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We present a semiempirical pseudopotential method based on screened atomic pseudopotentials and derived
from ab initio calculations. This approach is motivated by the demand for pseudopotentials able to address
nanostructures, where ab initio methods are both too costly and insufficiently accurate at the level of the local
density approximation, while mesoscopic effective-mass approaches are inapplicable due to the small size of the
structures along, at least, one dimension. In this work, we improve the traditional pseudopotential method by a
two-step process: First, we invert a set of self-consistently determined screened ab initio potentials in wurtzite
GaN for a range of unit-cell volumes, thus determining spherically symmetric and structurally averaged atomic
potentials. Second, we adjust the potentials to reproduce observed excitation energies. We find that the adjustment
represents a reasonably small perturbation over the potential, so that the ensuing potential still reproduces the
original wave functions, while the excitation energies are significantly improved. We furthermore deal with the
passivation of the dangling bonds of free surfaces which is relevant for the study of nanowires and colloidal
nanoparticles. We present a methodology to derive passivant pseudopotentials from ab initio calculations. We
apply our pseudopotential approach to the exploration of the confinement effects on the electronic structure of

GaN nanowires.

DOI: 10.1103/PhysRevB.86.205430

I. INTRODUCTION

Much of the computational effort in solving the Kohn-
Sham equations of density functional theory'? (DFT) is
spent in iteratively updating the screened effective potential.
This procedure requires the calculation of the electronic
density, obtained over a sum of all occupied Kohn-Sham
eigenstates. The required number of states (bands) therefore
scales with the number of atoms. For the calculation of
optical or transport properties, only the bands close to the
band gap are required, which represents, for a large number
of atoms, only a small fraction of the total number of
bands required for the calculation of the total energy in
a self-consistent formalism. An approach that bypasses the
calculation of the entire spectrum and focuses on states
close to the band gap is the semiempirical pseudopotential
approach.®* In this approach, the pseudopotential is derived
from a DFT calculation in the local density approximation
(LDA) and subsequently empirically corrected to reproduce
experimental target properties, such as the optical band gap.
These semiemipirical pseudpotentials (SEPs) were derived for
CdSe and InP and their accuracy demonstrated.> In this
work, we follow a similar procedure for the derivation of
nitride SEPs. Former treatment of nitrides was at the level
of empirical pseudopotentials (as opposed to SEPs) which
assume an empirical analytic functional dependence (a sum
of Gaussians) instead of being obtained from DFT-LDA and
include only a local component, while the SEPs are angular-
momentum-dependent nonlocal (or semilocal) potentials.®’
These empirical pseudopotentials have a parametric strain
dependence that is important and more intricate in the case
of nitrides than for the case of III-V semiconductors.® Our
derivation of SEPs for nitrides leads to pseudopotentials that
are slightly more expensive computationally (they have an
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angular-momentum-dependent semilocal component and a
slightly larger energy cutoff) but more accurate and transfer-
able. There is no need for an explicit empirical parametric
strain dependence. The advantages of SEPs compared to
the local empirical pseudopotentials have been discussed
earlier, generally to zinc-blende semiconductors.>™ In this
work, we have extended the SEP formulation to wurtzite
semiconductors, and more specifically to GaN.

The second development that was necessary to properly
address nitride nanostructures was the problem of the passiva-
tion. In earlier work,>” the dangling bonds of nanostructures
were passivated by empirical Gaussian potentials. The three
parameters describing the passivant, namely, the width and
height of the Gaussian and its distance to the passivating
atom, were varied until the surface states, which fill the gaps
of most unpassivated semiconductors, disappear. This fitting
procedure was originally done manually and subsequently
automatized using a minimization procedure.” Even in the
case of the exhaustive numerical search of the configuration
space, some materials could not be properly passivated. This
fact is probably due to the lack of flexibility in the Gaussian
function used. In this paper, we describe our approach to obtain
passivant potentials. It is based on the DFT-LDA calculation
of a passivated and an unpassivated (bare) slab. From the
difference of both calculations we extract an effective passivant
potential in real space. We can accurately fit the numerical
results to a Yukawa-type potential.

Once the bulk SEPs for a given material are found,
together with its corresponding passivant’s pseudopotentials,
the study of the electronic structure and related properties
of nanostructures can be performed. We have chosen as
an example to apply the SEP method to GaN nanowires,'?
a promising nanostructure in the field of solar cells and
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optoelectronic devices due to the wide band gap of GaN
(3.5 eV), that together with indium nitride, a narrow-band-gap
semiconductor (0.67 eV) can cover the full visible solar
spectrum by a proper alloying.!! More specifically, we explore
the effects of confinement in the valence and conduction band
states close to the nanowire band gap and we discuss the
influence of confinement on the optical properties.

II. CONSTRUCTION OF SEMIEMPIRICAL
PSEUDOPOTENTIALS FROM BULK LDA
CALCULATIONS

First, we solve the Kohn-Sham equations for the bulk
wurtzite structure within the LDA using standard ab initio
norm-conserving nonlocal pseudopotentials:'?

[ — 3V + Vks|vi(r) = &9 (r). (1)

The Kohn-Sham potential Vkg includes the local and nonlocal
ionic pseudopotentials and the electron-electron interaction

Vks = Vlocal(r) + Vnonlocal(r) + VHXC(r)~ (2)

The ensuing local part of the self-consistent screened effective
potential is defined as

VLDA(r) = Vlocal(r) + VHXC(r)a (3)

where Vigca(r) is the local part of the nonscreened ionic
pseudopotential and the term Vygxc(r) includes the Hartree
and exchange-correlation contributions. A more detailed dis-
cussion concerning the nonlocal part of the pseudopotential
can be found elsewhere.'® The potential Vi pa(r) is a periodic
function and can be expanded in a Fourier series

Vipa(G) = / d*r Vipa(r)e 67, 4
Q

where {G} is the set of the reciprocal lattice vectors of the
corresponding crystal structure with unit-cell volume €.

We now express the periodic potential Vipa(r) as a sum
over atom-centered potentials v, (r):

Vipa(r) =YY valr — (R + 1), )
R

o

where we use capital letters for crystal potentials and lower
case letters for the corresponding atomic potentials. The
vectors {R} are the basis vectors of the crystal unit cell and
T, are the atomic positions of the atoms « in the unit cell
corresponding to { R}.

The goal now is to obtain an expression for v, that we
could use in other environments, as given for instance in
nanostructures. These screened atomic pseudopotentials vy
contain, in addition to the ionic part, in an average way,
the contribution related to the electron-electron interaction,
expressed by Vyxc. However, the procedure of obtaining
these atomic potentials from the total local potential must be
clearly specified and checked for consistency. In the following,
we explain how the construction of the screened atomic
pseudopotential is carried out.

First, by combining Eqgs. (4) and (5), we obtain the following
connection between the unknown v,(G) and the known
self-consistent Fourier coefficients Vi pa(G), for every value
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of G:
3 6 0, (G) = Vipa(G), ©)

o

with
1(G) = / v (r)e T dr, (7
Q0

where the integral is over the atomic volume €2y, as a
consequence of Eq. (5) and after Ref. 4. The lattice parameters
are taken as a = 3.189 A, and ¢ = +/8/3a. The wurtzite unit
cell has four atoms, with the primitive vectors

3 3
a= (40 = (-2, =000,
2" 2 2 2
®)

and the atom positions of the two anions a; » and two cations
C1.2
_ 1 1 7
Ty = —ga1 + 502 — 1g@3 — Tq,
1 1 1
Ty, = Tga1 — 502 + g3 —> —Tg, ©)

1 1 1
T = —ga1 + g2 — 1gd3 —> T,

T, = +ga1 — tar + faz — —7,,
we then obtain, for Vi pa(G),
1
Q.
+e 9TV (G) + 9T G),  (10)

Vipa(G) = —[e7C T (G) 4 ¢ 1 (G)

with the symmetric (v;) and antisymmetric (v_) pseudopo-
tentials

v+(G) = va(G) + vc(G)’

we obtain

V—(G) = vu(G) —v:(G), (11)

1
Vipa(G) = §v+(G) [cos (T, - G) + cos(T. - G)]

c

1
+ iQ—v_(G) [sin(t. - G) —sin(t, - G)]. (12)
Since v, /. have inversion symmetry, v, ,_ are real, and they
can be written in terms of the real and imaginary parts of
Vipa(G) as

Q2

cos(t, - G) +cos(t. - G)
Q.

sin(t. - G) —sin(t, - G)

The potential Vi pa(G) is calculated from the Fourier transform
of the LDA crystal potential V1 pa(r). Once v.,_ are obtained,
the reciprocal-space atomic pseudopotentials v, . are obtained
from Eq. (11). Through this procedure we can obtain v, ,.(G)
only at discrete values {G}. To palliate this problem, the LDA
potential of the bulk system is solved for a set of unit-cell
volumes, at different lattice constants, around the optimized
value, as shown below.

So far, the procedure to obtain v,/ (G) is exact. However,
for an efficient implementation, it is convenient to assume that
the screened pseudopotentials are well represented by their

14(G) = Re{VLpa(G)},

13)

v_(G) = Im{V1pa(G)}.
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FIG. 1. (Color online) The LDA-derived contributions v, and v_
for GaN as defined in the main text. We have obtained five sets of data
points by varying the lattice constant a as indicated in the legends.
The c/a ratio is kept constant at the ideal value. The lines represent
a fit to the data points using cubic splines.

spherically averaged counterparts v/(G). At this stage, we
have a spherically symmetric screened atomic LDA potential
Ua/c(G)-

Figures 1(a) and 1(b) show the LDA results (symbols) for
v4 and v_. In order to have a dense grid of G points, the
calculations are performed for five different lattice constants
a. The data points from different unit-cell volumes fall
nearly over the same line, with some slight deviations for
the data points around G =2 bohrs™! in v,. This shows
that the spherical approximation is justified. Concerning
the pseudopotentials at G =0, v;,_(G = 0), their values
are arbitrary, and the variation of v, (G = 0) produces an
overall shift of the band structure. The value of v, (G = 0)
is set to the work function, which can be obtained from
experimental data'* or obtained from ab initio calculations. In
nanostructures, as superlattices or quantum wells, v (G = 0)
determines the band alignment and its value has to be set
carefully.'>'® In regions of small G (2.5 bohrs™'), the
changes in the pseudopotentials v, and v_ do not substantially
modify the band structure around the I point. In all the cases,
we have fitted the data points with cubic splines. In regions
of large G (>12 bohrs~!), small oscillations persist, requiring
a careful fitting. In Fig. 2 we plot the corresponding gallium
and nitrogen semiempirical pseudopotentials. Concerning the
general behavior of the pseudopotentials, the oscillations
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FIG. 2. (Color online) Screened atomic semiempirical pseudopo-
tentials for gallium (solid line) and nitrogen (dashed line).

persist until G ~ 10 bohrs~!, which determines the energy
cut-off in the subsequent calculations (with a energy cutoff of
30 Ry).

The last step is the solution of the Kohn-Sham equation (1),
where the Kohn-Sham potential Vkgs is replaced by the
semiempirical pseudopotentials calculated above, and the
nonlocal term Vjoniocal- This equation needs to be solved only
once since there is no need to achieve self-consistency.

We proceed by comparing the band structures calculated
using the SEP method and the LDA. As the spin-orbit interac-
tion only produces minor splittings in GaN, we have neglected
this interaction for the overall band-structure comparison,
but it will be introduced later on, once the validity of the
SEP method has been demonstrated. The effects on the band
structures caused by a reduction of the energy cutoff will
also be analyzed. In Fig. 3, we plot the following GaN band
structures: the LDA results for E.,; = 90 Ry (black solid lines),
the SEP results with E.,; = 30 Ry, (green dashed lines), and
the band-gap-corrected SEP results (red dots).

A comparison of LDA and SEP calculations with the same
energy cutoff shows a nearly perfect agreement for all the
bands and throughout the Brillouin zone and is not shown.
The reduction of the energy cutoff from 90 to 30 Ry leads to
a rigid displacement of the conduction bands towards lower
energy, reducing the band gap approximately by 1 eV. The
valence band states most affected by the reduction of E are
those far from the top of the valence band, at around —6 eV.
The topmost valence band states remain almost unaltered, and
belong to the I's representation, in agreement with the ab initio
band structure. We conclude that the LDA and the SEP band
structures are in good agreement for the bands close to the
band gap, i.e., the most important part of the band structure in,
e.g., photoluminescence experiments.

Another important issue in ab initio calculations of semi-
conductors is the underestimation of the band gap undermining
the LDA.!” Such underestimation is enhanced, in this special
case, if the energy cutoff is reduced. In the SEP method,
one can correct this problem easily by multiplying the lo-
cal potentials by a Gaussian function or renormalizing the
nonlocal pseudopotentials.® In this work, we have chosen
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FIG. 3. (Color online) Band structure of GaN calculated with
DFT in the LDA (solid lines), with the SEP method without correcting
the band gap (dashed line), and with the SEP method correcting the
band gap (dots). A/2 and M /2 indicate the path in the Brillouin zone.
The LDA band gap is 2.7 eV, 1.6 eV for unshifted SEP, and 3.5 eV
for shifted SEP.

the second possibility where we act on the nonlocal angular-
momentum s channel. Figure 3 shows the band structure of
the band-gap-corrected SEPs. The band-gap opening does not
influence significantly the valence band, although a slight
modification is appreciated in the vicinity of the I' point,
which produces a change in the curvature, as expected from the
decreased coupling with the valence bands. The conduction
band effective mass for the corrected SEPs is now 0.21my,
in good agreement with the reported experimental value of
0.20m (being my the free-electron mass).'®

For energy cutoffs lower than 30 Ry, the changes in the band
structure exceed the admissible margin. The wave functions of
the top of the valence band and of the bottom of the conduction
band have the same symmetry and shape as the LDA wave
functions.

III. SURFACE STATES AND PASSIVATION

As noted above, the atoms at the free surfaces of a
nanostructure have dangling bonds. The existence of these
dangling bonds generates electronic states localized at the
surface, with energies usually within the band gap of the
semiconductor.'”?’ These states can have energies close to
the conduction and valence band edges, and can induce an
artificial modification of the conduction and valence band
states, and they have to be eliminated.”!~>3 In the literature,
two methods are used to overcome this difficulty. The first
possibility is to achieve quantum confinement by embedding
the structure into a virtual material with a high band gap.?*>
The main disadvantage of using this virtual material is the
associated increase in the number of atoms. Another way
consists of attaching an atom, usually hydrogen, to the
dangling bonds (the so-called passivation), which displaces
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the energies of the surface states far from the band gap.?®2

However, the determination of the hydrogen pseudopotentials
is not a trivial task, and it can depend on the material and
on the surface orientation. The simplest way is to model the
passivant pseudopotential by an analytical function, such as a
Gaussian. The method to optimize the form of the Gaussian
function can be a simple trial and error procedure, or a
more sophisticated approach, such as a genetic algorithm,
as developed in Ref. 9. However, the empirical parametrized
Gaussian pseudopotentials involve iterative calculations of
the electronic structure, which complicates the computational
task, and does not always guarantee to achieve an adequate
passivation.

In this work, we propose to derive the passivant pseu-
dopotentials from LDA calculations of a small free-standing
structure. In the following, we describe the necessary steps and
illustrate them by an example for the (1100) surface of GaN.

Step 1: Ab initio calculation of the self-consistent potential.
The self-consistent potential is calculated for two free-standing
(1100) GaN layers. A bare layer (unsaturated dangling bonds)
and a passivated layer (a hydrogen attached to each dangling
bond). Specifically, the GaN layer is approximately 15 A thick
(24 atoms), and the vacuum layer is about 10 A on both sides
to prevent coupling between layers. The input hydrogen norm-
conserving potential is taken to be the same for the hydrogen
atoms bound to the gallium and the nitrogen atoms. In the case
of materials with metallic surfaces (e.g., CdSe), a satisfactory
passivation may require hydrogen potentials with fractional
charges. For the atomic positions, we fix the nitrogen and
gallium atoms to their bulk ideal positions and relax only the
distance between the hydrogen atoms (usually two atoms on
each side of the slab) and the corresponding passivated atom.?

The band structures of the bare slab (without geometry
optimization) and passivated [1100] slab (with optimization of
the distance of hydrogen atoms with respect to GaN) are shown
in Figs. 4(a) and 4(b). Note that the bands are rather flat along
the I' — M direction, which confirms the decoupling between
adjacent layers. The energy dispersion along the I' — A line of
the Brillouin zone is shown, exhibiting the same behavior as in
the case of a quantum well.** We observe that conduction and
valence bands are very similar in both cases. However, the bare
layer has a band gap larger by 0.37 eV. The main difference
is obviously the presence of surface states, located within
the band gap. These states are grouped in two energy ranges.
The states s; — s4 (index assigned in increasing order of
energy) are closer to the valence band edge and have a flatter
dispersion. The other group, formed by the states ss and sg,
located in the middle of the band gap, has a more pronounced
dispersion. On the contrary, the band structure of the passivated
layer has no state within the band gap.

This analysis is further clarified by examining the charge
density in real space. Figures 4(c) and 4(d) show the plane-
averaged density corresponding to some relevant states of
the bare and passivated (1100) layers, together with the
plane-averaged self-consistent potential profile, along the
[1100] direction. In the case of the bare layer, the mid-gap
surface states s5 and s¢ present different profiles having a strong
hybridization with the layer atoms, penetrating appreciably
inside the layer. For the state c;, the penetration into vacuum
is significant for both the passivated and the bare layers, which
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FIG. 4. (Color online) Top panels: Band structure of a bare and
passivated [1100] GaN slab calculated with DFT in the LDA. Middle
panels: Square of the wave functions of selected conduction (cy, ¢2),
valence (v;), and surface (s;) states, along with the screened local
effective DFT-LDA potential averaged along (1100) planes. Lower
panels: Schematic representation of the atomic positions..

can be explained by the small electronic effective mass. In the
case of the bare layer, the state ¢; develops a maximum at the
surface of the layer, which is the signature of a hybridization
with a surface state. On the other hand, the charge density of the
valence band states seems to vanish at the surface without any
sign of hybridization, in either the bare or the passivated layer.
It is worth to mention that for larger passivated nanostructures,
the charge density at the border will be negligible. We can also
conclude that the dangling bonds affect mainly the states of
the conduction band.

Step 2: Determination of the screened hydrogen pseudopo-
tential. We calculate the effective pseudopotential for the atom
positions of the unpassivated slab using our semiempirical
pseudopotentials for Ga and N, Viure sepm (7). We use the same
fast Fourier transform (FFT) grid as for the self-consistent
potential for the passivated slab calculated in the previous step
via LDA, V,, 1pa. The difference between the two sets of data

AV(r) =V, 1pa(r) — Vouesepm(r) (14)

represents the modification of the potential in response to the
presence of the passivated surface. This includes the effects
of the self-consistent charge redistribution around the surface
Ga and N atoms, as well as the additional hydrogen potential.
The potential AV(r) is therefore a potential that represents
the entire modification of the total potential through the
introduction of a passivated surface. Accordingly, we obtain a
different passivant “hydrogen” potential for a hydrogen atom
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attached to a Ga atom and for a hydrogen atom attached to a N
atom. To extract a spherically averaged atomic quantity from
AV (r), we calculate the center of potential (akin a center of
mass) rop Of a set of N points enclosed within a sphere around
the hydrogen atomic positions ry:

N

AV(rjr;
Feop = Z T(;‘l) for |ri — rHl < Feut- (15)

If the potential would be spherical and centered around ry,
then r,, and ry would coincide. In our case, the geometric
potential center is slightly shifted from the atomic position and
we solve the equation self-consistently until rg = rp. For the
value of r.y, we use a value of 1.0 a.u.

Our passivant pseudo-hydrogen pseudopotential is given by

vu(ry) = AV(|ri — rul), (16)

and is shown in Fig. 5, where we plot the discrete set of FFT
grid points as black circles. The position of the hydrogen atom
ry has been determined from Eq. (15). The smooth curves
in Fig. 5 represent our fits to the data points, where we used
three cubic spline functions for 7 < Rc. In this region, the data
points lie mainly on a curve, which shows that the potential is
close to spherically symmetric. For larger radii, the data points
show significant scattering along the energy axis, which is
expected, since the potential at the surface will have some
nonspherical character. We obtain good results when the data
points are fitted by a Yukawa potential

—mr

s €

vy(r) = —g for r > Rc. (17

Vp.-(Ha bohrs™®)

Vga.n(Ha bohrs3)

r (bohrs)

FIG. 5. (Color online) Potential given by Eq. (16) for a 15-A-thick
GaN film. The three different fits to the data points represent three
different values of R = 0.75, 0.80 and 0.85 a.u. (where the cubic
splines are connected to the Yukawa potential). We obtain the best
results with R = 0.80 a.u.
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FIG. 6. (Color online) Passivant screened pseudopotentials for
Ga (H-Ga) and N (H-N) in reciprocal space.

For the N (Ga) passivant potential, we determine m =
1.864344(2.012838) and g> =3.7635 (4.060362) with
R¢ = 0.80 a.u. for a potential in Hartree units.

We use a one-dimensional (1D) Fourier transformation to
obtain the passivant potential in reciprocal space:

4 [ .
va(G) = G sin (Gr)vyg(r)r dr (18)
0
with
o0
(G = 0) = 4 / vu(r)ridr. (19)
0
c, 3.789 eV
v, -0.067 eV
v, 0.118 eV
§ 0.0
3 02
8 04f
20
E -0.6
3 08

| Vac Pédddd] Vac |

FIG. 7. (Color online) Charge densities of one conduction band
state ¢; and two valence band states v;, of a passivated GaN slab
calculated with the SEPM. Lower panel: Atomic semiempirical
pseudopotential across the slab. The quantities are averaged in
successive planes perpendicular to the surface.
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In Fig. 6, we show the pseudo-hydrogen passivant pseu-
dopotentials in reciprocal space for the potential attached to Ga
and to N. Both curves are simple and smooth, and deviate from
each other only for small values of g, i.e., in their long-range
response, as expected.

Step 3: Consistency checks on wave functions. The accuracy
of the passivation procedure has been checked by applying
the semi-empirical pseudopotential method (SEPM) to the
same layer used for the LDA calculations. Figure 7 shows
the potential and the charge densities of one conduction
c1 and two valence band v;, states. The calculations are
done with an energy cutoff of 30 Ry and a nonlocal part
of the pseudopotential renormalized to the experimental bulk
band gap. All spurious states are removed from the gap, and
the states are well localized inside the structure. The states
vy and v, have the same profile as their counterpart LDA
states. The small discrepancies can be attributed to the small
dimensions of the layer, and gradually disappear for larger
nanostructures.’!

IV. ELECTRONIC STATES OF NANOWIRES

To illustrate the performance of the SEPM in the study
of nitride nanostructures, we present here calculations of the
electronic structure of free-standing GaN nanowires (NWs).
The NWs are assumed to be oriented along the ¢ axis and
infinite in length. We assume a hexagonal cross section, with
(1100) lateral faces. This is the most usual shape adopted by
GaN NWs grown by plasma-assisted molecular beam epitaxy
technique.’>* This NW faceting has also been supported
by theoretical calculations,> showing a lower formation
energy for (1100) than (1120) surfaces. The electronic states
are obtained by solving

[—2V2 + Vaw() [ Wi (r) = e,(k) Wi, (1), (20)

where the wire potential Vxw(r) is constructed as a superpo-
sition of atomic pseudopotentials.

In real free-standing NWs, a surface reconstruction is
expected that would minimize the total energy of the system.
However, in our calculations we will assume for simplicity
that the atomic arrangement corresponds everywhere to the
perfect wurtzite crystal structure. When building the potential
Vaw(r), we have passivated the facets using the potential
described in Sec. III, which removes states from the gap in
all the cases investigated. Equation (20) is solved by imposing
artificial periodic boundary conditions on the wire surrounded
by Ny, layers of vacuum. This transforms Eq. (20) into a
Bloch-periodic band-structure problem with a large simulation
cell, solved here by expanding W ,(r) in plane waves. We
use a sufficiently large wire-wire separation Ny,., so that
the solutions become independent of Ny,.. A sketch of the
modeled NW is shown in Fig. 8. In the following, the term size
refers to the largest lateral dimension, as shown in in Fig. 8
and is labeled as S. We have considered a range of sizes S
from 1.5 to 6.5 nm, which corresponds to a number of atoms
varying between 100 to 1500. The matrix diagonalization
corresponding to the problem Eq. (20) can be solved using the
folded spectrum method.?> The computational times, within
the SEPM, are significantly shorter than they would be in a
corresponding self-consistent ab initio calculation.
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FIG. 8. (Color online) Ball-and-stick model of a free-standing
wurtzite GaN nanowire, grown along the [0001] direction. The lateral
surfaces of the NW are (1 — 100), and the corresponding surface
atoms are passivated by pseudo-hydrogen atoms.

Here, we will focus on the analysis of the zone center (k =
0) NW electronic states. These states are naturally classified
into valence band (VB, v) and conduction band (CB, ¢) NW
states, and in each case they will be indexed in ascending order
as (v,vy,...) and (cy,cs, . ..), according to their separation
in energy from the respective k = 0 bulk band edges E,
and E.. Any of the considered states exhibits Kramer’s
double degeneracy. When analyzing the corresponding charge
densities [here meaning, i.e., the (vertically averaged) squared
wave functions], an envelope pattern is recognized in the
cross section, which corresponds very closely to the radial
pattern of the Bessel functions J,(x). We find convenient to
incorporate this symmetry information to the labeling of the
states by adding the notation s [meaning approximately the
same symmetry as Jo(x)], p [approximately the same symmetry
as Ji(x)], etc.

In order to further characterize the symmetry of the NW
states Wi—o ,, We can calculate their projections on the bulk
band states, as explained in Ref. 36. In particular, in the analysis
presented below, we have considered the projections

Pn(y) = (\py |\Ilk=0,n>7

where W, are the near-gap I' (k = 0) bulk states labeled
schematically by their symmetries: y = I'7 . (bottom of the
CB) and y = A(T'9), B(T,.1), C(I7).%

Figure 9 shows the confinement energies (i.e., the energies
referred to the bulk CB edge energy) of the CB NW states as
a function of the NW size. It also shows the projection of the
lowest-energy state ¢; onto the CB bulk state Wr, , revealing
that ¢ has between 65% and 97% conduction band character.
Additionally, the charge density of ¢; exhibits a clear s-type
envelope for all the sizes explored here, in agreement with
expectations from the effective mass approximation (EMA).
On the other hand, we have fitted the energy of the c|(s) state
to the function

&(S)— E, = a%, @1
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FIG. 9. (Color online) On the left scale, it is indicated the
confinement energy of the CB NW states as a function of the NW
size. The blue dashed line is the fit obtained with Eq. (21) in the text,
whereas the red dots represent the confinement energy of the lowest
CB NW. The solid line refers to the right scale and it represents the
projection of the ¢; wave function onto the CB edge bulk state. The
charge density of the CB state ¢;(s) for § = 6.5 nm is shown as an
inset.

and have found the values @ = 1.28 £ 0.01 and b = 1.62 &+
0.02. The fitted value of the parameter b differs significantly
from the prediction of the single-band EMA (b = 2), which
is represented by a dotted line in Fig. 9. We conclude that,
even for the case of the almost isolated conduction band, the
confinement imposed by the nanowire geometry, while leading
to an overall symmetry of the CB states similar to that predicted
by the EMA, leads to a remarkably different energy dispersion
as a function of NW size.

We now turn to the analysis of the VB electronic structure
of the NW. Figure 10 shows an overall view of the confinement
effects in the VB by displaying the highest energy levels for

0.00 T T T T T T
-0.15 |
030 |

045 |

v

E-E (eV)

-0.60 |

075 L

Valence band states |
. 1 1 1 1 1

-0.90 L%
1 2 3 4 5 6

S (nm)

FIG. 10. (Color online) Size dependence of the confinement
energy of the first VB NW states as a function of the NW size. The
charge density of the first VB state for a NW size of 6.5 nm, v(p), is
shown as an inset. The solid line connects the size dispersion of the
hybrid A-B state with p-type envelope symmetry, which is discussed
in the main text.
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every NW size. In order to give further insight into the complex
evolution of the VB states with sizes, we have represented in
Fig. 11 the charge densities of the first four VB states for
various NW sizes. A first examination reveals that the wave
functions are well confined inside the NWs, and only for some
states in the smallest NW show a slight state localization on
surface atoms. In particular, the analysis of the charge density
of the highest VB state v; shows that its envelope symmetry
changes suddenly from p type for the largest NW to s type
for smaller NWs. For the size 2.6 nm and below, the first three
VB states show an s-type envelope, whereas the VB state with
p-type envelope is moved to the fourth place in the energy
spectrum.

PHYSICAL REVIEW B 86, 205430 (2012)

The above study must be complemented with the analysis
of the projections of the NW VB states onto the bulk states
A, B, and C, at the I" point, which will give us additional
information about the symmetry of the states. In Table I we
have summarized the values of the corresponding projections
[Py, (A), P, (B), and P, (C)] for the same set of states as in
Fig. 11. For the largest nanowire shown here, the composition
of the topmost state, which has envelope p symmetry, is almost
equally divided between the bulk states A and B. The next
two VB states, v, and vz, of s symmetry, clearly show a
dominant contribution from bulk bands A [P,,(A) = 82%]
and B [P,,(B) = 76%], respectively. Neither of these states
has a significant contribution from the C band. When the

S=1.5nm 2.6 nm 3.7 nm 6.5 nm
0 e(v) =-199 meV 0 -91 meV -63 meV 0 -35 meV
-10 - -10 -10 -101
—
E, -20 20 - 220 -20
= 30 4 30 - 30 1 -30
25 -40 |
5 40 40 -40 -
S 0 50 50
- 4 -50 - -50 4
-60 4
210 -60 -60 -60
Vi 2.
....O ‘.’j..;- > i,.:‘_‘
o . - . ® , ::.-% - :v,:‘.
Vs

V3
.
.....
e®e®.
.
v4 o8 »
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.- “. : -
] M 5 5 : 8
- - -y >y
CRC T
‘“ihe .

FIG. 11. (Color online) The upper panel gives the single-particle energies for the VB NW states v;, v,, v3, and vy, relative to the highest
VB state ¢(v;) for various NW sizes. The corresponding charge densities are displayed in the lower panels.
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TABLE I. Projections [P, (A), P,,(B), P,,(C)] of the upper VB
NW states v; (i = 1,2,3,4) onto the bulk VB states at I" (A, B, C).

S(nm) 1.5 2.6 3.7 6.5

vy (3, 40, 46) (76, 8, 6) (79,9, 5) (50, 47, 0)
) (60,7,5) (7, 68, 17) (9,75, 11) (82,12,3)
U3 (4,29, 53) (3,8, 85) (48,45, 1) (18,76, 3)
Uy (41, 42,0) (45, 45, 0) (3,6,89) (38,42, 16)

nanowire size is reduced to 3.7 nm, we observe that the two
highest VB states have now dominant contributions from A
and B bands, with s symmetry, whereas the mixed A-B state
becomes now the third state v3(p). If one further reduces
the NW size to 2.6 nm and below, the mixed A-B state
now becomes v4(p), whereas the first three states show a
high degree of A-B-C mixing. Thus, our detailed analysis
of the NW wave functions as a function of size has allowed
us to identify a state with p-type envelope symmetry which
is essentially an equal-weight mixture of bulk bands A and
B. In Fig. 10, we have traced a line connecting these states.
The change in the symmetry of the highest VB state as
a function of size is just one of the consequences of the
nontrivial interplay between symmetry mixing, spin-orbit
coupling, and confinement effects on the NW valence band
electronic structure. This is in contrast to the simpler situation
of the CB electronic structure. This unconventional trend of
the nanowire electronic structure has also been reported by
calculations using the tight-binding method.?**° Moreover,
studies in other wurtzite systems, as the one made in ZnO
nanocrystals by Baskoutas and Bester,’® show also that the
highest state of the valence band is characterized by a p-type
envelope.

V. CONCLUSION

We have followed the idea®’ to use the screened effective
potential from a DFT bulk calculation to extract a spherically
averaged atomic pseudopotential. We have derived the analytic
connection between the screened DFT effective potential and
the atomic quantities in the case of wurtzite bulk unit cells. This
allowed us to derive atomic semiempirical pseudopotentials
for nitride materials. The pseudopotentials are nonlocal, in
the same way as DFT norm-conserving pseudopotentials, and
reproduce the DFT results for the eigenvalues of bulk up to
a few meV. Our potentials are not aimed at the calculation
of total energies, but at the calculations of the eigenvalues
and eigenfunctions around the band gap, which give some
leverage on the reduction of the energy cutoff, compared to

PHYSICAL REVIEW B 86, 205430 (2012)

DFT calculations. The advantage of the method compared to
the original empirical pseudopotential approach (see Ref. 40
and references therein) resides in the direct link to ab initio
calculations and the ensuing rather simple fitting procedure of
a curve through a dense set of data points. The transferability
of the potentials are good for the situations studied here but
are expected to degrade when charge transfer significantly
deviates from the bulk situation. This represents a general
limitation of the method that we, however, palliate for the case
of a free surface by deriving effective passivant potentials (see
next paragraph). The defective band gap inherited from DFT
is correct by a slight adjustment of the nonlocal channel of
the potential which has only a very marginal effect on the
wave functions, as shown previously.>>*! The derived method
should be applicable to other materials. Eventually, the method
can be built on the basis of GW calculations. However, full
self-consistent GW calculations are still prohibitive in the
applications to extended systems and only work for small
molecules.*

In the second part of this work, we have established
a simple and direct methodology to obtain the passivating
pseudo-hydrogen pseudopotentials, essential for the treatment
of free surfaces in nanowires or nanoparticles. We thereby use
the difference between the screened effective DFT potentials of
a passivated structure and the semiempirical pseudopotential
of the corresponding unpassivated structure. The derivation is
done in real space and we find that a cubic spline interpolation
up to a cutoff radius R¢, connected to a Yukawa potential,
leads to satisfactory results.

The suitability of the semiempirical pseudopotential
method and of our passivation procedure has been explored
in GaN nanowires. Due to the high confinement of NW
sizes below 10 nm, the use of accurate atomic potentials is
unavoidable, as continuous methods are expected to fail in
the description of such systems. We have found that, while
the conduction band states follow a behavior compatible
with the EMA predictions, the valence band states exhibit
a complex evolution as a function of the NW size. We find
drastic variations in the character of the wave functions with
the NW size, which will influence optical properties such as
the polarization of the photoluminescence.
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