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Abstract. In this article we study the equivariant elliptic cohomology of complex toric
varieties. We prove a partial reconstruction theorem showing that equivariant elliptic co-
homology encodes considerable non-trivial information on the equivariant 1-skeleton of a
toric variety X (although it stops short of being a complete invariant of its GKM graphs).
Elliptic cohomology is supposed to encode higher categorical geometric data, and proposals
have been made linking elliptic cocycles to categorified bundles. In particular, contrary to
ordinary cohomology and K-theory, elliptic cohomology is expected not to be a derived in-
variant of algebraic varieties. Our second main result is to verify this prediction by showing
that there exist pairs of equivariantly derived equivalent toric varieties with non-isomorphic
equivariant elliptic cohomology.

1. Introduction

The first indications of the existence of elliptic cohomology theories came from work of
Landweber–Stong and Ochanine on elliptic genera. Witten’s construction of a kind of uni-
versal elliptic genus (i.e. the Witten genus) revealed that these objects had deep connections
with quantum field theory, and gave further impetus to this area. Today elliptic cohomol-
ogy is a central objects in homotopy theory. We refer the reader to [Lur09] for a beautiful
overview of this area of intense current research. One of the main open problems in elliptic
cohomology is to find a meaningful geometric construction of elliptic cocycles. Cocycles in
complex K-theory are represented by vector bundles but no such description of elliptic co-
cycles has been fully established, although there have been important contributions in this
direction starting with ideas of Segal, and the Stolz–Teichner program.

A key insight from chromatic homotopy theory is that increasing the chromatic level ought
to involve an increase in categorical complexity. Elliptic cohomology is of chromatic level
two; this has led, for instance, to the idea that cocycles in elliptic cohomology should be
related to 2-bundles, i.e. bundles of categories over a space [BD04]. In this article we make
no step forward on the difficult question of finding a geometric meaning for elliptic cocycles.
However our findings corroborate the idea that elliptic cohomology detects a layer of the
geometry of a space which is not captured by 1-categorical data. To show this, we prove a
general structure result on the equivariant elliptic cohomology of toric varieties which is of
independent interest.

More precisely, our goal in this article is twofold:

• We prove that the equivariant elliptic cohomology of a toric variety encodes highly
non-trivial information on the geometry of the variety X and on the T -action (see
Theorem A of this Introduction). Namely, it allows us to recover a substantial part of
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the GKM graph of X (but not quite the whole of it): essentially, we can reconstruct
the set of vertices and decorated edges, but not the incidence relation between them.
• We use Theorem A to show that equivariant elliptic cohomology is not an invariant

of the equivariant derived category of a toric variety (see Theorem B of this Intro-
duction). This confirms the expectation that elliptic cohomology encodes data that
is not 1-categorical in nature, and therefore is not captured by the derived category
(which is in a sense the universal repository of 1-categorical information of a vari-
ety or stack). Note that both equivariant K-theory and equivariant cohomology are
derived invariants.

1.1. Equivariant elliptic cohomology and toric varieties. We will fix thoughout the
paper an elliptic curve E over C.

By definition, elliptic cohomology is a complex oriented cohomology theory whose formal
group law is the completion of E at the identity. In fact, we will only work with the
complexification of elliptic cohomology. Complexification collapses all cohomology theories
to singular cohomology, up to shifts and sums. However this is no longer true if we work
equivariantly with respect to a group action. Building on ideas that ultimately go back to
Atiyah–Segal’s theorem on the completion of genuine equivariant K-theory, Grojnowski gave
a beautiful construction of complexified equivariant elliptic cohomology in [Gro94].

Turning on equivariance amounts to decompleting the formal group law. In the case of
elliptic cohomology, this means that the S1-equivariant elliptic cohomology of an S1-space
X should define a coherent sheaf of Z2-graded algebras over E. More generally, if G is a
compact Lie group, G-equivariant elliptic cohomology should take values in coherent sheaves
of algebras over the moduli of GC-bundles over E, BunGC(E). This feature is built in in
Grojnowski’s definition of equivariant elliptic cohomology, which we will review in Section
2.1. Note that this story is parallel to the classical picture of complex K-theory, whose
formal group law is the completion of the multiplicative group Gm at one: indeed, the S1-
equivariant K-theory of a space X is a module over K0

S1(pt) = Z[t, t−1] and therefore can be
viewed as defining a coherent sheaf over

Gm = Spec(Z[t, t−1])

Let T be a complex algebraic torus of rank n, and let T∨ be its cocharacter lattice. We
define MT := E ⊗ T∨. Choosing a basis of T gives an isomorphism MT

∼= En. Let X be a
T -toric variety. The equivariant elliptic cohomology of X is a coherent sheaf1

E llT (X) ∈ Coh(MT )

Our first main result shows that E llT (X), viewed just as a coherent sheaf overMT , encodes
interesting information on the geometry of X and the T -action.

1Strictly speaking the equivariant elliptic cohomology of a T -space is a Z2-graded complexes of coherent
sheaves over MT . However in the case of GKM varieties with vanishing odd cohomology, of which smooth
toric varieties are an example, all information is encoded in the degree zero part which is just an ordinary
coherent sheaf; see Remark 2.1 for more comments on this point.
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Theorem A (Theorem 3.8). Let X be a smooth and proper toric variety. Then E llT (X) is
a vector bundle of rank m where m is the number of torus fixed points. Additionally, we can
reconstruct from E llT (X)

(1) the number of one-dimensional orbits O of the T -action
(2) and, for every one-dimensional orbit O, the n− 1-dimensional isotropy torus T ′ ⊂ T

In fact Theorem 3.8 in the main text is more general than Theorem A, as it applies to the
wider class of toric varieties that are good in the sense of Definition 3.1. Good toric varieties
have a toric open cover by affine spaces. The statement has to be slightly modified, as only
the relatively compact one-dimensional orbits are visible through E llT (X). This is a minor
generalization, but it gives us the possibility to apply our result to non-proper toric varieties,
that typically have a simpler geometry. In particular Example 5.3, which underlies Theorem
B, is about a pair of good toric three-folds that are not proper.

Remark 1.1. In Theorem A we regard E llT (X) purely as a coherent sheaf over MT , and
disregard the algebra structure. In fact, keeping track of the algebra structure of E llT (X)
would allows us to reconstruct X and the T -action entirely. Masuda has proved in [Mas08]
that ordinary equivariant cohomology H∗T (X) with its algebra structure is a complete invari-
ant of a toric variety X. It is easy to see that the same is true of E llT (X), which is a richer
invariant than H∗T (X), and recovers the latter as its completion at the identity element of
the abelian variety MT .

Remark 1.2. Equivariant K-theory and equivariant cohomology also define coherent sheaves
on the decompletions of their formal group laws (see Section 2.1 for more details):

KT (X) ∈ Coh(Gm ⊗ T∨) and HT (X) ∈ Coh(A1 ⊗ T∨)
It is easy to see that, just as E llT (X), KT (X) and HT (X) are vector bundles of rank m where
m is the number of torus fixed points. However, contrary to E llT (X), they are necessarily
trivial vector bundles. Thus the number of torus fixed points is the only invariant of the
T -action that can read off KT (X) and HT (X).

Theorem A is probably the best result that one can hope for for (good) toric varieties. For
instance, example 3.10 implies that the full GKM graph of X cannot be reconstructed from
E llT (X). It is an interesting question whether Theorem A generalizes to all GKM-manifolds.
We remark that our proof depends on the simple combinatorics of fans, which is not available
in the general GKM setting. On the other hand the number of fixed points can always be
read off E llT (X) for all GKM manifolds, since it is equal to the rank of E llT (X).

Question 1.3. Let X be a GKM T -manifold. Can we reconstruct the number of one
dimensional orbits, and the corresponding isotropy groups, from E llT (X)?

Before proceeding let us comment on the proof of Theorem A. Let X be a good toric
variety, and let U be its toric open cover by affine spaces. The key point is showing that, given
E llT (X), we can reconstruct uniquely the 2-truncation of the Čech complex that computes
E llT (X) as a limit of E llT (U), where U ranges between the finite intersections of open subsets
in U. This immediately gives us access to the desired information on the one-dimensional
orbits of the T -action. However proving this fact requires a rather laborious calculation
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of the coherent cohomology of E llT (X). Namely our argument requires showing that the
dimension of the top coherent cohomology of E llT (X) is equal to the number of torus-fixed
points. Our methods are essentially elementary. The calculation is carried out in Section
4 and depends on finding a small, combinatorially manageable, model of the Čech complex
that calculates the coherent cohomology of E llT (X).

1.2. Equivariant elliptic cohomology and derived equivalences. Let X be a scheme.
The derived category of coherent sheaves DbCoh(X) encodes a great deal of information on
the geometry ofX. This is the rationale behind a much studied approach to non-commutative
geometry, advocated by Kontsevich and others, whereby general triangulated categories2

are viewed as non-commutative spaces, and one develops techniques to extract geometric
information directly from them. There is a vast literature on this subject; we limit ourselves
to mention in this connection the beautiful theory of non-commutative motives studied in
[BGT13] and [Rob15].

If we work over the complex numbers, both the Z2-periodized ordinary cohomology and
the topological K-theory of a smooth variety X can be computed from DbCoh(X). Let Xan

be the analytification of X. It is classical that the periodic cohomology of X is equivalent
to the Tate fixed points of the natural S1-action on the Hochschild chains of DbCoh(X)

HP ∗(Xan) ' HH∗(DbCoh(X))Tate

As for K-theory, work of Blanc [Bla16] shows that

K(Xan) ' Ktop(DbCoh(X))

where Ktop is a localizing invariant of triangulated categories in the sense of [BGT13]. These
results carry over to the equivariant setting, which is most relevant for our purposes. Namely,
it was showed in [HLP20] that, if G is a reductive algebraic group acting on X, the complex-
ified G-equivariant topological K-theory of X can be computed from the equivariant derived
category of X; note that, essentially by definition, the latter is equivalent to the derived
category of the quotient stack

DbCohG(X) ' DbCoh([X/G])

As a consequence, G-varieties that are G-equivariantly derived equivalent have isomorphic
equivariant K-theory. This easily implies that also their Borel equivariant periodic cohomol-
ogy are isomorphic.

In contrast, heuristics coming from chromatic homotopy theory predict that elliptic coho-
mology should not be an invariant of the derived category. One of our main motivations for
proving Theorem A was to develop a computational tool which would allow us to verify this
prediction. This is our second main result.

2The correct formalism is actually provided by triangulated dg categories, or stable ∞-categories, rather
than by classical triangulated categories. In this introduction, for the sake of clarity, we blur this distinction;
the reader can find more discussion of this point in Section 2.1.2.
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Theorem B (Example 5.3). There exist pairs of toric varieties X and X ′ such that X and
X ′ are T -equivariantly derived equivalent3

DbCohT (X) ' DbCohT (X ′)

but they have non-isomorphic elliptic cohomology. As a consequence, equivariant elliptic
cohomology is not a derived invariant.

Given Theorem A it is easy to see that, in fact, such examples are plentiful and easily
constructed. Atiyah flops provide a wealth of examples of T -equivariantly derived equivalent
toric varieties in all dimensions. For three-folds this amounts to flipping an arc in (a 2d
projection of the) fan, and this has the effect of taking out one of the isotropy subtori of
the one-dimensional orbits, and replacing it with a different codimension-one subtorus. By
Theorem A, the collection of codimension one isotropy subtori can be read off the equivariant
elliptic cohomology of a toric variety. This implies that equivariant elliptic cohomology is
not a derived invariant.

Acknowledgements: This article originates from a seminar on elliptic cohomology at
SISSA that was organized by the first author in 2020. We thank Barbara Fantechi, Hayato
Morimura, Andrea Ricolfi and Paolo Tomasini for their enthusiastic participation in the
seminar, and their willingness to learn about this wonderful subject together with us. We
also thank Nora Ganter, Margherita Lelli–Chiesa and James Pascaleff for useful discussions
on the topic of this paper.

2. Preliminaries

Throughout the paper we will work over the field of complex numbers C.

2.1. Equivariant elliptic cohomology. We will study the equivariant elliptic cohomology
of toric varieties with respect to the action of a maximal algebraic torus T . We give an
overview of the construction of complexified equivariant elliptic cohomology following Gan-
ter’s account in [Gan14], to which we refer the reader for motivations and additional details.
We restrict attention to torus actions, as this simplifies somewhat the exposition. The con-
struction was first proposed in Grojnowski’s seminal paper [Gro94], with later contributions
by Rosu, Ando and others [Ros03], [And03].

We fix a complex elliptic curve E. Let T be a finite dimensional real torus, and let X be
a finite T -CW complexes. In this paper X will always be a complex toric variety equipped
with the action of a maximal torus, and therefore X will be in particular (equivariantly
homotopic to) a finite T -CW complex. Let

MT = Hom(T, U(1)) and NT = Hom(U(1), T )

the character and the cocharacter lattice of T . Consider the variety

MT = E ⊗NT

3An equivariant derived equivalence is not the same as a derived equivalence between DbCoh([X/T ]) and
DbCoh([X ′/T ]): additionally, one needs to require compatibility with the natural DbCoh([pt/T ])-action. We
refer the reader to Section 5 for more precise statements.
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Note that any isomorphism NT
∼= Zn, where n is the rank of T , induces an isomorphism

MT
∼= En. Following Ganter [Gan14], we will define the equivariant elliptic cohomology of

X to be a coherent sheaf of commutative algebras over MT

E llT (X) ∈ Coh(MT )

Remark 2.1. Elliptic cohomology is an even periodic cohomology theory, see e.g. [Lur09].
We should expect the equivariant elliptic cochains of a space X to define a Z2-periodic
complex of coherent sheaves over MT , rather than just a coherent sheaf. This is indeed
the case: in general, the coherent sheaf E llT (X) described below only computes the 0-th
cohomology of the full equivariant elliptic cochain complex of X. However for toric varieties
this entails no loss of information. Toric varieties have vanishing odd equivariant cohomology.
As a consequence their full equivariant elliptic cohomology splits as a direct sum⊕

k∈Z

E llT (X)[2k]

It is therefore sufficient to keep track of the degree 0 summand and, following the conventions
in [Gan14], this is what we will do in the remainder of the paper.

We denoteHT (X) the (even) Borel equivariant cohomology of X with complex coefficients,
and grading collapsed modulo two

HT (X) :=
⊕
n∈Z

H2k(X ×T ET,C)

When X = pt, HT (X) is naturally identified with the symmetric algebra over the complex-
ification of the dual of the Lie algebra of T . That is, there are identifications

Spec(HT (pt)) ∼= tC ∼= An
C

where the latter depends on a choice of isomorphism NT
∼= Zn. Note that in particular, since

HT (X) is a finitely presented module over HT (pt), it defines a coherent sheaf over tC ∼= An
C.

Let us describe the stalks of E llT (X) on MT , and then briefly explain the globalization
step required to complete the construction. An inclusion of tori T ′ → T induces a closed
embeddingMT ′ ⊂MT . We denote by XT ′ the T ′-fixed points for the induced action of T ′.
For every closed point α ∈MT , we denote by S(α) the set of the sub-tori T ′ ⊂ T such that
α lies in MT ′ ⊂MT . We set

T (α) := ∩T ′∈S(α)T
′

The stalk of E llT (X) at α is given by

(1) E llT (X)α ∼= HT (XT (α))⊗OAnC
(OAnC)0

That is, the stalk of E llT (X) at α is naturally identified with the stalk of the Borel equivariant
cohomology of XT (α) at 0 ∈ tC ∼= An

C. This is expected on general grounds from equivariant
homotopy theory, and is closely related to Atiyah–Segal’s work on the relationship between
genuine and Borel equivariant K-theory [AS69].

To define a global coherent sheaf onMT the information on its stalks is not sufficient. The
key point is that identification (1) can be spread to a sufficiently small analytic neighborhood
Uα of α: sections of E llT (X) on Uα can be identified with sections of HT (XT (α)) on an
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appropriate analytic neighborhood of the origin. The sheaf E llT (X) can then be defined
uniquely by describing its sections, and restrictions, on an analytic cover ofMT . SinceMT

is proper, the fact that E llT (X) is actually an algebraic coherent sheaf follows via GAGA.
We refer the reader to [Gan14] for the details.

The upshot of the construction is that one can define E llT (X) as a coherent sheaf of
commutative algebras over MT .

Definition 2.2. We denote by p :MX →MT the relative Spec of E llT (X).

Note that by definition there is an isomorphism E llT (X) ∼= p∗(OMX
). Note also that if X

is the point with the trivial action, then Mpt =MT .
We conclude by stating the standard functoriality property of E llT (X) with respect to

maps of tori. If f : T ′ → T is a map of tori, there is an induced map ρf :MT ′ →MT .

Proposition 2.3. Let X be a finite T ′-CW -complex. Let f : T ′ → T be a map of tori. Then
T acts on X ×T ′ T and there is a natural isomorphism

E llT (X ×T ′ T )
∼=→ (ρf )∗E llT ′(X)

Proof. This is a general property of equivariant cohomology theories, but we sketch a proof
for the convenience of the reader. Consider the T ′-equivariant map

i : X → X ×T ′ T, x ∈ X 7→ (x, 1T ′) ∈ X ×T ′ T
Pull-back in elliptic cohomology yields a map of coherent sheaves over MT ′

E llT ′(X ×T ′ T )→ E llT ′(X)

Composing this with the natural isomorphism

(ρf )
∗E llT (X ×T ′ T ) ∼= E llT ′(X ×T ′ T )

we obtain a map (ρf )
∗E llT (X ×T ′ T ) → E llT ′(X) in Coh(MT ′); and, by adjunction, a map

in Coh(MT ),
E llT (X ×T ′ T )→ (ρf )∗E llT ′(X)

We need to prove that this last map is an isomorphism, and this can be checked on stalks.
Thus we reduce to the analogous statement in equivariant singular cohomology, which is well
known. �

2.1.1. GKM manifolds. From now on we will assume that T is a complex, rather than a
real, torus. From the viewpoint of equivariant homotopy theory, this makes no difference
as complex algebraic tori are homotopy equivalent to their unitary subgroups, which are
compact real tori.

A space X equipped with a T -action is equivariantly formal if the spectral sequence

Hp(BT ;Hq(X,R))⇒ Hp+q
T (X,R)

induced by the fibration X ×T BT → BT collapses. We say that an even dimensional,
compact manifold X equipped with a T -action is a GKM manifold if

• X is equivariantly formal
• The T -action has only finitely many zero- and one-dimensional orbits
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Complex smooth toric varieties with the action of the maximal torus are GKM manifolds.
By Theorem 1.2.2 of [GKM98] if X is a GKM manifold, its equivariant cohomology can
be computed from its GKM graph (see Definition 2.4 below) built from the zero- and one-
dimensional orbits of the T -action. This theorem was generalized to K-theory and elliptic
cohomology by Knutson–Rosu [Ros03]. We formulate it in the setting of elliptic cohomology
as Proposition 2.5 below.

Let us assume that X is a GKM manifold. Let λ : T → C∗ be a character of T . We denote
by S2

λ the representation sphere for λ, i.e. the one point compactification of C equipped with
the T -action given by λ. Each 1-dimensional orbit O of the T -action on X compactifies to a
representation sphere: i.e. O ∼= Sλ for some character λ, where O is the closure of O inside

X. If T
λ→ C∗ is a character of T , we denote Tλ := kerλ. The datum of λ is the same

as a that of a homomorphism φλ : NT → Z. If Nλ is the kernel of φλ, then Tλ is equal to
ker(φλ)⊗ C∗.

Definition 2.4. The moment graph Γ of X is an edge-labelled graph such that

(1) as vertices, the fixed points of the T -action
(2) as edges, the one-dimensional orbits: an edge O joins two vertices v1 and v2 if they

lie on O
(3) edges are labelled by characters of T : an edge O is labelled by λ if O ∼= S2

λ

We denote respectively by VΓ and EΓ the set of vertices and edges of Γ. We denote by λe
the character labelling an edge e ∈ EΓ, and we set Te := Tλe .

Proposition 2.5. Let X be a GKM manifold.

(1) The variety MX is the colimit in the category of schemes of the diagram[ ∐
v∈ΓX

MT ⇒
∐
e∈EΓ

MTe

]
→MX

where the two arrows are the natural inclusions.
(2) The coherent sheaf E llT (X) is the limit in Coh(MT ) of the diagram of coherent

sheaves of algebras

E llT (X)→
[ ⊕
v∈ΓX

OMT
⇒
⊕
e∈VΓ

OMTe

]
where the arrows are given by pull-back along the arrows in statement (1).

Proof. Statement (2) is a special case of Corollary 4.3 of [Gan14], which is a generalization
of Theorem 1.2.2 of [GKM98] to equivariant K-theory and equivariant elliptic cohomology.
Statement (1) follows from (2) by taking relative Spec. This implies thatMX is the colimit
in the category of schemes that are affine over MT , to prove that it is also the colimit in
schemes requires an extra argument. Note that the diagram is an iterated push-out of closed
immersions. So on every affine patch of MT we can apply Theorem 3.4 of [Sch05] which
states that, under these assumptions, the colimit in the category of affine schemes coincides
with the colimit in the category of schemes. It is easy to see that Schwede’s result extends
to our relative setting by taking the realization of the Čech nerve of an affine open cover of
MT , which is a colimit in the category of schemes. �
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Remark 2.6. As we mentioned Corollary 4.3 of [Gan14] applies also to equivariant coho-
mology and equivariant K-theory. Let us explain the case of K-theory. The (degree 0 part
of the) equivariant K-theory of X, KT (X), defines a coherent sheaf of algebras over

T := Spec(KT (pt)) ∼= T

Set Tτ := C∗ ⊗ 〈τ〉, and TX := Spec(KT (X)). Then statements (1) and (2) of Proposition
2.5 remain valid for the equivariant K-theory KT (X), if we replace MX , Mσ and Mτ with
TX , Tσ and Tτ .

2.1.2. Categories. Equivariant elliptic cohomology defines an object in Coh(MT ), which
is a small abelian category. To carry out some parts of our argument, however, it will
be convenient to work with triangulated categories, such as the derived category of quasi-
coherent sheaves. In fact, the formalism of triangulated categories is not quite sufficient for
our purposes. We will work instead inside the ∞-category of triangulated and presentable
C-linear dg categories. Triangulated dg categories are by now a familiar replacement of
triangulated categories, with better formal properties; viewing them as objects in an ∞-
category allows to make sense of limits and colimits of triangulated categories. We stress
that these techniques will play a rather small role in this paper, being limited to the proof
Lemma 4.3 in Section 4; and to the formulation of some results in Section 5. The subtleties
of∞-categories will play no actual role in our argument. Here we limit ourselves to introduce
notations, and state for future reference a descent property. A standard reference for this
material is [GR19].

(1) Let PrL,tr the ∞-category of presentable and triangulated dg categories
(2) If R is a dg algebra, we denote by R-mod the presentable triangulated dg category

of R-modules. In our applications, R will always be equal to C
(3) If X is a stack, we denote by Qcoh(X) the presentable triangulated dg category of

quasi-coherent sheaves over X. This is a dg enhancement of the classical unbounded
derived category of quasi-coherent sheaves over X. In our applications, X will always
be either a smooth variety, a smooth DM stack or a smooth Artin stack

(4) We denote by Perf(X) the full-subcategory of compact objects in Qcoh(X). This is
a dg enhancement of the classical triangulated category of perfect complexes over X.
Both Qcoh(X) and Perf(X) carry a symmetric monoidal structure

(5) If f : X → Y is a map of stacks, we have a pair of adjoint functors

f ∗ : Qcoh(Y ) � Qcoh(X) : f∗

(6) The functor f ∗ is symmetric monoidal, and restricts to the subcategory of perfect
complexes. This it induces a monoidal action of Qcoh(Y ) on Qcoh(X), and of Perf(Y )
on Perf(X)

(7) Now assume that Y is smooth, and that f is proper. Then both functors f ∗ and f∗
restrict to the subcategories of perfect complexes

f ∗ : Perf(Y ) � Perf(X) : f∗

Proposition 2.7. The assigment sending a scheme X to the category Qcoh(X) ∈ PrL,tr,
and a map f : X → Y to the pull-back f ∗ : Qcoh(Y ) → Qcoh(X), can be promoted to a
colimit preserving contravariant functor. In particular if X is isomorphic to a colimit in
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the category of schemes X ∼= lim−→i∈I Ui with structure maps αij : Ui → Uj, then Qcoh(X) is

equivalent to a limit in PrL,tr

Qcoh(X) ' lim←−
i∈I

Qcoh(Ui)

with structure maps (αij)
∗ : Qcoh(Uj)→ Qcoh(Ui).

3. Equivariant elliptic cohomology of toric varieties

Throughout this section we fix a complex elliptic curve E. We let T be a n-dimensional
algebraic torus, and consider toric varieties with respect to a T -action. We use the notations
introduced in Section 2.

We start by briefly recalling basic notions from toric geometry. For a comprehensive
introduction to toric geometry, we refer the reader to [Ful93]. The main result of this Section
is Theorem 3.8, which shows that equivariant elliptic cohomology allows us to recover highly
non-trivial information on fixed points and 1-dimensional orbits of the T -action (although
not the full GKM graph).

We denote by MT and NT , respectively, the character and cocharacter lattice of T . Let n
be the dimension of T . Let Σ ⊂ NT be a fan. That is, Σ is a set of strongly convex cones
closed under taking faces and intersections. We can associate to a fan Σ a n-dimensional
complex toric variety XΣ, which is equipped with an action of T . Conversely, if X is a toric
T -variety, we can associate to X a fan ΣX in NT .

If τ is a cone in Σ, we denote by 〈τ〉 ⊂ NT the sublattice generated by the vectors in
τ . For all τ ∈ Σ we set Uτ := Spec C[τ∨], where τ∨ := {c ∈ MT | τ(c) ≥ 0} is the dual
cone. For all 0 ≤ k ≤ n, we denote by Σk the collection of k-dimensional cones in the fan Σ.
Occasionally, we will denote the set of top-dimensional cones of Σ also by Σtop. Cones of Σ
are in bijection with torus-equivariant affine open subsets of XΣ: if τ is a cone, we denote
by Uτ ⊂ XΣ the corresponding open subset.

Throughout the paper we make the following two assumptions on the toric variety X = XΣ

(1) X is smooth. Equivalently, for all σ ∈ Σtop
X the sublattice 〈σ〉 is equal to NT

(2) X has a toric affine open cover by open subsets which are isomorphic to An. Equiv-
alently, all cones of ΣX lie on a top-dimensional cone

Definition 3.1. We say that a toric variety X is good if it satisfies conditions (1) and (2).

If τ is a cone of Σ, we set Mτ := E ⊗ 〈τ〉. Note the following special cases

• If τ is maximal, then Mτ =MT

• If τ = 0, then Mτ = pt

An inclusion of cones τ ′ ⊂ τ induces a closed embedding Mτ ′ ⊂Mτ .

Lemma 3.2. Let τ be a cone in ΣX . We view Mτ as a closed subvariety of MT via the
embedding induced by the inclusion 〈τ〉 ⊂ NT . Then there is an isomorphism

E llT (Uτ ) ∼= OMτ
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Proof. Let m be the rank of Nτ . There is an embedding (C∗)m ∼= 〈τ〉 ⊗C∗ → T = NT ⊗C∗.
We have isomorphisms

Uτ ∼= Cm ×(C∗)m T ∼= Cm × (C∗)n−m

Thus it follows from Proposition 2.3 that

E llT (Uτ ) ∼= i∗E ll(C∗)m(Cm) ∼= OMτ

where the first isomorphism comes from the fact that Cm is equivariantly homotopic to the
point. �

We will give an elementary proof of Proposition 2.5 for toric varieties, based on the prop-
erties of the torus equivariant affine cover. See Lemma 3.3 and Corollary 3.5 below. This will
allow us in particular to extend Proposition 2.5 to good toric varieties which are not necessar-
ily compact, and therefore are not strictly speaking GKM manifolds: whereas compactness
in assumed in Proposition 2.5.

Let (Σn−1
X )∗ ⊂ Σn−1

X be the subset of n − 1-dimensional cones τ that lie on two different
top dimensional cones σ and σ′. Note that if X is proper, i.e. ΣX is a complete fan, (Σn−1

X )∗

is equal to Σn−1
X .

Lemma 3.3. Let X be an n-dimensional toric variety. We enumerate from 1 to m the
maximal cones of ΣX

Σtop
X = {σi}i∈I , I = {1, . . . ,m}

There is an exact sequences in Coh(MT )

(2) 0→ E llT (X)
ρ1→
⊕
i∈I

OMT

ρ2→
⊕

i,j∈I,i<j

OMσi∩σj
→ . . .→ OMσ1∩...∩σm

→ 0

Further, away from a closed subscheme of codimension 2, ρ2 induces an isomorphism

coker(ρ) ∼=
⊕

τ∈(Σn−1
X )∗

OMτ

Proof. Consider the equivariant open cover of X given by {Uσi}i∈I . By Lemma 3.2, the
elliptic cohomology of Uσ1∩...∩σn is given by

E llT (Uσ1∩...∩σn) ∼= OMσ1∩...∩σn

The first statement is a consequence of Mayer-Vietoris and the vanishing of the odd equi-
variant elliptic cohomology of smooth toric varieties. In the base case m = 2 we obtain an
exact sequence

0→ E llT (X)→ E llT (Uσ1)⊕ E llT (Uσ2)→ E llT (Uσ1∩σ2)→ 0.

Induction on m yields the sequence

0→ E llT (X)→
⊕
i∈I

E llT (Uσi)→
⊕
i<j

E llT (Uσi∩σj)→ . . .→ E llT (Uσ1∩...∩σm)→ 0

We conclude applying again Lemma 3.2.
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Now let us consider the last statement. We set

Z :=
⋃

τ∈Σn−2
X

Mτ and U :=MT − Z

Note that Z has codimension 2. After restricting to U we note that

(1) All terms of the exact sequence (2) vanish except the first three, as they all have
support in Z

(2) For the same reason, the natural inclusion⊕
i,j∈I,i<j

OMσi∩σj
→

⊕
τ∈(Σn−1

X )∗

OMτ

becomes an isomorphism

As restriction to U is an exact functor, this concludes the proof. �

Remark 3.4. We will spend much of the remainder of the paper studying properties of
E llT (X) as a coherent sheaf over MT . Thus, it might be interesting to remark that Lemma
3.3 allows us to easily compute the determinant of E llT (X). Namely, there is an isomorphism

det(E llT (X)) ∼= OET (−
∑

τ∈(Σn−1
X )∗

Mτ )

Indeed, by standard properties of determinants, the line bundle det(E llT (X)) can be com-
puted by tensoring together the determinants of all terms, but the first, of sequence (2).
Further det(OZ) vanishes as soon as Z has codimension two or higher. This implies that
only the second term of sequence (2) contributes to the determinat, and we find that

det(E llT (X)) ∼= det(
⊕

τ∈(Σn−1
X )∗

OMτ )
∼=

⊗
τ∈(Σn−1

X )∗

det(OMτ )
∼= O(−

∑
τ∈(Σn−1

X )∗

Mτ )

Corollary 3.5. Let X be a good toric variety.

(1) The variety MX is the colimit in the category of schemes of the diagram[ ∐
τ∈(Σn−1

X )∗

Mτ ⇒
∐

σ∈ΣtopX

Mσ

]
→MX

where the two arrows are induced by the inclusion of τ ∈ (Σn−1
X )∗ in the top dimen-

sional cones containing it.
(2) The coherent sheaf E llT (X) is the limit in Coh(MT ) of the diagram of coherent

sheaves of algebras

E llT (X)→
[ ⊕
σ∈ΣtopX

OM ⇒
⊕

τ∈(Σn−1
X )∗

OMτ

]
where the arrows are given by pull-back along the arrows in statement (1).

Proof. As in the proof of Proposition 2.5, Statement (1) follows from (2) by taking relative
Spec. In the case of good toric varieties statement (2) follows from Lemma 3.3. Indeed,
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since Coh(MT ) is an abelian category, the equalizer can be computed as the kernel of the
difference of the two maps, which is the natural morphism⊕

σ∈ΣtopX

OM →
⊕

τ∈(Σn−1
X )∗

OMτ

It follows from Lemma 3.3 that the kernel of this map is isomorphic to E llT (X). �

Proposition 3.6. Let X be a good toric variety. Then E llT (X) is a vector bundle of rank
m := |Σtop

X | over MT .

Proof. It follows from Corollary 3.5 that the map p :MX →MT is a finite and flat morphism
of degree m. Under these assumptions, the pushforward of a line bundle is a rank m vector
bundle, and this applies in particular to p∗(OMX

) ∼= E llT (X). �

Lemma 3.7. Let X be a good toric variety. Then

(1) The dimension of the space of cosections of E llT (X) is equal to the number of top
dimensional cones in ΣX : in symbols

dimC
(
HomCoh(MT )(E llT (X),OMT

)
)

= |Σtop
X | =: m

(2) Consider the canonical map

ψ : E llT (X)→ OMT
⊗
(
HomCoh(MT )(E llT (X),OMT

)
)∗

Then, away from a closed subscheme of codimension 2, there is an isomorphism

coker(ψ) ∼=
⊕

τ∈(Σn−1
X )∗

OMτ

Proof. Recall that E llT (X) is isomorphic p∗OMX
, where p : MX → MT is the structure

map. By Serre duality, we have that

HomCoh(MT )(p∗OMX
,OMT

) ∼= (Extn(OMT
, p∗OMX

))∗ = (Hn(p∗OMX
))∗

Now the map p is affine, and therefore the derived pushforward of p coincides with the
classical pushforward p∗. As a consequence we have an isomorphism

Hn(p∗OMX
) ∼= Hn(OMX

)

Now the first part of the Lemma follows from Theorem 4.1, that will be proved in Section
4, and states that

dimC(Hn(OMX
)) = |Σtop

X |
Let us prove the second part of the Lemma. There is a canonical map

ψ : E llT (X)→ OMT
⊗
(
HomCoh(MT )(E llT (X),OMT

)
)∗

obtained by dualizing the evaluation map. Upon choosing a basis of the vector space of
cosections HomCoh(MT )(E llT (X),OMT

), we obtain a map

ψ′ : E llT (X)→
i=m⊕
i=1

OMT



14 SCHEROTZKE AND SIBILLA

Up to the GL(m,C)-action on the second factor, ψ′ is the unique map between its source and
its target to be generically (i.e. away from a closed locus) an isomorphism. Recall indeed
that the rank of E llT (X) is also equal to m.

Now, consider the first map in exact sequence (2) from Lemma 3.3

ρ1 : E llT (X)→
i=m⊕
i=1

OMT

Note that ρ1 is also generically an isomorphism, thus there is a matrix A ∈ GL(m,C) such
that the diagram below commutes

E llT (X)
ψ′ //

=

��

⊕i=m
i=1 OMT

·A∼=
��

E llT (X)
ρ //
⊕i=m

i=1 OMT

It follows that there are isomorphisms

coker(ψ) ∼= coker(ψ′) ∼= coker(ρ1)

Then the statement follows by Lemma 3.3. �

The following theorem is one of our main results.

Theorem 3.8. Let X and X ′ be good toric varieties, and assume that their equivariant
elliptic cohomology are isomorphic

E llT (X) ∼= E llT (X ′) in Coh(MT )

Then ΣX and ΣX′ have same number of maximal cones and there is a bijection

φ : (Σn−1
X )∗ → (Σn−1

X′ )∗

such that for all τ ∈ (Σn−1
X )∗, 〈τ〉 = 〈φ(τ)〉.

Proof. By Lemma 3.6, E llT (X) is a vector bundle of rank |Σtop
X | and this implies the first

part of the claim. Now, by Lemma 3.7, if E llT (X) is isomorphic to E llT (X ′) there is an
isomorphism

(3)
⊕

τ∈(Σn−1
X )∗

OMτ
∼=

⊕
τ ′∈(Σn−1

X′ )∗

OMτ ′

away from a subscheme of codimension 2. Restricting isomorphism (3) to the generic points
of the smooth divisors in MT yields a bijection

φ : Σn−1
X′ → Σn−1

X

with the property that for every τ ∈ Σn−1
X′ , the divisors Mτ and Mφ(τ) are equal. We

conclude because of the evident double implication

Mτ =Mφ(τ) ⇐⇒ 〈τ〉 = 〈φ(τ)〉
�
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3.1. The case of toric surfaces. Let X and X ′ be good toric varieties. Theorem 3.8
provides necessary conditions for E llT (X) and E llT (X ′) to be isomorphic. We do not expect
that these conditions are sufficient, in general. However it is easy to see that they are
sufficient if X and X ′ are toric surfaces. We prove this in this section.

Let X be a good toric surface. We fix a 1-dimensional cone τ of ΣX and number clock-wise
the remaining one-dimensional cones starting from τ1 := τ ,

Σ1
X = {τ1, . . . , τm}

We also number from 1 to N he maximal cones of Σ

Σtop
X = {σ1, . . . , σm}

We do not need to impose any compatibility between the orderings of Σ1
X and Σtop

X .
Let AX ∈Mm(Z) be the (weighted) incidence matrix defined as follows

• ai,j = 1 if the following two conditions are satisfied: τj ⊂ σi and if τj ⊂ σi′ then i ≤ i′

• if the following two conditions are satisfied: τj ⊂ σi and if τj ⊂ σi′ then i ≥ i′

• ai,j = 0 otherwise.

Recall that we have OEσ = OE2 for all maximal cones σ. Consider the following maps of
coherent sheaves on MT

m⊕
i=1

OMT

AX−→
m⊕
i=1

OMT
−→

m⊕
i=1

OMτi

where the second map is the direct sum of the quotient morphisms OMT
→ OMτi

. Let ρX
be the composite map. Then ρX is equal to the map ρ2 considered in Lemma 3.3. Thus, by
Lemma 3.3, the kernel of ρX is isomorphic to the equivariant elliptic cohomology of X

(4) 0→ E llT (X)→
i=m⊕
i=1

OMT

ρX−→
i=m⊕
i=1

OMτi

Proposition 3.9. Let X and X ′ be two good toric surfaces. Assume that there is a bijection
α : Σ1

X → Σ1
X′ such that for all τ ∈ Σ1

X , 〈τ〉 = 〈φ(τ)〉. Then there is an isomorphism
E llT (X) ∼= E llT (X ′).

Proof. By induction, it is enough to assume that the fans ΣX and Σ′X differ by one ray
pointing in opposite direction. We assume without loss of generality that ΣX and Σ′X differ
by the ray τ1. That is, the ordered sets of 1-dimensional cones in the fans are given by

Σ1
X = {τ1, τ2, . . . , τm} Σ1

X′ = {τ2, . . . , τi,−τ1, τi+1, · · · , τm}
It is now easy to see that the incidence matrix AX′ can be obtained from AX by row trans-
formations. In particular, there is an invertible m ×m matrix M such that AX = AX′M .
Let us denote the rows of AX by rj and the rows of AX′ by r′j. The matrix M encodes the
following row-transformations

• r′1 = r1 + r2, r
′
j = rj+1 for 2 ≤ j ≤ i− 1

• r′i = r1 + ri+1 + . . .+ rN
• r′i+1 = −r1 + ri+2 + . . .+ rN
• r′j = rj for j ≥ i+ 2
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As a consequence the diagram

⊕m
i=1OMT

ρX

((
AX //

M ·
��

⊕m
j=1OMT

//

=

��

⊕m
j=1OMτj

=

��⊕m
i=1OMT

ρX′
55

AX′ //
⊕m

j=1OMT
//
⊕m

j=1OMτj

commutes, and therefore the kernels of the horizontal compositions ρX and ρX′ are isomor-
phic. As these kernels compute elliptic cohomology, this concludes the proof. �

Example 3.10. Let us give an example of two smooth and proper toric surfaces X and X ′

which are not isomorphic as varieties, but have isomorphic equivariant elliptic cohomology.
This shows in particular that E llT (X) as coherent sheaf over MT is not by itself sufficient
to reconstruct X, nor its full GKM graph. We define ΣX and ΣX′ by plotting the generators
of their one-dimensional cones below

Now, the equivariant elliptic cohomology of X and X ′ are isomorphic by Proposition 3.9.
However X and X ′ are non isomorphic as varieties, even forgetting the T -action. This
can be easily checked directly. One can also note that the fans of toric varieties that are
isomorphic as abstract varieties must differ by an automorphism of NT , see for instance [hg]
for references and dicussions; and no automorphism of NT sends ΣX to ΣX′ .

4. A coherent cohomology calculation

In this section we will prove the following result.

Theorem 4.1. Let X be a good toric variety. The dimension of the cohomology group
Hn(OMX

) is equal to the number of irreducible components of MX . Equivalently, it is equal
to the number of top dimensional cones in ΣX

dimC(Hn(OMX
)) = |Σtop

X |

The trouble with computing the coherent cohomology ofMX is that in generalMX is not
normal crossing. In fact it is easy to see that, if X is proper, thenMX is normal crossing if
and only if X is isomorphic to the projective space. Most results on coherent cohomology of
singular reducible schemes in the literature (such as [Bak10]) work under the normal crossing
assumption. In that setting theorems for coherent cohomology are available which would
imply in particular Theorem 4.1.
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Thus, to prove Theorem 4.1, we cannot appeal to general results. Instead, we will perform
an explicit Čech calculation via elementary methods. We explain our strategy first in the
case of En. We build an especially small and manageable complex which computes coherent
Čech cohomology of En. The properties we will need are summed up in Lemma 4.4. Then
we pass to the general case.

4.1. The coherent cohomology of En. Let e be the identity element in E, and choose a
second closed point p in E, p 6= e. Let Ua = E − {p}, Ub = E − {e}, and Uc = Ua ∩ Ub. We
equip the set {a, b, c} with the partial order c < a and c < b. For every i = (i1, . . . , in) ∈
I := {a, b}n, we denote by Ui the open subset

Ui := Ui0 × . . .× Uin ⊂ En

We can compute the coherent cohomology of En via the affine open cover U = {Ui}i∈{a,b}n .

Geometrically, this means viewing En as the realization of the Čech nerve of the cover U.
The drawback is that the Čech complex obtained in this way is rather large. We take a
slightly different approach, by expressing En as a smaller colimit of affine open subsets.

Consider the indexing set J = {a, b, c}n. For every j = (j1, . . . , jn) ∈ J we denote

Uj = Uj1 × . . .× Ujn ⊂ En.

We can equip J with the product partial order. Note that j and j′ are in J , then j ≤ j′ if
and only if Uj ⊆ Uj′ . The poset J has a least element given by (c, . . . , c) which corresponds
to the open subset Uc × . . . × Uc. All open subsets Uj can be realized as intersections of
elements of U . In particular Uc × . . .× Uc is the intersection of all open subsets in U .

We obtain a J-indexed diagram in the category of schemes, such that all arrows are
inclusions of open subsets.

Lemma 4.2. There is an isomorphism

lim−→
j∈J

Uj ∼= En

Proof. The proof depends on an induction on n. The case n = 1 is clear: it reduces to the
statement that if X is a scheme and U and V are a open subsets covering X, then X is
isomorphic to the push-out of the diagram

U ← U ∩ V → V

in the category of schemes.
Let us prove the inductive step. We can break down J into three full subcategories,

depending on the letter appearing as the last coordinate. Namely, for every ∗ ∈ {a, b, c} we
define J∗ to be the full subcategory of J on the vertices of the form

Uj1 × . . .× Uj−1 × U∗.

By the inductive hypothesis, we have that

(5) lim−→
j∈J∗

Uj ∼= En−1 × U∗
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As colimits commute with colimits, we can compute lim−→j∈J in terms of the colimits of the

subdiagrams indexed by J∗: more precisely, there is a push-out

lim−→j∈Jc
Uj //

��

lim−→j∈Ja
Uj

��
lim−→j∈Jb

Uj // lim−→j∈J Uj

By (5) we can rewrite this as

En−1 × Uc //

��

En−1 × Ua

��
En−1 × Ub // lim−→j∈J Uj

Now, we are back to the case of a schemeX = En covered by two open subsets, U = En−1×Ua
and V = En−1 × Ub, with intersection En−1 × Uc. We know that the push-out has to be
isomorphic to En and therefore we conclude that

lim−→
j∈J

Uj ' En

as we wished to prove. �

If X is a scheme, we denote by H∗(OX) the derived global sections of OX , viewed as an
object of the stable dg category C-mod.

Lemma 4.3. There is an equivalence in k-mod

H∗(OEn) ' lim←−
j∈J

H0(OUj)

Proof. Let ιj : Uj → En be the inclusion, and let p : En → pt be the structure map.
By Proposition 2.7 and Lemma 4.2 there is an equivalence, in the category of symmetric
monoidal presentable categories,

Qcoh(En) ' lim←−
j∈J

Qcoh(Uj).

This implies that there an is equivalence in Qcoh(En),

OEn ' lim←−
j∈J

ιj∗O.

The statement follows by applying p∗ to both sides of the equivalence,

H∗(OEn) = p∗OEn ' lim←−
j∈J

p∗(ιj∗O) ' lim←−
j∈J

H∗(OUj) ' lim←−
j∈J

H0(OUj).

where the last step depends on the fact that Uj is affine and therefore has no higher coherent
cohomology. �

For every 0 ≤ k ≤ n, let Jk ⊂ J = {a, b, c}n be the subset of vectors such that c appears
as a coordinate exactly k times.
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Lemma 4.4. The object H∗(OEn) in k-mod is equivalent to a complex P • having the fol-
lowing properties

(1) For every 0 ≤ k ≤ n, P k ∼= ⊕j∈JkH0(OUj)
(2) If k < 0 or k > n, then P k = 0
(3) The differential dk : P k−1 → P k is given by a sum of restrictions, possibly with signs:

more precisely, if l is in Jk−1 then the restriction of the differential

dk|H0(OUl ) : H0(OUl)→ ⊕j∈JkH0(OUj)

has as factors the pull-back maps H0(OUl) → H0(OUj), where Uj ⊂ Ul with appro-
priate twists by −1.

Proof. The statement follows from Lemma 4.3. We adapt the inductive argument from
Lemma 4.2. As the steps are the same, we repeat them here in a somewhat abbreviated
form.

The base case n = 1 is immediate. For the inductive step, we use the fact that by Lemma
4.3

H∗(OEn) ' lim←−
j∈J

H0(OUj).

We compute lim←−j∈J H
0(OUj) as the fiber product

lim←−j∈J H
0(OUj) //

��

lim←−j∈Ja H
0(OUj)

��
lim←−j∈Jb H

0(OUj) // lim←−j∈Jc H
0(OUj)

Equivalently, we can express lim←−j∈J H
0(OUj) as a cocone

(6) lim←−
j∈J

H0(OUj) −→
[

lim←−
j∈Ja

H0(OUj)⊕ lim←−
j∈Jb

H0(OUj) −→ lim←−
j∈Jc

H0(OUj)
]
.

Now, for every ∗ ∈ {a, b, c} there is an equivalence

lim←−
j∈J∗

H0(OUj) ' H∗(OEn−1)⊗H0(OU∗)

This enables us to rewrite (6) as

lim←−
j∈J

H0(OUj)→
[(
H∗(OEn−1)⊗H0(OUa)

)
⊕
(
H∗(OEn−1)⊗H0(OUb)

)
→ H∗(OEn−1)⊗H0(OUc)

]
By the inductive hypothesis H∗(OEn−1) satisfies the statement, and the same applies to(

H∗(OEn−1)⊗H0(OUa)
)
⊕
(
H∗(OEn−1)⊗H0(OUb)

)
.

The situation is different for H∗(OEn−1) ⊗ H0(OUc). Indeed, by the inductive hypothesis
H∗(OEn−1)⊗H0(OUc) is equivalent to a complex whose k-th term is a direct sum of factors
of the form H0(Uj) where j is in Jk+1, rather than Jk: this is due to the fact that we are
tensoring H∗(OEn−1) with H0(OUc), and this raises by one the number of entries equal to c.
We conclude via the usual formula for the cocone of a morphism of complexes. �
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Lemma 4.4 gives us a small model for the coherent cohomology of En. In the next section
we will use this model to compute the top coherent cohomology ofMX . Before proceeding,
in the next subsection, we sketch without giving all the details an alternative and more
elementary way to prove Lemma 4.4. We chose to present our previous argument instead as
it makes more transparent the geometry underpinning Lemma 4.4.

4.1.1. A different approach. Another way to prove Lemma 4.4 is to apply iteratively the
following elementary and well-known observation to reduce the size of the Čech complex.

Lemma 4.5. Let C = (Ci, φi) be a complex

C = . . . Ci−1 φi−1

→ Ci φi→ Ci+1 φi+1

→ . . .

Consider splittings Ci ∼= Bi ⊕Ki Ci+1 and Bi+1 ⊕Ki+1, and denote the projections

Bi p1← Ci p2→ Ki Bi+1 p1← Ci+1 p2→ Ki+1.

Set φi1 = p1 ◦ φi and φi2 = p2 ◦ φi. Assume that σ := φi2|Ki : Ki → Ki+1 is an isomorphism.
Then C is quasi-isomorphic to the complex D = (Dj, ψj) where

• For all j /∈ {i, i+ 1}, Dj = Cj. For all j /∈ {i− 1, i, i+ 1} ψj = φj.
• Di = Bi and Di+1 = Bi+1

• ψi−1 = pr1 ◦ φi−1, ψi = (φi1)|Bi − (φi1 ◦ σ−1 ◦ φi2)|Bi and ψi+1 = (φi+1)|Bi+1

Proof. The quasi-isomorphism is given by composing the following maps of complexes, the
first one of which is an isomorphism

. . . // Ci−1 φi−1

// Ci φi // Ci+1 φi+1

// Ci+2 // . . .

. . . // Ci−1 ξi−1

//

=

OO

Bi ⊕Ki ξi //

ρ

OO

Bi+1 ⊕Ki+1 ξi+1

//

λ

OO

Ci+2 //

=

OO

. . .

. . . // Ci−1 ψi−1

//

OO

Bi ψi //

OO

Bi+1 ψi+1

//

OO

Ci+2 //

OO

. . .

Let us explain how the middle complex, and the maps ρ and λ are defined. We will use the
identification Ci = Bi ⊕ Ki and Ci+1 = Bi+1 ⊕ Ki+1 given by the splitting; thus, we also
implicitly view Bi and Ki as subspaces of Ci and similarly for Bi+1 and Ki+1. We set

(b, k) ∈ Bi ⊕Ki = Ci 7→ ρ((b, k)) = (b, φi2(b) + k)

(b, k) ∈ Bi+1 ⊕Ki+1 = Ci+1 7→ λ((b, k)) = (b+ φi1 ◦ σ−1(k), k)

The definition of λ and ρ has just the purpose of diagonalizing φi. The differentials ξj of
the middle complex are the unique maps making the diagram commute: namely, ξj = φj if
j /∈ {i− 1, i, i+ 1}; for the other indices we have that

ξi−1 = ρ−1 ◦ φi−1, ξi(b, k) =
(
φi1(b)− φi1 ◦ σ−1 ◦ φi2(b), k

)
, ξi+1 = φi+1 ◦ λ

�
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Rather than giving a proof of the fact that Lemma 4.5 implies Lemma 4.4, we show in
some detail why this works in the case of E2. We consider the open cover

(7) U = {Uaa, Uab, Uba, Ubb}
which we introduced in Section 4.1. To compute the Čech complex, we order the members
of the cover as they appear in (7).

We obtain the complex below, where one has take the direct sum of all terms on the same
row (but for clarity we have dropped the ⊕-signs); and the differential is given by the sum
of restrictions (which are indicated by arrows in the diagram) twisted by appropriate signs.
Note also that instead of writing intersections out explicitly, we only indicate the resulting
open subset: for instance, we write H0(OUac) instead of H0(OUaa∩Uab).

H0(OUaa)

xx �� &&

H0(OUab)

ss && ++

H0(OUba)

ss �� ++

H0(OUbb)

ss �� &&
H0(OUac)

&& ++

H0(OUca)

�� ++

H0(OUcc)

�� &&

H0(OUcc)

ss &&

H0(OUcb)

ss ��

H0(OUbc)

xxss
H0(OUcc)

++

H0(OUcc)

&&

H0(OUcc)

��

H0(OUcc)

xx
H0(OUcc)

The pairs whose colours match cancel out by applying Lemma 4.5 to the arrow joining them.
We apply Lemma 4.5 a maximal number of times: in this way we remove all pairs such that
the restriction is an isomorphism. Note that each iteration of Lemma 4.5 also affects the
differential. Ultimately we obtain a complex that satisfies all the properties of Lemma 4.4.
We leave the details to the reader.

4.2. The coherent cohomology of MX. Let us return to the setting of Section 4. Let
X be a good n-dimensional toric variety with fan ΣX . We choose an ordering of the 1-
dimensional cones of ΣX . If σ is a top dimensional cone, we consider the set of one dimen-
sional cones in its closure

{vi1 , . . . , vin}, i1 < . . . < in

There exists a unique lattice automorphism φσ of NT which maps vij to the j-th element of
the standard basis

vi1 7→ (1, 0, . . .) vi2 7→ (0, 1, . . .) . . .

Let τ1 . . . τn be the codimension-one cones in the closure of σ, which we have numbered in
such a way that vij /∈ τj. Then φσ maps σ to the first quadrant, and maps the sublattices
generated by τi to the coordinate hyperplanes

〈τ1〉 7→ 〈(0, 1, 0 . . .), (0, 0, 1 . . .), . . .〉 〈τ2〉 7→ 〈(1, 0, 0 . . .), (0, 1, 0 . . .) . . .〉 . . .

Note that φσ induces an isomorphism E ⊗ 〈σ〉 ∼= En, which maps the divisors E ⊗ 〈τi〉 to
the standard divisors

{e} × En−1, E × {e} × En−2, . . .
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Let π : M̃X → MX be the normalization. The scheme M̃X is a disjoint union of
irreducible components which are in natural bijection with the top dimensional cones of ΣX

M̃X
∼=
∐

σ∈ΣtopX

Mσ

The component Mσ corresponding to the top dimensional cone σ is canonically isomorphic
to E ⊗ 〈σ〉. We can identifyMσ with En, via the isomorphisms φσ constructed above: with
small abuse of notation we denote φσ also the resulting isomorphism Mσ

∼= En. Using φσ
we will be able to define open subsets of Mσ in terms of the open cover U of En which we
considered in Section 4.1.

Lemma 4.6. There is a unique affine open cover UX of MX having the following property:

• For every top dimensional cone σ ∈ Σn
X the open cover of Mσ given by{

π−1(U) ∩Mσ

}
U∈UX

coincides with the standard open cover U of En under the identification Mσ
∼= En.

Proof. On M̃X there is an obvious open cover, which is given by considering the open cover
U on each connected componentMσ

∼= En. This however does not descend to an open cover

on MX . Note, indeed, that the normalization map π : M̃X →MX is not open. The issue
is that the image under π of an open subset U ⊂ Mσ might intersect the singular locus of
MX (and this happens also for the open subsets in the cover U). The singular locus is where
different irreducible components come together: so an open subset containing a point p of
the singular locus must necessarily restrict to a non-empty open subset on all irreducible
components of MX meeting at p.

The open cover UX is the best approximation to the open cover on M̃X induced by U.
We explain how to generate the open subsets belonging to UX via an iterative process. The
recipe we will describe starts from an open subset U ∈ U on a componentMσ, and generates
an open subset of MX . The open cover UX is made up of all the open subsets of MX that
can be obtained in this way. We refer the reader to Example 4.7, after the proof, for some
concrete examples.

Let U ∈ U be an open subset of a component Mσ. Note that U is a product of open
subsets of E of the form Ua and Ub, where we are using the identificationMσ

∼= En provided
by φσ. A codimension-one cone τ of σ corresponds to a divisorMτ inMσ. We associate to
U the collection of codimension-one cones in σ

τi1 , . . . , τik

having the property that U ∩Mτi 6= ∅. It is easy to see that k is the number of factors of U
of the form Ua. Consider the codimension k cone ρ given by the intersection τi1 ∩ . . . ∩ τik .
Let σj1 , . . . , σjn be the collection of top dimensional cones of Σ containing ρ. Note that there
is a fixed isomorphism between Mσ and the components Mσjl

given by

ψσ,σjl :Mσ
φσ−→ En

(φσjl
)−1

−→ Mσjl
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Now consider the open subset of M̃X defined as

V := U
⋃( ⋃

i=1,...,n

ψσ,σjl (U)
)

The claim is that π(V ) is an open subset of MX . According to our recipe, we need to
add it to the affine open cover UX . To construct UX we iterate this procedure on every

componentMσ of M̃X , and on every open subset U ∈ U ofMσ. Of course not all iterations
will generate a new element of UX . Let us conclude by making a remark on one aspect of
this construction: why can we conclude that π(V ) is affine, from the fact that its irreducible
components are affine? The point is that π(V ) is an iterated push-out, in the category of
schemes, of affine schemes along closed immersions: and therefore it is affine by Theorem
3.4 of [Sch05]. It is easy to see that UX satisfies the property stated in the Lemma, and that
that property pins it down uniquely, and this concludes the proof. �

Example 4.7. Let us explain some special cases of the constructions of Lemma 4.6.

• Consider the open subset U = (Ua)
n contained in a connected componentMσ. As all

factors of U are of the form Ua, we associate to it the collection of all codimension-
one cones in σ. Their intersection is the zero cone, which is contained in all top
dimensional cones of Σ. Thus the open subset in UX obtained from U via the recipe
of Lemma 4.6 has non-trivial intersection with all the irreducible components ofMX .
At the other extreme, the open subset U = (Ub)

n ⊂Mσ does not contain Ua-factors,
and so the corresponding open subset in UX is just π(U), which lies entirely in one
single irreducible component ofMX . Note that π restricted to U is an open map, as
U does not intersect the preimage of the singular locus of MX .
• Let X = P1. Then MX is given by the push-out of the diagram

E ←− {e} −→ E

where e is the identity element. For convenience let us denote by E1 the first copy
of E appearing in the diagram, and by E2 the second copy. Then UX contains three
open subsets:
(1) E1 − {e}
(2) E2 − {e}
(3) the push-out of the following diagram

E1 − {p} ←− {e} −→ E2 − {p}

• Let us describe briefly the case of X = P2. Then MX has three irreducible compo-
nents. In this case UX contains seven open subsets.
(1) There is a unique open subset with three irreducible components. This corre-

sponds to the case considered in the first point in this list of examples, where we

start with an open subset of the form (Ua)
3 on one of the components of M̃X .

(2) There are three open subsets with two irreducible components. They are gener-
ated from open subsets U of the form Ua×Ub, or Ub×Ua, on a componentMσ.
There is only one codimension-one cone τ associated with U , and therefore two
maximal cones σ and σ′ such that τ ⊂ σ and τ ⊂ σ′.
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(3) There are three open subsets with one irreducible component. They correspond

to the open subsets of the form Ub × Ub on the three components of M̃X .

As in Section 4.1, we will not actually use the Čech nerve of UX for our calculations.
Rather, we will work with a smaller colimit giving a presentation ofMX . Recall the ordered
collection of open subsets {Uj}j∈J of En which we studied in Section 4.1.

Lemma 4.8. There is a unique collection {Uj}j∈JX of affine open subsets of MX ordered
by inclusions having the following property:

• For every top dimensional cone σ ∈ Σn
X the collection{

π−1(Uj) ∩Mσ

}
j∈JX

coincides with the collection of open subsets {Uj}j∈J under the identification

φσ :Mσ
∼= En

Proof. The statement is a small variation on Lemma 4.6 and the proof goes along the same
lines. Namely we can set up a recursion where start from an open subset Uj with j ∈ J on a
componentMσ and, if it has non-trivial intersection with the preimage of the singular locus
of MX , we use the isomorphisms φσ to generate an actual open subset in MX .

Before moving on however let us make a simple observation. The open subsets Uj with
j ∈ JX all arise as intersections of open subsets in UX . In fact, we can say something more
precise. Assume that U is an open subset in U, or more generally in {Uj}j∈J , on a component
Mσ. For the remainder of this argument, we will denote φ(U) the element of UX (or more
generally of {Uj}j∈JX ) which is generated from U via the procedure described in Lemma 4.6
and that, as we explained, also applies to the current Lemma 4.8. Now let U be an open
subset in {Uj}j∈J , on a component Mσ. As we know, U can be written as an intersection
of open subsets V1 . . . Vk in U, U = V1 ∩ . . . ∩ Vk. It is easy to see that φ(U) can be written
as the intersection

φ(U) = φ(V1) ∩ . . . ∩ φ(Vk).

�

For every j ∈ JX , we denote Ũj := π−1(Uj). The open subset Ũj is affine, and decomposes

as a disjoint union of open subsets lying on various components of M̃X . We obtain two

diagrams indexed by JX in the category of schemes, namely {Uj}j∈JX and {Ũj}j∈JX . In
either case, the vertices are affine schemes, and the arrows are open inclusions.

Lemma 4.9. There are isomorphisms

(1) lim−→j∈JX
Ũj ∼= M̃X

(2) lim−→j∈JX
Uj ∼=MX

Proof. The first statement follows immediately from 4.9. Indeed M̃X is isomorphic to a
disjoint union of copies of En

M̃X
∼=
∐
σ∈ΣnX

En
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On the other hand, each element of {Ũj}j∈JX is a disjoint union of open subsets in {Uj}j∈J
lying on different connected components of M̃X . This readily implies equivalence (1), as
disjoint unions are colimits and therefore commute with colimits.

The second claim is proved in a similar way. By Corollary 3.5 MX is isomorphic to the
colimit [ ∐

τ∈(Σn−1
X )∗

Mτ ⇒
∐
k∈I

Mσk

]
→MX

where I = {1 . . .m} is the chosen indexing set for the top dimensional cones of ΣX . By the

first part of the claim we can replace
∐

σ∈ΣnX
Mσ
∼= M̃X with the colimit lim−→j∈JX

Ũj. Next

we can rewrite each Uj as the colimit

(8)
[( ∐

τ∈(Σn−1
X )∗

Mτ

)⋂
Ũj ⇒ Ũj

]
→ Uj

Again, we can conclude because colimits commute with colimits. �

The open subsets Ũj have the property that for every σ ∈ Σn
X , the intersection of Ũj with

a component Mσ decomposes as a product of Ua, Ub and Uc; further the number of factors
equal to Ua, Ub or Uc stays always the same, independently of σ. This observation allows us
to meaningfully define, for every 0 ≤ k ≤ n, the sub-poset JX,k ⊂ JX to be the subset of

indices such that all connected components of Ũj decompose as a product where the factor
Uc appears exactly k times.

Lemma 4.10 below is a generalization of Lemma 4.4. We split it into two parallel state-

ments, one for M̃X and one for MX ; a third claim gives an explicit description of the
pull-back along π in coherent cohomology.

Lemma 4.10. Consider the derived global sections H∗(OM̃X
) and H∗(OMX

).

(1) The object H∗(OM̃X
) in k-mod is equivalent to a complex Q• having the following

properties
(a) For every 0 ≤ k ≤ n, Qk ∼= ⊕j∈JX,kH0(OŨj)
(b) If k < 0 or k > n, then Qk = 0
(c) The differential dk : Qk−1 → Qk is given by a sum of restrictions, possibly with

signs: more precisely, if l is in JX,k−1 then the restriction of the differential

dk|H0(O
Ũl

) : H0(OŨl)→ ⊕j∈JX,kH
0(OŨj)

has as factors the pull-back maps H0(OŨl) → H0(OŨj), where Ũj ⊂ Ũl with

appropriate twists by −1.
(2) The object H∗(OMX

) in k-mod is equivalent to a complex R• having the following
properties
(a) For every 0 ≤ k ≤ n, Rk ∼= ⊕j∈JX,kH0(OUj)
(b) If k < 0 or k > n, then Rk = 0
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(c) The differential dk : Rk−1 → Rk is given by a sum of restrictions, possibly with
signs: more precisely, if l is in JX,k−1 then the restriction of the differential

dk|H0(OUl ) : H0(OUl)→ ⊕j∈JX,kH0(OUj)

has as factors the pull-back maps H0(OUl) → H0(OUj), where Uj ⊂ Ul with
appropriate twists by −1.

(3) The pull-back morphism π∗ : H∗(OMX
) → H∗(OM̃X

) is equivalent to the morphism

of complexes (π∗)• : R• → Q• whose k-th component

(π∗)k : ⊕j∈JX,kH0(OUj)→ ⊕j∈JX,kH0(OŨj)

is the product of the pull-back maps H0(OUj)→ H0(OŨj).

Proof. Recall that M̃X is isomorphic to
∐

σ∈ΣnX
En, and therefore there is an equivalence

(9) H∗(OM̃X
) '

⊕
σ∈ΣnX

H∗(OEn)

Thus the first claim can be proved by taking as starting point the colimit lim−→j∈JX
Ũj ∼= M̃X ,

and then proceed exactly as in the proof of Lemma 4.4. Alternatively, we could deduce claim
(1) directly from Lemma 4.4 and the splitting (9).

Let us discuss the second claim. Again several different strategies are possible. For
instance, much as in the previous case, one can use claim (2) of Lemma 4.9 and then adapt
the proof of Lemma 4.4. Let us sketch a slightly different argument, which is very similar to
the proof of Lemma 4.9.

We express MX as the colimit[ ∐
τ∈(Σn−1

X )∗

Mτ ⇒
∐
σ∈ΣnX

Mσ

]
→MX

Arguing as in the proof of Lemma 4.3, we turn this colimit into a limit of derived global
sections

H∗(OMX
)→

[
H∗(OM̃X

) ⇒
∏

τ∈(Σn−1
X )∗

H∗(OMτ )
]

We can replace both H∗(OM̃X
) and H∗(OMσ∩σ′

) with the models provided, respectively, by
the first part of Lemma 4.10, which we have just discussed; and by Lemma 4.4: indeed Mτ

is isomorphic to En−1, and thus Lemma 4.4 applies to it. We obtain the limit

(10) H∗(OMX
)→

[
Q• ⇒

∏
τ∈(Σn−1

X )∗

P •Mτ

]
where we write P •Mτ

to indicate that this is the complex computing H∗(OMτ ).
Following through the quasi-isomorphisms leading up to formula (10), one realizes that

the two parallel arrows are just a product of pull-back maps of the form

i∗ : H0(U)→ H0(U ∩Mτ )
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where U ⊂ Mσ is an affine open subset, Mτ ⊂ Mσ is a divisor, and U ∼=
(
U ∩Mτ

)
× V

where V is an affine open subset of E. In particular, they are degree-wise surjective maps.
Under this assumption, the homotopy limit coincides with the classical limit in the abelian
category of complexes. As H∗(OMX

) is the limit of the diagram, it is equivalent to a
complex R• whose components are given by degree-wise equalizers: we claim that R• has all
the properties required by the second part of the Lemma.

Let us explain why this is the case. The degree-wise equalizers are direct sums of diagrams
of the form

(11)
[
H0(OŨj) ⇒ H0(O(∐

τ∈(Σn−1
X

)∗Mτ

)⋂
Ũj

)
]

where j is in JX,k. The equalizer of (11) is H0(OUj). This can be seen from the colimit
(8), which we discussed in course of the proof of Lemma 4.9. We obtain the direct sum
decomposition

Rk ∼=
⊕
j∈JX,k

H0(OUj)

for every 0 ≤ k ≤ n.
The third part of the Lemma is easily checked, and we leave it to the reader. �

We are now ready to prove Theorem 4.1. The main idea of the argument is not difficult,
and it can be best understood in the simple example X = P1. We explain this calculation
in Example 4.11, after the proof.

Proof of Theorem 4.1. Consider the normalization map π : M̃X → MX . The variety M̃X

is isomorphic to the disjoint union of m = |Σn
X | copies of En. Thus there is an isomorphism

H∗(OM̃X
) ∼=

⊕
σ∈ΣnX

H∗(OMσ) ∼=
m⊕
i=1

H∗(OEn)

In particular
dim(Hn(OM̃X

)) = |Σn
X | = m

We will prove that π∗ induces an isomorphism

(12) (π∗)n : Hn(OM̃X
)
∼=−→ Hn(OMX

)

This implies that Hn(OMX
) is m-dimensional, which is what we want to show.

The model for π∗ provided by Lemma 4.10 gives a morphism of complexes of the following
shape

. . . // Qn−2
dn−1
Q // Qn−1

dn−1
Q // Qn // 0 // . . .

. . . //

OO

Rn−2

(π∗)n−2

OO

dn−1
R

// Rn−1

dnR

//

(π∗)n−1

OO

Rn

(π∗)n

// 0 // . . .

The degree n map (π∗)n is indicated in the diagram by the identity sign because it is a
canonical isomorphism. Indeed if j is in JX,n then Uj ⊂ MX is irreducible and does not

intersect the singular locus. Thus the restriction of the normalization π : Ũj → Uj is an
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isomorphism. As the morphism (π∗)n is a product of pull-back maps π∗ : H0(OUj) →
H0(OŨj), it is also a (canonical) isomorphism.

We will prove that the maps dnQ and dnR have equal image in Rn = Qn. Let us break
down this claim further. We need to show that for every j ∈ JX,k−1, and every element
θ ∈ H0(OŨj) there is an element

ξ ∈ Rn−1 =
⊕

j∈JX,n−1

H0(OUj) such that dnQ(θ) = dnR(ξ).

We have two possibilities: either Uj is smooth or, which is the same, irreducible; or Uj is

singular, and has two irreducible components. In the first case Ũj is identified with Uj under
π, and is isomorphic to a product of the form

Uc × . . .× Ub × . . .× Uc
where Ub occurs once, say in k-th position, and all the other factors are equal to Uc. In the

second case, Ũj is isomorphic to two copies of an open subset U of the form

U = Uc × . . .× Ua × . . .× Uc
where Ua occurs once, say in l-th position, and all the other factors are equal to Uc. Denote
by D the divisor

D = Uc × . . .× {e} × . . .× Uc
⊂−→ U

Then Uj is singular, and is isomorphic to a pushout of the form

D //

��

U

��
U // Uj

In the first case, there is nothing to prove. Indeed, we have an identification

Rn−1 ⊃ H0(OUj)
π∗−→ H0(OŨj)

and so we can set ξ = θ. Let us focus on the second case, and describe in more detail the
structure of the restriction of dnR and (π∗)n−1 to H0(OUj) ⊂ Rn−1. First of all, the map

dnR : H0(OUj)→ Rn

has two components. Indeed, Uj has two irreducible components, which we will denote Vj
and Wj. There are two distinct open sets V and W which are isomorphic to (Uc)

n and are
subsets of Uj

V → Vj ⊂ Uj ⊃ Wj ← W

As we discussed, H0(OV ) and H0(OW ) appear as factors of both Qn and Rn, as Ṽ = V and

W̃ = W .
The key point is that V and W are also contained in open subsets Uj′ and Uj′′ which are

both smooth and of the form

Uc × . . .× Ub × . . .× Uc
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where Ub is in l-th position, and all other factors are equal to Uc. In particular, Ũj′ = Uj′

and Ũj′′ = Uj′′ .
We are now ready to sum up the shape of the relevant maps in the diagram below

Rn−1 : H0(OUj′ ) (dnR)V
U′
j

&&

H0(OUj)
(dnR)WUj

((

(dnR)VUj

vv

π∗

��

H0(OUj′′ )
(dnR)VUj′′

xx
Rn : H0(OV ) H0(OW )

Qn : H0(OṼ )

π∗

H0(OW̃ )

π∗

Qn−1 : H0(OŨj) = H0(OU)⊕2

(dnQ)W̃
Ũj

66(dnQ)Ṽ
Ũj

hh

Let us clarify the meaning of the diagram. In blue and red we have reproduced, respectively,
the relevant portions of the differentials

dnR : Rn−1 → Rn and of dnQ : Qn−1 → Qn

Up to signs, the components of the differentials are just given by restrictions to open subsets.
We have decorated them with indices making explicit their source and target, but we have
omitted the signs: so, for instance, we should interpret the diagram as saying that we can
write

dnR|H0(OUj ) = ±(dnR)VUj ± (dnR)WUj

up to the appropriate choice of the signs. For more comments on the issue of signs, see
below. The vertical arrows, in black, denote the components of the pull-back π∗.

Now let us consider an element

θ = (θ1, θ2) ∈ H0(OŨj) = H0(OU)⊕H0(OU)

We assume that θ2 = 0. Indeed, we can write θ = (θ1, 0) + (0, θ2), and our argument carries
over without variations to the summand with θ1 = 0. We have that

(dnQ)Ṽ
Ũj

(θ) = θ1 (dnQ)W̃
Ũj

(θ) = 0

It is easy to contruct a ξ′ ∈ H0(OUj) such that (dnQ)VUj(ξ
′) = θ1. However (dnQ)WUj(ξ

′) will not

vanish, in general. The two components of Uj are glued along D: to construct ξ′, we have
to extend ξ from Vj to the whole of Uj. The resulting function, in general, will be non-zero
over Wj.

However we can define ξ′ in such a way that it is constant away from the l-th direction.
Let us explain this point more precisely. As the open subset Wj is a product, we have a
projection prWj

: Wj → D. We can define ξ′ as follows

• If x is in Vj, then ξ′(x) = θ(x)
• If x is in Wj, then ξ′(x) = θ ◦ prWj

(x)
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As we mentioned, the issue is that

(dnQ)WUj(ξ
′)(x) = θ ◦ pr(x)

is non-zero in general and so does not match (dnQ)W̃
Ũj

(θ) = 0.

Now we can use the fact that Uj′′ is also a product, and thus it carries a projection
prUj′′ : Uj′′ → D. We define4

• ξ′′ ∈ H0(OUj′′ ), ξ′′(x) = −θ ◦ prUj′′ (x)

• ξ := ξ′ + ξ′′ ∈ H0(OUj)⊕H0(OUj′′ ) ⊂ Rn−1

We obtain a chain of equalities

(13) dnR(ξ) = dnR(ξ′) + dnR(ξ′′) = (θ1 + θ ◦ prWj
(x))− θ ◦ prWj

(x) = θ1 = dnQ(θ)

The image of ξ under dnR matches the image of dnQ(θ), and this concludes the proof. �

Example 4.11. Let us explain the proof of Theorem 4.1 in the simple case X = P1. The
varietyMX has two irreducible components, both isomorphic to E, meeting transversely at
a point. We denote these two components E1 and E2. As top coherent cohomology computes
the arithmetic genus, which is invariant in flat families, we already know that

dim(H1(OMX
)) = 2

Indeed the variety MX admits a flat deformation to a smooth curve of genus 2. The nor-

malization M̃X is the disjoint union of E1 and E2.
In addition to the low-dimensionality, this example is much simpler than the general case

also because, to compute coherent cohomology, we can directly use the Čech complex of the
cover UX . We described UX in Example 4.7: it contains three open subsets

(1) U1 := E1 − {e}
(2) U2 := E2 − {e}
(3) and U3, which is the push-out of the diagram

E1 − {p} ←− {e} −→ E2 − {p}

The normalizations look as follows: Ũ1 = U1 and Ũ2 = U2, while Ũ3 = E1 − {p} qE2 − {p}.
We obtain the following morphism of Čech complexes

Q0 := H0(OŨ1
)⊕H0(OŨ2

)⊕H0(OŨ3
)

dQ // Q1 := H0(OE1−{e,p})⊕H0(OE2−{e,p}) // 0

R0 := H0(OU1)⊕H0(OU2)⊕H0(OU3)
dR //

π∗

OO

R1 := H0(OE1−{e,p})⊕H0(OE2−{e,p}) // 0

We want to prove that these two complexes have the same top cohomology: equivalently,

that dR and dQ have the same image in Q1 = R1. Since for i = 1 and 2 we have that Ui = Ũi,

4In the definition of θ′′ below the choice of the negative sign is purely indicative. It would be more correct
to leave the sign unspecified: the sign of θ′′ actually depends on the signs of the differentials in Lemma 4.10,
which we chose not to identify as the argument does not depend on them. This sign ambiguity affects also
the rest of the proof, e.g. (13), but it is harmless.
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we only need to worry about the image of the summand H0(OŨ3
). We will check that for

every
θ = (θ1, θ2) ∈ H0(OŨ3

) ∼= H0((OE1−{p}))⊕H0((OE2−{p}))

there is a ξ ∈ R0 such that dQ((θ1, θ2)) = dR(ξ).
We define a function ξ′ on U3 with the following properties:

(1) ξ′|E1−{p} = θ1

(2) ξ′|E2−{p} = θ2 + (θ1(0)− θ2(0))

This pins down ξ′ uniquely: note that ξ′ is well defined, as it takes the same value on 0 ∈ E1

and 0 ∈ E2, which are identified in MX . Next we define ξ′′ ∈ H0(U2) to be the constant
function, equal to θ2(0)− θ1(0). Finally we set

ξ = (0, ξ′′, ξ′) ∈ H0(OU1)⊕H0(OU2)⊕H0(OU3)

Then we have that

dQ(θ) = −θ1|E1−{p}−θ2|E2−{p} = −θ1|E1−{p}−θ2|E2−{p}−(θ1(0)−θ2(0))+θ2(0)−θ1(0) = dR(ξ)

and this concludes the proof.

5. Equivariant elliptic cohomology and derived equivalences

One of the goals of this article is to show that equivariant elliptic cohomology is not
invariant under equivariant derived equivalences. This is in contrast with the behaviour of
equivariant K-theory and equivariant singular cohomology, which are both derived invariants.

We will focus on a specific three-dimensional example of good toric varieties that are
(equivariantly) derived equivalent, but have different elliptic cohomology. As it will be
apparent from our construction, it is easy to produce a great wealth of such examples: in
fact, virtually all pairs of equivariantly derived equivalent toric varieties arising in this way
have non-isomorphic elliptic cohomology. The key ingredient is Kawamata’s toric McKay
correspondence. We restrict to the simplest setting of finite abelian quotients of An, as this
will be sufficient for our purposes, but we point out that Kawamata’s results hold in much
greater generality.

Let G be a finite subgroup of the torus T acting on An. Assume that G is a subgroup of
SLn(C), that is, the G-action preserves the Calabi–Yau structure on An given by

Ω = dx1 ∧ . . . ∧ dxn
The quotient X = An/G is a singular simplicial toric variety. Up to isomorphisms of NT ,
the fan of X has the following shape: choose a splitting NT

∼= H ⊗ Z, where H is a lattice
of dimension n − 1; then there is a lattice simplex ∆ ⊂ H ⊗ R such that the fan of X is
the cone over ∆. Namely ∆ carries a natural stratification whose strata are subsimplices
∆τ ⊂ ∆. Then the set

τ := {v ∈ NT ⊗ R | v = λx, x ∈ ∆τ , λ ∈ R>0}
is a closed convex cone, and

ΣX = {τ | ∆τ ⊂ ∆}
Crepant toric resolutions of X are in bijection with unimodular triangulations of ∆; here

crepant means that the resolution is also CY, i.e. it has a trivializable canonical bundle.
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Given one such triangulation T , the cones over the strata of T form a smooth fan ΣT . We
set XT := XΣT . As ΣT is a subdivision of Σ it defines a toric map pT : XT → X, which is
a resolution of singularities.

Example 5.1. Let us consider the two-dimensional case of the story described above. We set
T := (C∗)2, and NT := Z2. Consider A2 with the standard T -action. We choose coordinates
(h1, h2) on NT and (x1, x2) on A2. Let G be the group µn of n-th roots of unity acting
anti-diagonally on A2

ξ ∈ µn, ξ · (x1, x2) = (ξx1, ξ
−1x2)

This action preserves the CY form ω = dx1 ∧ dx2; it is easy to see that these are the only
finite subgroups of T preserving it. Up to isomorphisms of NT , the fan of An/G can be
described as follows.

Consider the line H ⊂ NT given by H = {(h1, h2) |h2 = 1}. We equip H with the
coordinate h1. A lattice polytope in H ⊗ R is just an interval, and we let

∆ = {h1 ∈ H | 0 ≤ h1 ≤ n}

The fan of An/G is given by the cone over the strata of ∆. Unimodular triangulations
here are just subdivisions in subintervals of length one, and there is evidently a unique such
triangulation T of ∆. The toric surface XT → X is an iterated toric blow-up of X, and is a
crepant resolution of X.

There is one more object playing a role in the McKay correspondence, namely the stacky
quotient Y := [An/G]. This is smooth a toric DM stack, in the sense of [FMN10]. The
coarse moduli map q : [An/G] → An/G is toric and birational, so it can be viewed as a
stacky resolution.

Proposition 5.2. Let G, X ∆ and Y be as above. Let T and T ′ be two unimodular trian-
gulations of ∆.

(1) There is an equivalence

Perf([Y/T ]) ' Perf([XT /T ])

which intertwines the natural monoidal action of Perf([∗/T ]) on its source and target
(2) There is an equivalence

Perf([XT /T ]) ' Perf([XT ′/T ])

which intertwines the natural monoidal action of Perf([∗/T ]) on its source and target

Proof. Let us start recalling a few well-known facts. If S is a toric stack then Perf(S)
carries an action of T given by pull-back along the action on S. Since we are working with
∞-categories we can meaningfully take T -invariants, and we find that

Perf(S)T ' Perf([S/T ])

Next, let S and S ′ be toric DM stacks and let f : S → S ′ be a proper toric map. Then the
pull-back and the push-forward along f

f ∗ : Perf(S ′)→ Perf(S) f∗ : Perf(S)→ Perf(S ′)
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are compatible with the torus action on their source and target. Thus, taking T -invariants
we obtain functors

f ∗ : Perf([S ′/T ])→ Perf([S/T ]) f∗ : Perf([S/T ])→ Perf([S ′/T ])

that intertwine the monoidal action of Perf([∗/T ]) on their source and target.
Now the first claim follows from Kawamata’s toric McKay correspondence [Kaw05, Theo-

rem 4.2]. Kawamata constructs an explicit derived equivalence between Y and XT . Namely,
let X be the normalization of the fiber product Y ×X XT . Then X is a toric stack equipped
with toric maps

X
p

!!

q

��
Y XT

Kawamata proves that the composition p∗q
∗ : Perf(Y )→ Perf(X) is an equivalence; further,

it is compatible with the T -action on its source and target, since p and q are toric. Taking
T -invariants proves the first claim. The second claim follows from the first, because XT and
XT ′ are both equivariantly derived equivalent to Y . �

Example 5.3. We are now ready to present a simple example of good toric 3-folds, which are
equivariantly derived equivalent, but have non isomorphic equivariant elliptic cohomology.
Consider the action of the standard torus T = (C∗)3 on A3. Let G be the kernel of the
homomorphism of groups

m : (µ2)3 → µ2, m(ξ1, ξ2, ξ3) = ξ1ξ2ξ3

The group G is a subgroup of (C∗)3 and is contained in SL3(C). The fan of X = A3/G is
the cone over the 2-dimensional lattice polytope ∆ below

Consider the following two unimodular triangulations T and T ′ of ∆

The toric 3-folds XT and XT ′ are crepant resolutions of X. They are related by an Atiyah
flop. By Proposition 5.2 there is an equivalence

Perf([XT /T ]) ' Perf([XT ′/T ])

which intertwines the monoidal Perf([∗/T ])-action on source and target. Now consider the
arcs that have been flopped. The green arc gives rise to a cone τ ∈ (Σ2

XT
)∗ having the
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property that there is no τ ′ ∈ (Σ2
XT ′

)∗ such that 〈τ〉 = 〈τ ′〉. By Theorem 3.8, E llT (XT ) is

not isomorphic to E llT (XT ′).

Remark 5.4. Distinct toric crepant resolutions of the same simplicial quotient singular-
ity will often (always?) have non-isomorphic equivariant elliptic cohomology; though, by
Proposition 5.2 they are equivariantly derived equivalent. Example 5.3 is only the simplest
instance where this phenomenon occurs. Using our Theorem 3.8 we can check that this
happens for most cases, in all dimensions.

In particular, although Example 5.3 is about a pair of non-proper varieties, it is easy
to generate examples which are proper. For instance, since G is a subgroup of T , if we
compactify An to Pn, the G-action will naturally extend to Pn. Costructing a toric crepant
resolution of Pn/G amounts to choosing in a compatible way resolutions of the toric affine
patches around each torus fixed point. For an illustration of the beautiful geometry of these
resolutions we can refer the reader, for instance, to Figure 1 of [PS22]. Different choices will
give rise to equivariantly derived equivalent toric varieties, by gluing the local equivalences
from Proposition 5.2. For many of these resolutions, one can verify that equivariant elliptic
cohomologies are different by applying Theorem 3.8, exactly as we did in Example 5.3.

Remark 5.5. Totaro [Tot00] has shown that the elliptic genus is invariant under flops, and
in fact is universal with that property. This implies in particular that the examples coming
from crepant resolutions in the toric setting, which we have considered in this article, will
have different (equivariant) elliptic cohomology but the same elliptic genus. This suggests
the very interesting question whether the elliptic genus is an invariant of the derived category,
although elliptic cohomology is not.
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