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Abstract—High throughput geostationary orbit (GEO) satel-
lite systems are characterized by a multi-beam wide coverage.
However, developing efficient resource management mechanisms
to meet the heterogeneous user traffic demands remains an
open challenge for satellite operators. Furthermore, the spec-
trum shortage and the ever-increasing demands claim for more
aggressive frequency reuse. In this paper, we combine the time-
flexible payload capabilities known as beam hopping (BH) with
precoding techniques in order to satisfy user traffic requests in
areas of high demand (i.e. hot-spot areas). The proposed frame-
work considers a flexible beam-cluster hopping where adjacent
beams can be activated if needed, forming clusters with various
shapes and sizes. In this context, we present three strategies to
design the beam illumination patterns. First, a max-min user
demand fairness satisfaction problem; second, a penalty-based
optimization is considered to penalize the occurrence of adjacent
beams in an attempt to avoid precoding whenever possible.
Third, seeking a low-complexity design, we propose a queuing-
based approach to solve the problem in a time-slot-by-time-slot
basis trying to provide service to users based on the requested
demands. The three methods are discussed in detail and evaluated
via numerical simulations, confirming their effectiveness versus
benchmark schemes and identifying the pros and cons of each
proposed design.

Index Terms—Very High Throughput Satellite System, Beam
Hopping, Cluster Hopping, Precoding, Illumination Pattern,
Demand Satisfaction

I. INTRODUCTION

THE continuous and significant growth in broadband sub-
scribers and bandwidth-hungry applications have shown

the integration of terrestrial networks with the satellite broad-
band systems very appealing [1]. The main focus of 5G and
beyond systems is to ensure uninterrupted and high-speed con-
nectivity across the globe to in-motion terminals on aircraft,
ships, and vehicles. However, due to the fact that high-speed
and broadcast-enabled satellite links will supplement existing
terrestrial connectivity, this goal cannot be fulfilled solely
by terrestrial networks [2]. Indeed, the satellite resources
are exceptionally scant and very expensive, and thus, these
resources must be utilized effectively [3]. Further, satellite
traffic changes with time as well as with coverage areas [4].
Hence, equal resource allocation across the whole coverage
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area all the time results in inefficient resource utilization, e.g.,
satellite power [5].

Onboard resource management in conventional satellite
communication systems employs constrained pre-design meth-
ods [6]. On one hand, this can simplify the satellite payload
design. However, such limited flexibility in practice barely
accounts for heterogeneous traffic and changing demands.
Mismatches between supplied capacity and requested traffic in
practical situations lead to inefficient resource utilization. For
next-generation very high throughput satellites (VHTS), it is
crucial to develop enhanced resource management techniques
that take advantage of multi-dimension flexibilities to solve
this prevalent problem [7].

The space industry is on the verge of a technological
breakthrough to extend satellite system performance beyond
current levels [8]. Many commercial players are working hard
to launch the flexible VHTS system that is able to offer up
to 103 Gbps data rates even to the remote and unserved
areas [9]. These high data rates can only be achieved by
evolving the multi-beam satellite architecture which uses a
smaller beam size. In this context, we are currently going
through a very interesting and exciting period where the main
goal is two-fold: (i) to drastically reduce the operational cost of
the satellite system by increasing the satellite capacity while
improving the system spectral efficiency, and (ii) to deliver
satellite services in a more flexible manner by allocating the
satellite resources based on the per-beam traffic demands.

Beam Hopping (BH) and linear precoding are two disruptive
technologies developed to achieve the above-mentioned two
goals for the satellite systems [10]–[14]. While BH enables
flexibility to adapt the offered capacity to the heteroge-
neous demand, precoding strives to improve the spectral effi-
ciency [13], [14]. Conventional BH exploits the time-domain
flexibility to provide all available spectrum to a selected set
of beams as long as they are not adjacent to each other [15].
With conventional BH, all the available satellite resources are
employed to provide service to a certain subset of beams,
which is active till the requested demand in each beam is
satisfied. In conventional BH illumination patterns, the active
spot beams are designed such that they do not interfere to each
other. Hence, in conventional BH, there are strict constraints in
the possible illumination patterns due to interference avoidance
and uneven traffic distribution [13].

The introduction of precoding in BH systems is required
to deal with co-channel interference when a set of adjacent
beams is illuminated at the same time and operating at the
same frequency band to satisfy high beam demand in hot-
spot scenario [14]. Such a set of adjacent beams is known as
cluster and this technique is known as “Cluster Hopping” [16].
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The design of the optimal illumination pattern, i.e. deciding
which clusters to illuminate together and for how long, is the
key design challenge of Cluster Hopping (CH). A specific
arrangement of all the clusters is called a snapshot. The
main advantage of the proposed cluster-based hopping is the
resource allocation flexibility within a cluster, meaning that
when a group of adjacent beams is simultaneously illumi-
nated, one can implement a beam-free approach where all
the resources of the cluster can be shared across the cluster’s
coverage area. However, the performance of CH strongly
depends on the design of the cluster size and shape. In the
case of overlapping clusters, there will be a very large number
of possible clusters resulting in a huge search space for the
proposed problem and rendering a high-complexity solution.
Furthermore, it is difficult to regulate the supplied capacity.
The shape of the clusters has an impact on the precoding
performance. Furthermore, compact clusters are preferred as
they will allow sharing resources from neighbouring beams.
Finally, the channel state information (CSI) estimation proce-
dure (which is fundamental for the precoding part) needs to
be adapted to the time-varying nature of the CH technique.

A. Related Works
We now briefly present the existing literature on BH and

precoding techniques for multi-beam satellite systems. In the
conventional BH technique, all the available resources are
allocated to a subset of beams which are illuminated in each
time slot to serve the users in such a way that any two
activated beams are far apart so that there is no interference.
The performance of BH is hampered by the limitation that
adjacent beams can not be activated simultaneously using the
same spectrum resource [13]. The main task in BH technique
is to efficiently select a subset of beams to be illuminated
in each time slot which can be accomplished by considering
a binary variable for each beam and setting it to one if the
beam is illuminated. This helps to formulate the problem into
a mixed integer non-linear programming problem (MINLP)
which is very hard to solve. A supplied capacity maximization
problem in a multi-beam satellite system was considered
in [17] and iterative sub-optimal heuristic algorithms were
proposed to solve the problem. Similarly, an efficient beam
capacity utilization problem via beam hopping technique was
considered in [18], and a solution was proposed based on
optimization and genetic algorithms.

Furthermore, a resource allocation problem in a beam-
hopping satellite system in which weights are assigned to the
users to categorize them was studied in [19]. An optimiza-
tion framework was formulated to maximize the weights of
the served users and a Cuckoo search-based algorithm was
proposed. An optimal capacity allocation problem in gateway
satellite systems where gateways offer the capacity to satisfy
beam demands was investigated in [20]. A fair scheme based
on Monge arrays to maximize the minimum demand satisfac-
tion ratio was proposed. A resource allocation problem in low
Earth orbit (LEO) beam-hopping satellite systems that share
the spectrum of the geostationary orbit (GEO) satellite was
considered in [21]. The problem was decomposed into three
sub-problems relating to the optimal selection of frequency,
cell, and transmit power for LEO satellite beams. In [22], a
resource allocation problem was formulated with the objective
of minimizing the total number of carriers and power allocated

to each satellite beam. The problem was decomposed into two
sub-problems; first to select the optimal number of carriers
required for each beam and then power allocation for selected
carriers to meet the beam demand.

The fact that the binary selection variable for beam acti-
vation results in an outsized search space is undoubtedly the
main issue in early investigations. When there is a large num-
ber of beams, the issue gets exceptionally worse. Therefore,
Machine Learning (ML) tools are being widely used to solve
complex optimization problems. Authors in [23] proposed a
deep learning-based procedure, to identify the optimal beam
illumination pattern for satellite systems, which results in low
computation complexity. In [24], a multi-agents Deep Rein-
forcement Learning (DRL) based method was proposed to op-
timally solve the joint beam illumination pattern identification
and bandwidth allocation problem in beam hopping satellite
systems. Similarly, a double loop learning-based multi-action
selection policy was proposed in [25] for beam hopping in
DVB-S2X broadband satellite system with multiple purposes.
A DRL-based genetic algorithm was proposed in [26] to
optimize the beam hopping decision for the DVB-S2X GEO
satellite system.

The fundamental disadvantage of conventional BH is the
need for spatial separation across active beams, which restricts
its capacity to adjust to any demand distribution. It is evident
that in certain scenarios where more than one adjacent beam
has high demand, i.e., hot-spot scenario, it is required to simul-
taneously activate a group of more than one adjacent beam,
i.e., a cluster of beams. This was the driving force behind
the exploratory research conducted in [27], where precoding
was initially integrated with BH to reduce the inter-beam
interference caused by adjacent beams that are illuminated at
the same time. This framework, in which a subset of adjacent
beams forming a cluster is activated at a time, was first
analyzed by the European Space Agency (ESA) [28]. Based
on this study, the concept of Cluster Hopping (CH) in which
the overall multibeam coverage area is divided into a number
of mutually exclusive beam clusters that are illuminated for
just long enough to satisfy the demand in each cluster was
first proposed in [16]. Precoding is employed within a cluster
to mitigate inter-beam interference, while inactive clusters are
physically positioned between active clusters to reduce inter-
cluster interference.

Additionally, an efficient precoded cluster hopping-based
illumination pattern design method was proposed in [16],
[29] to maximize the minimum supply-capacity-demand ratio.
However, fixed shape and size clusters were assumed to reduce
the search space and so as complexity. Although, employing
precoding techniques within clusters enhance the computa-
tional complexity of the system. Therefore, the authors in [30]
have formulated an interference penalty minimization frame-
work with demand satisfaction constraints and proposed a low
complexity dynamic beam illumination mechanism with se-
lective precoding used only for the active beams which create
strong inter-beam interference to each other. Authors in [31]
investigated different kinds of precoding for high throughput
satellite hot spot scenarios. However, the 7-beam cluster was
considered in which a high-demand beam is surrounded by six
zero-demand beams, and an average throughput maximization
problem was formulated with the assumption that interference
at the receiver is treated as noise only.
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B. Contributions
Satellite data traffic has a spatiotemporal nature that is

highly heterogeneous and variable. Indeed, the traffic demand
for each beam may vary significantly due to geographical and
temporal differences, especially when considering mobile user
terminals. The fixed cluster size limits the capability of adapt-
ing to the highly heterogeneous traffic demand distributions.
In particular, fixed cluster size leads to under utilization of the
satellite resources where demand is comparatively low (e.g.,
in the middle of an ocean) and poor demand satisfaction in
hot-spot scenarios (e.g., surrounding of an international airport
with multiple high demand mobile users) where demand is
very high. Therefore, to reduce the complexity, compact-
shaped, non-overlapping, and equal size clusters result in sub-
optimal resource utilization [29]. In fact, cluster size and shape
should be as close as possible to the expected demand clusters
in order to reach the best demand-matching performance.
Furthermore, illumination of flexible sized clusters was consid-
ered in [30] to minimize the inter-beam interference penalty
but it does not guarantee the efficient utilization of satellite
resources to best satisfy the beam demands. This motivates
us to combine the promising frameworks developed in [29],
[30]. Hence, in this paper, we design a more flexible CH
illumination pattern allowing clusters of different shapes and
sizes and employing precoding within a cluster to improve the
resource utilization and supply-demand matching as compared
to that was achieved with the pre-defined clustering used
in [29].

The main contributions of this paper are summarized as
follows:

• A max-min fair satellite resource allocation framework
for per beam supply-demand matching problem is inves-
tigated. We propose a solution called flexible cluster hop-
ping (FCH) in which the design goal has been extended
from illuminating a few clusters of fixed shape and size
to jointly illuminating a number of beams satisfying the
beam demand constraints and clustering the illuminated
beams for precoded transmission to mitigate the inter-
beam interference.

• We relax the formulated problem by simplifying the non-
linear constraints and reformulate the non-linear and non-
convex optimization problem to make it tractable.

• Formulate the beam hopping problem as a penalty mini-
mization problem while ensuring beam demand satisfac-
tion. The problem is converted into a convex optimiza-
tion problem using Semi-Definite Programming (SDP)
relaxation and Successive Convex Approximation (SCA)
based methods.

• Propose a low complexity queuing-based method that is
a throughput optimal beam hopping technique with the
objective of minimizing the remaining demand of each
beam in each time slot.

• The performance of the proposed techniques is inves-
tigated herein in terms of the beam supply-demand
matching profile, system efficiency, and other key per-
formance indicators (KPIs). Simulation results including
performance comparisons are provided to demonstrate
the validity and gains of the proposed method over the
benchmark CH scheme.

The remainder of this paper is organized as follows. Sec-
tion II introduces the system, channel and precoding models.

A max-min fair beam supply-demand matching problem is
formulated and a flexible cluster hopping scheme is proposed
in Section III. The problem is reformulated as a penalty
minimization framework and two solution approaches namely:
SDP based and SCA based are proposed to convexify the
problem in Section IV. Next, we reformulate the problem
as maximization of the sum weighted throughput of all the
illuminated beams in each time slot and two queuing-based
methods are proposed in Section V. The complexity analysis
of the proposed schemes is provided in Section VI. Section VII
reports on detailed numerical results and a concluding section
ends the paper.

II. SYSTEM MODEL

We consider a downlink scenario of a high-throughput
multi-beam GEO satellite system where the satellite can
generate N beams for serving ground users within a time
window TH , which is also known as a hopping window.
The hopping window is segmented in T equal time slots
of length ∆T , which is known as the dwelling time of the
hopping system. Herein, an illumination pattern is created over
a particular hopping window and is then repeatedly used over
time. The users in every beam should be served at their data
demand. This demand is represented as an amount of data bits
that should be transmitted within the hopping window TH .
In this work, beam-level frameworks are considered; hence,
one user per beam scenario is assumed 1. In such scenario,
the data demand raising within beam n ∈ {1, ..., N} can
be represented by the aggregated data transmission demand
of only one virtual user in this beam, which is denoted as
Dn

2 (bits to be transmitted in T times slots). The scenarios
where there is more than one user located within the coverage
of each beam will be considered in future works dealing
with user-level strategies. Regarding the hardware limitation
or practical implementation requirements, we also assume that
the number of illuminated beams in time slot t cannot be larger
than K 3 (K ≤ N ). Also, all the illuminated beams operate
over the same spectrum B employing full frequency reuse.
It is assumed that multiple users are multiplexed in a time
division multiplexing (TDMA) manner. The group of adjacent
and simultaneously illuminated beams is called a cluster and
each permuted arrangement of the illuminated clusters is called
“a snapshot”. The size of the clusters has an impact on the
complexity and flexibility of the CH operation. When the
clusters are small, it approaches the conventional BH solution
where precoding does not provide any gain. On the other hand,
if the size of the clusters is very high, we will have much
lower flexibility in terms of supplying capacity, as we will
have very less snapshots. Therefore, in this work, we consider
efficient and flexible cluster size such that each beam demand

1Therefore, we use the terms “beam” and “user” interchangeably.
2The satellite is assumed to have sufficient resources to meet the anticipated

demand Dn, ∀n.
3The performance of the illumination pattern design algorithm over the

hopping window is dependent on K. In particular, the higher the value of
K, the higher the supplied capacity and the better user demand satisfaction.
A low value of K may negatively impact the performance of the algorithm,
as there will not be enough time slots in the hopping window to satisfy the
user demand, and this will result in high unmet capacity. On the contrary,
a high value of K will result in high unused capacity for low/medium
demand scenarios. The effect of the variation in K on the performance of
the illumination pattern generation scheme is detailed in the numerical result
and discussion section.
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must satisfy. Additionally, it is assumed that clusters are non-
overlapping and compact in shape.

A. Channel Model
Suppose yn[t] denotes the received signal at user n in

time slot t and the corresponding received signal vector
at the users in cluster i in time slot t is represented by
Yi[t] = [y1[t], ..., yci [t]]

T , where ci is the size of cluster i
at time slot t. Therefore, the received signal vector at all the
users in time slot t, i.e., Y[t] = [Y1[t], ...,YLt [t]]

T can be
represented as follows:

Y[t] = HW[t]x[t] +N = H

 w1 0 0

0
. . . 0

0 0 wLt

x[t] +N,

(1)
where x[t] ∈ CN×1 denotes the transmitted symbols with
E
[
xxH

]
= IK ; H ∈ CN×N represents the channel matrix,

which is assumed to be perfectly known at the transmitter,
W[t] ∈ CN×N represents the corresponding precoding factors
for all the beams, wl is the precoding factor designed for the
cluster l, i.e., the lth column of W[t] which corresponds to
the precoding factor of the beams in cluster l, Lt denotes the
number of clusters formed in time slot t, and N ∈ CN×1

denotes the zero-mean additive Gaussian noise. In particular,
we assume E

[
NNH

]
= σ2

T IN , where σT =
√
κTRxB;κ

denotes the Boltzmann constant and TRx is the clear sky noise
temperature of the receiver.

The downlink channel gain coefficient from lth satellite
beam to kth users is modeled as,

[H]k,l = hl
k =

√
Gk

RGk,lejϕk,l

4π dk

λ

,

where Gk
R is the receiver antenna gain at the kth user,

Gk,l is the gain from lth beam to the kth user, ϕk,l is a
phase component resulting from the beam-pattern, dk is the
distance of the kth user from the satellite, and λ denotes the
wavelength.

B. Precoding Model
This work mainly focuses on developing flexible beam-

hopping techniques where satellite beams are clustered and
illuminated in clusters of different sizes to meet user demands
and improve system efficiency. When a cluster has two or
more illuminated beams simultaneously, precoding is used to
mitigate inter-beam interference. The precoding factor design
tasks are lessened by simply employing some benchmark tech-
niques such as MMSE-based precoding [32]. It is noteworthy
that precoding is performed at the gateway to ensure reduced
complexity of the satellite’s on-board processing effort and
user equipment. In particular, for the cluster i having at least
two or more beams, the precoding factor is defined as follows:

ŵi =
√
PnH

H
i

(
HiH

H
i + αI

)−1
, (2)

where Hi represents the channel matrix of all the users in
cluster i and α stands for a predefined regularization factor.
Then, wi is determined based on ŵi by normalizing every
column vector of the matrix to meet the per-beam transmit

power constraints Pn. For all the beams which are not activated
in a time slot, the precoding factor must be zero. Similarly,
when there is only a single beam in a cluster, its precoding
factor is simply

√
Pn.

We tend to use dynamic beam scheduling and selective
precoding to match demands with supplied capacity. This
extended design goal considering these constraints can be
stated in the following general problem.

min /max
{z[t], W[t]}

T∑
t=1

Ψ(z[t],W[t]) (3)

s.t.
Lt∑
k=1

N∑
n=1

zk,n[t] ≤ K,∀t (4)∑
t

∆T f (SINRn(z[t],W[t])) ≥ Dn, ∀n (5)

where z[t] ∈ {0, 1}Lt×N is the clustering matrix in time
slot t, i.e., zk,n[t] = 1 means that beam n is clustered into
cluster k, and

∑Lt

k=1 zk,n[t] = 0 implies that beam n is
not illuminated in time slot t. Furthermore, Ψ(z[t],W[t]) is
the objective function which will be defined thoroughly in
certain scenarios with specified objective designing goals. For
instance, it can be the achievable rate, the transmission power,
the fairness ratio, the transmission time, the operation cost,
or system revenue. Herein, the first constraint indicates that
the number of illuminated beams at each time slot cannot be
more than K due to payload architecture limitations. In the
second constraint, ∆T is the time duration of one time-slot,
and f(.) is a rate function in terms of Signal-to-Interference-
plus-Noise Ratio (SINR). SINR experienced by beam n, i.e.,
SINRn(z[t],W[t]) is expressed as in (6) at the top of the next
page, where Cn(z[t]) denotes the cluster consisting of beam
n which can be figured out based on z[t]. With clustering
transmission, the precoding can exploit the spatial dimension
of the channels from beams and users within clusters to
maximize the received power or to mitigate inter-beam inter-
ference. Without a precoding design, the clustering problem
is still challenging. This can be illustrated by the number of
feasible snapshots turning out to be exceptionally large. Now,
selecting K beams and grouping them into different clusters is
equivalent to choosing K elements of z[t] and setting them to
ones while remaining others to zeros. Note that the clustering
solution can be permuted without affecting the results. This
yields a total of

(
(NK)!

K!(NK−K)!

)
/K! possible snapshots. For

example, assume N = 67 and K = 17 beams can be
simultaneously activated in a time slot. The total number of
reliable snapshots is

(
(67×17)!

(17!)2(66×17)!

)
≈ 3× 1015 which is an

extremely substantial number just for only one time slot. This
number will increase exponentially if the whole window with
T time slots is considered. Therefore, efficient and flexible
clustering algorithms are needed which will be presented in
the following sections.

III. FAIR SUPPLY DEMAND MATCHING FRAMEWORK
USING FLEXIBLE CLUSTER HOPPING

The first natural step is to find a solution where adjacent
beams are simultaneously activated (and precoded) only if
needed. First, we propose a flexible cluster hopping (FCH)
technique, which is a simple extension of the CH solution used
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SINRn(z[t],w[t]) =

desired signal︷ ︸︸ ︷
|hn

n[t] wn[t]|2∑
l∈Cn(z[t])

l ̸=n

∣∣hl
n[t] wl[t]

∣∣2
︸ ︷︷ ︸

intra-cluster interference

+
∑

k/∈Cn(z[t])

∣∣hk
n[t] wk[t]

∣∣2
︸ ︷︷ ︸

inter-cluster interference

+σ2
. (6)

in [29]. Then, we start with the formulation of a fair demand-
satisfaction problem making use of the max-min of the ratios
(supplied capacity/demand). The achievable data transmission
of beam n during all T time slots can be expressed as

Rn =

T∑
t=1

xn[t] ∆T f (SINRn(z[t],W[t])) .

Next, the normalized amount of achievable data transmission
of beam n can be calculated as the ratio between the amount
of data transmission and the data demand as Rn

Dn
. Then, the

extension of the CH design problem is stated as in problem
P0:

max
x

min
∀n

Rn

Dn
, (P0)

s.t. Lx ≤ k,∑
t

xn[t]∆T f (SINRn(z[t],W[t])) ≥ Dn, ∀n

where we have removed the constraint that ensured the ac-
tivation of non-adjacent beams. Note that, L = IT×T ⊗
11×N and the maximum number of simultaneously ac-
tive beams in each time slot instance over the hop-
ping window is equal, i.e., k = [K, ...,K]

T and x =
[x1[1], . . . , xN [1], . . . , x1[T ], . . . , xN [T ]]

T in which the vari-
ables xn[t] ’s are the binary variable which are used to define
the beam illumination solution, i.e.,

xn[t] =

{
1, if beam n is illuminated in timeslot t,
0, if beam n is turned off in timeslot t.

While in the existing CH technique, the potential snapshot
candidates are limited to the snapshots that do not contain
adjacent active beams or fixed size clusters, herein we do
not impose such constraint thus making the algorithm more
“flexible” in selecting active beams and forming clusters
whenever needed. Obviously, to make sure this works, we need
to add a final step where adjacent beams are precoded together
to mitigate inter-beam interference.

A. Proposed Solution
The formulated problem P0 is a mixed integer, non-convex,

and non-linear programming (MINLP) mainly due to the
presence of a binary variable (x) and the interference term
in the SINR expression. By introducing the variable η, this
problem is equivalent to the following one

max
x,η

η (P1)

s.t. Lx ≤ k,∑
t

xn[t]∆T f (SINRn(z[t],W[t])) ≥ ηDn, ∀n

In other words, problem P0 can be solved by defining
the maximum value of η such that the following problem is
feasible.

max
x

xTx (P2)

s.t. Lx ≤ k,∑
t

xn[t]∆T f (SINRn(z[t],W[t])) ≥ ηDn, ∀n

Both the P1 and P2 problems are still MINLPs. As a result,
no globally optimal solution to these problems can be obtained
using the well-known convex optimization techniques [33].

Regarding the interference, the interference coming from
adjacent beams can be mitigated by the use of precoding,
while the interference coming from non-adjacent beams is
generally low and can be assumed negligible. Therefore, the
first simplification step is to re-formulate P1

4 using Signal-
to-Noise Ratio (SNR) instead of SINR,

max
x,η

η (P̂1)

s.t. Lx ≤ k,∑
t

xn[t]∆T f (γn[t]) ≥ ηDn, ∀n

where, γn[t] is the SNR of beam n in time slot t. We
further simplify P̂1 by considering the demand vector d =
[D1, . . . , DN ]

T and writing the offered capacity vector as
follows

s =
∑
t

x[t]⊙R,

where x[t] = [x1[t], . . . , xN [t]]
T , ⊙ denotes the element-wise

product, and R = [r1, . . . , rN ]
T , is a vector that contains

the interference-free offered data rate per beam (which is
independent of the time-instance as it ignores the interference
term), i.e, rn = f (γn). Therefore, P̂1 transforms into,

max
x,η

η (P̂2)

s.t. Lx ≤ k,

s ≥ ηd.

Note that P̂2 is equivalent to P0 iff interference is negligible.
Hence, the solution of P̂2 is optimal only when SINR ≈
SNR. Although P̂2 still contains a binary variable, some state-
of-the-art solvers, e.g., MOSEK5, can be applied to obtain a
solution.

4We focus on P1 but similar approach is applicable to P2.
5https://docs.mosek.com/modeling-cookbook/mio.html.
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IV. PENALTY MINIMIZATION FRAMEWORK USING
FLEXIBLE CLUSTER HOPPING

Herein we present a different approach where the objective
is generalized to a minimization of a given penalty function
subject to demand constraint. This approach is cast by the
following problem:

min
x

xTΩx (P3)

s.t. C1: Lx ≤ k,

C2:
∑
t

xn[t]∆T f (SINRn[t]) ≥ Dn, ∀n

where Ω ∈ R(NT×NT) stands for the penalty matrix whose
element represents a penalty cost when the corresponding two
beams are activated in a time slot t and other notation have a
similar interpretation as in Sec. III. In problem P3, again f(.)
stands for the rate-SINR function which can be the Shanon
capacity function or the rate function used in DVB standard,
and

SINRn[t] =
hn
n[t]pn[t]∑

j ̸=n xj [t]h
j
n[t]pj [t] + σ2

,

where pn[t] is the transmission power of beam n and hj
n[t]

stands for the channel gain from beam j to the user n. Since
we consider the beam-level design, the SINR are estimated
based on the channels from the satellite beams to the users
located at the center of the beams. In the user-level design, the
achievable data rate of one beam can be defined as the total
rate achieved by all users located inside that beam’s coverage
area. Once the channel gain and the transmission power are
assumed unchanged during the window time, the suffix [t] can
be omitted.
As can be seen, problem P3 is formulated in a general
form where the penalty matrix can be flexibly determined
according to the design goals, e.g., inter-beam interference,
and precoding computation cost. The problem P3 is again
non-convex, non-linear optimization problem due to demand
satisfaction constraint as in the problem P0.

A. Convexification of the problem P3

The problem P3 has a non-convex constraint related to
demand satisfaction:∑

t

xn[t]∆T f (SINRn[t]) ≥ Dn, ∀n

The non-convexity comes in part from the interference in
the denominator of the SINR. The strong interference from
the adjacent beams can be eliminated while the interference
from non-adjacent beams is exceptionally low thanks to the
narrow beam pattern design of satellite systems. Therefore, in
an interference-free model, the SINR can be approximated as
SNR and expressed as follows:

SINRn[t] ≈ γn[t] =
hn
n[t]pn[t]

ασ2
, (7)

where α ≥ 1 is an adjustable scale factor that can be used
for further implementation (iteration algorithms if necessary).
Then, the data-demand constraint can be transferred to

Cx ≥ d,

where d = [D1, . . . , DN ]
T is the demand vector and

C = ∆T [diag (f (γ1[1]) , . . . , f (γN [1])) , . . .

. . . ,diag (f (γ1[T ]) , . . . , f (γN [T ]))].

When the channel and power transmission are assumed to be
unchanged during T time slots, we can simplify and express C
as 11×T⊗ diag (r1, . . . , rN ), where rn stands for the achieved
data rate of the user in beam n within one time slot. The
approximated problem can be stated as

min
x

xTΩx (P̂3)

s.t. C1: Lx ≤ k,

C2: Cx ≥ d,

C3: xn[t] ∈ {0, 1}, ∀n, t

This is a binary quadratic programming, which can be solved
by several methods or optimization solvers such as Gurobi,
Mosek. Other solution approaches are also introduced in the
following subsections.

Next, we investigate the optimal solution of problem P̂3.
To do so, we adopt a new method in which the demand Dn is
translated into the minimal number of time slots that beam n
must activate in order to match its demand over the hopping
window. Let rn (in bps) be the average achievable rate of the
user in beam n in the interference-free model, i.e., f (γn) =
rn. The achievable rate of the user in beam n over the hopping
window can be written as Rn =

∑T
t=1(xn[t]rn∆T ). Now, let

us consider the following Lemma [11].

Lemma 1. Constraint (C2) in problem P̂3 can be re-
formulated as (

Ĉ2
)
:

T∑
t=1

xn[t] ≥ d̄n,∀n,

where d̄n =
⌈

Dn

∆T rn

⌉
, and ⌈.⌉ represents the ceiling operator.

Proof: Since, rn
∑T

t=1 xn[t]∆T = Rn, constraint (C2)
is equivalent to

T∑
t=1

xn[t] ≥
Dn

∆T rn
,∀n. (8)

Since,
∑T

t=1 xn[t] is an integer, the right hand side of (8) can
be replaced by d̄n =

⌈
Dn

∆T rn

⌉
. This completes the proof.

In constraint
(
Ĉ2

)
, d̄n can be considered as the minimum

number of time slots in each of which beam n is illuminated.
Next, the following theorem [11] relates the optimal solution
of problem P̂3 and d̄n.

Theorem 1. Let {x⋆n[t]} be the optimal solution of problem
P̂3, then

∑T
t=1 x

⋆
n[t] = d̄n,∀n, if rn’s are estimated accu-

rately, i.e., constraints
(
Ĉ2

)
hold for all beams.

Proof: We use the contradiction method to prove this
theorem. Suppose that there exists at least one beam that
the corresponding constraint

(
Ĉ2

)
does not hold. Let n′ be

the beam for which
∑T

t=1 x
⋆
n′ [t] > d̄n′ . Selecting any time

slot t′ such that xn′,t′ = 1, we generate the new solution
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of P̂3, {x̄n[t]} , such that x̄n[t] = x⋆n[t] ∀(n, t) ̸= (n′, t′)
and x̄n′ [t′] = 0. It is easy to observe that x̄n[t] ’s satisfies
constraints

(
Ĉ2

)
. Moreover, this new solution satisfies con-

straints (C1) while resulting in the lower objective function.
It follows by a contradiction since {x⋆n[t]} is the optimal
solution. Therefore, constraint

(
Ĉ2

)
holds for all beams with

any optimal solution of problem P̂3.
More precisely, under the optimal solution of problem P̂3,

constraint (C2) holds with equality for all beams, i.e., the
supplied capacity and demand are exactly matched for all
beams. Therefore, the solutions obtained from the proposed
algorithms are compared with the optimal solution in terms of
the average beam demand satisfaction in Section VII where
100% average beam demand satisfaction denotes the optimal
solution.

B. Proposed Solution

1) Semidefinite Programming (SDP) Relaxation Method:
Problem P̂3 can be transformed into the semidefinite form as
follows:

min
x

Tr(ΩX) (P SDP)

s.t. Lx ≤ k,

Cx ≥ d,

diag(X) = x,[
X x
xT 1

]
⩾ 0,

where X = xxT. This problem can be solved with advanced
optimization toolboxes supporting mixed-integer models like
CVX.

2) Successive Convex Approximation (SCA) based Solution:
The main challenging issue for solving problem P̂3 comes
from the binary constraint. To overcome this issue, we apply
feasible point pursuit successive convex approximation (FPP-
SCA), which not only linearizes the non-convex parts of
the problem as conventional SCA does, but also adds slack
variables to sustain feasibility, and a penalty to the objective
function to ensure the slacks are sparingly used. The proce-
dures are given as in the following.
First, we can rewrite binary constraint xn[t] ∈ {0, 1} as

x2
n[t]− xn[t] = 0.

Using a tolerance factor ξn,t (ξn,t ≥ 0), these conditions can
be further expressed into two following inequalities

x2
n[t]− xn[t] ≤ 0, and x2

n[t]− xn[t] ≥ −ξn,t.

While xn[t]
2−xn[t] ≤ 0 is convex, the other is not. By using

the first-order Taylor series to linearize this concave constraint,
the constraint can be converted into(

1− 2x(k)
n [t]

)
xn[t] +

(
x(k)[t]
n

)2

≤ ξn,t,

where x
(k)
n [t] stands for the value of xn[t] achieved in the

iteration k of the applied iterative solution procedure. Here, it
is worth mentioned that the starting points

{
x
(0)
n [t]

}
’s can be

chosen freely.

Then problem P̂3 can be transferred into the following
convex problem, which can be solved optimally in each
iteration of the iterative solution procedure.

min
x

xTΩx+ δ∥ξ∥ (P SCA)

s.t. Lx ≤ k,

Cx ≥ d,

x2
n[t]− xn[t] ≤ 0,∀n, t(
1− 2x(k)

n [t]
)
xn[t] +

(
x(k)
n [t]

)2

≤ ξn,t,∀n, t

ξn,t ≥ 0,∀(n, t),
where δ is the penalty parameter. Usually, the higher value it
is set to, the more closed to zeros or ones the solution can
be achieved. Hence, δ should be set sufficiently large in order
to obtain a good/acceptable solution. However, if the value of
δ is set too high, the δ∥ξ∥ component will be the main term
of the objective function, and the solution process may only
focus on minimizing this term. This may lead to an inefficient
solution of x. Basically, we can start with a small value of δ,
and then δ is increased step by step if the continuous solution
of x is still not close to zeros or ones.

V. QUEUING-BASED TIME-SLOT BY TIME-SLOT SOLUTION

As can be observed, the complexity of defining the BH
for the whole window time is scaled up heavily with the
numbers of beams and time-slots. The optimization-relating
task becomes extremely challenging when these numbers are
sufficiently large [11]. Considering the remaining data as
the queue length for every user, this section aims to exploit
the queue-length-based resource allocation method presented
in [34]–[36] to develop two effective low-complexity BH
approaches. In particular, these approaches aim to decompose
the window-based BH optimization problem into several sub-
problems each of which is stated for BH design in a specific
time slot based on the remaining data at users. Generally,
to satisfy users’ demand on delivering all their data amount
during the time window, the beams should be illuminated in
each time slot to maximize the weighted sum rate of all users.
Herein, the weights can be defined carefully according to the
design perspective.

To begin with, one can express the remaining data demand
of beam n at time slot t as

qn[t] = Dn −
t−1∑
u=1

xn[u]∆T f (SINRn[u]) . (9)

Let W (qn[t]) represent the weight factor relating to the
queue length corresponding to beam n in time-slot t, which
is a definable function of qn[t]. Utilizing these weights, i.e
W (qn[t])’s, assuming the interference free model as in (7),
the BH design task corresponding to time slot t can be cast
as sum-weighted-rate maximization problem as follows [34]–
[36]:

max
x[t]

N∑
n=1

xn[t]W (qn[t])∆T f (γn[t]) s.t. Lx ≤ k. (10)

Regarding the fairness and the satisfaction rate among all
beams, there are two weighting approaches will be introduced
for setting the weight factor W (qn[t]) for every beam in every
time slot.
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A. Linear Weighting Approach
Thanks to (9), one can observe that the data demand of

beam n is fully transmitted before time slot t if and only if
qn[t] = 0. Normally, fairness among all users with different
demands can be cast by focusing on minimizing the window
time within that all beams can achieve their demand. This
problem can be stated as

min
x,s

s (MIN BH)

s.t. Lx ≤ k,

qn[t] = Dn −
t−1∑
u=1

xn[u]∆T f (γn[u]) ,

qn[s] = 0,∀n,
s ≤ T.

In this scheme, the higher priority is set to the users having the
longer queue length. This method aims to reduce the demand
for the high-load beam as much as possible. In particular, the
weight factor of each beam in each time slot t in this scheme
is determined as [34]

W (qn[t]) = qn[t]. (11)

Following the result given in [34], determining the weights as
the linear form of queue lengths can achieve fairness where
the remaining demand data among all beams are kept equal
even though each beam has different demand. However, there
exist some crucial scenarios in that no feasible solution for
problem (MIN BH) can be defined, e.g., the system cannot
transmit all data demand for all beams within T time slot.
In such cases, satisfying as many users at their demand data
within T time slots as possible can be considered as a suitable
decision, which will be presented in the following section.

B. Hyperbolic Weighting Approach
As can be observed, by setting the weight factor as in (11),

the queueing-based framework aims to select the beam de-
manding high traffic for illumination pattern in every time lot.
When the scheme is overloaded, this weight setting leads to the
fact that the beams with extremely high traffic demand will be
activated in all-time lots. In such cases, the beam-illumination
fairness should be violated and the satisfaction rates related
to beams having low capacity demands are very low. To deal
with such problems occurring in the overload schemes, we
consider another weighted setting as follows.

W (qn[t]) =

{
0, if qn[t] = 0,

1
qn[t]

, if qn[t] ̸= 0.
(12)

By defining the weight factor as in (12), the framework will
take higher priority for users who have shorter queue lengths
in every time slot. Then, the number of users satisfying their
traffic demands can be increased. Hereafter, we name the
queuing-based BH method using the weight factor as in (11)
and in (12) as Linear Weight Queuing-based (LWQ) and Hy-
perbolic Weight Queuing-based (HWQ) methods, respectively.

VI. COMPLEXITY ANALYSIS OF THE PROPOSED SCHEMES

In this section, we evaluate the computational complexity
of the proposed schemes.

1) FCH scheme: The complexity of the FCH scheme
depends on the number of snapshots in each time slot. Let
Nss be the number of snapshots for the highest illumination
ratio, then the complexity of the FCH scheme can be estimated
as O(TNss) >> O(TN), where T and N are the numbers
of time slots and beams, respectively.

2) SDP based scheme: As can be observed, the number of
variables in problem (P SDP) are TN . Therefore, the time
complexity of the SDP scheme is O([TN ]4.5) [37].

3) SCA based scheme: Generally, (P SCA) is a convex
quadratic problem with TN number of variables. Hence, this
problem can be solved in polynomial time with the complexity
of O([TN ]3) [33]. Then, the complexity of the SCA-based
scheme can be estimated as O([TN ]3)× ISCA, where ISCA

denotes the number of iterations required to converge which
is around 10-20 due to our implementation.

4) Queuing based scheme: This scheme aims at solving T
sub-problem corresponding to the obtain a beam illumination
pattern in each time slot as follows:

max
x[t]

N∑
n=1

xn[t]W (qn[t])∆T f (γn[t])

s.t. Lx ≤ k.

The problem is equivalent to selecting K beams that maximize
the objective function value in each time slot. Therefore, the
complexities of two queuing-based schemes can be estimated
as O(TNk).

VII. NUMERICAL RESULTS AND DISCUSSION

In this section, we present extensive numerical simulation
results to test the proposed algorithms. For this purpose, we
consider a simulation scenario consisting of 67-beam GEO
satellite beam pattern, i.e., N = 67, covering Europe and
part of America and Africa which is provided by ESA [28].
Super-user per-beam abstraction is considered, i.e., each beam
has a single representative user who aggregates the total
demand of randomly distributed users per beam. Suppose K
is the maximum number of simultaneously active beams in
each time slot, then illumination ratio Q is defined as K

N .
Detailed performance comparison of the proposed schemes
with the benchmark CH technique 6 [29] which uses fixed
size, pre-defined clusters is demonstrated. We consider two
clustering options, Clustering Option-1 and Clustering Option-
2 corresponding to the cluster sizes of 4 beams/cluster and
6 beams/cluster, respectively, for the CH technique similar
to that was used in [29]. Hereafter, the CH technique with
clustering Option-1 and Option-2 is also abbreviated as CH 1
and CH 2, respectively. Also, we consider three illumination
ratio values, i.e., 1

4 ,
1
6 and 1

8 . The beam configuration for the
three illumination ratios is provided in Table I.

The per-beam power depends on the illumination ratio (or
on the number of active beams per snapshot) and can be
expressed as,

Pbeam[dB] = 10 · log10

PT

Number of active beams
− Total loss[dB].

Remark 1. Attenuation due to rainfall can be significant at
Ka-band. Rain attenuation is already considered in actual

6Since the CH technique outperforms the conventional BH scheme as
already shown in [29], we have selected the best up-to-date illumination
pattern design scheme, i.e., CH scheme, as a benchmark scheme.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3292554

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

TABLE I: Number of clusters and number of active beams per snapshot for
different clustering options

1/4 1/6 1/8

4 3 2

16 12 8

3 2 1

18 12 6

17 11 8

Configuration
Number of
beams per

cluster

Illumination
ratio

Clustering
option 1 4

Number of
active clusters
per snapshot
Number of

active beams
per snapshot

Clustering
option 2 6

Number of
active clusters
per snapshot
Number of

active beams
per snapshot

Flexible
Clustering Not fixed

Number of
active beams
per snapshot

operating GEO VHTS at the radio link design level. When
GEO VHTS started moving towards higher frequency bands,
the adaptive code modulation (ACM) in the DVB air interface
standard was introduced for rainfall fade mitigation.

The following KPIs are used to measure the performance
of the proposed algorithms:

• System Unmet Capacity, defined as

Cunmet =

N∑
i=1

max (di − si, 0) ,

where di and si denote the demand and the supplied
capacity of the i-th beam, respectively.

• System Unused Capacity, defined as

Cunused =

N∑
i=1

max (si − di, 0) .

• System Demand D =
∑N

i=1 di.
• The system supplied capacity is the total average supplied

capacity of considering all beams:

Csupplied =

N∑
i=1

si.

Note that the supplied capacity Csupplied = Cunused +
Cmet , where Cmet represents the amount of system
demand that is satisfied.

• Beam demand satisfaction (BDS) rate of beam b, which
is defined as,

BDSb(%) = 100×min

(
sb
db

, 1

)
.

Average beam demand satisfaction, which is defined as,

BDSavg(%) =

∑N
b=1 BDSb

N
.

Sometimes it is interesting to evaluate the minimum
of the beam demand satisfaction percentage, i.e.
BDSmin = min(BDS1, ..., BDSN ), since it gives us
an indication of how well the worst users on the system
are addressed.

TABLE II: Simulation Parameters

Parameter Value
Bandwidth BW 500 MHz

Operating frequency (fc) 19.5 GHz
Satellite transmission power (PT ) 6000 Watt

Total loss 5 dB
Time slot duration (∆T ) 1.3 ms
Number of time slots (T ) 256
Illumination ratios (I.R.) 1/4, 1/6 or 1/8

Noise temperature 354 K

TABLE III: Total System Demand of pre-fixed instances

Demand Instance
1 : 00am 8 : 00am 12 : 00pm

Total Demand 24Gbps 28Gbps 32Gbps

• System efficiency, i.e., the fraction of the supplied ca-
pacity utilized to satisfy the system demand is defined
as,

η(%) = 100×
(

Cmet

Csupplied

)
.

A. Performance evaluation of the proposed and the benchmark
schemes for pre-fixed demand instances generated by Traffic
Emulator

In this set of experiments, pre-fixed traffic demand distri-
butions are generated using Satellite Traffic Simulator in [38].
As a part of the traffic simulator, the three credible input data
sets, i.e., population, aeronautical, and maritime, are analyzed
and processed simultaneously to simulate the spatial-temporal
traffic demand and distribution during 24 hours of the day.
To account for the time variability of the traffic, we have
considered the traffic demand instances at three different time
stamps, i.e., 1:00 am, 8:00 am, and 12:00 pm as shown in
Fig. 1 which correspond to low, medium, and high demand
scenarios, respectively. The total system demand of the three
traffic instances is summarized in Table III.

Fig. 2 and Fig. 3 show the demand-supply matching profile
of each beam corresponding to demand instance at 12:00
pm (i.e., high demand) and 1:00 am (i.e., low demand),
respectively, for different considered techniques. In addition,
high (i.e., 1/4) and low (i.e., 1/6) illumination ratios are used
corresponding to the high and low demand cases, respectively.
It can be seen that there is a large deviation in the beam
supply-demand matching profile obtained from the benchmark
techniques CH 1 and CH 2 as compared to the proposed
techniques. In particular, SCA based technique outperforms
all other techniques in terms of the beam supply-demand
matching metric.

Fig. 4 and Fig. 5 report on the CDF of the per slot transmit
power utilized to satisfy beam demands corresponding to 1:00
am and 12:00 pm, respectively, for all the considered tech-
niques. The benchmark CH scheme activates a fixed number of
beams per time slot, and hence, the transmitted power in each
slot is also fixed, i.e., independent of the clustering option as
well as the illumination ratio. As observed in Fig. 4 and Fig. 5,
the CH scheme always performs the worst whilst the proposed
FCH scheme outperforms for low as well as for high demand
instances. With the proposed schemes, the algorithm decides
how many beams per time slot to activate, typically resulting in
transmit power savings as fewer beams are activated whenever
possible.
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Fig. 1: Different types of pre-fixed demand instances generated from the Traffic Emulator in [38] (a) 1:00 am (b) 8:00 am (c) 12:00pm.
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Fig. 2: The figure shows a comparison of per beam supply-demand matching
using various techniques corresponding to the demand instance at 12:00 pm
(i.e., high demand) and illumination ratio 1
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Fig. 3: The figure shows a comparison of per beam supply-demand matching
using various techniques corresponding to the demand instance at 1:00 am
(i.e., low demand) and illumination ratio 1

6
.

Tables IV and V summarize the performance of the various
schemes in terms of all the KPIs for low and high demand
cases, respectively. From both tables, it is apparent that the
proposed schemes perform better than the benchmark CH
scheme in terms of the average beam demand satisfaction,
and system efficiency. Similarly, the benchmark CH scheme
performs the worst in terms of the total of unmet and unused
capacity for both the low and high-demand cases.

The results given in Table VI represent the Matlab imple-
mentation running time complexity of the considered schemes
which is estimated by calling the “Tic-Toc Matlab function”
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HWQ; I.R. = 1/6

FCH; I.R. = 1/4

FCH; I.R. = 1/6

CH 1 & CH 2

Fig. 4: The figure shows a comparison of the CDF of the transmit power per
slot to satisfy beam demands corresponding to 1:00 am demand instance for
various techniques.
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Fig. 5: The figure shows a comparison of the CDF of the transmit power per
slot to satisfy beam demands corresponding to 12:00 pm demand instance for
various techniques.

before-after the CVX on PC with Intel Core i7-1085H CPU
@ 2.7GHz for the demand instance case at 12:00 pm (i.e.,
high demand). Note that we set-up a limit of 120 seconds
to conclude the task. This is because CVX uses an iterative
approximation method to obtain the optimal solution and it
might get stuck trying to achieve the target accuracy. As
observed, the implementation time complexities of the queuing
methods (i.e., LWQ and HWQ) are extremely less as compared
to that of the other schemes and the SCA scheme has the
highest time complexity due to its iterative behavior. Focusing
on the queue-based schemes, we identified that the LWQ
method works better for low-loaded scenarios and the HWQ
method works better for highly-loaded scenarios. In general,
assuming that the satellite resources have been well planned
for the expected demand, the LWQ approach would be the
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TABLE IV: Comparison of various techniques in terms of different KPIs for
the demand instance 1:00am

KPI I.R.a FCH SCA LWQ HWQ
1/4 31.10 36.90 16.94 22.07 24.82 21.17
1/6 26.10 27.20 18.12 23.20 23.71 19.83
1/8 19.02 14.85 15.17 17.44 20.61 17.85
1/4 10.93 9.08 10.27 3.05 2.18 4.48
1/6 11.34 9.14 7.96 2.43 1.97 5.89
1/8 12.01 13.00 9.24 7.61 4.47 7.77
1/4 18.11 21.95 3.19 1.10 1.87 1.64
1/6 13.43 12.32 2.06 1.60 2.78 1.70
1/8 7.00 3.83 0.4 1.03 1.06 1.60
1/4 23.50 89.01 64.96 95.37 97.82 93.38
1/6 17.50 85.50 69.74 98.24 98.86 93.80
1/8 11.91 72.36 64.80 93.64 51.66 93.18
1/4 42.24 40.51 81.14 95.01 92.46 92.25
1/6 48.56 54.73 88.63 93.10 88.27 91.43
1/8 63.19 74.26 97.33 94.09 94.86 91.04

CH 1 CH 2

Csupplied
(Gbps)

Cunmet
(Gbps)

Cunused
(Gbps)

Average
BDS
(%)

η (%)

a I.R. stands for Illumination ratio.

TABLE V: Comparison of various techniques in terms of different KPIs for
the demand instance 12:00 pm

KPI I.R. FCH SCA LWQ HWQ
1/4 31.33 37.37 17.1 28.75 31.03 27.62
1/6 25.6 27.95 17.44 20.73 24.91 23.52
1/8 18.8 14.95 15.53 18.19 19.99 19.25
1/4 16.04 14.29 16.8 5.72 5.07 7.88
1/6 17.16 15.14 16.33 12.32 8.54 11.92
1/8 18.68 20.22 17.03 15.57 12.56 16.20
1/4 15.06 19.36 1.59 2.17 3.79 3.2
1/6 10.45 10.79 1.46 0.75 1.14 3.13
1/8 5.18 2.84 0.25 1.45 0.24 3.14
1/4 77 79.04 58.24 96.0 98.1 95.0
1/6 73 73.4 52.87 91.1 51.2 92.0
1/8 69 60.01 48.09 86 32 87.03
1/4 51.91 48.22 90.61 91.4 86.79 87.33
1/6 59.17 61.4 91.6 94.93 94.18 85.37
1/8 72.48 81.03 98.38 90.32 97.23 82.08

CH 1 CH 2

Csupplied
(Gbps)

Cunmet
(Gbps)

Cunused
(Gbps)

Average
BDS (%)

η (%)

preferred option.

B. Performance evaluation of the proposed and the bench-
mark schemes using Monte Carlo simulations for randomly
generated demand instances

Herein, we present the numerical results corresponding to
Monte-Carlo simulations for the proposed and benchmark
techniques for 100 instances of the three types of traffic
demands which are randomly generated from different dis-
tributions. Essentially, the beams are classified into three
categories, i.e. high-demand beams (hot), medium-demand
beams (warm), and low-demand beams (cold) based on the
demand limit values shown in Table VII. Once beams are
classified, their demand instance is generated uniformly ran-
domly in the limited range. The following distributions are
considered: (i) Clustered Demand 1, (ii) Clustered Demand 2,
(iii) Clustered Demand 3. Clustered demand 1 consists of 1
big cluster of “Hot” beams at the center. Clustered Demand 2
has 3 randomly located clusters each consisting of 6-7 “Hot”
beams. Finally, Clustered demand 3 has randomly located
multiple small-sized clusters which consist of high-demand
“Hot” beams.

Herein, we want to investigate the effect on the cluster
sizes obtained from FCH algorithm with different demand
instances. Table VIII depicts the variation of the average
number of clusters of different sizes for two different kinds of
randomly generated demand instances, i.e., Clustered Demand
2 and Pre-fixed 1:00 am, which corresponds to high and low

TABLE VI: Run Time Complexity of different schemes for different illumi-
nation ratios and for high demand instance at 12:00 pm

1/4 1/6 1/8
120s 120s 120s
6.63s 6.57s 6.11s
104s 104s 104s
1.49s 1.42s 1.44s
1.53s 1.43s 1.44s

Scheme Illumination ratio

CH
FCH
SCA
HWQ
LWQ

TABLE VII: Classification into Hot / Warm / Cold beam based on beam
demand limit values

Hot Warm Cold
Upper Limit 750 Mbps 450 Mbps 200 Mbps
Lower Limit 500 Mbps 250 Mbps 100 Mbps

TABLE VIII: Variation of the average number of clusters of different sizes
obtained from the FCH algorithm with illumination ratio 1/4 for two different
demand instances

1 1543 773
2 408 189
3 207 56
4 132 34
5 85 45
6 60 27
7 39 31
8 25 11
9 16 6
10 10 3
11 4 1
12 3 1
13 2 1
14 2 0
15 1 0
16 1 0
17 1 0

Cluster Size
Number of clusters

Clustered Demand 2
(26.24 Gbps)

Pre-fixed 1:00 am
(24 Gbps)

demand scenarios with a total demand of 26.24 Gbps and 24
Gbps, respectively. It can be clearly seen from Table VIII
that the number of large-size clusters are less and increases
when demand increases. This also shows the superiority of
the proposed FCH algorithm since less number of large-
size clusters results in the low computation cost required for
precoding. Moreover, Clustered Demand 2 consists of a large
number of beams with high demand (i.e., warm and hot beams)
as compared to the Pre-fixed 1:00 am demand. Therefore, the
FCH algorithm results in an illumination pattern in which
large-size clusters are generated to match the high demand
of those warm and hot beams. As illustrated in Table VIII,
there exist clusters with sizes 14, 15, 16, and 17 in the case
of Clustered Demand 2 as compared to the case of Pre-fixed
1:00 am demand in which the maximum cluster size is 13.
Hence, the proposed FCH algorithm adapts supplied capacity
to the beam demand distribution and simultaneously activates
the required number of multiple beams (i.e., cluster) to match
the heterogeneous demands.

Fig. 6 describes the CDF variation of the unmet capac-
ity, minimum beam demand satisfaction (i.e., BDSmin) and
average beam demand satisfaction (i.e., BDSavg) using dif-
ferent considered schemes for the Clustered Demand 2 and
illumination ratios 1/4 and 1/6. As observed from the Fig. 6
for the given illumination ratio, the proposed FCH scheme
outperforms and than LWQ scheme performs second best
among the remaining schemes in terms of all the unmet
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Fig. 6: The figure plots a comparison of the benchmark CH scheme with
the proposed schemes in terms of the CDF of unmet capacity, minimum
beam demand satisfaction (BDSmin) and average beam demand satisfaction
(BDSavg) obtained from Monte Carlo simulations corresponding to the
Clustered Demand 2.

capacity, BDSmin and BDSavg for Clustered Demand 2. The
same experiments are repeated also for Clustered Demand 1
and Clustered Demand 3. Fig. 7 and 8 report the CDF of
the unmet capacity and average beam demand satisfaction rate
BDSavg for Clustered Demand 1 and 3, respectively. It can be
confirmed that the proposed FCH and queuing-based schemes
outperform the benchmark CH scheme. Next, Fig. 9 reports
the system efficiency for Clustered Demand 2 using all the
considered schemes and it can be inferred that the FCH scheme
with an illumination ratio of 1/6 gives the best efficiency. Also,
the FCH scheme with an illumination ration of 1/4 results in
poor efficiency because it provides excess supplied capacity
compared to the system demand.
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Fig. 7: The figure plots a comparison of the benchmark CH scheme with the
proposed schemes in terms of the CDF of unmet capacity and average beam
demand satisfaction rate (BDSavg) obtained from Monte Carlo simulations
corresponding to the Clustered Demand 1.

After evaluating the proposed techniques with very different
demand instances, we can confirm that the proposed tech-
niques are able to provide very good demand satisfaction with
any type of input demand. The FCH and the queuing-based
schemes achieve good demand matching with a slightly better
match for FCH scheme. However, the computational time of
the queuing-based scheme and its generally good performance
make it very attractive for practical satellite systems.

1) Effect of hopping window size: Herein we analyze the
impact of the parameter T , i.e., the number of time slots
in the hopping window on the performance of the various
proposed schemes. Fig. 10 presents the BDSavg and unmet
capacity versus the various values of the number of time
slots in the hopping window. As can be observed, the higher
value of T results in the best demand-matching numbers.
In particular, when the hopping window size increases, the
proposed schemes have more flexibility in assigning the active
time-slots per beam resulting in better performance in terms of
unmet capacity and average beam satisfaction rate. In practical
systems, however, we need to consider a trade-off between
window length (periodicity of the illumination pattern) and
per-beam latency of activation. The longer the beam-hopping
window, the more flexibility in matching the demand but a
longer window may have a negative impact on latency and
revisiting times. From the results, it seems that, after some
point, increasing the window size does not have a significant
impact on the performance; which evidences that an optimal
point may be found by balancing the different aspects of the
final users’ quality of experience.

2) Effect of the number of simultaneously illuminated
beams K in a time slot: Herein, we investigate the perfor-
mance of the proposed algorithms with the maximum number
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Fig. 8: The figure plots a comparison of the benchmark CH scheme with the
proposed schemes in terms of the CDF of unmet capacity and average beam
demand satisfaction rate (BDSavg) obtained from Monte Carlo simulations
corresponding to the Clustered Demand 3.
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Fig. 9: The figure shows a comparison of the benchmark CH technique with
the proposed techniques in terms of the CDF of the system efficiency obtained
from Monte Carlo simulations corresponding to the Clustered Demand 2.

of illuminated beams, K, in a time slot. Table IX summarizes
the performance of the various algorithms in terms of Unmet
and Unused capacity for Clustered Demand 2 case. It can
be seen that the FCH algorithm requires less number of
illuminated/active beams in each time slot to best satisfy the
user’s demand as compared to the case of using the SCA,
LWQ, and HWQ algorithms. Furthermore, it can be deduced
that FCH algorithm outperforms for low value of K and the
LWQ algorithm outperforms for the high value of K.

VIII. CONCLUSIONS

In this paper, highly flexible beam illumination pattern
designs were proposed for efficient utilization of resources in
multi-beam satellite systems which allow clusters of different
shapes and sizes depending on the user demands. A max-min
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Fig. 10: The plot depicts the effect of the parameter T , i.e., the number of
time slots in the hopping window on the performance of the proposed schemes
with illumination ratio 1/6 and for the Clustered Demand 2.

TABLE IX: Comparison of various algorithms in terms of
Unmet and Unused capacity for Clustered Demand 2 for
different values of K

5 10 15 20
Cunmet 12.39 1.58 0 0
Cunused 0 0.01 6.29 12.51
Cunmet 12.85 5.13 0.93 1.09
Cunused 0.55 1.21 0.60 0.61
Cunmet 12.79 3.53 0.01 0.10
Cunused 0 0.15 2.13 1.28
Cunmet 14.71 5.59 0.28 0.10
Cunused 2.03 3.20 3.24 2.72

Algorithm KPI K

FCH

SCA

LWQ

HWQ

fair beam supply-demand framework was developed with the
goal of reducing interference using precoding by ensuring the
maximum number of illuminated beams in each time slot. The
interference minimization problem was also formulated as a
penalty minimization problem, and two solution approaches,
i.e., SDP-based and SCA based, were proposed without
the need for complex precoding designs. Additionally, two
queuing-based approaches, LWQ and HWQ, were proposed
to maximize the sum weighted rate in each time slot.

The performance of the proposed schemes has been eval-
uated via extensive numerical simulations. The experimen-
tal results have revealed that the proposed schemes outper-
form the relevant benchmark CH scheme in terms of beam
supply-demand matching. Finally, the proposed schemes are
practically important as they address the challenge of effi-
ciently designing beam illumination patterns while considering
the heterogeneous user demands and inter-beam interference,
which is crucial in satellite communication systems where
interference can severely impact the quality of service.
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