
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/360892922

Using Artificial Intelligence to Facilitate Assembly Automation in High-Mix

Low-Volume Production Scenario

Article  in  Procedia CIRP · January 2022

DOI: 10.1016/j.procir.2022.05.103

CITATIONS

0
READS

35

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Pilotage de la productivité pour les PME dans la Grande Région View project

Laser Technology Competence Center (LTCC) View project

Atal Anil Kumar

University of Luxembourg

21 PUBLICATIONS   47 CITATIONS   

SEE PROFILE

Peter Plapper

University of Luxembourg

149 PUBLICATIONS   1,035 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Alexej Simeth on 08 July 2022.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/360892922_Using_Artificial_Intelligence_to_Facilitate_Assembly_Automation_in_High-Mix_Low-Volume_Production_Scenario?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/360892922_Using_Artificial_Intelligence_to_Facilitate_Assembly_Automation_in_High-Mix_Low-Volume_Production_Scenario?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Pilotage-de-la-productivite-pour-les-PME-dans-la-Grande-Region?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Laser-Technology-Competence-Center-LTCC?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atal-Anil-Kumar?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atal-Anil-Kumar?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Luxembourg?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atal-Anil-Kumar?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter-Plapper?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter-Plapper?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Luxembourg?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter-Plapper?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Alexej-Simeth?enrichId=rgreq-f062ef4199415e985e81aebe04f21967-XXX&enrichSource=Y292ZXJQYWdlOzM2MDg5MjkyMjtBUzoxMTc1NjA2NzA4NDQxMDkxQDE2NTcyOTc4ODk4MjY%3D&el=1_x_10&_esc=publicationCoverPdf


ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

  www.elsevier.com/locate/procedia 

2212-8271 © 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of 
existing products for an assembly oriented product family identification 

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat 
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France 

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction

Assembly process plays a significant role in manufactur-
ing systems as it is one of the last processes within a produc-
tion operation [1]. A competent manufacturing line is outlined
by a highly efficient and optimized assembly process [2]. The
present condition of assembly operations is characterized by
an increasingly changing demand (mass customization) while
the manufacturing line faces a trade-off between the increased
output of automated assembly systems and the flexibility and
adaptability of manual assembly.

This increase in changing demand caused by shorter product
life cycles and higher customization has resulted in increased
variance in product portfolio with low volumes of up to batch
size one. Complete variance must be covered for every product
which makes the automation of the assembly line difficult. It
is not economical to stop the line for changing the tools, posi-
tions and process parameters for small volumes with high prod-
uct variance [3]. The introduction of customized products also
means that certain process parameters are not known in advance
and need manual intervention for the assembly process. With
the advancement in Artificial Intelligence (AI) algorithms, it is

now possible to deduct decisions and actions from unknown
multi-dimensional correlations in sensor data [4], which can
then be made available for automation of customized individ-
ual products. One scenario where the demand for customization
has introduced challenges in the production line is the pick and
place process. Pick and place can be defined as the act of pick-
ing things up from one location and placing them in another [5],
and requires a high level of precision and repeatability [6]. The
development of robots with enhanced technologies has helped
in building systems that are smarter and more flexible. Despite
this, there are several tasks in a pick and place sequence where
direct human intervention is still being required due to the ex-
cellent capability of a worker to observe and compute the object
and interact with the surrounding environment [7].

Vision-based object detection for various steps in a pick and
place operation has been proposed by numerous researchers
since many years now [8]. Normally, the manufacturing lines
have the sequence of pick and place (which includes the per-
ception task) programmed in advance. However, when the as-
sembly scenarios are presented with a batch size of one with
random objects being placed for detection and assembly, the
task becomes challenging and requires a flexible and robust
solution. With the advancement in computational power and
AI-algorithms, vision-based approaches have improved tremen-
dously to solve complex problems that have had no effective
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solutions in the past. One of the competent approaches is the
Neural Network (NN) based object detectors [9]. Two of the
efficient and high performing NN-based object detectors, Sin-
gle Shot Detector (SSD) and You Only Look Once (YOLO) are
gaining a lot of popularity in recent years.

We present a comparison of these NN-based methods with
conventional detection methods applied to localize bores in
wooden-like boards with varying features. The methods shall
be used to automate an assembly process for highly individ-
ual products consisting of a pick and place, and gluing process
in a high-mix low-volume assembly scenario. Workpieces are
joined by placing them into bores in a carrier workpiece and
then bonded with glue. In the first step, the authors focused on
the gluing process automation which is presented in [10]. As the
next step, for the overall automation, a flexible pick and place
process working on every workpiece is targeted. Bores have to
be recognized on wooden-like boards with varying features to
insert specific workpieces.

The rest of the paper is organized as follows: section 2 high-
lights the current state-of-the-art indicating why we selected the
two NN-based algorithms, section 3 provides the overview of
the experimental set-up and the four different boards used for
the study, section 4 presents the results of the detection obtained
using SSD and YOLO, while the comparison of the obtained re-
sults with the conventional gradient filter detection is presented
in section 5. The last section 6 of the paper summarizes the re-
sults and lists the future work to be done to perform the final
task.

2. State-of-the-Art

NN-based object detection algorithms have gained a lot of
interest from the researchers all over the world in the last decade
[11]. There are mainly two kinds of NN-based object detectors
[12]. The first kind is a two-stage detector in which the detec-
tion architecture involves an object region proposal (region of
interest, ROI) with conventional computer vision methods or
deep networks, followed by object classification based on fea-
tures extracted from the proposed region with bounding box
regression. Two-stage methods have the highest detection ac-
curacy but are typically slower [9]. The second kind of NN-
based object detectors are the one-stage detectors which predict
bounding boxes over the images without the region proposal
step and as a result consume less time and are more suited for
real-time applications. One-stage detectors are in general, su-
perfast and structurally simpler. One of the efficient one-stage
detectors was proposed by Wei Liu et al. [13]. The authors pro-
posed a novel method of detecting objects in images using a
single deep neural network and called this detection method as
the Single Shot Detector (SSD). This detection method is sim-
ple, easy to train, and is very straightforward. Several improved
versions of SSD algorithms can be found such as DSSD, FSSD,
or ASSD [14].

Another widely used one-stage detector was proposed by
Redmon et al. [15] known as YOLO, an acronym for You Only
Look Once. It uses regression problem to solve the object detec-

Fig. 1. (a) Overall setup. (b) End effector with camera, ringlight, and vacuum
gripper. (c-f) Example of the boards 1:c-4:f used for study with bores

tion. Improved versions of YOLO have been developed such as
YOLO v2 [16], v3, v4, and YOLOX [17]. Based on the require-
ments of the study (to have a robust and available algorithm for
all types of board and to have a real-time implementation), we
decided to implement earlier versions of one-stage detectors,
specifically YOLO v2 and the SSD algorithms for our work.

3. Methodology

3.1. Experimental setup

For this research, the selected pick and place process is ap-
plied in a batch size one production scenario, i.e., every product
is different regarding its predecessor and successor. The consid-
ered process is conducted on the test set-up depicted in Fig. 1.
In (a), the overall robotic system is shown. A camera system,
vacuum gripper, and glue nozzle are mounted on the end effec-
tor of an industrial ABB robot installed on a workbench. The or-
ange carrier is utilized to provide workpieces to be inserted. The
boards are provided in the empty workspace on the right side.
Behind the board area, a chessboard pattern is used for camera-
robot calibration following the method presented in [18] so that
pixel coordinates can be transformed to real world positions.
A close-up of the end effector is given (b). In the images (c-
f) examples of the four different boards used in this research
are shown. The boards vary in material, dimension, color, inner
structure, amount and dimensions of bores, and appearance. For
instance, color and dimensional variation ranges from metallic
white to matt black and +/-15 mm in bore diameter. It is further
possible, that debris from previous milling process of the bores
may stay inside them (cf. (c)).

3.2. Data set generation

To obtain realistic images for the detection model develop-
ment a scenery imitating the assembly line is created. An in-
dustrial 5-megapixel RGB camera with lighting equipment is
mounted on an industrial robot and the board is placed inside
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the robot’s workspace. Images are taken from above perpendic-
ular to the board surface (Fig. 1 (a)). From the original image
a centred 1526x1526x3-pixel image is cropped for further pro-
cessing. The taken images contain a varying number of bores.
The four considered boards differ in material, surface texture,
reflectiveness, and color. Additionally, the number of bores per
image, the bore diameter, the bore appearance, and the inner
structure of the bore and the overall lighting situation are chang-
ing (Fig. 1 (c-f)). The high number of variants are used to test
the versatility of the applied algorithms.

For the data sets for SSD and YOLO (s. following subchap-
ters) different numbers of images are taken for the considered
boards. For board a) 212, board b) 128, board c) 182, board d)
135 images. The data sets for SSD and YOLO are the same.
Each image is labelled with the positions of the bore centres
and according bounding boxes. The data sets are split into test
and training data in the ratio of 80:20. The training data is aug-
mented via reflection, rotation, and changing brightness and
contrast. In total six images are created out of one increasing
the training set size. For the conventional detection approach
125 images of the same data sets are used for setting up and
testing. The settings of the filter are optimized on 25 images
manually. With the identified settings the filter is tested on 100
other images. For each board new filter settings have been gen-
erated.

3.3. Selected algorithms

The main target of the object detection algorithm is the ro-
bust localization of bores on images of boards. The algorithm
should work with all board types and be applicable in a process
in real-time. For later implementation, detection time is a key
parameter since it will have an impact on tact time. Both con-
ventional and AI-based methods are used to localize bores and
derive a new position for robot manipulation. In pretests, a gra-
dient edge detector as one of the robust conventional detection
algorithm was identified as suitable method for bore detection
since it was found to be working with all boards with a fast pro-
cessing time. Other tested algorithms as Circular Hough Trans-
form, or Gabor filter indicated a lower performance and hence
have not been presented in this study.

3.3.1. Gradient filter
Derivative filters are used to detect discontinuities in images.

The filters are designed to give no response in smooth regions
of an image and to return significant values at points of abrupt
changes in intensity level or texture, indicating an end or a start
of a region. Such identification of jumps in intensity values is
also known as edge detection. Classical gradient edge detectors
apply matching of local image segments with specific edge pat-
terns. Edges are detected by searching for maxima or minima
in the first derivative (gradient) of the image [19].

3.3.2. SSD
The SSD detector directly performs convolutional prediction

on the underlying feature extraction network and extracts fea-
ture map characteristics with different scales. For defined lo-

Fig. 2. Example of a) true positives, b) false positive, c) false negative (no de-
tection)

cations in the image the SSD predicts a set of default bound-
ing boxes and confidence scores for each class. During training
and evaluation, the identified bounding boxes are matched with
the ground truth using intersection over union (IoU) [9, 13].
In contrast to the original SSD setup, the backbone, i.e. the
feature extraction network, is changed from VGG-16 to the
50-layer deep pretrained convolutional neural network (CNN)
ResNet50, which is trained on >1 million images from Ima-
geNet database with 1000 object categories [20]. In conducted
pretests for this study, ResNet101 did not yield significant ben-
efits over ResNet50 while reducing classification speed. Thus,
the smaller CNN was selected.

3.3.3. YOLO
The basic idea of YOLO is the transformation of the object

detection problem into a regression problem. A single neural
network is applied to a full image. The image is divided into an
SxS grid and for each cell of the grid the network directly re-
turns the target bounding boxes and its classification categories
[16]. The whole image is processed at a time. As conducted for
the SSD approach, YOLO v2 is implemented with a changed
backbone to CNN ResNet50.

3.4. Evaluation metrics for comparison

The result of the bore detection and localization on the im-
age is evaluated based on the metrics precision and recall. In
this case, true positive (TP) is defined as the number of actual
positive cases, i.e. a bore is detected as a bore at the correct
position. False positive (FP) describes the number of positions
which are incorrectly detected as a bore. False negative (FN)
is the number of bores, which are not detected as such, but as
background. True negatives have not been considered since the
focus was in detection of the bores. Examples of TP, FP, and
FN are given in Fig. 2.

The calculation of the metrics for the conventional ap-
proaches is based on a visual inspection of every classification
result. The learning-based algorithms are evaluated automati-
cally. The predicted bounding box is compared with the orig-
inal ground truth bounding box and counted as TP if IoU is
equal or higher than 0.5 and as FP otherwise. In the following
this threshold is indicated by IoU@0.5. Precision, recall, and
F1-score [21] are calculated for every image and the detection
time is recorded and averaged over all detections.
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efficient and high performing NN-based object detectors, Sin-
gle Shot Detector (SSD) and You Only Look Once (YOLO) are
gaining a lot of popularity in recent years.

We present a comparison of these NN-based methods with
conventional detection methods applied to localize bores in
wooden-like boards with varying features. The methods shall
be used to automate an assembly process for highly individ-
ual products consisting of a pick and place, and gluing process
in a high-mix low-volume assembly scenario. Workpieces are
joined by placing them into bores in a carrier workpiece and
then bonded with glue. In the first step, the authors focused on
the gluing process automation which is presented in [10]. As the
next step, for the overall automation, a flexible pick and place
process working on every workpiece is targeted. Bores have to
be recognized on wooden-like boards with varying features to
insert specific workpieces.

The rest of the paper is organized as follows: section 2 high-
lights the current state-of-the-art indicating why we selected the
two NN-based algorithms, section 3 provides the overview of
the experimental set-up and the four different boards used for
the study, section 4 presents the results of the detection obtained
using SSD and YOLO, while the comparison of the obtained re-
sults with the conventional gradient filter detection is presented
in section 5. The last section 6 of the paper summarizes the re-
sults and lists the future work to be done to perform the final
task.

2. State-of-the-Art

NN-based object detection algorithms have gained a lot of
interest from the researchers all over the world in the last decade
[11]. There are mainly two kinds of NN-based object detectors
[12]. The first kind is a two-stage detector in which the detec-
tion architecture involves an object region proposal (region of
interest, ROI) with conventional computer vision methods or
deep networks, followed by object classification based on fea-
tures extracted from the proposed region with bounding box
regression. Two-stage methods have the highest detection ac-
curacy but are typically slower [9]. The second kind of NN-
based object detectors are the one-stage detectors which predict
bounding boxes over the images without the region proposal
step and as a result consume less time and are more suited for
real-time applications. One-stage detectors are in general, su-
perfast and structurally simpler. One of the efficient one-stage
detectors was proposed by Wei Liu et al. [13]. The authors pro-
posed a novel method of detecting objects in images using a
single deep neural network and called this detection method as
the Single Shot Detector (SSD). This detection method is sim-
ple, easy to train, and is very straightforward. Several improved
versions of SSD algorithms can be found such as DSSD, FSSD,
or ASSD [14].

Another widely used one-stage detector was proposed by
Redmon et al. [15] known as YOLO, an acronym for You Only
Look Once. It uses regression problem to solve the object detec-

Fig. 1. (a) Overall setup. (b) End effector with camera, ringlight, and vacuum
gripper. (c-f) Example of the boards 1:c-4:f used for study with bores

tion. Improved versions of YOLO have been developed such as
YOLO v2 [16], v3, v4, and YOLOX [17]. Based on the require-
ments of the study (to have a robust and available algorithm for
all types of board and to have a real-time implementation), we
decided to implement earlier versions of one-stage detectors,
specifically YOLO v2 and the SSD algorithms for our work.

3. Methodology

3.1. Experimental setup

For this research, the selected pick and place process is ap-
plied in a batch size one production scenario, i.e., every product
is different regarding its predecessor and successor. The consid-
ered process is conducted on the test set-up depicted in Fig. 1.
In (a), the overall robotic system is shown. A camera system,
vacuum gripper, and glue nozzle are mounted on the end effec-
tor of an industrial ABB robot installed on a workbench. The or-
ange carrier is utilized to provide workpieces to be inserted. The
boards are provided in the empty workspace on the right side.
Behind the board area, a chessboard pattern is used for camera-
robot calibration following the method presented in [18] so that
pixel coordinates can be transformed to real world positions.
A close-up of the end effector is given (b). In the images (c-
f) examples of the four different boards used in this research
are shown. The boards vary in material, dimension, color, inner
structure, amount and dimensions of bores, and appearance. For
instance, color and dimensional variation ranges from metallic
white to matt black and +/-15 mm in bore diameter. It is further
possible, that debris from previous milling process of the bores
may stay inside them (cf. (c)).

3.2. Data set generation

To obtain realistic images for the detection model develop-
ment a scenery imitating the assembly line is created. An in-
dustrial 5-megapixel RGB camera with lighting equipment is
mounted on an industrial robot and the board is placed inside
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4. Results

4.1. Gradient filter

The detection of the bores using the gradient filter is con-
ducted according to the following process. At first, the images
are converted to grayscale and then reduced in size during pre-
processing. The gradient magnitude of the intensity values is
calculated with a standard Prewitt gradient operator. The result
is scaled to the interval [0,1], small details are amplified using
logarithmic function and the image is binarized. This process
cannot be held constant for all boards but is adapted to achieve
a better detection result. After several image processing opera-
tions (area opening, filling holes, image dilation) the bores are
identified by calculation of the roundness of objects remaining
in the image. The final mask is generated by approximation of
circles for the detected regions and the calculation of their cen-
troids. The results for all boards for the gradient approach are
given in Table 1. The detection time is approx. 17 FPS for every
board. Compared to other filters tested, this is the fastest con-
ventional filter. The detection results for board 1, 3, and 4 are
similar, whereas, the result for board 2 is significantly worse.
Especially, the recall is reduced and thus, more bores are not
detected on board 2 than on the other boards.

Table 1. Results of gradient approach averaged on prediction level

Board Precision Recall F1-score Accuracy FPS
1 0.9639 0.9423 0.9530 0.9102 16.64
2 0.8865 0.8210 0.8525 0.7429 16.19
3 0.9278 0.9890 0.9574 0.9184 17.27
4 0.9342 0.9748 0.9541 0.9122 17.81

Avg. 0.9281 0.9318 0.9293 0.8709 16.98

4.2. Neural network based algorithms

Both NN-based algorithms are trained on the same data set.
I.e., the images per board are split into training and test-set and
then used for both detectors. The proposed detectors, SSD and
YOLO, are both implemented with the CNN ResNet50. The
training of the detectors are done with 25, 50, 75, and 100
epochs. To use the same algorithm for every board without any
changes, the setting with the highest average performance is
presented in the following sections, which are 75 epochs for
both SSD and YOLO. The detectors are trained in different set-
tings. Firstly, they are trained on each board separately and used
to classify solely this board type. These results are indicated by
the board index (1-4). Secondly, the detectors are trained on
all boards and used to classify all test sets. The entry ’All, 1
class’ refers to the category-agnostic classifier, i.e. a single class
‘bore’ for all bores, whereas the detector ‘All, 4 classes’ has for
each board a different bore class.

4.2.1. SSD
The results of SSD detector are given in Table 2. In the table,

the mean average precision, recall, and the F1-score are given
to evaluate the classification result for IoU@0.5. The quality
of localisation is represented by the IoU-score. The classifica-
tion speed is listed in the last column. The evaluation metrics
indicate a good prediction quality for most of the SSD classi-
fiers trained on one board only. Precision and recall are on a
high level and the F1-score is on average above 95%. Only for
board 2 the recall drops below 90%. The precision for board
1, 2, and 3 is on a similarly high level. Evaluating the classi-
fiers trained on all boards, only the category-agnostic detector
achieves comparable results. F1-score is slightly reduced com-
pared to the average of four single board detectors, but precision
and recall are in same range. The results of the SSD detector
with four bore classes deteriorated significantly. Although the
precision is still high, most of the bores are not identified indi-
cated by the low recall value. Especially on boards 2 and 4 the
detector misses nearly all bores. Thus, this detector is not con-
sidered further in this research. The highest average IoU-score
of 0.90 and the most accurate localization of SSD is found at
the category-agnostic classifier. The average IoU-score for SSD
trained on single boards is 0.89. The prediction time is similar
for all SSD detectors and varies between 32-35 FPS.

Table 2. Results of SSD detector for IoU@0.5 with ResNet50 and 75 epochs of
training

Board Precision Recall F1-score IoU-score FPS
1 0.9759 0.9701 0.9730 0.8912 33.02
2 0.9859 0.8861 0.9333 0.8793 32.24
3 0.9430 1.0000 0.9707 0.8858 32.79
4 0.9728 0.9051 0.9377 0.8943 32.42

Avg. 0.9694 0.9403 0.9537 0.8876 32.62
All, 1 class 0.9172 0.9724 0.9440 0.8977 34.81

All, 4 classes 0.9696 0.3450 0.5089 0.8979 34.01

4.2.2. YOLO
In this research, the YOLO version 2 is applied with a mod-

ified backbone to the CNN ResNet50, which is named YOLO
detector in the following. The results of the detector are pre-
sented in Table 3. For all detectors applied on a single board
only, recall is close to one, on average 99.7%. There is more
variation in the precision, but all values are above 90%. Thus,
nearly all bores on all boards are detected, but some predic-
tions are false. The severity of a false detection is depend-
ing on the location of falsely detected bores (centre vs. rim of
image). A random sample visual inspection of predictions re-
vealed that the falsely detected bores are without exception a
second bounding box for a bore at or close to the image border,
which is, for the presented use case not problematic. The de-
tectors trained on all boards achieve different results. Whereas,
the detector with four classes has similar values for precision,
recall, and F1 as the average of the four detectors trained on
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single boards, the category-agnostic YOLO detector is on a sig-
nificantly lower level and thus not further considered.

The IoU-score of the predictions is on average 0.86. The
highest value is achieved by the YOLO detector trained on
board 3. The prediction time of all YOLO detectors in the con-
ducted trials is similar and in the range of 33-36 FPS.

Table 3. Results of YOLO detector for IoU@0.5 with ResNet50 and 75 epochs
of training

Board Precision Recall F1-score IoU FPS
1 0.9003 1.000 0.9475 0.8606 35.54
2 0.9349 1.000 0.9644 0.8347 35.31
3 0.9783 0.9890 0.9836 0.9004 33.14
4 0.9294 1.000 0.9634 0.8739 35.87

Avg. 0.9357 0.9973 0.9652 0.8674 34.97
All, 1 class 0.8220 0.8882 0.8538 0.7402 35.78

All, 4 classes 0.9275 0.9988 0.9618 0.8931 36.01

5. Comparison

The presented approaches Gradient, SSD, and YOLO
achieve reasonable results depending on the boards. An
overview of the F1-score of selected detectors is depicted in
Fig. 3. ‘Single’ refers to detectors trained on one board only
whereas ‘All’ indicates that the detector is trained on all board
images with either one object class (1C), or four classes (4C).
All detectors shown achieve on average for all boards a score
above 0.92. Outliers are the gradient on board 2, and ’SSD All
1C’ on board 3. On board 2, the bore detection via the gra-
dient filter yields an F1-score of 0.85, which is significantly
lower. Especially the recall drops to 0.82. Thus, several bores
are not detected. In 9% of the tested images, only the half of the
bores or less are identified. A reason for the compromised per-
formance on board 2 may be the high similarity in appearance
of surface and bottom of the bore, which is challenging when
the detection is based only on changes in intensity values.

The detectors ’SSD Single’ and ’YOLO Single’ perform
well for every board. YOLO has a higher recall while, SSD
has a higher precision, i.e., YOLO detects more bores but has
a higher share of false positives. These, however, are multiple
bounding boxes detected for the same bore at the outer part
of images, which is not critical. Comparing the difference be-
tween different YOLO detectors, the results are for every board
very close. For SSD, the deviation between boards is higher.
On board 2, ’SSD All 1C’ outperforms all other presented ap-
proaches, but on board 3 the F1-score is 0.86, which is the low-
est score of all applied detectors. Overall, the YOLO results are
most consistent and achieve the highest average F1-score for
both detectors.

Beside the classification, the localisation of the detected
bores has an immanent role for the overall result. The detection
quality for the gradient approach is evaluated manually. For the
AI-approaches, the IoU-score is applied. In Fig. 4. a) the IoU

Fig. 3. F1-Scores of bore detectors for IoU@0.5. ’SSD Single’ and ’YOLO Sin-
gle’ are the detectors trained on one board only. ’SSD All 1C’ is the category-
agnostic SSD detector, ’YOLO All 4C’ the detector with four object classes.

scores of presented detectors are given. The values of detectors
trained on all boards are for both SSD and YOLO more accu-
rate than ones trained on a single board. SSD detectors indicate
a slightly improved localisation accuracy over YOLO, but for
the ‘All’ detectors the difference is minimal as the IoU-scores
are on average between 0.89-0.90. A reference example on a
detection with similar IoU is given in Fig. 4. b). Compared to
a positive detection result of the gradient detector depicted in
Fig. 4. c) the localisation is slightly less accurate. Consider-
ing the bounding boxes itself, the difference of the bounding
box centres is less than 6 pixel for the given example. Regard-
ing the processing time, the AI-based approaches are approxi-
mately two times faster than the conventional approach with 36
FPS for YOLO, 34 FPS for SSD and 17 FPS for the gradient
detector.

In a last step, the detection results of Gradient, SSD, and
YOLO were utilized to place workpieces into identified bores
with the robot (cf. Fig. 1). Initial trials showed that it is possi-
ble to insert workpieces with all three methods. The placement
itself is evaluated based on outcome (successful or not) and oc-
currence of contact of the inserted workpiece with the surface of
the carrier workpiece during placement. The initial trials leave
the impression that the placement with the conventional Gradi-
ent method is more accurate. The assessment of the impact of
the detection method on placement is still ongoing and subject
to further studies.

6. Conclusions

This paper compares different neural network (NN) based
and conventional methods to robustly detect production fea-
tures (bores) on different boards to be applied in pick and place
process in a batch size one assembly automation. The detec-
tion results are then used to compute the bore positions where
workpieces shall be inserted. As NN-based algorithms, Single
Shot Detector (SSD) and You Only Look Once (YOLO) are se-
lected and compared against a conventional Gradient filter. All
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4. Results

4.1. Gradient filter

The detection of the bores using the gradient filter is con-
ducted according to the following process. At first, the images
are converted to grayscale and then reduced in size during pre-
processing. The gradient magnitude of the intensity values is
calculated with a standard Prewitt gradient operator. The result
is scaled to the interval [0,1], small details are amplified using
logarithmic function and the image is binarized. This process
cannot be held constant for all boards but is adapted to achieve
a better detection result. After several image processing opera-
tions (area opening, filling holes, image dilation) the bores are
identified by calculation of the roundness of objects remaining
in the image. The final mask is generated by approximation of
circles for the detected regions and the calculation of their cen-
troids. The results for all boards for the gradient approach are
given in Table 1. The detection time is approx. 17 FPS for every
board. Compared to other filters tested, this is the fastest con-
ventional filter. The detection results for board 1, 3, and 4 are
similar, whereas, the result for board 2 is significantly worse.
Especially, the recall is reduced and thus, more bores are not
detected on board 2 than on the other boards.

Table 1. Results of gradient approach averaged on prediction level

Board Precision Recall F1-score Accuracy FPS
1 0.9639 0.9423 0.9530 0.9102 16.64
2 0.8865 0.8210 0.8525 0.7429 16.19
3 0.9278 0.9890 0.9574 0.9184 17.27
4 0.9342 0.9748 0.9541 0.9122 17.81

Avg. 0.9281 0.9318 0.9293 0.8709 16.98

4.2. Neural network based algorithms

Both NN-based algorithms are trained on the same data set.
I.e., the images per board are split into training and test-set and
then used for both detectors. The proposed detectors, SSD and
YOLO, are both implemented with the CNN ResNet50. The
training of the detectors are done with 25, 50, 75, and 100
epochs. To use the same algorithm for every board without any
changes, the setting with the highest average performance is
presented in the following sections, which are 75 epochs for
both SSD and YOLO. The detectors are trained in different set-
tings. Firstly, they are trained on each board separately and used
to classify solely this board type. These results are indicated by
the board index (1-4). Secondly, the detectors are trained on
all boards and used to classify all test sets. The entry ’All, 1
class’ refers to the category-agnostic classifier, i.e. a single class
‘bore’ for all bores, whereas the detector ‘All, 4 classes’ has for
each board a different bore class.

4.2.1. SSD
The results of SSD detector are given in Table 2. In the table,

the mean average precision, recall, and the F1-score are given
to evaluate the classification result for IoU@0.5. The quality
of localisation is represented by the IoU-score. The classifica-
tion speed is listed in the last column. The evaluation metrics
indicate a good prediction quality for most of the SSD classi-
fiers trained on one board only. Precision and recall are on a
high level and the F1-score is on average above 95%. Only for
board 2 the recall drops below 90%. The precision for board
1, 2, and 3 is on a similarly high level. Evaluating the classi-
fiers trained on all boards, only the category-agnostic detector
achieves comparable results. F1-score is slightly reduced com-
pared to the average of four single board detectors, but precision
and recall are in same range. The results of the SSD detector
with four bore classes deteriorated significantly. Although the
precision is still high, most of the bores are not identified indi-
cated by the low recall value. Especially on boards 2 and 4 the
detector misses nearly all bores. Thus, this detector is not con-
sidered further in this research. The highest average IoU-score
of 0.90 and the most accurate localization of SSD is found at
the category-agnostic classifier. The average IoU-score for SSD
trained on single boards is 0.89. The prediction time is similar
for all SSD detectors and varies between 32-35 FPS.

Table 2. Results of SSD detector for IoU@0.5 with ResNet50 and 75 epochs of
training

Board Precision Recall F1-score IoU-score FPS
1 0.9759 0.9701 0.9730 0.8912 33.02
2 0.9859 0.8861 0.9333 0.8793 32.24
3 0.9430 1.0000 0.9707 0.8858 32.79
4 0.9728 0.9051 0.9377 0.8943 32.42

Avg. 0.9694 0.9403 0.9537 0.8876 32.62
All, 1 class 0.9172 0.9724 0.9440 0.8977 34.81

All, 4 classes 0.9696 0.3450 0.5089 0.8979 34.01

4.2.2. YOLO
In this research, the YOLO version 2 is applied with a mod-

ified backbone to the CNN ResNet50, which is named YOLO
detector in the following. The results of the detector are pre-
sented in Table 3. For all detectors applied on a single board
only, recall is close to one, on average 99.7%. There is more
variation in the precision, but all values are above 90%. Thus,
nearly all bores on all boards are detected, but some predic-
tions are false. The severity of a false detection is depend-
ing on the location of falsely detected bores (centre vs. rim of
image). A random sample visual inspection of predictions re-
vealed that the falsely detected bores are without exception a
second bounding box for a bore at or close to the image border,
which is, for the presented use case not problematic. The de-
tectors trained on all boards achieve different results. Whereas,
the detector with four classes has similar values for precision,
recall, and F1 as the average of the four detectors trained on
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Fig. 4. a) IoU-scores of selected AI detectors. b) localisation result of AI detec-
tor with 0.9 IoU, the detected bounding box in red and the original bounding
box in green. c) and conventional gradient approach.

methods are trained or optimized on the same generated data
set based on images taken of the real product. For comparison
of the approaches regarding classification quality, localisation
accuracy, and speed, the metrics F1-score based on precision
and recall, intersection over union (IoU) and visual inspection,
and frame rate are utilized.

For all variants the NN-based detectors work well. When
trained on all boards, they achieve good results on all boards.
For gradient, this is not possible and certain pre- or postpro-
cessing steps must be adapted according to the examined board.
The classification results for all applied methods are on a high
level ranging from 0.93 for gradient to 0.94 for SSD and 0.96
for YOLO but slightly improved with NN-methods. Regarding
localization, the NN-approaches achieve in average an IoU of
0.9. Comparing the results with gradient detection the distance
between the centres is on average ∼ 6 pixels. The detection
speed of NN-detectors is significantly higher working with dou-
ble frame rate on same machine. Applying the presented detec-
tion methods on a real robot, the conventional filter achieves a
higher accuracy. Overall, it is shown, that fast one-stage detec-
tors can be trained and applied on products with a high differ-
ence in appearance and used for the classification and detection
tasks, which will improve the overall automation potential, es-
pecially for high-mix low-volume production scenarios. In fu-
ture, the authors target to improve the NN-based detection to
increase the location accuracy, which can be achieved by im-
plementing updated versions or to predict instances instead of
bounding boxes.
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