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We demonstrate that biomechanical forcing plays an important role as the driving force behind the
dynamical self-regulation of cell size (or length) in growing bacterial colonies. In our experiments,
the measured elongation rate decreases over time and depends on the areal packing density around
each cell. To describe this phenomenon theoretically, we devise a cell-resolved model which includes
as its key ingredient a force opposed to the growth process, accounting for mechano-self-regulation.
Our model is analyzed analytically by a coarse-grained dynamical density functional theory and
solved by cell-based computer simulations to predict how the strength of mechano-self-regulation
depends on the bacterial size, the location in the colony and the local environment. The microscopic
nature of this approach allows to quantify the effect of biomechanical interactions on the structure,
composition and dynamical features of growing bacterial colonies.

Assemblies of rodlike particles can exhibit a large va-
riety of intriguing collective ordering phenomena due to
their internal orientational degrees of freedom — both
in and out of equilibrium [1–7]. Specifically, over the
last years, there has been an increasing interest in the
biophysical properties of bacterial colonies expanding on
nutrient-replete surfaces [8–10]. These colonies typically
consist of rod-like agents whose size increases and which
eventually divide in the course of a cell cycle [11–14].
The mechanical interactions between these bacteria have
been identified as a key ingredient to determine the struc-
ture and shape of the growing colony [15–18]. Moreover,
growing bacterial colonies have been recently reported
to collectively self-regulate phenotypic traits over time
[19]. Yet, how collective interactions at the scale of the
colony enable bacterial populations to dynamically tune
the size of single cells remains unknown. In particular,
there is still a need for quantifying the effect of biome-
chanical forces between individual bacteria on the growth
process, in view of the emerging phenotemporal behav-
ior, i.e., the time-dependent distribution of bacterial sizes
(or lengths), in course of the evolution of the growing
colony [20].

Inspired by experiments, here we put forward a mi-
croscopic first-principles model derived from dynamical
density functional theory (DDFT) [21–23] to predict the
self-regulation of phenotemporal properties in a grow-
ing bacterial colony through a cell-length-resolved den-
sity [24, 25]. As compiled in Fig. 1, our model is de-
signed to capture the fundamental aspects of bacterial
growth (details on our methods and results are provided
as supplementary information [26]). In our experiments,
shown in the top panel of Fig. 1, we observe the growth
of Escherichia coli at 30◦ C, on a nutrient-rich agarose
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substrate. A single cell first divides into two cells of equal
length which then continue to grow with a certain elonga-
tion rate. At later times, as the colony becomes denser,
growth and cell division progress with reduced elonga-
tion rate. This effect is significantly more pronounced for
closely packed cells in direct contact with their neighbors
than for the loosely packed cells flanked by void regions
of the colony. Overall, we observe that the average cell
elongation rate is nearly halved in the grown colony.

As demonstrated by means of cell-resolved Langevin
simulations in two dimensions, shown in the bottom
panel of Fig. 1, the central experimental observations are
modeled by accounting for four basic ingredients: divi-
sion of a bacterium with length 2L into two shorter agents
of length-at-birth L, growth with a certain elongation
rate, fluctuations of the elongation rate and mechano-
self-regulation. By the latter, we denote a mechanical
force which reflects the ability of the individual bacte-
ria to sense the presence of other bacteria in their sur-
rounding (or external stimuli) [27, 28] and, based on this
information, self-regulate their growth behavior to avoid
overcrowding [29]. As the main prediction of this model,
we observe in Fig. 1Q an effective reduction of the bac-
terial elongation rate over time. Specifically, our length-
resolved DDFT provides analytic insight into the growth
process, predicting the evolution towards a unique distri-
bution of cell lengths, which reflects the stochastic nature
of growth. On top, our cell-based simulations reveal the
spatiotemporal aspects of mechano-self regulation.

In the spirit of DDFT, we describe the growth dynam-
ics of the bacterial colony by its density ρ(l, t) explicitly
resolving the size of the bacteria, represented here by a
length l. Having reached the maximal length l = 2L, each
bacterium splits into two new individuals with length-at-
birth L. To make analytic progress, we restrict l to the
interval l ∈ [L, 2L] and incorporate cell division through
the oblique boundary condition

ρ(L, t) = 2ρ(2L, t) . (1)

ar
X

iv
:2

21
2.

10
10

1v
1 

 [
co

nd
-m

at
.s

of
t]

  2
0 

D
ec

 2
02

2

mailto:rene.wittmann@hhu.de
mailto:anupam.sengupta@uni.lu
mailto:fabian.schwarzendahl@hhu.de


2

FIG. 1. Decreasing bacterial elongation rate in a growing colony. Top: Experiments on a monolayer of cells dividing every ∼30
minutes on a nutrient-rich agarose substrate, reaching a cell count of ∼4500 bacteria after 450 minutes. (A, B) Division of cells
(hued in blue) in the early stage of the colony. (C, D) Growth of cells (hued in yellow) during the early phase over an interval of
10 minutes. The average cell elongation rate 〈∆l〉/10min is 0.067±0.011 µm/min. (E) Micrograph of a well-developed bacterial
monolayer comprising about 2600 cells. (F, G) Division of cells (hued in blue) and growth of both loosely and densely packed
cells (hued in green and red) over an interval of 10 minutes within the dense colony. The corresponding average elongation rates
are 0.055± 0.013 µm/min and 0.033± 0.01 µm/min, respectively. (H) Cell elongation rate of all bacteria as a function of time.
Bottom: Corresponding predictions of our theoretical model (I), where tG := L/G is the time between the first two divisions.
(J-P) Simulation snapshots reflecting the experimental images shown above with the strength of the mechanical interactions on
each bacterium highlighted by color. In the closeups (O,P) of the dense colony, we also highlight selected cells showing division
(blue), fast growth in a dilute region (green) and slow growth in a dense region (red). (Q) Effective elongation rate Geff(t),
defined in Eq. (5), from DDFT using the analytic result of Eq. (4) and simulation (6) with numerical errors for the fluctuation

parameter D = 10−2GL. The parameters S = 10−4G/ρ̄0 and S̃ = 5 × 103G/L3/2 for mechano-self-regulation are chosen to
obtain a comparable decay behavior.

The total density ρ(l, t) ≡ ρ̄(t)h(l, t), can be conveniently
expressed by the normalized length distribution h(l, t)
with

∫
dl h(l, t) = 1 and the length-averaged density ρ̄(t).

In our model the colony’s time evolution is given by

∂tρ(l, t) = ∂l
(
−Gρ(l, t) +D∂lρ(l, t) + Sρ(l, t)ρ̄(t)

)
, (2)

where ∂i is short for the partial derivative with respect to
i = t, l. The first term in the brackets is a constant drift
term which describes the bacterial growth with (aver-
age) elongation rate G, driving the system out of equilib-
rium. The second term is of diffusive nature and models
elongation-rate fluctuations with magnitude D. Finally,
the last term in Eq. (2) represents the mechanical interac-
tions of strength S. Here, we use a mean-field description
for soft interactions in the form of Gaussian cores [30],
but also more general interactions can be incorporated
through appropriate free-energy functionals [31–34].

The phenotemporal description of ρ(l, t) in Eq. (2) can
be thought of as a coarse-grained model after integrating
out positions and orientations of a more general DDFT
[26]. In turn, if one is only interested in the increase of
the density ρ̄(t), we recover after further coarse graining

the bare growth equation

∂tρ̄(t) = ρ̄(t)

(
R− S ln 2

L
ρ̄(t)

)
(3)

reminiscent of models for (space-resolved) population dy-
namics [35, 36]. In connection with Eq. (2) we identify
the overall growth rate R = G ln(2)/L+D(ln(2)/L)2.

As one of our main results, mechano-self regulation
(S > 0) slows down the growth and the colony eventually
attains a stationary state. Specifically, solving Eq. (3)
with ρ̄0 := ρ̄(0) we find that the average density

ρ̄(t) =
Rρ̄0

S ln 2
L ρ̄0 + (R− S ln 2

L ρ̄0)e−Rt
, (4)

approaches the maximal value ρ̄(∞) = RL
S ln 2 for t → ∞.

From Eq. (4), we then find the effective elongation rate

Geff(t) := G+D
ln 2

L
− Sρ̄(t) , (5)

shown in Fig. 1Q, which decays to zero when all available
space is occupied for t → ∞. These results serve as
a reference for the solutions of Eq. (2) for nonuniform
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FIG. 2. DDFT results from Eq. (2) with Eq. (1). (A-D)
Time evolution (color bar) of the length distribution from an
initial Gaussian peak centered at l = L/2 with parameters
S = 0 (left) or S = 10−2G/ρ̄0 (right) and D = 0 (top) or
D = 10−2GL (bottom). If a stationary distribution h(l,∞)
exists, it is drawn in red. (E,F) Time evolution of the aver-
age density ρ̄(t) and the effective elongation rate Geff(t) for
different parameters (as labeled). The respective analytic pre-
dictions of Eqs. (4) and (5) are drawn as black dashed lines.

length distribution h(l, t), e.g., when initializing h0(l) :=
h(l, 0) with a peak to represent a single bacterium.

Together with the boundary condition (1), our phe-
notemporal DDFT (2) provides valuable analytic insight
into the growth process [26], as compiled in Fig. 2. In the
absence of both fluctuations (D = 0) and interactions
(S = 0), we observe an oscillating growth, cf. Fig. 2A,
where h(l, t) ∝ 2h0(l+∆l(t))+h0(l+∆l(t)−L) is periodic
in time as the horizontal offset ∆l(t) increases linearly
from 0 to L within one period tG := L/G, which sets out
time unit. After each generation, denoted by an integer
n such that ∆l(t = ntG) = 0, the distribution resorts to
its initial form h0(l) := h(l, 0) and the average density
ρ̄(nL/G) = 2nρ̄0 has doubled. With interactions (S > 0
but D = 0), we observe a retarded growth, cf. Fig. 2B,
where the period of these oscillations increases from gen-
eration to generation, as the effective elongation rate (5)
decreases over time. When the density ρ̄(∞) = G/S
reaches its stationary value in course of the birth of a new
generation, the length distribution is suddenly arrested.
With fluctuations (D > 0 but S = 0), we observe uniform
growth, cf. Fig. 2C, where the distribution broadens and
approaches the unique limit h(l,∞) ∝ 2−l/L, without set-
ting a limit to the indefinite exponential growth of ρ̄(t).
For extreme fluctuations (D � S and D � G/ρ̄0) our

FIG. 3. Cell-based simulation results from Eq. (6). (A-D)
Snapshots as in Fig. 1N (different color bar) of two colonies
with D = 10−2GL but different mechano-self-regulation S̄ at
two times (see annotations). (E) Local effective elongation
rate as a function of the radial distance r from the colony
center of mass. (F) Normalized length-force correlation.

model predicts a fluctuation-driven growth (not shown)
with h(l,∞) ∝ (3L− l).

Combining the behavior from the above special cases,
the full dynamics in Eq. (2) can be understood as retarded
and uniform growth, cf. Fig. 2D, where the distribution
h(l, t) simultaneously broadens and increases its period
in the course of time. Hence, the average density ρ̄(t) in-
creases jerkily due to correlated division bursts, as shown
in Fig. 2E. The coarse-grained prediction from Eq. (4) is
recovered after a certain time when the length distribu-
tion has approached h(l,∞) ∝ 2−l/L due to fluctuations.
Another consequence of a nonuniform length distribu-
tion is an effective elongation rate which depends on the
instantaneous length distribution [26]. For the average
effective elongation rate Geff(t), defined in Eq. (5), we
observe in Fig. 2F an earlier decay for both increasing
mechano-self regulation (stronger counter-force) and in-
creasing fluctuations (faster growth). Moreover, Geff(t)
shows a jerky behavior for weak fluctuations, just like the
average density.

To corroborate the predictions of our probabilistic
DDFT and gain further insight, we perform cell-resolved
Langevin simulations of the spatio- and phenotemporal
growth process locally limited by mechano-self regula-
tion [26]. To this end, we consider rod-like bacteria of
lengths li which interact through Hertzian repulsion and
couple the Langevin equations for positions and orienta-
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tions to the stochastic length dynamics

∂tli = G+
√

2Dξi + S̃
∑

j
h

3/2
ij , (6)

where hij is the overlap of two cells i, j and ξi a white
noise of unit variance. Due to the different nature of
interactions considered the mechano-self-regulation pa-
rameter S̃ is different from S in Eq. (2).

The effective elongation rate Geff(t) averaged over the
whole colony is shown in Fig. 1Q. As in the experiment
Geff(t) decreases at later times but does not rapidly ap-
proach zero since the continuously growing periphery of
the colony always remains sufficiently dilute. Our lo-
cal simulation results compiled in Fig. 3 reveal that the
mechanical force on longer bacteria is typically stronger
than on shorter bacteria and that the local elongation
rate increases from the colony center to the periphery.
For a stronger overall mechano-self regulation (larger S̃),
the colony grows slower and the difference between the
typical forces in these two regions is more significant.
Moreover, as illustrated in Fig. 1O to P, the local force
acting on a bacterium in a dense colony is smaller when
it is surrounded by voids than when it is in close contact
with its neighbors, which also feeds back on the indi-
vidual elongation rate measured in our experiment, cf.
Fig. 1F to G.

To gain further insight into the length-distribution dy-
namics, we compare in Fig. 4 the experimental results
for the average length l̄(t) :=

∫
dl l h(l, t) and the nor-

malized variance ∆(t) :=
∫

dl (l − l̄(t))2 h(l, t)/(l̄(t))2 to
our model predictions. After early fluctuations owed to
the synchronous cell cycles in the early generations, the
experimental data show a clear trend that the bacteria
become shorter in the dense colony, while the variance
begins to plateau under the experimental growth con-
ditions considered here. The moments from DDFT os-
cillate around their values for the uniform distribution
h(l,∞) ∝ 2−l/L. The experimental observations are even
better captured by a refined DDFT, modeling cell divi-
sion through source and sink terms and replacing Eq. (1)
with a directed condition that prevents flow through the
boundary from short to long [26]. This predicts the ex-
pected decrease of l̄(t) when the colony has grown suf-
ficiently dense. We find similar results from cell-based
simulations, where some bacteria in the dense region self-
regulate their length below the length-at-birth L.

We have introduced a DDFT model for growing bac-
terial colonies from which we predicted analytical length
distributions and drew parallels to dynamical observa-
tions in experiments and Langevin simulations. Our
description of mechano-self regulation both contributes
to a comprehensive theoretical understanding of growing
bacterial colonies and elucidates the role of biomechan-
ical forces in living samples. One possible application
of our mechanical self-regulating force is to explain the
onset of the mono-to-multilayer transition (or vertical-
ization) [10, 19, 37], i.e., when individual bacteria evade
crowded regions by escaping into the third dimension to

FIG. 4. Time dependent moments of the length distribu-
tion. We compare the average cell length l̄(t) (left) and the
normalized variance ∆(t) of the cell length (right) for two bi-
ological replicates in the experiment (top) until the mono-to-
multilayer transition [10] (upward arrows). We also show our
model predictions using DDFT with an oblique boundary (1)
and a refined version with a directed boundary condition [26]
(middle) and cell-based simulations (bottom) with compara-
ble parameters, cf. Fig. 1Q, as labeled.

form new layers. In our experiments this happens after
about 450 minutes, which roughly corresponds to t≈13tG
for the model parameters chosen accordingly in Fig. 1Q.
Our model intuitively suggests that this transition oc-
curs when the local in-plane mechanical force opposing
the growth, as measured in Fig. 3A to D, exceeds a cer-
tain threshold.

To provide a broader account of biodiversity and in-
ternal cell processes in future work, our model can
be readily extended by considering a self-regulated life
time or length-at-birth [13, 14], nonlinear cell elongation
[19, 38, 39], death events [40, 41] or division into multiple
daughter cells [42], as well as to describe multiple species
of bacteria with different properties [43, 44], including
phenotype switching [45, 46] or mutation [16, 47, 48].
A logical extension of our DDFT is to additionally re-
solve positions and orientations [33, 34, 49]. Both this
generalized DDFT [26] and our cell-based simulations
allow to explore the spatiotemporal effects of a hetero-
geneous local length distribution when investigating the
colony structure [41, 50–52], interactions between multi-
ple colonies [53–55], confinement effects [56–58], topo-
logical defect dynamics [19, 59–63], emerging smectic
order [18, 64–68] or growth into the third dimension
[19, 37, 69, 70]. Attractions through pili bonds [53, 54],
or the capability of individual bacteria to enter a motile
state [71, 72] can also be modeled. Moreover, it will be
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interesting to study growth within porous media [73, 74]
or to include other spatially distributed agents interact-
ing with the growing colony, such as nutrients [75, 76],
antibiotics [43, 77], parasites like bacteriophages [78] or a
secreted extracellular matrix mediating biofilm formation
[52, 75]. Finally, our DDFT equations allow for a system-
atic derivation [79, 80] of phase-field crystal models [81]
to recover hydrodynamic field equations [9, 60, 61] and
explicitly incorporate aspects related to bacterial length.
Exploring the relation to active nematics [82] constitutes
an interesting perspective.
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Supplementary Material: Mechano-self-regulation of bacterial size in growing colonies

I. GENERAL THEORY FOR BACTERIAL GROWTH

In this supplemental section we derive our main equation, Eq. (3), of the main text and provide the theoret-
ical background on dynamical density functional theory (DDFT). Section I A introduces our general position- and
orientation-resolved DDFT model for growing colonies, which includes the dynamics of the particle length. Section I B
then discusses the coarse-grained version of our DDFT model analyzed in the main text to describe the phenotemporal
dynamics only. Section I C shows how a bare growth equation for the average density can be obtained upon further
coarse graining.

A. DDFT for growing bacterial colonies

To derive our general DDFT model for growing bacterial colonies, we proceed in three steps. First, in Sec. I A 1, we
briefly introduce the basic concept of DDFT by considering a polydisperse mixtures of orientable particles of length
l. Second, in Sec. I A 2, we demonstrate how to use DDFT for growing bacteria whose length changes over time by
identifying additional terms that describe fluctuations and interactions affecting the dependence on l itself and adding
a growth term to drive the system out of equilibrium. Finally, in Sec. I A 3, we discuss how to incorporate cell division.

1. DDFT for polydisperse particle lengths

To describe a polydisperse mixture of particles with different length l (or, more generally, different sizes), we consider
the time-dependent one-body number density ρ(r,p, l, t), which has dimension of inverse volume times inverse particle
length. In such a system, each particle has a fixed length l, such that the total number N =

∫
dr
∫

dp
∫

dl ρ(r,p, l, t)
of particles and also the length distribution h(l) =

∫
dr
∫

dp ρ(r,p, l, t)/N remain independent of time.

The idea of dynamical density functional theory (DDFT) [21–23] is that, at a time t, the instantaneous time-
dependent density ρ(r,p, l, t) gives rise to nonequilibrium currents, generated from an equilibrium free energy, which
themselves drive the time evolution of the density according to the continuity equation

∂ρ(r,p, l, t)

∂t
= −∇r · Jr(r,p, l, t)− R̂p · Jp(r,p, l, t) , (7)

where ∇r is the spatial gradient, R̂p = p × ∇p is the rotation operator and β = (kBT )−1 denotes the inverse
temperature with Boltzmann’s constant kB to provide the energy scale. The currents have the general form

Jr(r,p, l, t) = −Dr∇rρ(r,p, l, t)−Drρ(r,p, l, t)∇r
δβFex [ρ]

δρ(r,p, l, t)
−Drρ(r,p, l, t)∇rβVext(r,p, l) ,

Jp(r,p, l, t) = −DpR̂pρ(r,p, l, t)−Dpρ(r,p, l, t)R̂p
δβFex [ρ]

δρ(r,p, l, t)
−Dpρ(r,p, l, t)R̂pβVext(r,p, l) , (8)

where Dr and Dp denote the translational and rotational diffusion coefficients, respectively. In both cases, the
first term describes ideal diffusion, while the second and third terms describe a drift due to interactions. In the
spirit of equilibrium density functional theory (DFT) [31], the (pairwise) interactions between the particles can be
conveniently expressed by an excess free energy functional Fex, whose functional derivative is used to construct an
approximate expression for the average interaction force in DDFT. Moreover, the external potential Vext(r,p, l) models
the interaction of each particle with an externally imposed field.

The standard form (7) of DDFT describes the time evolution of a polydisperse fluid in its approach to thermody-
namic equilibrium. To describe a nonequilibrium system of growing bacteria it is vital to give up the notion that the
length l is a fixed particle property, as we will do next.
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2. Growth, fluctuations and interactions

Our general model for growing bacterial colonies involves the additional current

Jl(r,p, l, t) = −Dl
∂ρ(r,p, l, t)

∂l
− D̃l

(
ρ(r,p, l, t)

(
∂

∂l

δβFex [ρ]

δρ(r,p, l, t)
+
∂βVext(r,p, l)

∂l

))
+Gρ(r,p, l, t) (9)

which describes how the length-dependent part of the density changes over time. In contrast to the typical form (8)
of a current which describes the approach of equilibrium, our length current Jl has two ingredients which are of
nonequilibrium nature. First, there is an additional last term on the right-hand side of Eq. (9) that is not derived from
the free energy F [ρ]. It describes a drift in the length variable l with velocity G ≥ 0, which models the bacterial growth
and drives the system out of equilibrium. Second, in nonequilibrium, there is no fixed relation between the prefactor
of the first diffusive and second interaction terms, such that it makes sense to introduce different diffusion-type
coefficients Dl and D̃l, respectively, to characterize the distinct physical effects modeled by these terms. Specifically,
the first term on the right-hand side of Eq. (9) describes a fluctuation of the bacterial lengths which results in the
tendency to smoothen out the distribution. Thus it models that the (average) elongation rate G actually fluctuates
as a function of time, while the variance of these fluctuations is measured by the parameter Dl. The second term
on the right-hand side of Eq. (9) describes the steric forces acting on the growing particles due to the presence of
other particles (internal interactions are represented by the excess free energy Fex [ρ]) or possible system boundaries
(external interactions are represented by the external potential Vext). These mechanical interactions also describe a

drift in the length variable l and thus regulate the bacterial growth, i.e., the parameter D̃l models the strength of
mechano-self-regulation, which seeks to shrink the particles in order to increase the free volume per particle, thereby
counteracting the growth process. While this effect is not included in most models for growing bacteria, it constitutes
a natural and physically sensible extension: the colony only grows up to a certain average density, at which the steric
interactions and the drift of lengths are in balance, thus eventually reaching a nonequilibrium steady state.

In conclusion, the length current (9) is introduced to model the bacterial growth which is subject to fluctuations
and self regulation. Together with positional and orientational currents from Eq. (8), the generalization of Eq. (7)
yields the DDFT equation

∂ρ(r,p, l, t)

∂t
= −∇r · Jr(r,p, l, t)− R̂p · Jp(r,p, l, t)− ∂

∂l
Jl(r,p, l, t) (10)

for bacterial growth. Note that the spatial forces, orientational torques and mechano-self-regulation of bacterial
growth have the same physical origin, as they are all follow from the same model interactions. What is left to be
specified below is the domain of the length variable l.

3. Cell division

To include cell division in our model, we assume that each bacterium grows until its length l has reached the value
2L and then divide into two daughter cells of half length L, which is called the length-at-birth. To incorporate this
effect in Eq. (10), we introduce as our basic model additional source and sink terms determined by the length current
for l = 2L and assume that l is restricted to the interval [L, 2L] with a periodic boundary condition. Then, our general
DDFT becomes

∂ρ(r,p, l, t)

∂t
= −∇r · Jr(r,p, l, t)− R̂p · Jp(r,p, l, t)− ∂

∂l
Jl(r,p, l, t)

+ δ(l − L)Jl

(
r +

L

2
p,p, 2L, t

)
+ δ(l − L)Jl

(
r− L

2
p,p, 2L, t

)
− δ(l − 2L)Jl (r,p, 2L, t) , (11)

i.e., the bacteria with l = 2L are removed, while two new bacteria with l = L are inserted at shifted centers. Note
that this way of implementing cell division does not necessarily require us to restrict the particle length to the interval
l ∈ [L, 2L] and, in fact, it will turn out to be important to specify in more detail what exactly happens at the boundary
in l for later times. This will be investigated in more detail in Sec. II C 2, where we also discuss an alternative boundary
condition and a refined implementation of cell division compared to our basic model, Eq. (11).



9

B. Coarse-grained phenotemporal DDFT for a spatially homogeneous and isotropic system

In the main manuscript, we are only interested in the coarse-grained phenotemporal dynamics of the density
ρ(l, t) =

∫
dr
∫

dp ρ(r,p, l)/V only resolving the length l (or generally the phenotype) of the bacteria and not their
spatial position r or orientation p. Thus, we introduce in Sec. I B 1 that the coarse-grained version of Eq. (11) before
deriving in Sec. I B 2 the DDFT equation discussed in the main manuscript.

1. Different versions of the general theory

In a spatially homogeneous system all spatial and orientational derivatives vanish. The dynamics of ρ(l, t) are
described by the coarse-grained DDFT equation

∂ρ(l, t)

∂t
= − ∂

∂l
Jl(l, t) + 2δ(l − L)Jl (2L, t)− δ(l − 2L)Jl (2L, t) (12)

with l ∈ [L, 2L] and the current

Jl(l, t) = −Dl
∂ρ(l, t)

∂l
− D̃lρ(l, t)

∂

∂l

δβFex [ρ]

V δρ(l, t)
− D̃lρ(l, t)

∂

∂l
βVext(l) + Gρ(l, t) . (13)

Note that, compared to the current in Eq. (9), the external potential Vext(l) should only act on the bacterial length
and the factor 1/V in front of the functional derivative compensates the missing argument r of the density with
respect to which the functional derivative is taken. This is our general DDFT model for the length distribution of
growing bacterial colonies.

Without positional dependence, cell division merely amounts to doubling the number of particles. Thus it can
be modeled in an alternative and more convenient way by simply considering an explicit boundary condition on the
periodic interval l ∈ [L, 2L]. Specifically, we recast Eq. (12) as

∂ρ(l, t)

∂t
= − ∂

∂l
Jl(l, t) (14)

with the oblique boundary condition

ρ(L, t) = 2ρ(2L, t) , (15)

at any time t. Due to the absence of source terms, the explicit solution of Eq. (14) is strongly facilitated. Further
details on the role of boundary conditions will be discussed in Sec. II C 2.

2. Explicit DDFT equation for mean-field interactions

Now, let us consider the specific model for a freely growing colony in the absence of an external potential Vext(l, t) ≡ 0
and a mean-field type repulsive interaction. We thus choose the excess free energy

Fex [ρ] =
1

2

∫
dl

∫
dl′ρ(l, t)u(l, l′)ρ(l′, t) (16)

with the coarse-grained pair potential

βu(l, l′) =

∫
dr

∫
dr′βU(r, r, l, l′) = S̃(l + l′)V , (17)

which corresponds to the double spatial integral of a Gaussian pair potential U(r, r, l, l′) of width l+ l′. The positive

parameter S̃ represents the integrated repulsion strength and has the dimension of volume over particle length. A
suitable alternative choice for Fex would be fundamental measure theory (FMT), modeling the bacteria as mixtures
of hard rods in one [32] two [33] or three [34] spatial dimensions.

Before proceeding, let us define a normalized length distribution h(l, t) such that∫
dl h(l, t) = 1 (18)
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and the average density

ρ̄(t) =

∫
dl ρ(l, t) (19)

such that we can conveniently write the density as

ρ(l, t) = ρ̄(t)h(l, t) . (20)

Inserting now Eq. (16) into Eq. (13) yields the current

Jl = −D∂lρ(l, t)− Sρ(l, t)ρ̄(t) +Gρ(l, t) (21)

where we have redefined D = Dl and S = D̃lS̃ to arrive at the notation of the main manuscript. This finally yields
the DDFT model

∂ρ(l, t)

∂t
= ρ̄(t)

∂

∂l

(
D
∂

∂l
h(l, t) + Sh(l, t)ρ̄(t)−Gh(l, t)

)
. (22)

stated as Eq. (2) of the main manuscript, together with the boundary condition on the periodic interval l ∈ [L, 2L]
given by Eq. (15).

C. Coarse-grained growth equation

Finally, we demonstrate how to coarse grain Eq. (22) if one is only interested in the growth of the average density.
As we will see later, it is a sensible approximation to assume that the length distribution

h(l, t) =
4 ln 2

L
2−l/L (23)

is uniform and independent of time. With this assumption we can evaluate all derivatives with respect to l and then
eliminate h(l, t) from the equation to obtain the coarse-grained dynamics of the average density ρ̄(t). As stated in the
main manuscript, this growth equation reads

∂ρ̄(t)

∂t
= ρ̄(t)(R− Suρ̄(t)) (24)

with the parameters

R =

(
G+D

ln 2

L

)
ln(2)

L
, Su = S

ln(2)

L
. (25)

Alternatively we could have integrated both sides of Eq. (22) over l and used the boundary condition from Eq. (15)
explicitly. It can be shown that the solution of Eq. (24) is

ρ̄(t) =
Rρ̄0

Suρ̄0 + (R− Suρ̄0)e−Rt
, (26)

where ρ̄0 := ρ̄(0) is the initial average number density, as stated in Eq. (4) of the main manuscript.
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II. EVALUATION OF THE PHENOTEMPORAL DDFT FOR BACTERIAL GROWTH

In this supplemental section we discuss the solution of our DDFT for growing bacterial colonies, Eq. (22). After
discussing in Sec. II A the dimensions of the different ingredients, we elaborate on the analytic progress that can be
made in Sec. II B Then we provide details on the numerics and present additional results in Sec. II C.

A. Nondimensional units

Before proceeding with the solution of Eq. (22), we take a closer look at its ingredients. As already discussed in
Sec. I A, the density ρ(l, t) = ρ̄(t)h(l, t) has the units of inverse volume times inverse length, while the former is
included in the average density ρ̄(t) and the latter in the length distribution h(l, t). Assuming that at the initial
time t = 0 the colony starts to grow from a single bacterium, then the initial average number density is given by
ρ̄0 := ρ̄(0) = 1/V where V is the system volume. For the sake of generality, we conveniently take ρ̄−1

0 as our unit
volume and the bacterial length L as unit length.

From the three free parameters in Eq. (22), we can identify the three time scales

L2

D
,

L

Sρ̄0
,

L

G
. (27)

Choosing L/G as our time unit, we find the equation

∂N(l̃, t̃)

∂t̃
= n(t̃)

∂

∂l̃

(
d
∂

∂l̃
h̃(l̃, t̃) + sh̃(l̃, t̃)n(t̃)− h̃(l̃, t̃)

)
(28)

with the dimensionless quantities

t̃ = t
G

L
, l̃ =

l

L
, d =

D

GL
, s =

Sρ̄0

G
, N(l̃, t̃) = ρ(l, t)

L

ρ̄0
, n(t̃) = ρ̄(t)

1

ρ̄0
, h̃(l̃, t̃) = h(l, t)L . (29)

B. Analytic insight

Now we derive and analyze the analytic results behind the length distributions shown in Fig. 2 of the main
manuscript. To this end we discuss the full or stationary solution of Eq. (22), with the oblique boundary condi-
tion given by Eq. (15), for some special choices of parameters.

1. Oscillating growth

Let us first consider the bare growth process with D = S = 0 and G > 0, which is described by the linear first-order
partial differential equation

∂ρ(l, t)

∂t
= −G∂ρ(l, t)

∂l
. (30)

A drift equation of this form is in general solved by any function F (l− tG), where t ≥ 0 and l ∈ R. Together with the
initial condition h0(l) := h(l, 0) for the length distribution we can formally determine the effective particular solution

%(l, t) = ρ̄0 h0(l − tG) (31)

for a more general length variable l defined on an infinite domain, i.e., l/L ∈ R, recalling that h0(l) = 0 if l < L or
l > 2L. Since in our case we always require a solution ρ(l, t) with l ∈ [L, 2L] on a restricted interval, our boundary
condition (15) must be explicitly built into the final solution deduced from this %(l, t).

To do so for this particular example, we keep in mind the physical meaning of the underlying drift equation (30).
Assuming that a bacterium without cell division continues to grow for the time nL/G, where n is a positive integer
number, its length l ∈ R has increased by nL. For l ∈ [L, 2L], the same consideration tells us that a bacterium has
undergone n division events after time nL/G. Likewise, after a general time t, a bacterium with length l has divided
for

n := 1−
⌊
l −Gt
L

⌋
=

⌈
Gt− l + L

L

⌉
(32)
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times, where the Gaussian brackets evaluate the included expression to the closest smaller or larger integer, respec-
tively. Now we can include our boundary condition, which doubles the density at a division event, to construct our
desired result

ρ(l, t) = ρ̄0 2n h0(l −Gt+ nL) (33)

from the effective solution %(l, t) in Eq. (31), while the time- and length-dependent division number n is given by
Eq. (32). For a general effective density %(l, t) with l/L ∈ R the argumentation outlined above results in

ρ(l, t) =

∞∑
n=−∞

2n%(l + nL, t) , (34)

where, at time t, only those terms need to be considered which give a significant contribution for the domain l ∈ [L, 2L]
of ρ(l, t). In the present example, the two terms with n given by Eq. (32) are sufficient.

Having obtained ρ(l, t) at given time t, the integration over l allows us to identify the growth of the average number
density ρ̄(t). From the explicit formula in Eq. (33) we find

ρ̄(t) = ρ̄0 2m

(∫ 2L+Gt−mL

L

dl h0(l −Gt+mL) +
1

2

∫ 2L

2L+Gt−mL
dl h0(l −Gt+ (m− 1)L)

)

= ρ̄0 2m

(∫ 2L

(m+1)L−tG
dl′ h0(l′) +

1

2

∫ (m+1)L−tG

L

dl′ h0(l′)

)
with m :=

⌈
Gt

L

⌉
. (35)

Therefore, the normalized length distribution h(l, t) = ρ(l,t)
ρ(t) is a periodic function of time with period L/G, as shown

in Fig. 2A of the main manuscript. This result motivates the choice of L/G as our unit time scale.
The exponential initial condition h0(l) = 4 ln 2

L 2−l/L gives rise to a special case since then h(l, t) remains in exactly

the same form for all times, as assumed in Eq. (23). Then the formula in Eq. (35) reduces to ρ̄(t) = ρ̄0 2Gt/L, which
corresponds to the expression (26) with R = G ln 2/L and Su = 0 obtained from the coarse-grained growth equation.

2. Retarded growth

Next, we also allow for mechanical forces, considering G,S > 0 and D = 0 in Eq. (22), such that the elongation
rate is effectively reduced when the density increases. This scenario is described by the nonlinear first-order partial
differential equation

∂ρ(l, t)

∂t
= − (G− Sρ̄(t))

∂ρ(l, t)

∂l
=: −Geff,0(t)

∂ρ(l, t)

∂l
, (36)

where we have identified Geff,0(t) as an effective elongation rate due to mechano-self-regulation. Since the length-
dependent part of this equation is the same as in Eq. (30), the form of h(l, t) is related to the given initial distribution
h0(l) in a similar way as elaborated for S = 0 in Sec. II B 1. However, the length ∆t of the time intervals where
h(l, t + ∆t) = h(l, t) returns to its earlier form increases with time, since the effective drift velocity decreases due to
steric repulsion, as shown in Fig. 2B of the main manuscript. The particular dynamics of ρ(l, t) are implicitly given
by substituting G→ G− Sρ̄(t) in Eqs. (33) and (32).

As before, for h0(l) = 4 ln 2
L 2−l/L the time evolution of h(l, t) remains uniform and ρ̄(t) is given by Eq. (26) with

R = G ln 2/L and Su = S ln 2/L. This result can be used to provide an approximate solution for the full ρ(l, t) with
an arbitrary initial length distribution h0(l). Solving Eq. (36) under the assumption that Geff,0(t) does not explicitly
depend on the density, we can approximately generalize Eq. (31) to

%(l, t) ≈ ρ̄0 h0

(
l −
∫ t

0

Geff,0(t′)dt

)
(37)

and then insert the analytic ρ̄(t) from Eq. (26) into Geff,0(t) = G−Sρ̄(t). This result can then be inserted in Eq. (34)
to obtain ρ(l, t) and then also a better approximation for ρ̄(t) and Geff,0(t). Equations (33) and (32) can be generalized
accordingly.
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3. Uniform growth

Next we consider the situation with fluctuating growth but in the absence of mechano-self-regulation, setting
D,G > 0 and S = 0 in Eq. (22), which becomes

∂ρ(l, t)

∂t
= D

∂2ρ(l, t)

∂l2
−G∂ρ(l, t)

∂l
. (38)

Without mechanical force, the growth of the colony is again unlimited, such that no stationary state is reached.
However, the fluctuations change the length distribution, such that its shape becomes as uniform as compatible with
the boundary condition (15), as shown in Fig. 2C of the main manuscript. Starting with a sharp length distribution
at time t = 0, representing a single bacterium with initial length l0 ∈ [L, 2L], we may choose the initial condition
%(l, 0) = ρ(l, 0) = ρ̄0δ(l − l0) given by the Dirac-delta distribution or, more generally, by a Gaussian distribution of
width w0. Then the drift-diffusion equation (22) has the effective particular solution

%(l, t) = ρ̄0

exp
(
− (l−l0−Gt)2

2(σ2
0+2Dt)

)
√

2π(σ0 +
√

2Dt)
(39)

on the infinite domain l/L ∈ R, from which we can formally construct the solution ρ(l, t) appropriate for l ∈ [L, 2L]
according to Eq. (34).

We can make more explicit analytical progress upon assuming that there exists a stationary length distribution
h∞(l) after a certain time t0, we can write the time-dependent density as ρ(l, t) = ρ̄(t)h∞(l). Plugging this ansatz
into Eq. (38), it reduces to the evolution equation

∂ρ̄(t)

∂t
= ρ̄(t)

1

h∞(l)

∂

∂l

(
D
∂h∞(l)

∂l
−Gh∞(l)

)
=: Rρ̄(t) (40)

for ρ̄(t), where the constant R must not depend on the length l by definition of ρ̄(t). Defining ρ̄0 := ρ̄(t0) this equation
can be solved as

ρ̄(t) = ρ̄0 e
Rt , (41)

where the condition

Rh∞(l) =
∂

∂l

(
D
∂h∞(l)

∂l
−Gh∞(l)

)
(42)

with parameter R that must be independent of l has the solution

h∞(l) =
4 ln 2

L
2−

l
L , (43)

R = ln 2

(
ln 2

D

L2
+
G

L

)
. (44)

Thus there exists a unique stationary length distribution which has an exponential shape as assumed in Eq. (23).
Indeed, the parameter R is exactly the same as that, given by Eq. (25), in out coarse-grained growth equation and
through Eq. (41) we have recovered Eq. (26) with Su = 0.

4. Retarded uniform growth

Combining the efforts of the previous section, we can obtain the approximate solution of Eq. (22) with all parameters
D,S,G > 0 nonvanishing from the effective density

%(l, t) = ρ̄0

exp

(
− (l−l0−

∫ t
0
Geff,0(t′)dt)

2

2(σ2
0+2Dt)

)
√

2π(σ0 +
√

2Dt)
(45)

with Geff,0(t) = G − Sρ̄(t) and the analytic expression ρ̄(t) from Eq. (26). Again, the transition from the domain
l/L ∈ R of %(l, t) to l ∈ [L, 2L] of the desired ρ(l, t) is formally possible via Eq. (34). The resulting length distribution
is shown in Fig. 2D of the main manuscript.
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It is also possible to determine the stationary length distribution analytically from the condition of a constant
length current Jl. To this end, we need to solve

∂

∂l

(
D
∂

∂l
h∞(l) + Sh∞(l)ρ̄∞ −Gh∞(l)

)
= −∂Jl

∂l
= 0 . (46)

subject to the oblique boundary condition h∞(L) = 2h∞(2L) deduced from Eq. (15). Defining

α := (G− Sρ̄∞)/D (47)

we can explicitly write all possible stationary solutions of Eq. (46) in the form

h∞(l, α) =
α
(
eα (l−L) + 1− 2eαL

)
(1− 2αL)eαL − 1 + αL

, (48)

for l ∈ [L, 2L] and h∞(l, α) = 0 otherwise.
For the value α = − ln 2, our result (48) reduces to the pure exponential form h∞(l) := h∞(l,− ln 2) from Eq. (43),

which is also recovered as the unique stationary result when numerically solving Eq. (22). This solution is distinguished
from all other distributions h∞(l, α) for the following reasons. First, the stationary length current Jl = 0 vanishes.
Second, it turns out that h∞(l) is the only solution which is stable upon small fluctuations δρ̄(t) of the average density.
This can be understood from inserting ρ̄(t) = ρ̄∞ + δρ̄(t) into Eq. (22) which yields the linearized equation

∂ρ(l, t)

∂t
= Sρ̄∞

∂h∞(l, α)

∂l
δρ̄(t) . (49)

From this result we see that the dynamics tends to revert the perturbation in the density (since the slope of all length
distribution is negative) but also induces fluctuations in the length distribution, unless ∂h∞(l, α)/∂l ∝ h∞(l, α), which
is only the case for α = − ln 2. This observation provides a good indication that this particular stationary solution will
be approached. Third, h∞(l) is the only distribution for which the density remains a differentiable function in l under
translation through the boundary, which can be explicitly checked by constructing

∑∞
n=−∞ 2nh∞(l + nL, α) similar

to Eq. (34). Therefore, as also remarked in the previous sections, the initial condition h0(l) = h∞(l) = 4 ln 2
L 2−l/L

results in a uniform time evolution of h(l, t) such that ρ̄(t) is given by Eq. (26), which has been determined from
exactly this assumption (23) that the exponential form of h(l, t) does not change over time.

Relatedly, we notice that, due to the form of h(l, t), the effective elongation rate also depends on the fluctuations.
Assuming the stationary distribution h∞(l), as in the related growth equation, Eq. (24), we find the overall effective
elongation rate

Geff(t) := G+D
ln 2

L
− Sρ̄(t) = Geff,0(t) +D

ln 2

L
(50)

with an additional term compared to the effective drift velocity Geff,0(t) used before in Eqs. (37) and Eq. (45). This
means that, due to the asymmetry of h∞(l), the faster growing bacteria make a stronger contribution than the slower
growing ones, as the former divide earlier. When h(l, t) is nonuniform, the generalized effective elongation rate

G̃eff(l, t) := G+D
∂lh(l, t)

h(l, t)
− Sρ̄(t) (51)

even depends explicitly on the current length of the bacteria.

5. Fluctuation-driven growth

Finally, we consider the case of extreme fluctuations D > 0 while G = S = 0 in Eq. (22), which gives rise to

∂ρ(l, t)

∂t
= D

∂2ρ(l, t)

∂l2
. (52)

In this particular limit, our model predicts the particular stationary solution h∞(l) = 2
L − 2l

3L2 which is the limit of
Eq. (48) for α → 0. The formal solution for the dynamics of ρ(l, t) is the same as obtained in the uniform regime,
Eq. (39) but with G = 0.
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FIG. 5. Approach to the current-free stationary state given by Eqs. (48) and (47) with α = − ln 2 starting from different
unstable solutions (48) with α = −5 (top), α = 0 (middle) and α = 5 (bottom), choosing the initial density as ρ̄0 = (G−Dα)/S
consistently with Eq. (47). In each case, the left column shows the time evolution (tG := L/G) of the length distribution h(l, t)
towards h∞(l) (red) for D = 5× 10−3GL and S = 10−4GL, while the right column depicts the change of the average density
ρ̄(t) for various combination of parameters according to the legend.

C. Numerical evaluation

1. Numerical check for stability

As concluded from Eq. (49), we indeed find numerically that the stationary solutions in Eq. (48) with the parameter
α from Eq. (47) are numerically unstable unless α = − ln 2. Figure 5 shows that from these initial conditions, the
system evolves towards the unique current-free solution with α = − ln 2 and the average density adapts accordingly.

2. Refined DDFT model for cell division with directed boundary condition

In Sec. I B 1 we have introduced two variants of the coarse-grained DDFT with a length-resolved density. The
formulation of DDFT based on the oblique periodic boundary condition (15) and the continuity equation (14) is
convenient for making analytic progress. However, the variant in Eq. (12), which models cell division through source
and sink terms, is more adjustable. It can be directly applied in the more general DDFT resolving positional and
orientational degrees of freedom, cf. Eq. (11), and is also compatible with any kind of boundary condition. The latter
point constitutes an advantage when the colony becomes denser and the dynamics are governed by mechano-self-
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FIG. 6. Analogous length distribution to Fig. 2A-D of the main manuscript reconsidered here from evaluating the DDFT (53)
with the current from Eq. (54) and the directed boundary condition from Eqs. (55) and (56). From the left to the right, the
parameters are S = 0 and D = 0, S = 10−2G/ρ̄0 and D = 0, S = 0 and D = 10−2GL, as well as, S = 10−2G/ρ̄0 and
D = 10−2GL.

regulation, such that it becomes important to understand what exactly happens at the boundary. In fact, mechano-
self-regulation (and also fluctuations) can formally result in the shrinking of cells. If they were allowed to shrink over
a periodic boundary from l = L to l = 2L, the description would amount to two small cells with length L reuniting
back to one large cell with length 2L.

To this end, we use the description of cell division by source and sink terms to propose the refined DDFT model

∂ρ(l, t)

∂t
= − ∂

∂l
Jl(l, t) + 2δ(l − L)Jl (2L, t)− δ(l − 2L)Jl (2L, t) (53)

with l ∈ [L, 2L] and the current

Jl(l, t) = −D∂lρ(l, t)− Sρ(l, t)ρ̄(t) +Gρ(l, t) (54)

from Eq. (21). Instead of a periodic boundary condition, we here use at l = L the no-flux boundary condition

D∂lρ(l = L, t)
!
= 0 (55)

for the fluctuation term and at l = 2L an absorbing wall, i.e.,

ρ(l > 2L, t)
!
= 0 . (56)

Now the cells can still grow over the boundary from 2L to L, but are stuck with their short elongation at l & L if
they shrink. In this refined model, mechano-self-regulation results in a larger number of shorter cells, which is the
dominant experimental aspect, but not in two short cells reuniting to form a single large cell. This behavior can only
be recast by using source and sink terms. The directed boundary condition from Eqs. (55) and (56) can also be used
for the general DDFT in Eq. (11).

3. Supplementary DDFT results with directed boundary condition

In Fig. 6 we show the DDFT results of the refined model for cell division, introduced in Sec. II C 2, for the same
quantities and parameters as in Fig. 2 of the main manuscript, which shows the DDFT results, discussed in Sec. II B,
modeling cell division by the oblique boundary condition.

Since the difference between the two boundary conditions only concerns the fluctuation term, the first two plots in
Fig. 6 for D = 0 show the same behavior as Fig. 2A (oscillating growth) and Fig. 2B (retarded growth) of the main
manuscript, respectively. The stationary length distribution in the third plot of Fig. 6 with S = 0 but D > 0 is no
longer given by an exponential as for the uniform growth in Fig. 2C of the main manuscript, which is most apparent
from the behavior for l ≈ 2L. Finally, for S > 0 and D > 0, we observe a retarded and uniform growth, although the
unique stationary length distribution decays linearly and thus differs from the form in Fig. 2D of the main manuscript.
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III. LANGEVIN SIMULATIONS OF GROWING BACTERIAL COLONIES

A. Supplementary simulation methods

In the particle-based approach to modeling growing bacteria colonies, the cells are considered as rigid rods. Their
positions ri, orientations θi and lengths li (of their long axis) evolve in time according to coupled Langevin equations.
Here i = 1, . . . N is the cell index, where the total number N(t) of bacteria may increase after each time step due to
cell division. The short axis of each rod is kept fixed with length d0.

The position ri of rod i evolves according to

dri
dt

=
1

γli

∑
j

Fij , (57)

where γ is the friction coefficient and Fij are steric forces stemming from the interactions with other rods. Further,
the orientation of the rod is measured by the angle θi with respect to the x-axis in a Cartesian coordinate system.
The dynamics of the angles are given by

dθi
dt

=
12

γl3i

∑
j

(rij × Fij) · ez, (58)

where rij = ri − rj is the distance vector between particles i and j and ez is the vector perpendicular to the rods’
plane of motion. The forces between rods are calculated by a Hertzian repulsion

Fij = F0d
1/2
0 h

3/2
ij nij , (59)

where hij is the overlap of rod i and j, F0 is the strength of the force, and nij is the vector normal to the closest
point of contact of the particles.

In the same spirit, we now allow the length of a rod i to evolve as

dli
dt

= G+
√

2Dξi + S̃
∑
j

h
3/2
ij (60)

with the elongation rate G, a white noise ξi of unit variance accounting for fluctuations of magnitude D and mechanical
self-regulation mediated by the overlap between particles hij . The parameter S̃ quantifies the strength of this mechano-
self-regulation, where we have absorbed the other parameters from Eq. (59). When the length li of a cell exceeds the
value 2L after a certain time step, it is reset to li = L, where L is the length-at-birth. Then, a second cell with a
new particle label and the same length L is introduced and the total cell count N is increased accordingly. In the
course of this cell division the positions of the two daughter are shifted from the rods original position by L/2 along
the direction of the rod.

In the main text, the repulsion strength is fixed as F0 = 106G/(γL) and the short axis of each rod as d0 = L/8.
The data presented in our plots are averaged over five simulation runs.

B. Supplementary simulation data

The length distributions associated with the four snapshots in Fig. 3A-D of the main manuscript are shown in
Fig. 7.
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IV. EXPERIMENTS ON GROWING BACTERIAL COLONIES

A. Supplementary experimental methods

1. Cell culture protocol for bacterial species

We use non-motile strains of E. Coli bacteria, NCM3722 delta-motA, growing at 30°C. All experiments have been
performed for a minimum of two distinct biological replicates. As a first step, the cells where streaked on standard
agar plates replete with Lysogeny broth (LB). The plated cells were grown for a day, after which isolated cell colonies
were identified, and scraped using a microbiological loop. The growth temperature of the cell culture incubator as
well as incubated attached to the imaging microscope was set to 30°C. The scraped cells were then transferred to a
liquid LB media, and allowed to divide in a shaker for ∼12h. Thereafter, the culture was sampled at regular intervals
in order to track the cell growth over time, using the optical density (OD) measurement technique. After nearly 12
hours of liquid culture growth, the cells were transferred into fresh LB media, at a 1:1000 ratio of cell to fresh media,
and grown for ∼2h, before they were introduced on the specially designed substrates (see next section). Additional
details on the cell culturing protocols and control experiments can be found in Ref. 19.

2. Fabrication of microscale confinements for studying bacterial growth

The single cell-to-colony dynamics were observed using time-lapse microscopy on a millimeter thick layer of agarose
gel. The gel was first uniformly mixed with the LB medium, making it a nutrient-rich substrate. This nutrient-
replete layer was sandwiched between two glass slides and a 2mm thick Gene Frame (spacer) was used to enclose the
glass-agarose system. A time-lapse phase-contrast microscopy, with feedback controlled focussing technique, imaged
the growth of the sessile colonies using an inverted imaging mode. The sample, placed ont he microscope stage, was
enclosed within a thermally insulated temperature-controlled incubator (Pecon), which could be regulated precisely
to set the temperature, and monitored temperature at the sample with a resolution of 0.1°C. Please refer to Ref. 19
for further details of the microscale set up and the imaging configuration.

3. Time-lapse phase-contrast imaging

The growth of a single bacterium (or two initial cells, in some cases) into colonies is imaged while maintaining the
growth temperature of 30°C within the microscope environment. Single bacterium acting as monoclonar nucleating
sites expand horizontally ont he nutrient-rich agarose layers. Initially, the colony grows in two dimensions as a
bacterial monolayer over multiple generations, subsequently penetrating into the third dimension. We visualize the
colony growth over the entire time span (lasting up to 15 h to 18 h, depending on the growth conditions) using
time-lapse phase-contrast microscopy. For the current work, we focus primarily on the horizontal spreading of the
colony, and analyze the data till the transition to the multilayer structure sets off. Images were acquired using
a Hamamatsu ORCA-Flash Camera (1µm = 10.55 pixels) that was coupled to an inverted microscope (Olympus
CellSense LS-IXplore). We use a 60X oil objective, and in some cases 100X oil objectives to zoom into specific regions
of the growing colonies. Overall, this gave a minimum resolution of 0.11µm. Each experiment lasted typically 15h
to 18h, allowing us to capture the mono-to-multilayer configurations, and the structure and dynamics of multilayer
colonies. Prior to image acquisition, multiple locations on the agarose surface (where a single bacterium or up to
two cells were present) were identified and recorded, allowing us to additionally extract technical replicates from the
same sample. The microscope was automated to scan these pre-recorded coordinates and to capture the images of the
gradually increasing colonies after every 5 minutes while maintaining the focus across all the colonies captured. We
extracted the cell dimensions (width and length), position (centroid) and the orientation of each bacteria from the
phase-contrast images using the combination of open-source packages of Ilastik [83] and ImageJ as well as MATLAB
(MathWorks), as detailed in Sec. IV A 4.

4. Image analysis

The counting process consists of cell segmentation followed by counting the number of individual entities. Cell
segmentation is performed using a combination of Ilastik-MATLAB coding that helped to extract the bacterial length
and orientation in the colony for each time frame of the bacterial colony growth. The process is continued till
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the colony encounters the mono-to-multilayer transition, since after this event the image contrast and focus gets
limited for subsequent segmentation. However, further analysis can be carried out using particle image velocimetry
algorithms (see Ref. 19). Raw images are initially pre-processed using by a combination of background subtraction and
preliminary thresholding. The pre-processed image is then trained using Ilastik for accurate segmentation (see Ref.
83). The training process involves iteration until a reasonably satisfactory extraction is obtained. A labeled image
is extracted from the segmentation process and identified in MATLAB. A bacillus-shaped water-shedding technique
is performed to separate out joint bacterial cells. Finally, these individual entities (segmented cells) are colored or
outlined for counting and analysis. Further relevant details on the image analysis protocols can be found in Ref. 19.

B. Supplementary experimental data

1. Cell length statistics for replicate 1

For the cell size statistics of replicate 1 analyzed in Figs. 1 and 4 of the main manuscript, please refer to Table I.

2. Cell length statistics for replicate 2

For the cell size statistics of replicate 2 analyzed in Fig. 4 of the main manuscript, please refer to Table II.
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TABLE I. Cell length statistics for replicate 1

Time Length SD Variance Variance/〈l〉2

(t, min) (l, µm) (µm) (µm2) (〈l〉 = 3.83 µm)

0 3.36 0.96 0.9216 0.0628

5 3.19 0.92 0.8464 0.0577

10 3.42 0.86 0.7396 0.0504

15 2.87 0.76 0.5776 0.0394

20 3.09 0.84 0.7056 0.0481

25 2.91 0.33 0.1089 0.0074

30 2.86 0.35 0.1225 0.0084

40 4.11 0.56 0.3136 0.0214

50 3.84 0.45 0.2025 0.0138

60 3.76 1.08 1.1664 0.0795

75 4.34 1.24 1.5376 0.1048

85 3.95 0.69 0.4761 0.0325

100 4.42 0.44 0.1936 0.0132

115 4.95 1.18 1.3924 0.0949

125 3.76 1.28 1.6384 0.1117

140 4.87 1.32 1.7424 0.1188

150 5.15 0.92 0.8464 0.0577

160 4.88 1.61 2.5921 0.1767

175 4.00 1.21 1.1464 0.0998

185 4.83 1.08 1.1664 0.0795

200 4.42 1.30 1.6900 0.1152

215 4.19 1.33 1.7689 0.1206

225 4.50 1.44 2.0736 0.1414

235 4.62 1.56 2.4336 0.1659

250 4.89 0.92 0.8464 0.0577

270 4.71 1.41 1.9881 0.1355

280 4.28 1.37 1.8769 0.1280

290 4.36 1.36 1.8496 0.1261

300 4.76 1.36 1.8496 0.1261

310 4.72 1.41 1.9981 0.1355

320 4.51 1.37 1.8769 0.1280

330 4.02 1.21 1.4641 0.0998

340 3.88 1.04 1.0816 0.0737

350 3.23 0.98 0.9604 0.0655

360 3.58 1.04 1.0816 0.0737

370 3.38 1.05 1.1025 0.0752

380 3.29 0.94 0.8836 0.0602

390 3.13 0.93 0.8649 0.0590

400 3.11 0.92 0.8464 0.0577

410 2.90 0.90 0.8100 0.0552

420 3.21 1.01 1.0201 0.0695

435 2.98 0.86 0.7396 0.0504

455 2.74 0.84 0.7056 0.0481

465 2.71 0.81 0.6561 0.0447
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TABLE II. Cell length statistics for replicate 2

Time Length SD Variance Variance/〈l〉2

(t, min) (l, µm) (µm) (µm2) (〈l〉 = 3.88 µm)

0 4.35 0.03 0.0009 0.0001

5 4.79 0.08 0.0064 0.0004

10 3.31 1.65 2.7225 0.1808

15 3.43 1.69 2.8561 0.1897

20 2.70 0.21 0.0441 0.0029

25 2.75 0.12 0.0144 0.0010

30 2.93 0.19 0.0361 0.0024

40 3.31 0.15 0.0225 0.0015

50 4.04 0.35 0.1225 0.0081

60 4.63 0.44 0.1936 0.0129

75 3.96 1.18 1.3924 0.0925

85 3.35 0.32 0.1024 0.0068

100 4.67 0.51 0.2601 0.0173

115 5.76 0.65 0.4225 0.0281

125 3.36 0.56 0.3136 0.0208

140 4.55 1.02 1.0404 0.0691

150 4.91 1.06 1.1236 0.0746

160 4.14 1.37 1.8769 0.1247

175 4.02 0.76 0.5776 0.0384

185 4.66 0.92 0.8464 0.0562

200 4.18 1.82 3.3124 0.2200

215 4.22 1.56 2.4336 0.1617

225 4.62 1.24 1.5376 0.1021

235 5.24 1.37 1.8769 0.1247

250 3.94 1.25 1.5625 0.1038

270 4.83 1.16 1.3456 0.0894

285 4.10 1.36 1.8496 0.1229

300 4.14 0.96 0.9216 0.0612

335 4.00 1.08 1.1664 0.0775

350 3.84 1.06 1.1236 0.0746

385 3.22 0.85 0.7225 0.0480

400 3.03 0.96 0.9216 0.0612

415 2.71 0.80 0.6400 0.0425

425 2.90 0.78 0.6084 0.0404

435 2.97 0.80 0.6400 0.0425

440 3.01 0.84 0.7056 0.0469

445 2.99 0.84 0.7056 0.0469
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