the mutation through this subcategory does not change the image by this functor.

Lemma 22. LetA be an admissible triangulated subcategory of a triangulated subcat-
egory T. If Ψ : T → T′ is a triangulated functor to another triangulated category such
that Ψ(A) = 0, then

(129) Ψ(A⊥) = Ψ(T) = Ψ(⊥A).

Note that ⊥A = RAA⊥.

Now, for any integerm, we claim that the functorRτ∗ annihilates the subcategoryA(m,−1).
Indeed, for any E ∈ D

b(F ) we have

(130)

Rτ∗ ◦ j∗(p
∗ ◦ π ∗(E) ⊗ O(m,−1)) = Rτ∗ ◦ j∗(p

∗ ◦ π ∗(E) ⊗ p∗Oπ (m) ⊗ p ′∗Oπ ′(−1))

= i∗ ◦ Rp∗(p
∗ ◦ π ∗(E) ⊗ Oπ (m)) ⊗ p ′∗Oπ ′(−1))

= i∗(π
∗(E) ⊗ Oπ (m) ⊗ Rp∗ ◦ p

′∗(Oπ ′(−1)))

However by the base change formula we have that

(131) Rp∗ ◦ p
′∗(Oπ ′(−1)) = π ∗ ◦ Rπ ′

∗Oπ ′(−1) = 0

which proves the necessary vanishing.

Applying lemma 22 to the functor Rτ∗, we see that a mutation through any category
of the form A(m,−1) withm ∈ Z does not change the image under Rτ∗. In particular
we have

(132) Rτ∗RA(0,−1)B(m, 0) = Rτ∗B(m, 0) = Rτ∗A(m, 0).

Therefore, the semiorthogonal decomposition (128) is nothing else but the following:

(133) D
b(X ) = 〈Rτ∗A(−k + 1, 0), . . . ,Rτ∗A(−2, 0),Rτ∗A(−1, 0),Rτ∗ ◦ Lτ

′∗
D
b(X ′)〉.

Finally, since

(134)

Rτ∗ ◦ j∗(p
∗ ◦ π ∗

D
b(F ) ⊗ O(n, 0)) = i∗ ◦ Rp∗(p

∗ ◦ π ∗
D
b(F ) ⊗ p∗Oπ (n))

= i∗(π
∗
D
b(F ) ⊗ Oπ (n))

= Φn(D
b(F )),

where Φn is defined in (4), the decomposition (133) is exactly the one in theorem A(ii).
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