
Computational Particle Mechanics (2021) 8:561–574
https://doi.org/10.1007/s40571-020-00353-2

Ameshfree generalized finite difference method for solution mining
processes

Isabel Michel1 · Tobias Seifarth1 · Jörg Kuhnert1 · Pratik Suchde1

Received: 30 January 2020 / Revised: 23 July 2020 / Accepted: 19 August 2020 / Published online: 5 September 2020
© The Author(s) 2020

Abstract
Experimental and field investigations for solution mining processes have improved intensely in recent years. Due to today’s
computing capacities, three-dimensional simulations of potential salt solution caverns can further enhance the understanding
of these processes. They serve as a “virtual prototype” of a projected site and support planning in reasonable time. In this
contribution, we present a meshfree generalized finite difference method (GFDM) based on a cloud of numerical points that
is able to simulate solution mining processes on microscopic and macroscopic scales, which differ significantly in both the
spatial and temporal scales. Focusing on anticipated industrial requirements, Lagrangian and Eulerian formulations including
an Arbitrary Lagrangian–Eulerian (ALE) approach are considered.

Keywords Meshfree methods · Generalized finite difference method · Lagrangian formulation · Arbitrary Lagrangian–
Eulerian formulation · Solution mining

1 Introduction

The basic motivation of this research is to provide a method
that is able to simulate the long-term development of a salt
cavern during a double-well solution mining process. Solu-
tion mining is used to extract underground water-soluble
minerals such as salt and potash. A double-well convection
process has been a preferred choice for solution mining due
to its large recovery rate [2,33]. As the name suggests, this
involves the use of two boreholes or wells for the extraction
process: an injection well and a recovery or extraction well.
For the extraction of salt, freshwater is pumped into a salt
deposit through the first “injection” well. Salt present in the
cavern dissolves in the water to produce a saturated brine
solution. This is then extracted at the second “extraction”
well. A schematic of this process is shown in Fig. 1. The
main direction of dissolution is vertical, which is controlled
by alternate lifting of the injection and the extraction well.

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s40571-020-00353-2) contains
supplementary material, which is available to authorized users.

B Isabel Michel
isabel.michel@itwm.fraunhofer.de

1 Fraunhofer Institute for Industrial Mathematics ITWM,
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

In this work, we focus on modeling of the fluid flow
involved in such a double-well solution mining procedure,
including the formation of the salt–water solution. An essen-
tial aspect of this is to accurately model the long-term
geometrical evolution of the salt cavern. This is needed to
steer the actual process of solution mining, in terms of, for
example, determiningwhen and at what rate the injection and
extraction wells are raised. However, numerically modeling
this is very challenging, as it is a highly dynamic three-
dimensional process involving different spatial and temporal
scales. Over the timescale of several years, as salt in the cav-
ern dissolves in the water, the cavern starts to erode, causing
significant deformations in its overall shape. However, the
dissolution process relies on a smaller timescale of several
minutes. On the spatial scale, the former involves the model-
ing of the entire salt cavern, while the latter is more localized
and is relevant near the cavern walls. In the present work, we
model both these processes in separate simulation setups. A
macroscopic simulation is carried out to model the evolution
of the cavern over many years. This is done on actual salt
cavern geometries. The computation of the diffusion rate of
the salt (and related minerals) to be used in these macro-
scopic simulations is done in a separate simulation, in the
so-called microscopic setup. This involves simulations over
the smaller timescale of a few minutes and over representa-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40571-020-00353-2&domain=pdf
http://orcid.org/0000-0002-4860-5960
http://orcid.org/0000-0001-6503-4939
http://orcid.org/0000-0002-5787-357X
http://orcid.org/0000-0002-4807-5322
https://doi.org/10.1007/s40571-020-00353-2

562 Computational Particle Mechanics (2021) 8:561–574

Fig. 1 Schematic of double-well solution mining (adapted from [25])

tive geometries several orders of magnitude smaller than the
size of the salt cavern in the macroscopic simulations.

Over the past few decades, meshfree simulation methods
have emerged as an alternative to the conventionally used
mesh-based simulation procedures, especially in the context
of modeling fluid flow. The advantages of meshfree meth-
ods are most notable for applications with complex domains,
or those with moving geometry parts, free surfaces, phase
boundaries, or large deformations. While modeling each of
the latter caseswithmesh-basedmethods, the highly dynamic
nature of the simulations often requires an expensive global
remeshing procedure. On the other hand, moving Lagrangian
and semi-Lagrangian procedures fit in naturally with mesh-
free methods, making the simulation of dynamic geometries
or phase boundaries a lot easier. In the application at hand,
the modeling of the changing domain during the long-term
evolution of the salt cavern falls into this category. We thus
choose a meshfree approach.

In this paper, we use a meshfree generalized finite dif-
ference method (GFDM) [5,7,12,20] based on a cloud of
numerical points. This method has already been success-
fully applied in various CFD and continuum mechanics
applications. Prominent examples include water crossing of
cars, water turbines, hydraulic valves, soil mechanics, metal
cutting, and mold filling [10,14,21,23,31,32]. The methods
presented here are part of the in-house developed software
MESHFREE,1 which combines the advantages of GFDM
and the fast linear solvers of SAMG [22].

We start by using a Lagrangian formulation where the dis-
cretizing point cloud moves according to the flow velocity
[10,13]. This results in an accurate and natural transport of
physical information. The basic physical model consists of
the conservation equations formass, momentum, and energy.
For solution mining processes, we extend it by the standard
k-ε turbulence model and equations for the concentration

1 https://www.meshfree.eu.

of the occurring species (see Sect. 2). The GFDM-specific
numerics are presented in Sect. 3 with special focus on the
Lagrangian and Eulerian formulations. Microscopic simu-
lations are presented in Sect. 4 and are used to determine
the necessary effective model parameters of the macroscopic
problem which follows. For macroscopic simulations, the
Lagrangian formulation leads to a significant restriction of
the time step size due to the explicit movement of the point
cloud. To enable simulations in reasonable time, an Eulerian
formulation should be preferred in this context. Here, the
point cloud is fixed and convective terms represent the trans-
port of physical information. The movement of the boundary
of the salt cavern is based on the solution rate of the salt in
the flowing water. To accurately handle this moving bound-
ary, interior points close to the boundary are subject to an
ALE approach (Arbitrary Lagrangian–Eulerian) according
to [8]. This procedure gives rise to covering the complete
life cycle of a salt cavern—several decades—by a meshfree
simulation. In Sect. 5, we demonstrate the advantages of the
Eulerian formulation for a simplified macroscopic example
of a double-well solution mining process, followed by con-
cluding remarks in Sect. 6.

2 Physical model

In this section, we describe the basic physical flow model
and its extensions for modeling solutionmining processes, in
both the macroscopic and microscopic simulations. Specific
models needed for the density, viscosity, and heat capacity
of a solution are also discussed.

2.1 Basic equations

The basic underlying physical model is given by the con-
servation equations of mass, momentum, and energy in
Lagrangian formulation.

dρ

dt
+ ρ · ∇Tv = 0,

d

dt
(ρ · v) + (ρ · v) · ∇Tv =

(
∇TS

)T − ∇ p + ρ · g,
d

dt
(ρ · E) + (ρ · E) · ∇Tv = ∇T (S · v) − ∇T (p · v)

+ ρ · gT · v + ∇T (λ · ∇T) , (1)

for density ρ, velocity v ∈ R
3, stress tensor S ∈ R

3×3 (devi-
atoric part, i.e., tr(S) = 0), pressure p, body forces g ∈ R

3,
total energy E = cv · T + 1

2 · (vT · v), heat capacity cv, tem-
perature T , and heat conductivity λ. Further, d

dt = ∂
∂t +vT∇

denotes the material derivative, and ∇ = (∂
∂x , ∂

∂ y ,
∂
∂z)

T

denotes the nabla operator.

123

https://www.meshfree.eu

Computational Particle Mechanics (2021) 8:561–574 563

In general, the stress tensor is split into its viscous and
solid parts by S = Svisc + Ssolid [10,13]. For the present
application, the stress tensor is purely viscous, Ssolid = 0.
The viscous part is defined by

Svisc = (η + ηturb) ·
(

∇vT + (∇vT)T − 2

3
·
(
∇Tv

)
· I

)
,

(2)

where I ∈ R
3×3 is the identity.

To incorporate turbulent effects, the standard k-ε turbu-
lence model [18] is considered for turbulent kinetic energy k
and turbulent dissipation ε

dk

dt
= 1

ρ
· ∇T

((
η + ηturb

σk

)
· ∇k

)
− ε + 1

ρ
· (Ppr + Pb),

dε

dt
= 1

ρ
· ∇T

((
η + ηturb

σε

)
· ∇ε

)
− C2ε · ε2

k

+ 1

ρ
· C1ε · ε

k
· (
Ppr + C3ε · Pb

)
, (3)

where η is the laminar viscosity and ηturb = ρ ·Cη · k2
ε
is the

turbulent viscosity. Fluctuating dilatation and source terms
are omitted [18]. The turbulent production rate is defined by
Ppr = ηturb ·‖∇vT‖2M with vonMisesmatrix norm ‖·‖M. The
turbulent buoyancy is given by Pb = − 1

ρ
· ηturb
Prturb

· ∂ρ
∂T ·(g ·∇T).

For this model, well-established values for the constants are
used σk = 1.0, σε = 1.3, C1ε = 1.44, C2ε = 1.92, C3ε =
−0.33, Cη = 0.09, and turbulent Prandtl number Prturb =
0.85. Furthermore, a logarithmic wall function is used in the
vicinity of walls.

In order to simulate solution mining processes, the above
basic model is extended by convection–diffusion equations
to represent the different minerals or species present in the
saltmixture. For the concentration ci of species i = 1, . . . , N
with effective diffusion coefficient Di,eff , we have

dci
dt

+ ci · ∇Tv = ∇T(Di,eff · ∇ci). (4)

In the Eulerian formulation, the material derivative is
replaced by its definition, i.e., d

dt = ∂
∂t + vT∇.

2.2 Modeling density, viscosity, and heat capacity

Consider the general form of the equation of state

ρ = ρ(T , c1, . . . , cN), (5)

where density depends on the temperature and each of the
concentrations. Based on the formulation in [16,17], the den-

sity of a solution of N species in water is given by

ρsol =
(

wH2O

ρH2O
+

N∑
i=1

wi

ρapparent,i

)−1

, (6)

wherewH2O andwi are themass fraction ofwater and species
i , respectively. Additionally, wH2O +∑N

i=1 wi = 1 has to be
satisfied. The density of water is determined by the nonlinear
relation

ρH2O = (((((A1 · T + A2) · T + A3) · T + A4) · T + A5) · T + A6)

1 + A7 · T ,

(7)

with A1, . . . , A7 and C∗
0 , . . . ,C

∗
4 defined according to [17].

The apparent density of species i is given by

ρapparent,i = (C∗
0 · (1 − wH2O) + C∗

1) · exp (
0.000001 · (T + C∗

4)2
)

(1 − wH2O) + C∗
2 + C∗

3 · T .

(8)

The mass fractions wi are defined by the concentrations
ci as

wi = ci∑N
i=1 ci + ρH2O

. (9)

The viscosity of the solution, ηsol(T , c1, . . . , cN), and its
heat capacity cv,sol(T , c1, . . . , cN) are modeled in a similar
manner. For the viscosity of a solution of N species in water,
we use a modified version of the Arrhenius equation

ηsol = (
ηH2O

)wH2O
N∏
i=1

(ηi)
wi , (10)

where the viscosity of water depends on the temperature as

ηH2O = T + 246

(0.05594 · T + 5.2842)T + 137.37
. (11)

Furthermore, the viscosity of species i is given by

ηi =
exp

(
V ∗
1 (1−wH2O)

V∗
2 +V ∗

3
V ∗
4 T+1

)

V ∗
5 (1 − wH2O)V

∗
6 + 1

(12)

with constants V ∗
1 , . . . , V ∗

6 according to [15].
A weighted summation of the mass fractions is used to

obtain the heat capacity of a solution of N species in water

cv,sol = wH2Ocv,H2O +
N∑
i=1

wi cv,i . (13)

123

564 Computational Particle Mechanics (2021) 8:561–574

Table 1 Model constants for the sodium chloride solution according to
[15–17]

i Ai C∗
i V ∗

i B∗
i

0 −3.2411 × 10−3

1 2.8054 × 10−10 0.0636 16.2217 −0.0694

2 1.0556 × 10−7 1.0137 1.3229 −0.0782

3 4.6170 × 10−5 0.0146 1.4849 3.8480

4 7.9870 × 10−3 3317.3485 0.0075 −11.2762

5 16.9452 30.7802 8.7319

6 999.8385 2.0583 1.8125

7 0.0169

Furthermore, the heat capacity of species i is modeled by

cv,i = B∗
1 exp(a) + B∗

5 (1 − wH2O)B
∗
6 , (14)

where a = B∗
2T + B∗

3 exp(0.01 · T) + B∗
4 (1 − wH2O) and

constants B∗
1 , . . . , B∗

6 are according to [16].
We use quadratic interpolation (extrapolation) for the

definition of the heat capacity of water. Assume given tem-
peratures T1, T2, T3, with T2 = T1 +ΔT and T3 = T2 +ΔT
(ΔT > 0). The corresponding heat capacities of water cv,T1 ,
cv,T2 , and cv,T3 are also assumed given. Then, the heat capac-
ity of water at arbitrary temperature T is determined by

cv,H2O = cv,T1 + (cv,T2 − cv,T1)
T − T1
T2 − T1

+ cv,T3 − 2cv,T2 +cv,T1
2

T − T1
T2 − T1

(
T − T1
T2 − T1

−1

)
.

(15)

T1, T2, T3 are chosen adaptively withΔT = 5 ◦C, depending
on the value of T . The range of cv,Tk values, k = 1, 2, 3, are
taken from [16], which provides the values between 0 ◦C and
95 ◦C.

We restrict the study in this paper to sodium chloride as
the species of interest. All the model constants mentioned in
this section for sodium chloride are summarized in Table 1.

3 Numerics based on GFDM

3.1 Point cloud preliminaries

In the GFDM approach, the computational domain is dis-
cretized by a cloud of numerical points. The point cloud
is composed of N P = N P(t) number of points, which
includes points in the interior of the domain, and those at the
boundary. The initial seeding of these point clouds is done by
a meshfree advancing front technique, details of which can
be found in [19,24]. The density of the point cloud is given

by a sufficiently smooth function h = h(x, t), the so-called
interaction radius or smoothing length. Thus, h prescribes
the resolution of the point cloud. It is also used to define
the neighborhood of each point. For a point x j in the point
cloud, all approximations are performed using only nearby
points within a distance h from it. This set of nearby points
is referred to as the neighborhood or support of x j and is
denoted by S j = {xl : ‖xl − x j‖2 ≤ h(x j)}.

To ensure a sufficient quality of the point cloud, it is
ensured that no two points are closer than rminh apart, and
that every sphere of radius rmaxh in the domain has at least
one point. Thus, the inter-point distance between each point
and its nearest neighbor lies in the range (rminh, rmaxh). We
follow conventionally used values of these parameters in
Lagrangian meshfree GFDM literature, and set rmin = 0.2
and rmax = 0.4 [4,30]. This results in about 40–50 points
in each interior neighborhood, with lesser at and near the
boundary.

For the Lagrangian and ALE formulations, the movement
of (parts of) the point cloud with the fluid velocity can result
in the minimum and maximum inter-point distance criteria
being violated. This happens in the form of accumulation or
scattering of points which would reduce the quality of the
numerical results. To prevent this, points are added in holes
containing insufficient points and are merged in regions of
accumulation. This method of fixing distortion is entirely
local and much cheaper than the remeshing done in mesh-
based methods. Details about these procedures of adding and
deleting points follow from [4,13,14,24,28].

3.2 Differential operators

GFDMs generalize classical finite differences to arbitrarily
spaced point clouds, using a specialized weighted moving
least squares approach. Consider a function φ defined on
each point of the point cloud. At each point x j , numerical
derivatives of φ are defined as a linear combination of func-
tion values in its neighborhood

∂∗φ(x j) ≈ ∂̃∗
j φ =

∑
l∈S j

c∗
jlφl , (16)

where ∗ = x, y, z,Δ, . . . denotes the derivative of interest,
∂∗ is the continuous differential operator, ∂̃∗

j is the numerical
differential operator at point x j , and φl = φ(xl). The numer-
ical differential operators are thus given by the coefficients
c∗
jl , which are independent of the function being differen-

tiated. They are computed by a norm minimization process
that ensures that monomials up to a specified order are dif-
ferentiated exactly.

∑
l∈S j

c∗
jlml = ∂∗

j m, ∀m ∈ M,

123

Computational Particle Mechanics (2021) 8:561–574 565

min
∑
l∈S j

(
c∗
jl

W jl

)2

, (17)

whereM is the set ofmonomials being differentiated exactly.
To compute the Laplacian, themonomials are complemented
by the delta function to control the central stencil value cΔ

j j ,
which improves stability in the pressure Poisson equations
[26]. In the present work, we consider monomials up to the
order of 2. The weighting function W is defined such that
neighboring points with the smallest distance to the consid-
ered point obtain the highest weight. In the present work, we
use a truncated Gaussian weighting function

Wjl =
⎧⎨
⎩
exp

(
−cW

‖x j−xl‖2
h2j+h2l

)
, if xl ∈ S j

0, elsewhere
(18)

for a constant cW > 0. We note that the same differential
operators as defined above can also be equivalently derived
by minimizing errors in Taylor expansions [26].

Using this procedure, we compute numerical gradient
operators and a numerical Laplacian. For more details on
the computation of the differential operators, we refer to
[4,14,26].

3.3 Time integration

3.3.1 Lagrangian formulation

A strong form discretization of the physical model (Sect. 2)
is done using the numerical differential operators defined
above and a chosen time integration scheme. For simplicity,
the following considerations are based on a first-order time
integration.

Starting with the Lagrangian formulation, equations (1)
can be rewritten as

dρ

dt
= −ρ · ∇Tv,

dv
dt

= 1

ρ
·
(
∇TS

)T − 1

ρ
· ∇ p + g,

(ρ · cv) · dT
dt

= ∇T (S · v) −
(
∇TS

)
· v

− p · ∇Tv + ∇T (λ · ∇T) . (19)

To improve readability, we henceforth use the shorthand
ρ = ρsol and cv = cv,sol.

Together with Eqs. (2)–(4), this is the starting point of the
numerical discretization. The continuous spatial derivatives
are replaced by their least squares approximated counterparts
described in Sect. 3.2. We consider the superscript n + 1 to
denote the next time level and n for the current one, giving

the time step sizeΔt = tn+1− tn . Below, we explain each of
the steps of the discretization in the Lagrangian formulation
for the microscopic-scale simulations. Most of the steps are
the same also for the macroscopic-scale simulations, and the
few differences are explained in Sect. 5.
Step 1 Point cloud movement

The discretization procedure begins by moving the point
cloud according to a second-order method [27] by

xn+1 = xn + Δt · vn + 1

2

vn − vn−1

Δt0
· (Δt)2 , (20)

with previous time step size Δt0 = tn − tn−1.
Step 2 Temperature

Asemi-implicit time integration is then carried out to com-
pute the new temperature T n+1 by

(IT + DT) · T n+1 = (
ρn · cnv

) · T n + fT , (21)

with

IT = ρn · cnv · I,
DT = −Δt · ∇̃T

(
λ · ∇̃

)
,

fT = Δt ·
(
∇̃T (

Sn · vn) −
(
∇̃TSn

)
· vn − pn · ∇̃Tvn

)
,

(22)

where the overhead∼ indicates the discrete differential oper-
ators.

To simplify notation, the index of the points has been omit-
ted. Equation (21) forms a sparse linear system of equations
with unknowns T n+1 at each point of the point cloud. All
sparse implicit linear systems arising in this and the coming
steps are solved with a BiCGSTAB solver, without the use
of a preconditioner.
Step 3 Concentrations

A similar procedure as that done for the temperature is
carried out for the concentrations. We use a semi-implicit
time integration for the concentration of each species cn+1

i ,
i = 1, . . . , N ,

(
Ici + Dci

) · cn+1
i = cni , (23)

with

Ici = (I + Δt · ∇̃Tvn),

Dci = −Δt · ∇̃T(Di,eff · ∇̃). (24)

Step 4 ρ, η, and cv
The updated density ρn+1, viscosity ηn+1

sol , and heat capac-
ity cn+1

v are then determined according to the definitions in
Sect. 2.2.

123

566 Computational Particle Mechanics (2021) 8:561–574

Using the updated solution viscosity, a preliminary vis-
cosity for the momentum equation is computed as η̂n+1 =
ηn+1
sol + ηnturb.

Step 5 Hydrostatic pressure
The pressure is split into its hydrostatic (body forces) and

dynamic parts (movement of the fluid) as

p = phyd + pdyn. (25)

First the updated hydrostatic pressure pn+1
hyd is computed

∇̃T
(

1

ρn+1 · ∇̃ pn+1
hyd

)
= ∇̃Tg. (26)

Using the updated hydrostatic pressure, a pressure guess
p̂ is computed which will be used while computing the new
velocity

p̂ = pn+1
hyd + pndyn. (27)

Step 6 Coupled velocity–pressure
Time integration of the first equation in (19) provides the

targeted divergence of velocity ∇̃Tvn+1. To solve for vn+1

and pn+1 in an implicit time integration scheme, we use the
penalty formulation introduced in [10,13]. Using the pres-
sure guess defined above, we obtain the following coupled
velocity–pressure system for preliminary velocity v̂n+1 and
correction pressure pn+1

corr :

(
I − Δt

ρn+1 · ψ̃n+1
η̂n+1

)
· v̂n+1 + Δt

ρn+1 · ∇̃ pn+1
corr

= vn − Δt

ρn+1 · ∇̃ p̂ + Δt · g,

∇̃T
(

Δtvirt
ρn+1 · ∇̃ pn+1

corr

)
= ∇̃Tv̂n+1 − ∇̃Tvn+1 , (28)

with

(
ψ̃n+1

η̂n+1

)T = ∇̃T
(
η̂n+1 · ∇̃

) (
v̂n+1

)T

+ (∇̃η̂n+1)T ·
(

∇̃
(
v̂n+1

)T)T

+ η̂n+1

3
·
(
∇̃

(
∇̃Tv̂n+1

))T

− 2

3
·
(
∇̃Tv̂n+1

)
·
(
∇̃η̂n+1

)T
, (29)

and Δtvirt = Avirt · Δt , 0 ≤ Avirt ≤ 1. If Avirt = 1, the
scheme corresponds to an implicit Chorin projection; see [3].
Theoretically, choosing Avirt = 0 would give the exact solu-
tion. However, the linear system is ill-conditioned and cannot
be solved in most cases. For 0.001 ≤ Avirt ≤ 0.1, condition-
ing of the linear system is sufficiently good. Furthermore, the

resulting preliminary velocity features a divergence which is
very close to the targeted one. We note that in Eqs. (28) and
(29), the stress tensor Sn+1 was determined according to Eq.
(2).
Step 7 Update velocity and pressure

The updates of velocity and dynamic pressure are given
by

vn+1 = v̂n+1 − Δtvirt
ρn+1 · ∇̃ pn+1

corr ,

pn+1
dyn = pndyn + pn+1

corr . (30)

Step 8 Turbulence
For the k-ε turbulence model, we derive a singularity for-

mulation from Eq. (3):

d

dt

(
k

ε

)
= (C2ε − 1) + Cη · (1 − C1ε) · ‖∇̃vT‖2M ·

(
k

ε

)2

+ Cη · (C1ε · C3ε − 1)

ρ · Prturb · ∂ρ

∂T
· (g · ∇̃T) ·

(
k

ε

)2

+ 1

ρ
· Δ̃η∗

(
k

ε

)
,

d

dt

(ε

k

)
= (1 − C2ε) ·

(ε

k

)2 + Cη · (C1ε − 1) · ‖∇̃vT‖2M
+ Cη · (1 − C1ε · C3ε)

ρ · Prturb · ∂ρ

∂T
· (g · ∇̃T)

+ 1

ρ
· Δ̃η∗

(ε

k

)
, (31)

where

Δ̃η∗
(
k

ε

)
= ε · Δ̃ηk k − k · Δ̃ηε ε

ε2
,

Δ̃η∗
(ε

k

)
= k · Δ̃ηε ε − ε · Δ̃ηk k

k2
(32)

with

Δ̃ηk = ∇̃T
((

η + ηturb

σk

)
· ∇̃

)
,

Δ̃ηε = ∇̃T
((

η + ηturb

σε

)
· ∇̃

)
. (33)

If k, ε > 0 for all tn ≤ t ≤ tn+1, numerical mean values can
be determined from (31):

k

ε

∣∣∣∣
m

= 1

Δt

∫ tn+1

tn

d

dt

(
k

ε

)
dt,

ε

k

∣∣∣
m

= 1

Δt

∫ tn+1

tn

d

dt

(ε

k

)
dt . (34)

123

Computational Particle Mechanics (2021) 8:561–574 567

We use the mean values to avoid singularities in the dis-
cretized k-ε turbulence model.

dk

dt
= Δ̃ηk k

ρ
− ε

k

∣∣∣
m

· k + Cη · Pprb,k · k

ε

∣∣∣∣
m

· k,

dε

dt
= Δ̃ηε ε

ρ
− C2ε · ε

k

∣∣∣
m

· ε + C1ε · Cη · Pprb,ε · k

ε

∣∣∣∣
m

· ε,

(35)

where

Pprb,k = ‖∇̃vT‖2M − 1

ρ · Prturb · ∂ρ

∂T
· (g · ∇̃T),

Pprb,ε = ‖∇̃vT‖2M − C3ε

ρ · Prturb · ∂ρ

∂T
· (g · ∇̃T). (36)

A fully implicit time integration scheme for the turbulent
kinetic energy kn+1 can now be developed as

kn+1 − Δt · Δ̃ηk k
n+1

ρ
+ Δt · ε

k

∣∣∣
m

· kn+1

− Δt · Cη · Pn+1
prb,k · k

ε

∣∣∣∣
m

· kn+1 = kn . (37)

A similar procedure is used to compute the updated tur-
bulent dissipation

εn+1 − Δt · Δ̃ηε ε
n+1

ρ
+ Δt · C2ε · ε

k

∣∣∣
m

· εn+1

− Δt · C1ε · Cη · Pn+1
prb,ε · k

ε

∣∣∣∣
m

· εn+1 = εn . (38)

Themean values are determined analytically. This is illus-
trated in detail for k

ε

∣∣
m. Assuming that the diffusion term

1
ρ

· Δ̃η∗
(k

ε

)
is negligible as well as defining

x = k

ε
, a = C2ε − 1,

b = Cη · (C1ε − 1) · ‖∇̃vT‖2M
+ Cη · (1 − C1ε · C3ε)

ρ · Prturb · ∂ρ

∂T
· (g · ∇̃T),

we can rewrite equation (31) as

dx

dt
= a − b · x2. (39)

For x0 =
√

a
b , we obtain

xn+1

=

⎧
⎪⎪⎨
⎪⎪⎩

x0 · tanh
(
Δt · √

a · b + arctanh
(
xn
x0

))
, xn < x0

x0, xn = x0

x0 · coth
(
Δt · √

a · b + arccoth
(
xn
x0

))
, xn > x0

.

(40)

Finally, the updated turbulent viscosity is determined by

ηn+1
turb = ρn+1 · Cη · (kn+1)2

εn+1 . (41)

3.3.2 Eulerian formulation

In case of the Eulerian formulation, [25] shows that a
second-order time integration scheme should be applied to
numerically solve transport terms of the form vT∇ in the
GFDMcontext. For this purpose, the SDIRK2method is pro-
posed (see [1]), which features the same stability properties
as an implicit Euler time integration scheme. Furthermore, an
upwind discretization by means of a MUSCL reconstruction
with a Superbee limiter is used.

The majority of the steps are the same as those carried out
in the Lagrangian formulation. The movement step of the
Lagrangian formulation is skipped here. And the coupled
velocity–pressure system is modified to the following two-
step procedure:

(
Iv̂n+α − α · Δt

ρn+α
ψ̃n+α

η̂n+α

)
· v̂n+α + α · Δt

ρn+α
· ∇̃ pn+α

corr

= vn − α · Δt

ρn+α
· ∇̃ p̂ + α · Δt · g,

∇̃T
(

Δtvirt
ρn+α

· ∇̃ pn+α
corr

)
= ∇̃Tv̂n+α − ∇̃Tvn+α, (42)

with

Iv̂n+α =
(
I + α · Δt ·

(
ṽT∇

)
v̂n+α

)
,

(
ψ̃n+α

η̂n+α

)T = ∇̃T
(
η̂n+α · ∇̃

) (
v̂n+α

)T

+
(
∇̃η̂n+α

)T ·
(
∇̃ (

v̂n+α
)T)T

+ η̂n+α

3
·
(
∇̃

(
∇̃Tv̂n+α

))T

− 2

3
·
(
∇̃Tv̂n+α

)
·
(
∇̃η̂n+α

)T
, (43)

and α = 1 −
√
2
2 . Density and viscosity for the intermediate

step can for instance be determined by linear interpolation
between time levels n and n + 1.

In the second step, the preliminary velocity is determined
as

v̂n+1 − Δt · α · V
(
v̂n+1, pn+1

corr

)

123

568 Computational Particle Mechanics (2021) 8:561–574

= vn + Δt · (1 − α) · V(v̂n+α, pn+α
corr),

∇̃T
(

Δtvirt
ρn+1 · ∇̃ pn+1

corr

)
= ∇̃Tv̂n+1 − ∇̃Tvn+1 (44)

with

V
(
v̂n+1, pn+1

corr

)
= − 1

ρn+1 ·
(
ṽT∇

)
v̂n+1 + 1

ρn+1 · ψ̃n+1
η̂n+1

− 1

ρn+1 · ∇̃ p̂n+1 − 1

ρn+1 · ∇̃ pn+1
corr + g,

V
(
v̂n+α, pn+α

corr

) = v̂n+α − vn

α · Δt
. (45)

3.3.3 Further details

For more details on the Eulerian procedure, we refer to [25],
and for similar GFDM Eulerian formulations, we refer to
[29].

For numerical validations of the velocity–pressure scheme
used here, their implementationswithin aGFDMframework,
and a comparison of GFDM results with other numerical
methods on benchmark problems,we refer to our earlierwork
[4,10,13,21,24,25,30].

4 Microscopic scale

To study the smaller-scale (both spatially and temporally)
dissolution of the salt species in the water, we consider
representative geometries of the salt cavern in a so-called
microscopic setup. In this section, we identify effective
parameters of the dissolution process. Specifically, we com-
pute the effective diffusion coefficient and the effective
transition coefficient betweenwater and surrounding species.
These will be used later, in Sect. 5, in the macroscopic proce-
dure to simulate the overall evolution of the salt cavern. The
Lagrangian formulation is used here. The time integration of
the underlying equations is done as presented in Sect. 3.3.1.

For the sake of brevity, we restrict the following descrip-
tion to sodium chloride as the species of interest. The same
procedure can directly be transferred to any other species.

4.1 Setup

We consider a cylinder with diameter of 5m and height of
10m which is initially filled with pure water, i.e., cNaCl(t =
0) = 0. During the simulation, the temperature is fixed to
T0 = 20 ◦C.

The roof of the cylinder acts as an inexhaustible supply of
sodium chloride which is modeled by applying a Dirichlet
condition with saturation concentration

csNaCl = csNaCl(T0) = 357
kg

m3 . (46)

For the hull of the cylinder, a homogeneous Neumann con-
dition is applied. Aiming at a quasi-steady state, the bottom
of the cylinder models an outflow boundary. In the interior,
we solve

dcNaCl
dt

+ cNaCl · ∇Tv = ∇T(Dmicro · ∇cNaCl), (47)

where Dmicro = Dlaminar+Dturb. The laminar diffusion coef-
ficient for sodium chloride is given by Dlaminar = 1.611 ·
10−9 m2

s (see [6]). For the turbulent part, we have

Dturb = Cη · k
2

ε
. (48)

Standard boundary conditions (Dirichlet and Neumann)
are prescribed for velocity, pressure, and the turbulent quanti-
ties. The simulation runs until a quasi-steady state is reached,
which will be explained below.

4.2 Evaluation strategy

In order to determine the effective quantities, the cylinder
is split in the axial direction (z-direction) into equal sub-
cylinders SC j , j = 1, . . . , J . These are used to estimate the
mass flow. The planes between the sub-cylinders are denoted
by help-planes HPj , j = 1, . . . , J − 1.

We note that the moving Lagrangian nature of the sim-
ulations means that point locations are always changing in
each time step, except in the trivial case when v = 0 which
does not occur here. Thus, a true steady state never occurs.
Rather, simulations run till a quasi-steady state is reached,
which is determined by the averaged values of the mass flow
in the sub-cylinders. A quasi-steady state is said to be reached
when the relative change of the mass flow in each of the sub-
cylinders is within a tolerance specified (here, 10−4) for 5
consecutive time steps.

4.2.1 Effective diffusion coefficient

The mass flow of sodium chloride is given by

dm

dt
= −DNaCl,eff · ∂ c̄NaCl

∂n
, (49)

where c̄NaCl is the mean concentration. The mass flow and
the mean concentration in sub-cylinder SC j are determined
by

dm

dt
(SC j) =

∫
SC j

cNaCl · v3 dVSC j∫
SC j

1 dVSC j

,

c̄NaCl(SC j) =
∫
SC j

cNaCl dVSC j∫
SC j

1 dVSC j

. (50)

123

Computational Particle Mechanics (2021) 8:561–574 569

Fig. 2 Evolution of concentration in the microscopic simulation for interaction radius h = 0.18m (Lagrangian formulation)

Based on the mean concentration in a sub-cylinder SC j ,
we can approximate its normal derivative with respect to the
help plane HPj . This yields the effective diffusion coeffi-
cients in each sub-cylinder

DNaCl,eff(SC j |HPj) = −
dm
dt (SC j)

∂ c̄NaCl
∂n

∣∣∣∣
HPj

, j = 1, . . . , J − 1.

(51)

Once a quasi-steady state is reached, an overall effective
diffusion coefficient can be determined. To accommodate the
“quasi-steady” character of the simulation, we use a time-
averaged effective diffusion coefficient, over a small time
interval, and over each of the sub-cylinders. This value will
later be used in the macroscopic setup.

4.2.2 Effective transition coefficient

The effective transition coefficient γNaCl,eff is derived in a
manner similar to that done for the effective diffusion coef-
ficient DNaCl,eff .

γNaCl,eff
(
SC j

)

= −
dm
dt

(
SC j

)

csNaCl − c̄NaCl
(
SC j

) , j = 1, . . . , J − 1. (52)

Once again, the time-averaged values of the effective tran-
sition coefficient in each of the sub-cylinders at the quasi-
steady state give the overall effective transition coefficient
which will be used in the macroscopic simulations in Sect. 5.

4.2.3 Effective solution rate

With the help of γNaCl,eff , we can define the solution rate of
sodium chloride for given temperature T0 by

RNaCl(T0) = γNaCl,eff
(
csNaCl − cNaCl

)
. (53)

4.3 Numerical results

In the simulations carried out,we choose J = 10 to divide the
cylinder domain considered into 10 sub-cylinders of height
1m each.We consider several levels of resolution to study the
convergence of the effective parameters being determined to
resolution-independent values. The coarsest resolution used
is h = 0.8m corresponding to 70,400 points in the domain.
h is consecutively halved till h = 0.1m corresponding
to 20,892,871 points in the domain. Several resolutions in
between are also considered to better illustrate the converged
values of the effective parameters. We note that the number
of points mentioned here are at the initial time of the sim-
ulation (t = 0). This number of points will slightly vary in
time due to the addition and deletion of points explained in
Sect. 3.1.

The evolution of the concentration for h = 0.18m is illus-
trated in Fig. 2 in the time interval [0 s, 100 s]. As expected,
the flow is characterized by viscous fingering.

The convergence of effective diffusion as well as tran-
sition coefficient with decreasing h is shown in Figs. 3
and 4, respectively. The values plotted are also tabulated
in Table 2, along with the relation between the interaction
radius h and the number of points in the domain NP. The
time step size is governed by Δt = CFLLag · h

|v| , with
CFLLag set to 0.2. The diffusion coefficient converges to

DNaCl,eff = 0.1m2

s , while the transition coefficient converges
to γNaCl,eff = 0.000042m

s . Using equation (53), we obtain a

maximum solution rate of RNaCl,max(20 ◦C) = 0.0150 kg
m2·s .

123

570 Computational Particle Mechanics (2021) 8:561–574

Fig. 3 Convergence of the effective diffusion coefficient in the micro-
scopic simulations. NP denotes the number of the points in the initial
domain

Fig. 4 Convergence of the effective transition coefficient in the micro-
scopic simulations. NP denotes the number of the points in the initial
domain

Table 2 Estimated effective diffusion D [m2

s], transition coefficient

γ [ms], and maximum solution rate R [kg
m2·s], with varying interaction

radius h [m] and corresponding initial number of points NP

h NP DNaCl,eff γNaCl,eff RNaCl,max(20 ◦C)

0.80 70,400 0.2123 2.41 × 10−3 0.8604

0.40 443,318 0.1744 3.55 × 10−4 0.1267

0.30 974,918 0.1515 1.84 × 10−4 0.0657

0.20 3,076,350 0.1096 7.42 × 10−5 0.0264

0.18 4,139,040 0.0999 4.26 × 10−5 0.0152

0.15 7,014,494 0.1020 4.19 × 10−5 0.0150

0.10 20,892,871 0.1003 4.23 × 10−5 0.0151

Compared to the solution rate of 0.0488 kg
m2·s for T0 = 23 ◦C

determined in [11] at a crystal level, the estimated solution
rate is of the correct order of magnitude.

5 Macroscopic scale

We now model the overall evolution of the salt cavern
during the double-well solution mining process. Both the
Lagrangian and the Eulerian formulation are evaluated for
this.

The model equations and time integration procedures for
the macroscopic-scale simulations are the same as those
described in Sects. 2 and 3.3, respectively, with a few varia-
tions. Firstly, the dissolution of the salt into the water occurs
at much smaller spatial and temporal scales than those used
here. To take this into account, the dissolution process of the
salt at the cavern walls is modeled using a Robin boundary
condition for the concentration

DNaCl,eff · ∂cNaCl
∂n

= γNaCl,eff · (
csNaCl − cNaCl

)
. (54)

Here, the effective diffusion coefficient DNaCl,eff and the
effective transition coefficient γNaCl,eff are the values deter-
mined in the microscopic simulation in Sect. 4, DNaCl,eff =
0.1m2

s and γNaCl,eff = 0.000042m
s .

A further difference in the time integration procedure
comes in Steps 2 and 4 described in Sect. 3.3. Here, we fix
the temperature to T0 = 20 ◦C and, subsequently, obtain the
corresponding saturation concentration csNaCl = 357 kg

m3 . For
simplicity, the following linearized relations for density and
viscosity of the solution are used (see [25])

ρ (cNaCl) ≈ (0.56 · cNaCl + 1000)
kg

m3 ,

η (cNaCl) ≈
(
1.96 · 10−6 · cNaCl + 10−3

) Pa

s
. (55)

5.1 Setup

We are interested in the geometrical evolution of the double-
well salt cavern. The initial geometry is given by a small
cavern filled with pure water that is surrounded by sodium
chloride; see Fig. 5. The dimensions of the initial cavern are
approximately: width of 90m, height of 50m, and depth of
26m. The sodium chloride deposit is limited to impermeable
surrounding rock. The pipe on the left side acts as an inlet
of freshwater with inflow velocity |vin| = 1m

s , whereas the
pipe on the right side acts as the outlet.

In reality, the maximum diameter of the pipes is of the
order of 1m. Hence, the resolution of the point cloud close to
the inlet and the outlet has to be of the order of 0.1m to ensure
accurate results in case of the Lagrangian formulation. This
would lead to an extremely small time step size compared to
the desired simulation time of several years/decades due to

123

Computational Particle Mechanics (2021) 8:561–574 571

Fig. 5 Macroscopic simulation setup—initial geometry; see [25]

the CFL condition

ΔtLag ≤ CFLLag · hmin

|v| . (56)

Numerically, we observe that stable results are achieved
for CFLLag = 0.15, which results in ΔtLag = O(0.1 s).
Performing long-term simulations overmonths of simulation
time is not feasible with such a small time step. This results in
the need for using the Eulerian formulation for the problem
at hand.

In order to allow for a comparison of Lagrangian and
Eulerian formulation, we consider pipes of diameter 12m.
This also decreases the required actual time being simulated.
Numerically, we observe that with the significantly larger
diameter used here, the evolution of the cavern only requires
a few hours of physical time to be simulated, compared to
the few months or years with the actual diameter. We note
that despite this time reduction, this still corresponds to a
timescale two orders of magnitude greater than that used in
the microscopic simulations in Sect. 4.

The simulations are performed with a constant interaction
radius of h = 4m. An important point to note here is that
this spatial resolution considered is of the same order ofmag-
nitude as the height of the sub-cylinders in the microscopic
simulations in Sect. 4.

5.2 Movement of the boundary

The movement of the boundary of the cavern can be defined
by the Stefan condition

ρv = γNaCl,eff
(
csNaCl − cNaCl

) ; (57)

Fig. 6 Translational velocity in the macroscopic simulation, see [25]
(Eulerian formulation including ALE at the moving boundary)

see [9]. This yields

v = γNaCl,eff

ρ
· (
csNaCl − cNaCl

)
(58)

and, consequently, a movement of the boundary in normal
direction n with velocity vboundary = v · n. To speed up the
computation, a time lapse procedure can be applied [25]. Due
to small flow velocities inside the salt cavern, an additional
speedup factor A can be introduced in the definition of v by

v
A = A · γNaCl,eff

ρ
· (
csNaCl − cNaCl

)
. (59)

For stability reasons, we require

Δt · v
A ≤ 0.8 · h. (60)

Themaximummovement velocity of the boundary occurs
in case of pure water, i.e., cNaCl = 0, and is given by

v
A,max = A · γNaCl,eff · csNaCl

ρ
. (61)

Given a maximum time step size Δtmax, equation (60)
leads to the constraint

A ≤ 0.8 · h · ρ

Δtmax · γNaCl,eff · csNaCl
. (62)

Due to themovement of the boundary, interior points close
to this boundary have to move in the Eulerian formulation
also. For this purpose, the ALE approach presented in [8]
is used. Based on current and future position of an affected

123

572 Computational Particle Mechanics (2021) 8:561–574

Fig. 7 Evolution of the macroscopic simulation for interaction radius h = 4m—concentration, see [25] (Eulerian formulation including ALE at
the moving boundary)

interior point, the translational velocity

vtrans = xn+1 − xn

Δt
(63)

is determined; see Fig. 6. Due to the explicit movement of
these points, the convection terms in the numerical model in
Eulerian form in Sect. 3.3 must refer to the relative velocity
v − vtrans instead of v.

Furthermore, this introduces a CFL condition of the form

ΔtALE ≤ CFLALE · hmin

v
. (64)

This depends on the boundary velocity v = O(0.01m
s)

which is considerably smaller than the flow velocity (the
inflow velocity is 1m

s , while the maximum velocity in the
domain is even bigger). hmin is subject to the desired reso-
lution at the moving boundary. At the inlet and the outlet, a
coarse resolution is sufficient in this case.

5.3 Numerical results

Starting from the initial domain as shown in Fig. 5, the salt
cavern expands till the outer domain is filled. Physically, this
outer domain can represent either a rock formation where
the salt cavern ends, or prescribed limits of the region where
the solution mining is to be carried out. Figure 7 illustrates
the evolution of the salt cavern in the Eulerian formulation
according toC = cNaCl. An animation of this process is given
in Online Resource. This expansion is quantified by plotting
the volume as a function of time in Fig. 8. We note that once
the entire outer domain is filled, the volume of the domain

Fig. 8 Expansion in the volume of the computational domain of the
macroscopic simulation as the simulation progresses

is about 27.4 times that of the initial domain. This shows
the need of a meshfree method for the present application.
If a mesh-based method were to be used for this simulation,
the entire domain would need to be meshed initially, and an
expensive and less accurate tracking of the expansion would
need to be carried out.

To compare the results of the Eulerian and Lagrangian
formulations, we consider simulations on the same initial
point cloud with h = 4m which corresponds to NP0 =
90,744 points at the initial state. The simulations are run
until t = 7200 s = 2 h. At the end time, both simulations
have about 1.5 million points in the final expanded domain.
To quantify the results, and to enable a comparison between
the two formulations, we consider the time integration of the

123

Computational Particle Mechanics (2021) 8:561–574 573

Fig. 9 Comparison of the concentration flux across the outflow pipe
between the Eulerian (with moving boundaries) and Lagrangian simu-
lations

concentration weighted flux at the outflow boundary

Qc(t) =
∫ t

0

(∫

∂Ωout

cNaCl v · n dA

)
dτ, (65)

where ∂Ωout is the outflow boundary located at the top of
the extraction well. Physically, this represents a measure of
the concentration of salt being extracted. The time evolution
of Qc is shown in Fig. 9. It illustrates that both formulations
produce very similar results.

To emphasize the need of the ALE formulation for such a
simulation, we compare the time steps required in both the
ALE and Lagrangian formulations for stability. Considering
the simulation time of 7200 s, we observe that the Lagrangian
formulation required at least 22915 time steps to obtain sta-
ble results, which corresponds to an average time step size
of Δt ≈ 0.31 s. On the other hand, similar results, as shown
in Fig. 9, can be obtained in the Eulerian formulation (with
ALE near the boundaries) with only 936 time steps corre-
sponding to an average time step size of Δt ≈ 7.69 s, which
is approximately 25 times that needed in the Lagrangian case.

6 Conclusions

In this contribution, we presented the capabilities of the gen-
eralized finite difference method (GFDM) implemented in
the simulation softwareMESHFREE regarding solutionmin-
ing processes on amacroscopic and amicroscopic scale.Both
Lagrangian and Eulerian approaches were considered.

On the macroscopic scale, we considered the expansion
of the salt cavern as a result of erosion occurring as the
salt dissolves in the water. In reality, this procedure occurs
over the time span of several months or years. A simplified
geometry was considered here, which enabled a compari-
son between the Eulerian and Lagrangian formulations. In

this simplified macroscopic setup, the expansion of the salt
cavern occurred over the timescale of several hours. Since
the dissolution of salt in water occurs on a much smaller
time level we also considered a microscopic setup over a
duration of a few minutes. This was used to determine effec-
tive parameters governing the dissolution process. Using the
example of sodium chloride as the species of interest, effec-
tive diffusion and transition coefficients were determined in
the microscopic simulations. These values were then used
in the macroscopic simulations to determine the evolution
of the concentration inside the salt cavern and to specify the
solution rate of the salt species at the boundary, i.e., to model
the geometrical evolution of the salt cavern.

A comparison of the numerical results of the Lagrangian
and Eulerian formulations (extended by anALE approach) in
the macroscopic case illustrates the advantages of the latter
one due the possibility of using much larger time step sizes.
Aiming at a simulation time of several years, the forecast
computation time for a simulation of a double-well solution
mining process based on the Lagrangian formulation would
be of the order of years. In contrast to that, the flexibility
of the Eulerian formulation regarding the resolution of the
point cloud (local refinement only at the moving boundary)
enablesmeshfree simulations in reasonable time—especially
in terms of real applications.

Funding Open Access funding provided by Projekt DEAL.

Compliance with ethical standards

Conflict of interest On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alexander R (1977) Diagonally implicit runge-kutta methods for
stiff ode’s. SIAM J Numer Anal 14(6):1006–1021

2. Chen J, Lu D, LiuW, Fan J, Jiang D, Yi L, Kang Y (2020) Stability
study and optimization design of small-spacing two-well (sstw)
salt caverns for natural gas storages. J Energy Storage 27:101131

3. Chorin AJ (1968) Numerical solution of the Navier–Stokes equa-
tions. Math Comput 22(104):745–762

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

574 Computational Particle Mechanics (2021) 8:561–574

4. Drumm C, Tiwari S, Kuhnert J, Bart H-J (2008) Finite pointset
method for simulation of the liquid–liquid flowfield in an extractor.
Comput Chem Eng 32(12):2946–2957

5. Fan C-M, ChuC-N, Šarler B, Li T-H (2018) Numerical solutions of
waves–current interactions by generalizedfinite differencemethod.
Engineering Analysis with Boundary Elements

6. Flury M, Gimmi T (2002) Solute diffusion. In: Dane J, Topp G
(eds) Methods of soil analysis. Part 4. Physical methods. SSSA
Book Ser. 5, Madison, WI, pp 1323–1351

7. Gavete L, Urena F, Benito J, García A, Urena M, Salete E (2017)
Solving second order non-linear elliptic partial differential equa-
tions using generalized finite difference method. J Comput Appl
Math 318:378–387 (Computational and Mathematical Methods in
Science and Engineering CMMSE-2015)

8. Hirt CW, Amsden AA, Cook J (1974) An arbitrary Lagrangian–
Eulerian computing method for all flow speeds. J Comput Phys
14(3):227–253

9. Javierre-Perez E (2003) Literature study: numerical methods for
solving Stefan problems. Delft University of Technology, Delft

10. Jefferies A, Kuhnert J, Aschenbrenner L, Giffhorn U (2015) Finite
pointset method for the simulation of a vehicle travelling through
a body of water. In: Griebel M, Schweitzer AM (eds) Meshfree
methods for partial differential equations VII. Springer, Cham, pp
205–221

11. Karsten O (1954) Lösungsgeschwindigkeit von natriumchlorid,
kaliumchlorid und kieserit in wasser und in wässerigen lösun-
gen. Zeitschrift für anorganische und allgemeine Chemie 276(5–
6):247–266

12. Katz A, Jameson A (2010) Meshless scheme based on alignment
constraints. AIAA J 48(11):2501–2511

13. Kuhnert J (2014) Meshfree numerical scheme for time dependent
problems in fluid and continuum mechanics. In: Sundar S (ed)
Advances in PDE modeling and computation. Anne Books, New
Delhi, pp 119–136

14. Kuhnert J, Michel I, Mack R (2019) Fluid structure interaction (fsi)
in the meshfree finite pointset method (fpm): Theory and appli-
cations. In: Griebel M, Schweitzer AM (eds) Meshfree methods
for partial differential equations IX, IWMMPDE2017. Springer,
Berlin, pp 73–92

15. Laliberté M (2007) Model for calculating the viscosity of aqueous
solutions. J Chem Eng Data 52(2):321–335

16. Laliberté M (2009) A model for calculating the heat capacity of
aqueous solutions, with updated density and viscosity data. J Chem
Eng Data 54(6):1725–1760

17. Laliberté M, Cooper WE (2004) Model for calculating the density
of aqueous electrolyte solutions. J Chem Eng Data 49(5):1141–
1151

18. Launder B, Spalding D (1974) The numerical computation of tur-
bulent flows. Comput Methods Appl Mech Eng 3(2):269–289

19. Löhner R, Onate E (1998) An advancing front point generation
technique. Commun Numer Methods Eng 14(12):1097–1108

20. Luo M, Koh CG, Bai W, Gao M (2016) A particle method for two-
phase flows with compressible air pocket. Int J Numer Methods
Eng 108:695–721

21. Michel I, Bathaeian SMI,Kuhnert J, KolymbasD, ChenC-H, Poly-
merou I, Vrettos C, Becker A (2017) Meshfree generalized finite
difference methods in soil mechanics—part ii: numerical results.
Int J Geomath 8(2):191–217

22. NickF,PlumH-J,Kuhnert J (2019)Parallel detectionof subsystems
in linear systems arising in the meshfree finite pointset method. In:
Griebel M, Schweitzer MA (eds) Meshfree methods for partial
differential equations IX. Springer, Cham, pp 93–115

23. Saucedo-Zendejo FR, Reséndiz-Flores EO, Kuhnert J (2019)
Three-dimensional flow prediction inmould filling processes using
a gfdm. Comput Particle Mech 6(3):411–425

24. SeiboldB (2006)M-matrices inmeshless finite differencemethods.
PhD thesis, Kaiserslautern University

25. Seifarth T (2017) Numerische Algortihmen für gitterfreie Metho-
den zur Lösung von Transportproblemen. PhD thesis, University
of Kassel, Kassel

26. Suchde P (2018) Conservation and accuracy in meshfree gen-
eralized finite difference methods. PhD thesis, University of
Kaiserslautern, Kaiserslautern, Germany

27. Suchde P, Kuhnert J (2018) Point cloud movement for fully
Lagrangian meshfree methods. J Comput Appl Math 340:89–100

28. Suchde P, Kuhnert J (2019) A fully Lagrangian meshfree frame-
work for PDEs on evolving surfaces. J Comput Phys 395:38–59

29. Suchde P, Kuhnert J (2019) A meshfree generalized finite differ-
ence method for surface PDEs. Comput Math Appl 78(8):2789–
2805

30. Suchde P, Kuhnert J, Schröder S, Klar A (2017) A flux conserving
meshfree method for conservation laws. Int J Numer Methods Eng
112(3):238–256

31. Uhlmann E, Barth E, Seifarth T, Höchel M, Kuhnert J, Eisenträger
A (2020) Simulation of metal cutting with cutting fluid using the
finite-pointset-method. In: 9th CIRP conference on high perfor-
mance cutting. Submitted to Procedia CIRP

32. Uhlmann E, Gerstenberger R, Kuhnert J (2013) Cutting simulation
with the meshfree finite pointset method. Procedia CIRP 8:391–
396

33. Zhang G, Wang Z, Zhang K, Li Y, Wu Y, Chen Y, Zhang H (2018)
Collapse mechanism of the overlying strata above a salt cavern by
solution mining with double-well convection. Environ Earth Sci
77(16):588

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	A meshfree generalized finite difference method for solution mining processes
	Abstract
	1 Introduction
	2 Physical model
	2.1 Basic equations
	2.2 Modeling density, viscosity, and heat capacity

	3 Numerics based on GFDM
	3.1 Point cloud preliminaries
	3.2 Differential operators
	3.3 Time integration
	3.3.1 Lagrangian formulation
	3.3.2 Eulerian formulation
	3.3.3 Further details

	4 Microscopic scale
	4.1 Setup
	4.2 Evaluation strategy
	4.2.1 Effective diffusion coefficient
	4.2.2 Effective transition coefficient
	4.2.3 Effective solution rate

	4.3 Numerical results

	5 Macroscopic scale
	5.1 Setup
	5.2 Movement of the boundary
	5.3 Numerical results

	6 Conclusions
	References

