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ABSTRACT Traffic modeling and prediction is a vital task for designing efficient resource allocation
strategies in telecommunication networks. This is challenging because network traffic data exhibits complex
nonlinear spatiotemporal interactions. Moreover, the data can have missing values when traffic statistic
collection is unavailable in certain nodes. In this paper, we introduce a graph Gaussian Process (GP) model
for this challenging problem. The GP is a Bayesian non-parametric model and highly flexible in capturing
complex patterns in the data. Additionally, it provides uncertainty information which can be exploited for
robust resource allocation problems. The developed graph GP model is almost free of hyper-parameter
tuning, can accurately capture short-term and long-term temporal patterns and can infer missing values
by learning spatiotemporal interactions among the nodes in the network. Subsequently, we approximate
the intractable posterior distribution using Variational Bayes (VB) algorithm which can be efficiently
implemented. Finally, we evaluate the accuracy of the proposed model for predicting the data traffic using
two real-world network datasets. Our simulation results shows that the proposed model can achieve better
prediction accuracy with respect to the state-of-the-art approaches.

INDEX TERMS Gaussian process, Bayesian modeling, Variational Bayes, Traffic prediction, Graph data
structure

I. INTRODUCTION
Accurate traffic modeling and prediction is essential for
efficient proactive resource allocation and traffic engineering
in telecommunication networks. It has been widely used to
perform different management tasks such as network main-
tenance, network optimization, routing policy design, load
balancing, protocol design, anomaly detection and Virtual-
ized Network Functions (VNF) deployment decisions [1]–
[3]. Network traffic patterns can be affected by many factors,
such as user behavior, network topology and routing strategy,
and can have complex nonlinear spatiotemporal interactions.
Moreover, even though currently available technologies, such
as software-defined networking (SDN), allow for the cen-
tralized collection of network statistics, older equipment or
failures often make it impossible to have a complete view
across all network nodes. Therefore, due to missing values,
it is challenging to effectively explore and utilize the data for
accurate prediction.

In the literature, various statistical time series models and
analysis methods have been developed for traffic prediction.
The most commonly-used is autoregressive integrated mov-

ing average (ARIMA) model [4], [5]. A limitation of ARIMA
is that it can only capture a short-term temporal interac-
tion. Nevertheless, data analysis shows that data traffic can
also exhibit long-term interaction [6]. The Seasonal ARIMA
(SARIMA) model is an extension of ARMA can improve the
prediction accuracy by capturing a long-term interaction and
it has been adopted to traffic prediction in [7], [8]. However,
ARIMA and SARIMA are linear models and have limited
expressiveness power therefore they cannot capture nonlinear
patterns.

More recently, artificial neural networks have attracted
major attention in both academia and industry. These models
are non-linear and can potentially capture any non-linearity
in the data. The authors in [9] applied a general multilayer
perceptron (MLP) network to predict the base station traffic
under different wireless network setups. Recurrent neural
networks (RNN) which are specific to sequence data are used
in [5], [10]–[13]. In [14], a multiple RNN based learning
models along with a multi-task learning framework is pro-
posed to explore spatio-temporal correlations among base
stations in cellular networks. Similar works used RNN com-
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bined with convolutional neural network (CNN) to capture
the spatiotempral structure [15]. However, the aforemen-
tioned works assume that the data lie within a regular Eu-
clidean space and do not explicitly exploit the graph structure
of telecommunication networks, and therefore the proposed
models may not perform satisfactorily.

Artificial graph neural networks [16], [17] which are par-
ticularly designed for modeling and predicting time-varying
graph-based data are adopted in [18], [19] for network traffic
prediction. However, these developed artificial neural net-
works have two important limitations. Firstly, they cannot
efficiently handle missing values due to their special architec-
tures. Secondly, they cannot provide uncertainty information
in the prediction because they are deterministic models.

GP, a Bayesian non-parametric model, which can effi-
ciently capture uncertainty in the prediction has been used,
more recently, by researchers for network traffic prediction
[20]–[23]. The authors in [20] studied a mixture of Gaussian
processes using Dirichlet process to improve the scalability
of inference and to model data non-stationarity. In [21], a GP
model is used to capture a quasi-periodic pattern. In [22], the
authors developed an enesemble learning algorithm where
each learner is modeled by a GP and the predictions of the
GPs are combined to improve the prediction accuracy. In
[23] the alternating direction method of multipliers (ADMM)
algorithm is used for parallel hyper-parameter optimization
to scale up the GP inference. Nevertheless, the developed
GP models are specifically designed for univariate time-
series and cannot capture complex traffic pattern interactions
among different nodes in the network.

In this paper, we aim to introduce a graph-based GP model
for traffic prediction. In particular, our contributions are as
follows.
• We develop a graph-based GP model which can capture

the spatiotemproal interactions in the data. In particular,
the GP exploits the structure of the telecommunication
network which can be leveraged to infer the missing
values.

• Moreover, a structured kernel function is proposed to
capture short-term and long-term temporal dependen-
cies to provide accurate prediction.

• Using the VB, we develop an inference algorithm to
approximate the posterior distribution of the GP model.
The developed inference algorithm is almost free of
hyper-parameter tuning and the hyper-parameters are
estimated using historical data.

• Finally, throughout our simulations, we show that the in-
troduced graph-based GP model outperforms the state-
of-the-art models on two real-world datasets.

This paper is organized as follows. The problem statement
is described in Section II. In Section III, we provide an
overview to GP. In Section IV, we introduce a GP model
for network traffic modeling. In Section V, we develop a VB
algorithm for inference and prediction. Finally, Section VI
shows the simulation results and Section VII concludes the
paper.

FIGURE 1: Illustration of network traffic data.

II. PROBLEM DEFINITION
We consider a communication network which consists of
a set of nodes, e.g., routers, which are connected to each
other by communication links. Due to the graph-structured
topology, we define the traffic prediction problem on a graph,
as depicted in Fig. 1. Mathematically, the network can be
represented by un-directed graph Gt := (yt,V, E) where V is
the set of nodes and E is the set of edges (i.e., communication
links). We denote the presence of an edge between node i and
node j as {i, j} ∈ E . Moreover, yt ∈ RM is a vector that
contains data traffic at nodes at time t, e.g., in Mb per time
unit, where M is the total number of nodes. Set V is divided
into two disjoint sets Vo and Vō such that V = Vo ∪ Vō,
where Vo and Vō contain nodes that traffic can be measured
and nodes that traffic cannot be measured respectively. The
number observed nodes and missing nodes are respectively
defined by Mo and Mō such that M = Mo +Mō.

The objective in traffic prediction problem is to predict the
traffic over the next H time steps given T historical observa-
tions of data traffic. In this paper, we advocate a probabilistic
approach. This requires to compute the predictive distribution
p(yt+1, ...,yt+H |yo,t, ...,yo,t−T+1), where yot ∈ RMo is
the observation vector of Mo nodes a time t, each element
records historical traffic observations for a specific node in
set Vo. The traffic at nodes are not independent but related
by pairwise relationships. In other words, it is expected that
neighboring nodes have similar traffic patterns over time.
Moreover, in practice, some of the nodes may degenerate,
e.g., due to packet loss, or generate, e.g., edge nodes, the data
traffic. Therefore, the flow balance equations cannot be used
to predict the traffic at the missing nodes. In particular, the
relationship among the nodes in the graph is not deterministic
and is stochastic. Therefore, it is essential to effectively cap-
ture the network structure for improved prediction accuracy.
In the next section, we review the basic of GP since it is used
as the main tool to construct our graph-based probabilistic
model for traffic prediction.

III. OVERVIEW TO GAUSSIAN PROCESS
GPs are powerful non-parametric Bayesian tools suitable
for modeling real-world problems. A GP is a collection of
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random variables, any finite number of which have a joint
Gaussian distribution. Using a GP, we can define a distribu-
tion over non-parametric functions f (x):

f (x) ∼ GP (m (x) ,K (x,x′)) , (1)

where x is an arbitrary input variable withQ dimensions, and
the mean function,m (x), and the Kernel function,K (x,x′),
are respectively defined as:

m (x) := E [f (x)] , (2)
K (x,x′) := E [(f (x)−m (x)) (f (x′)−m (x′))] . (3)

This means that a collection of N function value samples has
a joint Gaussian distribution:

[f (x1) , ..., f (xN )]
T ∼ N (m,K) , (4)

where m := [m (x1) , ...,m (xN )]
T and the covariance ma-

trix K has entries [K]i,j := K (xi,xj). The kernel function
specifies the main characteristics of the function that we wish
to model and the basic assumption is that variables x which
are close are likely to be correlated. Constructing a good
kernel function for a learning task depends on intuition and
experience. More details about GP can be found in [24].

IV. GAUSSIAN PROCESS FOR NETWORK TRAFFIC
DATA
In this section, we introduce a Bayesian model based on
GP for data traffic. The developed model includes both the
missing and observed nodes. In Section V, we explain how
the model is used for inference and prediction in presence of
missing nodes in more details. Our model assumes that the
traffic is e generated based on a factor analysis model with
Gaussian likelihood as:

yt = Wft + b + nt, (5)

where W := [wT
1 , ...,w

T
M ]T ∈ RM×D is factor loading

matrix which row wm captures node m specific patterns
and ft := [f11, ...., fDt]

T ∈ RD is a temporal latent
variable vector which captures common temporal patterns
among the nodes. Vector b ∈ RM is the bias term which
captures the overall traffic volume at each node. Moreover,
nt := [n1(t), ..., nM (t)] is the additive white noise assumed
nm(t) ∼ N (0, σ), ∀m = 1, ...,M . The expressiveness
power of the model is determined by the number of latent
factors D. In particular, the model can capture more diverse
and more complex patterns in the data as D increases. How-
ever, we should note that increasing D can also increase the
risk of overfittng. Therefore, choosing the right value for D
is important for achieving accurate prediction.

In order to effectively capture the graph structure of the
network and temporal patterns in the traffic, it is important
to model variables W, ft and b with flexible priors. In the
following, we focus on this problem.

A. PRIOR FOR FT

In order to capture the time evolution of the data traffic, we
assume that the latent variables ft follows an additive model
with four components given by:

fdt :=fd(t) :=f1d(t)+f2d(t)+f3d(t)+f4d(t),∀d = 1, ..., D.
(6)

The additive model in (6) is used to capture the disjunction
of four main temporal characteristics of the data. Function
f1d(t) models a short-term trend and is assumed to be a GP
with radial basis function (RBF) kernel as:

f1d(t) ∼ GP(0, k1d(t, t
′)),

k1d(t, t
′) = α1d exp

(
−β1d||t− t′||2

)
. (7)

Parameters α1d and β1d model the important behavior of
function f1d(t). In particular, α1d captures the horizontal
variation and β1d captures the vertical variation of function
f1d(t) in time domain. Function f2d(t) models a daily quasi
periodic pattern and is modeled by a GP as:

f2d(t) ∼ GP(0, k2d(t, t
′)),

k2d(t, t
′) =

α2d exp (−β2d||t− t′||2) exp (−γ1dsin
2 π

λ1
(t− t′)).

(8)

Kernel function k2d(t, t
′) is the product of a RBF and a

purely periodic RBF kernel which can capture the conjunc-
tion of both kernels [25], [26]. The overall kernel is a quasi
periodic. As in 7, parameters α2d, β2d and γ1d capture
the horizontal and the vertical variations of function f2d(t).
Moreover, parameter λ1 should be set as the number of
observations per day. In a similar way, function f3d(t) models
a weekly quasi periodic pattern and is modeled by a GP as:

f3d(t) ∼ GP(0, k3d(t, t
′)),

k3d(t, t
′) =

α3d exp (−β3d||t− t′||2) exp (−γ2dsin
2 π

λ2
(t− t′)),

(9)

where λ2 should be set as the number of observations per
week. Similarly, parameters α3d, β3d and γ2d capture the
horizontal and the vertical variations of function f3d(t). Fur-
thermore, function f4d(t) models the unstructured patterns
and is given by:

f4d(t) ∼ GP(0, k4d(t, t
′)),

k4d(t, t
′) = αndδ(t− t′). (10)

where δ(.) is the Dirac delta function. We note that, using the
additive property of GP, function fd(t) can be rewritten as the
following GP model:

fd(t) ∼ GP(0, kd(t, t
′)),

kd(t, t
′) = k1d(t, t

′) + k2d(t, t
′) + k3d(t, t

′) + k4d(t, t
′).
(11)
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B. PRIOR FOR W

Now we define prior destitution for W such that to explicitly
exploit the graph topology of the network. To do so, we use
a Gaussian random field (GRF) model as:

p(w:,d) ∝

e

−θd1

2

∑
{i,j}∈E

(wid − wjd)2−θd2

2

∑
i

w2
id

,∀d = 1, ..., D,
(12)

or equivalently:

p(w:,d) = N (0,Q−1
d ), (13)

where Qd = θd1L + θd2IM and L is the graph Laplacian
matrix. The graph Laplacian matrix is defined as:

L = IM −A, (14)

In 14, A is the adjacency matrix corresponding to the graph
where Aij is 1 if node i is connected to node j otherwise
is 0. GRF is a sparse approximation of a GP defined over
discrete input set. The connection between GRF and GP
has been studied in [27]. The assumption by using the GRF
is that nodes that are connected to each other should have
similar data traffic patterns. The GRF encourages the values
wi,d and wj,d to be similar if nodes i and j are neighbors
and therefore acts as a regularizer which can improve the
prediction accuracy.

C. PRIOR FOR B

Similarly, for the bias term, b, we use a GRF as prior given
by:

p(b) = N (Za,Q−1
D+1), (15)

where QD+1 = θD+1,1L + θD+1,2I. Matrix Z contains
some nodes specific features such as the degree of nodes. In
particular, by using this prior we encourage neighbor nodes
to have similar bias if they have similar features.

Since the coefficient a in (15) is unknown, we put the
following non-informative prior over its values:

p(ai) = N (0, 10−3),∀i. (16)

Finally, the complete probabilistic graph-based GP model is
depicted in Fig. 2. A summary of the model’s parameters is
also shown in Tab. 1.

D. THE COVARIANCE STRUCTURE
To have a better understanding about the underlying data
pattern that the model in (5) can capture, we compute the
overall covariance structure as:

E[ymtym′t′ ] =

D∑
d=1

E[wmd, wm′d]E[fd(t), fd(t
′)] + σ

=

D∑
d=1

Q−1
d [m,m′]kd(t, t

′) + σ, (17)

FIGURE 2: Probabilistic graph-based GP model.

Parameters Description
A Adjacency matrix
b Bias term
σ Data traffic noise variance
yt Data traffic vector
W Factor loading matrix
Qd GRF precision matrix
kd(t, t

′) Kernel function
D Latent factor dimensions
Z Nodes’ feature matrix
Mō Number of missing nodes
Mo Number of observed nodes
a Regression coefficient of nodes’ features
ft Time latent factor
M Total number of nodes

TABLE 1: A summary of parameters

where for simplicity of the analysis we ignore the bias term.
We can express (17) in a matrix form given by:

E[yyT ] =

D∑
d=1

Q−1
d ⊗Kd + σIMT , (18)

where y = vec(YT ), Y = [y1, ...,yT ]. It can be seen that
the covariance matrix is sum ofD covariance matrices which
each has a Kronecker structure. In a special case, the covari-
ance matrix has a simple Kronecker structure for D = 1.
Designing covariance matrices with Kronecker structure is
a common approach to model multi-variate output GP for
graph structured data, e.g., in [28]. The limitation with the
simple Kronecker structure is that it cannot capture complex
patterns in the data. On the other hand, the sum Kronecker
structure introduces much more expressiveness power for
complex and non-linear patterns.

V. MODEL INFERENCE AND PREDICTION
In this section, we focus on model inference and prediction
in the light of the data traffic measurements at the observed
nodes in set Vo. We note that the likelihood function in (5)
depends on the parameters of both missing and observed
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nodes which are highly correlated through the GRF prior
distributions in (13) and (15). However, the traffic measure-
ments are unavailable for the missing nodes and therefore the
inference is not trivial. To tackle the issue, our approach is
to integrate out the parameters of missing nodes from the
model to obtain a marginal model which includes only the
observed nodes. Using the marginal model, we can perform
the inference. In Section V-A, we focus on this problem. Af-
ter the inference, we define posterior predictive distributions
to make predictions about both the observed and the missing
nodes by exploiting their interaction structures encoded in the
GRF priors. This problem is explained in Section V-B.

A. INFERENCE
As we mentioned previously, the inference problem requires
to compute the marginal model of the observed nodes. Let
divide matrix W into two submatrices Wo ∈ RMo×D and
Wō ∈ RMō×D, where Wo and Wō are the latent factors for
the observed nodes and missing nodes respectively. Similarly,
we divide vector b into two subvectors bo ∈ RMo and
bō ∈ RMō , where bo and bō are the bias terms for the
observed nodes and the missing nodes respectively. The
marginal prior distributions of the parameters of observed
nodes can be computed as:

p(Wo)=

∫
p(Wo,Wō)dWō, p(bo)=

∫
p(bo,bō)dbō,

(19)

where the joint distributions p(Wo,Wō) and p(bo,bō) are
given by the GRFs in (12) and (15) respectively. By re-
arranging W and b, the GRF models can be rewritten as:[

wo,:,d

wō,:,d

]
∼ N (0,Q−1

d ),

[
bo
bō

]
∼ N (

[
Zoa
Zōa

]
,Q−1

D+1), (20)

Qd =

[
Q11d Q12d,
Q21d Q22d

]
, ∀d = 1, ..., D + 1

where Q11d ∈ RMo×Mo , Q12d = QT
21d ∈ RMo×Mō and

Q11d ∈ RMō×Mō . Using Schur complement lemma [29], we
can compute the marginal distributions of Wo and bo as:

p(wo,:,d) = N (0,Q−1
o,d), p(bo) = N (Zoa,Q

−1
o,D+1),

(21)

Qo,d = Q11d −Q12dQ
−1
22dQ21d, ∀d = 1, ..., D + 1.

Given the marginal priors in (21), the inference problem
focuses on the following Gaussian marginal model:

yot = Woft + bo + nt, (22)

where yot contains the data traffic measurements of the
observed nodes.

In particular, the inference goal is to compute the poste-
rior distribution of random variables h := {F,Wo,bo,a},
where F := [f1, ..., fT ] ∈ RD×T ; and find the best val-
ues for the hyperparameters of GPs ψGP := {ψGPd }Dd=1,

ψGPd := {αd1, αd2, αd3, βd1, βd1, βd1, , βd2, γd1, γd2},
GRFs ψGRF := {ψGRFd }Dd=1, ψGRFd := {θd1, θd2} and
noise variance σ given the traffic observations over T sam-
ples in time, i.e., Y := {yot}Tt=1.

The posterior of h has the following form:

p(h|Y;ψ) =

1

Z(ψ)
p(bo)p(a)

T∏
t=1

p(yot|ft,Wo,b)

D∏
d=1

p(wo,:d)p(f:d)

(23)

where ψ := {ψGP ,ψGRF , σ} and Z(ψ) is the marginal
likelihood which only depends on the hyperparameters. The
common approach for finding the best values for the hyper-
parameters is to maximize the log marginal likelihood as:

ψopt = arg max
ψ

logZ(ψ). (24)

However, neither of the problems in (23) and (24) are
trivial to solve because computing the marginal likelihood
involves multiple high dimensional integrals which are dif-
ficult to obtain in a closed form. To tackle the issue, we
use the VB learning algorithm [30]. The VB is an iterative
approach where each iteration consists of two main steps. In
one step, we approximate the posterior distribution of h given
the hyperparameters. In the next step, we optimize the hyper-
parameters given the approximate posterior distribution. In
particular, at iteration i, we solve the following subproblems:

Subproblem 1) We approximate the posterior distribution
by q(i)(h) given ψ(i−1) as:

q(i)(h) ≈ p(h|Y;ψ(i−1)). (25)

The approximate distribution q(i)(h) is determined such that
to have minimum dissimilarity with the true posterior. Using
the KL divergence to measure this dissimilarity, q(i)(h) can
be found by solving the following optimization problem:

min
q(i)(h)

KL
(
q(i) (h) || p

(
h|Y;ψ(i−1)

))
,

s.t :

∫
q(i) (h) dh = 1, (26)

where KL (q (.) || p (.)) := Eq(.)
{

log q(.)p(.)

}
.

Subproblem 2) We optimize the hyperparameters by max-
imizing a lower bound of the log marginal likelihood. It can
be shown that the negative of KL divergence in (26) is an
upper bound for the log marginal likelihood [31]. Thereto-
fore, the KL divergence in (26) can be used to optimize the
hyperparameters as:

ψ(i) = arg max
ψ
−KL

(
q(i) (h) || p (h|Y;ψ)

)
. (27)

We now explain the VB learning algorithm in more detail.
Hereafter, we ignore superscript i for notational simplicity.
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1) Posterior approximation
To simplify the optimization problem in (26), the assumption
will be that the probability density function q(h) is factorized
with respect to each variable in h as:

q(h) = q(bo)q(a)q(F)q(Wo)

= q(bo)q(a)
∏
d

q(f:,d)q(wo,:,d). (28)

Note that the second equality is obtained without any further
assumption. In particular, when we assume Wo and F are
independent, they are automatically factorized over latent
dimensions d due to the factorized form of their prior. Using
the Karush–Kuhn–Tucker (KKT) conditions, it can be shown
that the optimized form of j factor based on the minimization
of (26) is given by [30]:

q (hj) ∝ exp
(
E∼q(hj) [log (p (h,Y))]

)
, (29)

where the notation E∼q(hj) [.] means to take the expectation
with respect to all the variables except hj . Each optimal
variational distribution can be obtained as in the following.
• Compute q(f:,d): The optimal un-normalized log varia-

tional density can be written as:

log q(f:,d)

∝ E∼q(f:,d)

[
log p(f:,d)

T∏
t=1

p(yot|Wo, fdt,bo)

]

= E∼q(f:,d)

[
T∑
t=1

log p(yot|Wo, fdt,bo) + log p(f:,d)

]
∝ −1

2
fT:,dCwd

f:,d −
1

2
fT:,dK

−1
d f:,d + cwd

f:,d, (30)

where we define Cwd
:= E∼q(f:,d)

[
1
σwT

o,:,dwo,:,d

]
IT ,

cwd
:= E∼q(f:,d)

[
1
σwT

o,:,dRd

]
, Rd := [rd1, ..., rdT ]

and rdt := yot−bo−
∑
d′ 6=d wo,:,d′fd′t. It can be seen

that (30) is in a form of a normal density given by:

q(f:d) = N (µfd ,Σfd), (31)

where Σfd := (Cwd
+ K−1

d )−1 and µfd := ΣfdcTwd
.

• Compute q(wo,:d): The un-normalized log variational
density can be written as:

log q(wo,:d) ∝

E∼q(wo,:d)

[
T∑
t=1

log p(yot|Wo, ft,bo) + log p(wo,:d)

]
∝ −1

2
wT
o,:dC

f
dwo,:d −

1

2
wT
o,:dQdwo,:d + cfdwo,:d,

(32)

where Cfd := E∼q(wo,:d)

[
1
σ fT:df:d

]
IM , cfd :=

E∼q(wo,:d)

[
1
σ fT:dEd

]
, Ed := [ed1, ..., edM ], edm :=

ȳm−bm−
∑
d′ 6=d wd′mf:d′ , and ȳm := [yom1, ..., yomT ]T .

It can be seen that (32) is in a form of a normal density
given by:

q(wo,:d) = N (µwd
,Σwd

), (33)

where Σwd
:= (Cfd + Qd)

−1 and µwd
:= Σwd

cTfd .
• Compute q(bo): The un-normalized log variational den-

sity can be written as

log q(bo) ∝ −
1

2
bTo Cbbo + bTo cb −

1

2
bTo QD+1bo,

(34)

where Cb = 1
σ IM , cb = 1

σ (
∑T
t=1 yot −

E∼q(bo) [Woft]) + QD+1ZEq(a) [a]. It can be seen that
(34) is in a form of a normal density given by:

q(bo) = N (µb,Σb), (35)

where Σb = (Cb + QD+1)−1 and µb = Σbcb.
• Compute q(a): The un-normalized log variational den-

sity can be written as

log q(a) ∝

− 1

2
aTZTQD+1Za+aTZTQD+1Eq(bo) [bo]−

1

2
aTa,

(36)

which is in a form of a normal density given by:

q(a) = N (µa,Σa), (37)

where Σa = (ZTQD+1Z + I)−1 and µa =
Σa(ZTQD+1Eq(bo) [bo]).

2) Hyperparameter Optimization
In this step, the goal is to optimize the hyper-parameters
given the posterior distribution. Using the optimization prob-
lem in (27), the objective functions for the GP, GRF, param-
eters and σ to be minimized can be written as:

L1(ψGPd )

=
1

2
log |Kd| −

1

2
tr(K−1

d E[fT:df:d]),∀d = 1, ...D (38)

L2(ψGRFd )

= −1

2
log |Qd| −

1

2
tr(QdE[wT

o:dwo:d]),∀d = 1, ...D

(39)

L3(ψGRFD+1 ) = −1

2
log |QD+1| −

1

2
tr(QD+1E[bTo bo]),

(40)

L4(σ) = −MoT

2
log σ − 1

2σ

T∑
t=1

E[rTt rt], (41)

where rt = yot −Woft − bo. The maximal value of the
objective (41) can be obtained by taking its gradient equal to
zero which is given by:

σ =
1

MoT

T∑
t=1

E[rTt rt]. (42)

Due to non-linear dependency of GP and GRF objective
functions to the hyperparameters, there are no-closed form
solutions for (38), (39) and (40). However, the functions
are differentiable with respect the hyper-parameters and
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Algorithm 1 The VB algorithm

1: Initialize hyperparameters ψ(0) and posterior parameters µ(0)
` ,Σ

(0)
` ,∀` = a, b, f1, ..., fD, w1, ..., wD;

2: Set i = 1;
3: repeat
4: • Approximate the posterior distribution:
5: for d← 1, D do . Update the parameters of q(f:d), ∀d = 1, ...D

6: Σ
(i)
fd

= (Cwd
+ K−1

d )−1, µ(i)
fd

= Σ
(i)
fd

cTwd
;

7: where Cwd
= IT

1
σ(i−1)

∑M
m=1[Σ

(i−1)
wd ]m,m, cwd

= 1
σ(i−1)µ

(i−1)
wd

T
R̄d, R̄d = [r̄d1, ..., r̄dT ], r̄dt = yot − µ(i−1)

b −∑
d′ 6=d µ

(i−1)
wd′ [µ

(i−1)
fd′

]t;
8: end for
9: for d← 1, D do . Update the parameters of q(wo,:d), ∀d = 1, ...D

10: Σ
(i)
wd = (Cfd + Qd)

−1, µ(i)
wd = Σ

(i)
wdcTfd ;

11: where Cfd = IM
1

σ(i−1)

∑T
t=1[Σ

(i−1)
fd

]t,t, cfd = 1
σ(i−1)µ

(i−1)
fd

T
Ēd, Ēd = [ēd1, ..., ēdM ], ēdm = ȳm − [µ

(i−1)
b ]m −∑

d′ 6=d[µ
(i−1)
wd′ ]mµ

(i−1)
fd′

;
12: end for
13: Σ

(i)
b = (Cb + QD+1)−1, µ(i)

b = Σ
(i)
b cb; . Update the parameters of q(bo)

14: where Cb = IM
1

σ(i−1) , cb = 1
σ(i−1) (

∑T
t=1 yot−W̄of̄t)+QD+1Zµ

(i−1)
a , f̄t = [[µ

(i)
f1

]t, .., [µ
(i)
fD

]t]
T , W̄o = [µ

(i)
w1 , ...,µ

(i)
wD ];

15: Σ
(i)
a = (ZTQD+1Z + I)−1, µ(i)

a = Σ
(i)
a (ZTQD+1µ

(i)
b ); . Update the parameters of q(a)

16: • Optimize the hyperparameters . Update ψ
17: for d← 1, D do
18: ψ

GP (i)
d = arg minψGP

d

1
2 log |Kd| − 1

2 tr(K
−1
d (µ

(i)T

fd
µ

(i)
fd

+ Σ
(i)
fd

));

19: ψ
GRF (i)
d = arg minψGRF

d
− 1

2 log |Qd| − 1
2 tr(Qd(µ

(i)T

wd µ
(i)
wd + Σ

(i)
wd));

20: end for
21: ψ

GRF (i)
D+1 = arg minψGRF

D+1
− 1

2 log |QD+1| − 1
2 tr(QD+1(µ

(i)T

b µ
(i)
b + Σ

(i)
b ));

22: σ(i) = 1
MoT

(
∑T
t=1(rTt rt + ζwd

ζTft) + ζb) ;
23: where rt = yot − W̄of̄t − µ(i)

b , ζwd =
∑m
m=1[Σ

(i)
wd]m,m, ζwd

= [ζw1
, .., ζwD

], ζft = [[Σ
(i)
f1

]t,t, .., [Σ
(i)
fD

]t,t], ζb =∑M
m=1[Σ

(i)
b ]m,m;

24: Recompute Kd, ∀d = 1, ..D, and Qd, ∀d = 1, ..D + 1, using the updated hyperparameters ψ(i);
25: until convergence

gradient-based methods (e.g., Newton method) can be used
in order to minimize the objective functions.

Overall, the inference algorithm for posterior approxima-
tion and hyperparameter optimization takes the form as in
Alg. 1.

B. PREDICTION

For the H-step ahead prediction, we need to compute two
types of posterior predictive distributions (PPDs), one for the
observed nodes and one for the missing nodes.

1) Observed nodes

The PPD for the observed node is given by:

p(Y∗o |Y) =

∫
p(Y∗o |Wo,F

∗,bo)p(F
∗|F)q(F)

q(Wo)q(bo)dF
∗dWodFdbo, (43)

where Y∗o = [yo,T+1, ...,yo,T+H ] and F∗ =
[fT+1, ..., fT+H ]. The conditional p(F∗|F) density can by

computing by noting that the joint p(F,F∗) is a normal as:

p(f:d, f
∗
:d) = N (0, [

Kd K∗d
K∗d

T K∗∗d
]), ∀d = 1, ..., D, (44)

where [K∗d]ij = Kd(i, j), ∀i ∈ {1, ..., T}, j ∈ {T +
1, ..., T + H}, and [K∗∗d ]ij = Kd(i, j), ∀i, j ∈ {T +
1, ..., T +H}. Using the conditional property of normal [29],
we obtain:

p(f∗:d|f:d) = N (Mdf:d,Pd), (45)

Md = K∗d
TK−1

d ,Pd = K∗∗d −K∗d
TK−1

d K∗d.

We can integrate out the latent variables f:d and bo to
simplify (43) as:

p(Y∗|Y) =∫ T+H∏
t=T+1

N (yt|Wof
∗
t + µb, σI + Σb)p(f

∗
:d)q(Wo)df

∗
:ddWo,

(46)
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where

p(f∗:d) = N (µf∗d ,Σf∗d
), (47)

µf∗d = Mdµfd ,Σf∗d
= MdPdM

T
d + Σfd .

It is difficult to obtain a closed-form expression of (46). How-
ever, the mean and the variance can be computed analytically
as:

E(Y∗|Y) =

D∑
d=1

µwd
µTf∗d + µb, (48)

var(ymt|Y) = σ + [Σb]m,m +

D∑
d=1

[µwd
]2m[Σf∗d

]t,t.

+ [µf∗d ]2t [Σwd
]m,m + [Σwd

]m,m[Σf∗d
]t,t.

(49)

2) Missing nodes
The PPD for the missing nodes is given by:

p(Y∗ō |Y) =∫
p(Y∗ō |Wō,F

∗,bō)p(F
∗)p(Wō|Wo)q(a)

p(bō|bo,a,Zō)q(bo)q(Wo)df
∗dWodbodbōdWō,

(50)

where Y∗ō = [yō,T+1, ...,yō,T+H ] is the future traffic of
the missing nodes and p(F∗) is the marginal predictive
distribution of the time latent variables defined in (47). To
compute (50), we need to obtain the distributions of the miss-
ing nodes latent factors Wō and biases bō conditioned on
the inferred parameters, which are respectively represented
by p(Wō|Wo) and p(bō|bo,a,Zō). The latent variables
Wō, bō and F∗ are subsequently used as the parameters of
the distribution of the missing nodes p(Y∗ō |Wō,F

∗,bō) to
generate the data traffic. Note the this distribution is similar
to (28) and is given by:

p(Y∗ō |Wō,F
∗,bō) =

T+H∏
t=T+1

N (yōt|Wōf
∗
t + bō, σI) (51)

In order to simplify the PPD in (50), we compute the
marginal predictive distribution of the missing nodes latent
variables by integrating out all the inferred latent variables
of the observed nodes. In the following, we derive these
marginal distributions.

Using the GRF model in (20), the conditional density
p(Wō|Wo) can be computed as:

p(wō,:d|wo,:d) = N (Mwd
wo,:d,Pwd

),∀d = 1, ..., D,
(52)

where Mwd
= QT

oōdQ
−1
od , Pwd

= QT
oōdQ

−1
od Qoōd and

Qoōd = −Q−1
11dQ12dQ

−1
ōd . The marginal predictive Wō can

be computed by integrating out Wo as:

p(wō,:d) = N (µwōd
,Σwōd

), (53)

µwōd
= Mwd

µwd
,Σwd

= Mwd
Pwd

MT
wd

+ Σwd
.

Similarly, we can compute the marginal predictive distri-
bution of bō as:

p(bō) = N (µbō ,Σbō), (54)

where

µbō = Zōµa + Mb(µbo − Zoµa)

Σbō = MaΣaMa + P̄b

P̄b = MbΣboMb + Pb

Ma = Zō −MbZo

Mb = QT
oō,D+1Q

−1
o,D+1

Pb = QT
oō,D+1Q

−1
o,D+1Qoō,D+1

Qoō,D+1 = −Q−1
11,D+1Q12,D+1Q

−1
o,D+1.

Using (54), (53) and by integrating out a, the integral in
(50) can be simplified as:

p(Y∗o |Y) =

∫ T+H∏
t=T+1

N (yōt|Wōf
∗
t + µbō , σI + Σbō)

p(f∗:d)p(Wō)df
∗
:ddWō, (55)

which can be seen that it has a similar form as (46). Finally,
the mean and the variance are computed as:

E(Y∗ō |Y) =

D∑
d=1

µwōd
µTf∗d + µbō , (56)

var(yō,mt|Y) = σ + [Σbō ]m,m +

D∑
d=1

[µwōd
]2m[Σf∗d

]t,t+

[µf∗d ]2t [Σwōd
]m,m + [Σwōd

]m,m[Σf∗d
]t,t.

(57)

Overall, the workflow of posterior and prediction compu-
tations can be summarized in Fig. 3. In particular, first, the
recorded data traffic at the observed nodes are loaded. Next,
in the preprocessing step, we scale down the data. This step
is essential because the raw data can have large values and
rescaling can help better convergence of the VB algorithm.
Subsequently, using Alg. 1, we compute the posterior dis-
tribution. Finally, using (43) and (50), the traffic flow at the
missing and the observed nodes are predicted.

VI. SIMULATION RESULTS
In this section, we evaluate the prediction accuracy of the
proposed graph-based GP (GGP) model using the following
two real-world network traffic datasets.
• Abilene dataset [32]: The Abilene was a high-

performance backbone network created by the Internet2
community in the late 1990s. The network consists of
12 routers in United States which are connected by bidi-
rectional links, as shown in Fig. 4. The traffic data on
each link were recorded every 5 minutes (in Mb) from
2004/03/01 to 2004/09/10. In the original dataset, the
traffic was measured on each link which are in total
30 links. We aggregate the data traffic of the incoming
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Abilen dataset Geant dataset
H GGP ARIMA LSTM GCRN GMAN GGP ARIMA LSTM GCRN GMAN
1 4.4524 4.8670 5.5116 6.0652 5.4130 0.0077 0.0147 0.0222 0.0228 0.0237
5 51.6860 52.269 49.514 53.835 53.314 0.0301 0.0326 0.0453 0.0468 0.0575
15 30.565 31.965 38.8977 36.4435 39.4435 0.4800 0.5172 0.7442 0.6925 0.6963
30 42.7802 44.170 44.0926 43.6712 45.5801 1.8624 1.9388 2.9168 1.6046 1.5810

TABLE 2: The MSE performance for different prediction ahead, H .

FIGURE 3: The workflow of posterior and prediction com-
putations.

FIGURE 4: The Abilene network topology.

FIGURE 5: The Geant network topology.

links to each node in order to obtain node-level traffic
measurement. We further aggregate the dataset on an
hourly basis.

• Geant dataset [32]: Geant is a pan-European data net-
work. The network consists of 22 routers which are
connected by bidirectional links, as shown in Fig. 4.
The data were taken in 15 minutes steps starting on
04/05/2005 and ending on 31/08/2005. In the original
dataset, the traffic was measured on each link which are
in total 72 links. We aggregate the data traffic of the
incoming links to each node in order to obtain node-
level traffic measurement. We also aggregate this dataset
on an hourly basis.

To help better convergence of learning procedure, the data
have been scaled down by factor of 10000.

In order to compare with the proposed model, we consider
the following benchmarks:
• ARIMA model: The model is implemented using the

statsmodel python package [33]. We select the or-
ders from the set {(1, 0, 1), (3, 0, 3), (5, 0, 5), (7, 0, 7)}
which has the best performance.

• LSTM [34]: A fully connected network with two recur-
rent layers. In each recurrent layer, we select the num-
ber of hidden unit form the the set {50, 100, 150, 200}
which yields the best performance.

• GCRN [16]: It consists of a stack of graph CNN and
LSTM. The structure of the LSTM is selected similar
the previous model.

• Graph Multi-Attention Network (GMAN) [35]: It is
designed using attention mechanisms with gated fusion
to model the spatio-temporal correlations. This model
has three hyperparameters including the number of
spatio-temporal attention blocks, the number of atten-
tion heads, and the dimensionality of each attention
head. We fix the number of spatio-temporal attention
blocks to 3 and number of attention heads to 8 as in [35].
We select the dimensionality of attention heads from the
set {4, 8, 12, 16} which yields the best performance.

Moreover, we train the neural network models, i.e., LSTM,
GCRN and GMAN, using Adam optimizer [36] with an
initial learning rate of 0.001.

Table 2 shows the MSE for different prediction ahead
length, H , for different models. Note that the MSE com-
putes the discrepancy between the ground truth and the
predicted traffic flow values. Therefore, a prediction model
with smaller a MSE has better performance since its pre-
diction is closer to the ground truth. In this experiment,
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FIGURE 6: The ground truth and predicted traffic flow
trajectories of node "ch1.ch" versus prediction ahead, H , for
Geant dataset.

FIGURE 7: The ground truth and predicted traffic flow
trajectories of node "ATLAng" versus prediction ahead, H ,
for Abilene dataset.

we set Mō = 0 and D = 5. We trained the models for
T = {100, 200, 300, 400, 500} observations and the predic-
tions are computed for the subsequent H time steps for each
T . The MSE is computed by taking predictions in all T s.
The table shows that the developed GGP has lower MSE
with respect to the other benchmarks. Additionally, it can be
observed that, in general, the MSE increases as H increases
for all the models. This is expected since predicting a far-
distant future is more challenging. Moreover, in Fig. 6 and
Fig. 7, we show the ground truth and the predicted traffic
flow trajectories versus prediction ahead H , for T = 500, for
nodes "ATLAng" and "it1.it" in Abilene and Geant datasets
respectively. We can see that the predicted traffic flow using
GGP model is much closer to the ground truth with respect
to the other models.

Further, we investigate the sensitivity of the models against
noise. For this, we add artificial noise to the training datasets

FIGURE 8: The MSE versus the variance of noise, σ̄, added
to the data traffic for Geant dataset.

FIGURE 9: The MSE versus the variance of noise, σ̄, added
to the data traffic for Abilene dataset.

and train the models. In particular, we add a folded Gaussian
noise with zero mean and variance σ̄. Fig. 8 and Fig. 9
illustrate the MSE versus σ̄ for Geant and Abilene datasets
respectively. The results are obtained by averaging over 25
Monte Carlo simulations. It can be observed that the GGP
model is much more robust against the noise with respect
to the other models. In addition, we see that, in general,
the MSE first decreases and then increases as the noise
variance increases. The reason is that injecting small noise
to the training dataset can reduce overfitting and improve the
prediction accuracy. Note that applying noise to the training
dataset is widely used in deep learning literature as a data
augmentation technique to reduce overfitting [37]. However,
increasing the noise variance eventually increases the MSE
because the added noise dominates the underlying patterns in
the data that are useful to capture for accurate prediction.

Next, we show the prediction error in the presence of
missing nodes. We set T = 300,D = 5 andH = 15. For this
experiment, it is not straightforward to implement the GCRN
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FIGURE 10: The MSE for different number of missing nodes
for Abilene dataset.

because it requires the data traffic of all the nodes. Therefore,
we only use LSTM and ARIMA as benchmarks. For these
models, we use an iterative mean imputation method to
predict the data traffic at the missing nodes. In particular,
we fix the predictions at the observed nodes and initialize
the missing nodes with zero values. Next, each missing
node computes the mean of data traffic from its one-hop
neighbors and sends the computed mean to its neighbors.
This procedure is repeated until convergence. Fig. 10 and
Fig. 11 depict the MSE versus the number of missing nodes,
Mō for the Abilene and Geant networks respectively. The
missing nodes are selected randomly, similar to the previous
scenario, the results are obtained by averaging over 25 Monte
Carlo simulations. We can observe that the developed GGP
model outperforms the other benchmarks on both datasets.
Moreover, it can be seen that as the number of missing
nodes increases the MSE increases for all the models. This
is expected because as Mō increases, the number of observa-
tions decreases and it becomes much more difficult to extract
useful patterns among the nodes in the network.

Finally, we show the MSE versus the latent dimensions
D for T = 100 and T = 300 in Fig. 12 and Fig. 13. In
this experiment, the number of missing nodes is 30% of the
total number of nodes. From the figures, we can see that, in
general, the MSE first decreases and then slightly increases
as D increases. The decreasing trend is because the model
is not yet expressive enough to explain the data traffic well
which results in to underfit. The increasing trend is because
the model is too much flexible and fits to the noise rather than
useful patterns which results in to overfit. Moreover, it can be
seen that as the number of observations T increases, a larger
D is required to achieve accurate prediction. For example,
in Fig. 12, we can observe that 8 dimensions are enough for
T = 300 while 4 dimensions are needed for T = 100.

FIGURE 11: The MSE for different number of missing nodes
for Geant dataset.

FIGURE 12: The MSE for different values latent dimensions
D for Geant dataset

FIGURE 13: The MSE for different values latent dimensions
D for Abilene dataset
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VII. CONCLUSION
In this paper, we introduced a graph-based Gaussian process
model for network traffic analysis and prediction when the
network graph is not fully observable. The model is Bayesian
non-parametric and highly flexible in capturing complex
nonlinear patterns in the data. We defined a structured kernel
function which can model long-term and short-term temporal
trends for accurate prediction. Additionally, the model can
learn spatial interactions among the node in the network
which can be used to predict the missing values. Next, we
developed a variational inference algorithm to approximate
the intractable posterior distribution which can be efficiently
implemented. Finally, using two real-world datasets, we
showed simulation results to demonstrate that the proposed
model can achieve improved prediction accuracy with respect
to the state-of-the-art approaches.
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