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Abstract Unification is a central operation in constructing a range of compu-
tational logic systems based on first-order and higher-order logics. First-order
unification has several properties that guide its incorporation in such systems.
In particular, first-order unification is decidable, unary, and can be performed
on untyped term structures. None of these three properties hold for full higher-
order unification: unification is undecidable, unifiers can be incomparable, and
term-level typing can dominate the search for unifiers. The so-called pattern
subset of higher-order unification was designed to be a small extension to first-
order unification that respects the laws governing λ-binding (i.e., the equali-
ties for α, β, and η-conversion) but which also satisfied those three properties.
While the pattern fragment of higher-order unification has been used in nu-
merous implemented systems and in various theoretical settings, it is too weak
for many applications. This paper defines an extension of pattern unification
that should make it more generally applicable, especially in proof assistants
that allow for higher-order functions. This extension’s main idea is that the ar-
guments to a higher-order, free variable can be more than just distinct bound
variables. In particular, such arguments can be terms constructed from (suffi-
cient numbers of) such bound variables using term constructors and where no
argument is a subterm of any other argument. We show that this extension to
pattern unification satisfies the three properties mentioned above.
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1 Introduction

Unification is the process of solving equality constraints by the computation of
substitutions. This process is used in computational logic systems ranging from
automated theorem provers, proof assistants, type inference systems, and logic
programming. First-order unification—that is, unification restricted to first-
order terms—enjoys at least three important computational properties: decid-
ability, determinacy, and type-freeness. These properties of unification shaped
the way it can be used within computational logic systems. The first two of
these properties ensures that unification—as a process—will either fail to find
a unifier for a given set of pairs of term or will succeed and return the most
general unifier (mgu). The notion of type-freeness means that unification can
be performed independently of the possible typing discipline employed with
terms. Thus, first-order unification can be performed on untyped first-order
terms (as terms are usually considered in, say, Prolog). Since such unifica-
tion is untyped, it is often possible to employ such unification within various
typed disciplines. Since typing is usually an open-ended design issue (consider,
for example, higher-order types, subtypes, dependent types, parametric types,
linear types, etc.), the type-freeness of unification is one of its an important
characteristics.

Of course, many syntactic objects are not represented well by purely first-
order terms: this is the case when such objects contains bindings. Instead,
many computational systems follow Church’s approach used in his Simple
Theory of Types [13]: there, terms, formulas, and equality are taken directly
from the λ-calculus. All binding operations—e.g., quantification in first-order
formulas, function arguments in functional programs, local variables, etc.—can
be represented using the sole binder of the λ-calculus. Early papers showed
that second-order pattern matching can support interesting program analysis
and program transformation [24] and that a higher-order version of Prolog
could be used to do more general manipulations of programs and formulas
[28]. Today, there is a rich collection of computational logic systems that have
moved beyond first-order term unification and rely on some form of unifica-
tion of simply typed λ-terms (a.k.a. higher-order unification). These include
the theorem provers TPS [3], Leo [9] and Satallax [12]; the proof assistants Is-
abelle [35], Coq [49], Matita [4], Minlog [40], Agda [11], Abella [6], and Beluga
[38]; the logic programming languages λProlog [30] and Twelf [37]; and var-
ious application domains such as natural language processing [14] and proof
checking [31].

The integration of full higher-order unification into computational logic
systems is not as simple as it is in first-order systems since the three proper-
ties mentioned above do not hold. The unification of simply typed λ-terms is
undecidable [17,22] and there can be incomparable unifiers, implying that no
most general unifiers exist in the general situation. Also, types matter a great
deal in determining the search space of unifiers. For example, let i and j be
primitive types, let a be a constant of type i, and let F and X be variables
of type α → i and α, respectively, where α is a type variable. Consider the
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unification problem (F X) = a. If we set α to j, then there is an mgu for this
problem, namely [F 7→ λw.a]. If we set α to i, then there are two incomparable
solutions, namely [F 7→ λw.a] and [F 7→ λw.w, X 7→ a]. If we set α to i→ i,
then there is an infinite number of incomparable solutions: [F 7→ λf.a] and,
for each natural number n ≥ 1, [F 7→ λf.fna, X 7→ λw.w]. If we instantiate
α with types of still higher order, the possibility of unifiers becomes dizzying.
For these reasons, the integration of unification for simply typed λ-terms into
computational logic systems is complex: most such integration efforts attempt
to accommodate the (pre-)unification search procedure of Huet [23].

Instead of moving from first-order unification to full higher-order unifica-
tion, it is possible to move to an intermediate space of unification problems.
Given that higher-order unification is undecidable, there is an infinite number
of decidable classes that one could consider. The setting of higher-order pattern
unification (proposed in [27] and called Lλ-unification there) could be seen as
the weakest extension of first-order unification in which the equations of α, β,
and η conversion hold. In this fragment, a free variable cannot be applied to
general terms but only to bound variables that cannot appear free in eventual
instantiations for the free variable. This restriction means that all forms of
β-reduction encountered during unification are actually (α-equivalent) to the
rule (λx.B)x = B (a conversion rule called β0 in [27]). Notice that in this set-
ting, β-reduction reduces the size of terms: hence, unification takes on a much
simpler nature. The unification problems that result retain all three properties
we listed for first-order unification [27]. As a result, the integration of pattern
unification into a prover is usually much simpler than incorporating all the
search behavior implied by Huet’s (pre-)unification procedure.

A somewhat surprising fact about pattern unification is that many compu-
tational logic systems need only this subset of higher-order unification to be
“practically complete”: that is, restricting unification to just this subset did
not stop the bulk of specifications from being properly executed. For example,
while both early implementations of λProlog and LF [32,37] implemented full
higher-order unification, the most recent versions of those languages imple-
ment only pattern unification [1,39]. A design feature of both of those systems
is to treat any unification problem that is not in the pattern fragment as a sus-
pended constraint: usually, subsequent substitutions will cause such delayed
problems to convert into the pattern fragment. Processing of constraints may
also be possible: the application of pruning to flexible-flexible constraints in
[29] is such an example. Also, since pattern unification does not require typing
information, it has been possible to describe variants of such unification in
settings where types can play a role during unification: see, for example, gen-
eralizations of pattern unification for dependent and polymorphic types [36],
product types [15,16], and sum types [2].

Since pattern unification is a weak fragment of higher-order unification,
it is natural to ask if it can be extended and still keep the same high-level
properties. There have been a few extensions of pattern unification considered
in the literature. The generalization by Fettig and Löchner [16] and Duggan
[15] allows for constructors denoting projections to be admitted in the scope
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of free functional variables. These projections are specific unary functions that
are closed under several properties, such as associativity. When attempting to
encode the meta-theory of sequent calculus proofs for quantificational logic,
McDowell and Miller [26] encoded the abstraction represented by eigenvari-
ables using a single bound variable to encode a list of eigenvariables. Thus, to
encode the sequent judgment x0, . . . , xn ` Cx0 . . . xn (for n ≥ 0 and all vari-
ables being of the same primitive type), they instead used the simply typed
term λl.C(fst l) . . . (fst(sndnl)), where the environment abstraction l has type,
say, evs, and fst and snd are constructors of type evs → i and evs → evs,
respectively. Tiu showed how to lift pattern unification to this setting [43].

The problems of extending an algorithm from first-order to higher-orders
exist not only in unification but also in matching. Yokoyama et al. have shown
how an extension to patterns can be used in higher-order matching and have
presented a linear higher-order matching algorithm [47].

In proof assistants, such as Coq, where functions can be defined using
both lambda abstraction and iteration, the role of unification (see, for exam-
ple, [5]) could be increased if it could be used with occurrences of such functions
and lambda abstractions. In Coq, however, allowing unification in such more
general settings (for example, with the bigop library of SSReflect) produces
non-pattern unification problems [18]. Consider, for example, the problem of
unifying λx.Y (gx) with λx.f(gx), where Y is a free variable (a question mark
variable in Coq) of type i → i and f and g are functions of type i → i. If
f and g are defined functions, then find instances of Y that make this equal-
ity true can involve rather deep mathematical reasoning: for example, if the
function g always returns fixed points of the function f , then Y could be the
identity function. We shall consider such equations to be addressed by unifi-
cation, only when all functions are considered to be constructors. When this
example equation is considered as a unification problem, then this problem
has the most general unifier Y 7→ λz.fz. We note, however, that this problem
is not a pattern unification problem. Fortunately, the restriction of functions-
as-constructors is still a sound restriction since any solution for the restricted
setting is a solution for the richer, mathematical interpretation of functions.

Let us return to the definition of pattern unification problems. The restric-
tion on occurrences of the free variable, say, M is that (1) it can be applied
only to variables that cannot appear free in terms that are used to instantiate
M and (2) that those arguments are distinct. Condition (1) essentially says
that the arguments of M form a primitive pattern that allows one to form
an abstraction to solve a unification problem. Thus, M x y can equal, say,
(s x) + y simply by forming the abstraction λxλy.(s x) + y. Condition (2)
implies that such abstractions are unique.

The examples of needing richer unification problems above illustrate that
it is also natural to consider arguments built using variables and term con-
structors: that is, we should consider generalizing condition (1) above so that
the open term λl(M (fst l) (fst (snd l))) is permitted. If this term is required
to unify with a term of the form λl.t then all occurrence of l in t must occur in
subterms of the form (fst l) or (fst (snd l)). In that case, this unification prob-
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lem can be solved by substituting for M the result of abstracting out of t the
expressions (fst l) and (fst (snd l)) with separate bound variables. To guarantee
uniqueness of such solutions, we shall also generalize condition (2) so that the
arguments of M cannot be subterms of each other. This additional constraint
is required here (but not in the papers by Duggan [15] and Tiu [43]) since we
wish to handle richer signatures than just those with monadic constructors.

Many of the examples leading to this generalization of pattern unification
arise in situations where operators (such as fst and snd) are really functions
and not constructors: the intended meaning of those two operators are as func-
tions that map lists to either their first element or to their tail. When they
arise in unification problems, however, we can only expect to treat them as con-
structors. Thus, we shall name this extended pattern unification as function-
as-constructor (pattern) unification, or just FCU for short.

The rest of this paper is structured as follows. We cover the basic concepts
related to higher-order unification in Section 2. The class of unification prob-
lems addressed in this paper, the functions-as-constructor class, is defined in
Section 3 as is a unification algorithm for that class. We prove the correctness
of that algorithm in Section 4 and consider extensions in the FCU class in
Section 5. We conclude in Section 6.

This paper extends the conference paper [25] by containing revisions to
all sections and by including a new section that discusses the relationships of
our results to other works and contains an extension of the algorithm in the
second-order case.

2 Preliminaries

2.1 The Lambda-Calculus

In this section we will present the logical language that will be used throughout
the paper. The language is a version of Church’s simple theory of types [13]
following presentations given in [8] and [41]. Unless stated otherwise, all terms
are treated up to α-conversion and are implicitly converted to long βη-normal
form, i.e., β-normal and η-expanded form.

Let T0 be a set of basic types, then the set of types T is generated by
T := T0 | T → T. Let C be a signature of function symbols and let V be a
countably infinite set of variable symbols. Variables are normally denoted by
the letters l, x, y, w, z,X, Y,W,Z and function symbols by the letters a, f, g, h, k
or fixed width font names such as cons. We sometimes use subscripts and
superscripts as well. Occasionally, we use a superscript to indicate the type
of a symbol. The set Termα of terms of type α is generated by the grammar
Termα := fα | xα | (λxβ .Termγ) | (Termβ→αTermβ) where f ∈ C, x ∈ V
and α ∈ T (in the abstraction case, α = β → γ). Applications associated
are to the left. We will sometimes omit brackets when the meaning is clear.
We will also normally omit typing information when it is not crucial for the
correctness of the results. The set Term denotes the set of all terms. Subterms



6 Tomer Libal, Dale Miller

and positions within terms are defined as usual. We denote the fact that t
is a (strict) subterm of s using the infix binary symbol (@) v. The size of a
position denotes the length of the path to the position. We denote the subterm
of t at position p by t|p. Bound and free variables are defined as usual. We will
use the convention of denoting bound and universally quantified variables by
lower letters while existentially quantified variables will be denoted by capital
letters. Given a term t, we denote by hd(t) its head symbol and distinguish
between flexible terms, whose head is a free variable and rigid terms, whose
head is a function symbol or a bound variable.

Substitutions are defined as usual and their composition (◦) is given as
(σ ◦ θ)X = θ(σX). The trivial substitution that maps each variable to itself is
denoted by id. We denote by σ|W the substitution obtained from substitution
σ by restricting its domain to variables in W . We denote by σ[X 7→ t] the
substitution obtained from σ by composing it with the substitution X 7→ t.
We extend the application of substitutions to terms in the usual way and
denote it by postfix notation. Bound variables are changed as necessary in
order to avoid variable capture during substitution. A substitution σ is more
general than a substitution θ, denoted σ ≤ θ, if there is a substitution δ such
that σ ◦ δ = θ. The domain of a substitution σ is denoted by dom(σ).

We introduce also a vector notation tn for the sequence of terms t1, . . . , tn.
This notation also holds for nesting of sequences. For example, the term
f (X1 z1 z2) (X2 z1 z2) (X3 z1 z2) will be denoted by fX3z2. The mean-
ing of the notation λzn is λz1 . . . λzn. When the order of the sequence is not
important, we will use this notation also for multisets. We will use both set
union (∪) and disjoint set union (]) in the text.

2.2 Higher-order Pre-unification

In this section we follow the presentation in [41] of Huet’s pre-unification
procedure [23]. The procedure will be shown, in Section 3.2, to be deterministic
for the class of FCU problems. This result, together with the completeness
of the procedure, implies the existence of most-general unifiers for unifiable
problems of this class.

For the sake of our presentation of unification, we use the following non-
standard normal form: all terms, including existential variables but excluding
the arguments of these variables, are considered to be in η-expanded form.
The arguments of these variables are expected to be in η-normal forms. In a
similar manner to the one in [41], one can prove that all substitutions used in
this paper preserve this normal form.

Definition 1 (Unification Problem) An equation is a formula t
.
= s where

t and s are βη-normalized (see remark above) terms. A unification problem is
a formula of the form ∃Xm[e1 ∧ . . .∧ en] where ei for 0 < i ≤ n is an equation.
Let bvars(ei) = zn for ei = (λzn.ti

.
= λzn.si).
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Definition 2 (Unification System) A unification system over a signature
C is the following quadruple 〈Q∃, Q∀, S, σ〉 where Q∃ and Q∀ are disjoint sets
of variables, S is a set of equations and σ a substitution. Given a unification
problem ∃Xm[e1 ∧ . . . ∧ en] we consider the unification system over signature
C by setting Q∃ = Xm, Q∀ = {}, S = {e1, . . . , en} and σ = id.

Given a unification system 〈Q∃, Q∀, S, id〉 over C, a unification algorithm
attempts to find a substitution σ such that for each equation t

.
= s ∈ S,

tσ = sσ. Matching problems and matching systems are variants of their unifi-
cation counterparts in which we try to find a substitution σ such that for each
matching problem t

.
= s ∈ S, tσ = s.

Before presenting Huet’s procedure for pre-unification, we will repeat the
definition of partial bindings as given in [41]. Note that this definition is inline
with our non-standard η-normal forms.

Definition 3 (Partial bindings) A partial binding of type α1 → . . . →
αn → β where β ∈ T0 is a term of the form

λyn.a(λz1p1 .X1(yn, z1p1), . . . , λzmpm .Xm(yn, zmpm))

for some constant or variable a where

– yi has type αi for 0 < i ≤ n.
– a has type γ1 → . . . → γm → β where γi = δi1 → . . . → δipi → γ′i for

0 < i ≤ m.
– γ′1, . . . , γ

′
m ∈ T0.

– zij has type δij for 0 < i ≤ m and 0 < j ≤ pi.
– X1, . . . , Xm is a list of distinct free variables and Xi has type α1 → . . .→
αn → δi1 → . . .→ δipi → γ′i for 0 < i ≤ m.

A partial binding is either an imitation binding, denoted by PB(a, α), if a is
either a constant or a free variable of type α, or it is a projection binding
denoted by PB(i, α), where a is the bound variable yi of type α for some
0 < i ≤ n. Since partial bindings are uniquely determined by a bound variable
index, a type and an atom (up to renaming of the free variables Xm), this
defines a particular term.

Definition 4 (Huet’s Pre-unification Procedure) Huet’s pre-unification
procedure is given by the non-deterministic rewriting system that is given in
Table 1. Note that the sets Q∃ and Q∀ are fixed during the execution and are
mentioned explicitly just for compatibility with the algorithms given later in
the paper.

A unification problem is in a reduced form if it cannot be reduced further
by the algorithm. A unification problem in a reduced form is pre-solved if it
contains only the so-called flexible-flexible pairs, i.e., equations between two
flexible terms. Otherwise, the problem is unsolvable.

Note that it is possible to have an infinite series of valid steps in this pre-
unification procedure: such is the case when we start with an equation, such as
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(Delete)
〈Q∃, Q∀, S ] {t

.
= t}, σ〉 → 〈Q∃, Q∀, S, σ〉

(Simpl)
〈Q∃, Q∀, S ] {λzk.ftn

.
= λzk.fsn}, σ〉 → 〈Q∃, Q∀, S ] {λzk.t1

.
= λzk.s1, . . . , λzk.tn

.
= λzk.sn}, σ〉

(Bind)
〈Q∃, Q∀, S ] {λzk.Xzk

.
= λzk.t}, σ〉 → 〈Q∃, Q∀, Sθ ] {X

.
= λzk.t}, σ ◦ θ〉

where X 6∈ fvars(t) and θ = [X 7→ λzk.t]
(Imitate)
〈Q∃, Q∀, S ] {λzk.Xα(sn)

.
= λzk.f(tm)}, σ〉 → 〈Q∃, Q∀, S ] {X

.
= u, λzk.X

α(sn)
.
= λzk.f(tm)}, σ〉

where u = PB(f, α) and f ∈ C
(Project)
〈Q∃, Q∀, S ] {λzk.Xα(sn)

.
= λzk.a(tm)}, σ〉 → 〈Q∃, Q∀, S ] {X

.
= u, λzk.X

α(sn)
.
= λzk.a(tm)}, σ〉

where 0 < i ≤ k, u = PB(i, α) and either a ∈ C or a = zi for some 0 < i ≤ k

Table 1 Huet’s pre-unification procedure

X
.
= f(X) where f is a constant. Note that a first-order unification algorithm

will fail on a first-order version of this equation due to an occur check. These
checks cannot always determine non-unifiability in the higher-order case and
are therefore not used by the pre-unification algorithm to eliminate such cases.

The next theorem states the completeness of this procedure (the proof can
be found in [23,41]).

Theorem 1 Consider a system 〈Q∃, Q∀, S, id〉 and assume it is unifiable by σ.
Then there is a sequence of rule applications in Def. 4 resulting in 〈Q∃, Q∀, S′, θ〉
such that θ ≤ σ and S′ is in pre-solved form.

The following corollary of this theorem will be used in Section 4.

Corollary 1 Given a system 〈Q∃, Q∀, S, θ〉 and assuming it is unifiable by
θ ◦ σ, then the following hold:

– An application of (Bind) or (Simpl) results in a system 〈Q∃, Q∀, S′, θ′〉
which is unifiable by θ′ ◦ σ.

– If (Imitate) or (Project) are applicable to the system, then there is
a particular application of (Imitate) or (Project), which results in a
system 〈Q∃, Q∀, S′, θ′〉 such that it is unifiable by θ′ ◦ σ.

2.3 Pattern Unification

In this section we describe the higher-order pattern unification algorithm given
in [27] although we use notation more similar to Nipkow’s notation in [34]. This
algorithm forms the basis for our algorithm.

Definition 5 (Pattern Systems) A system 〈Q∃, Q∀, S, σ〉 is called a pattern
system if for all equations ei ∈ S and for all subterms Xzn in these equations
such that X ∈ Q∃, it is the case that z1, . . . , zn is a list of distinct variables
from the set Q∀ ∪ bvars(ei).

The following simplification will be called during the execution of the al-
gorithm given in Def. 7.
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(0) 〈Q∃, Q∀, S ] {t
.
= t}, σ〉 → 〈Q∃, Q∀, S}, σ〉

(1) 〈Q∃, Q∀, S ] {λx.s
.
= λx.t}, σ〉 → 〈Q∃, Q∀ ] {x}, S ] {s

.
= t}, σ〉

(2) 〈Q∃, Q∀, S ] {ftn
.
= fsn}, σ〉 → 〈Q∃, Q∀, S ] {t1

.
= s1, . . . , tn

.
= sn}, σ〉

where f ∈ C ∪Q∀
(3) 〈Q∃ ] {X}, Q∀, S ] {Xzn

.
= fsm}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉

where f ∈ C, X 6∈ fvars(fsm) and θ = [X 7→ λzn.fsm]

(4) 〈Q∃ ] {X}, Q∀, S ] {Xzn
.
= Xyn}, σ〉 → 〈Q∃ ] {W}, Q∀, Sθ, σ ◦ θ〉

θ = [X 7→ λzn.Wwk] and wk = {zi | zi = yi}
(5) 〈Q∃ ] {Y }, Q∀, S ] {Xzn

.
= Y ym}, σ〉 → 〈Q∃, Q∀, Sθ, σ ◦ θ〉

where X 6= Y , θ = [Y 7→ λym.Xyφ(m)] and φ is a permutation

such that φ(j) = i if zi = yj for 0 < i ≤ n and 0 < j ≤ m

Table 2 Pattern Unification Algorithm

Definition 6 (Pruning) Let 〈Q∃, Q∀, S, σ〉 be a pattern system that contains
the equation Xzn

.
= r ∈ S. If r contains an occurrence of a variable y ∈ Q∀

and that y is not a member of zn, then:

– if there is a subterm Wwm of r such that y = wi for some 0 < i ≤ m, then
return 〈Q∃ ] {W ′} \ {W}, Q∀, Sθ, σ ◦ θ〉 where W ′ is a fresh variable with
respect to S, θ = [W 7→ λwm.W

′um−1] and um−1 = wm \ {wi}.
– otherwise, the algorithm fails

Example 1 Consider a pattern system that contains the equation

λxλyλz.Xyx
.
= λxλyλz.Xxz

and where X is an existential variable. If we pick the subterm r and the
variable y from the above definition to be Xxz and z, respectively, then the
pruning substitution [X 7→ λxλz.W ′x] is produced. The resulting equation is
λxλyλz.W ′y

.
= λxλyλz.W ′x. This pruning process can be performed also on

this resulting equation, yielding the substitution [W ′ 7→ λx.W ′′]. The resulting
equation is now trivial: λxλyλz.W ′′

.
= λxλyλz.W ′′. Thus, the original pattern

system has the unifier [X 7→ λxλyλz.W ′′].

Definition 7 (The Pattern Unification Algorithm) The pattern unifi-
cation algorithm is the application of the rules from Table 2 in the following
order. First, apply rules (0), (1), and (2) until they are no longer applicable.
Second, apply the pruning rewriting rules until exhaustion. Finally, select an
equation and apply either rule (3), if that equation (or its converse) is flexible-
rigid, and either rule (4) or (5) if that equation is flexible-flexible. Repeat these
steps until no steps can be taken.

A proof that the rewriting in Definition 7 is terminating, sound, and com-
plete can be found in [27].
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2.4 Deterministic Second-order Matching

As was mentioned in the introduction, Miller’s pattern fragment is too weak for
some applications. Yokoyama, Hu, and Takeichi have presented an extension
[46] that proved useful for matching problems that arose from some program
transformation applications. Their fragment, called deterministic second-order
patterns (DSP), relaxes the requirements on the arguments of second-order
variables.

We discuss their fragment in detail in Sec. 5. Nevertheless, we find it in-
formative to present this fragment before proceeding with ours, due to the
similarity of some of their restrictions to the ones used in the algorithm we
present in the next section.

Definition 8 (DSP restricted terms[46]) Given C and Q∀, a DSP re-
stricted term t is a term such that:

– t is a first-order term using only the constants and variables in C and Q∀,
and

– t has a free occurrence of a variable in Q∀.

The next several examples will make use of fixing C = {cons, fst, snd, nil}
and Q∀ = {l, z}.

Example 2 The terms l, (cons z l), (cons (fst l) l), (snd (cons z l)) and
(cons z nil) are DSP restricted terms over the above C and Q∀, while nil is
not.

Definition 9 (DSP Systems[46]) A system 〈Q∃, Q∀, S, σ〉 is a DSP system
if the following two conditions are satisfied:

– DSP-argument restriction: For all occurrences of Xtn in S where X ∈
Q∃, the term ti, for all 0 < i ≤ n, is a DSP restricted term.

– DSP-local restriction: For all occurrences Xtn in S where X ∈ Q∃
and for each ti and tj such that 0 < i, j ≤ n and i 6= j, ti 6v tj .

In [46], Yokoyama, Hu, and Takeichi present an efficient second-order match-
ing algorithm and prove its correctness.

3 A Unification Algorithm for FC Higher-order Unification
Problems

3.1 FC Higher-order Unification (FCU) Problems

The main difference between pattern and FCU problems is in the form of
arguments of existentially quantified variables. In pattern unification problems,
the arguments to an existentially quantified variable must be a list of distinct
universally quantified variables whose binders are in the scope of the binder for
the existentially quantified variable. In FCU problems, these restrictions on the
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structure of the arguments are relaxed. We discuss the relationship between
our restrictions and those of Deterministic Second-order terms in Sec. 5.

The following definition generalizes the pattern unification arguments of
higher-order variables. These arguments are extended from bound variables to
more complex terms. These terms allow function symbols, as long as bound
variables occupy all leaf positions. There are no existential variables or ab-
stractions allowed though.

Definition 10 (Restricted Terms) Given C, Q∀ and an equation e, a re-
stricted term in e is defined inductively as follows:

– a ∈ Q∀ ∪ bvars(e) is a restricted term.
– ftn is a restricted term if n > 0, f ∈ C∪Q∀∪bvars(e) and ti is a restricted

term for all 0 < i ≤ n.

When e is clear from the context, we will refer to these terms just as restricted
terms. Note that restricted terms do not contain λ-abstractions.

Example 3 The terms l, (cons z l), (cons (fst l) l) and (snd (cons z l)) are
restricted terms over the above C and Q∀, while nil and (cons z nil) are not.

Definition 11 (FCU Systems) A system 〈Q∃, Q∀, S, σ〉 is an FCU system
if the following three conditions are satisfied.

– argument restriction: For every occurrence of Xtn in S where X ∈ Q∃,
it is the case that ti is a restricted term for all 0 < i ≤ n.

– local restriction: Whenever S contains an occurrence of Xtn where
X ∈ Q∃, then the arguments tn are constrained so that for every distinct
pair of members of {1, . . . , n}, say i and j, it is the case that ti 6v tj .

– global restriction: For each two different occurrences Xtn and Y sm in
S where X,Y ∈ Q∃ and for every 0 < i ≤ n and 0 < j ≤ m, it is the case
that ti 6@ sj .

Example 4 Pattern unification equations, such as {X l z
.
= fst (snd l)}, are

also FCU systems. The equation

{cons (X (fst l)) (snd l)
.
= snd (Y (fst l) (fst (snd l)))}

yields an FCU system. Examples of non-FCU problems are the following:

– {X (cons z nil)
.
= snd l}, which violates the argument restriction,

since (cons z nil ) is not a restricted term;
– {X (fst l) l

.
= cons z l}, which violates the local restriction since X

is applied to an argument that is a subterm of another argument; and
– {X (fst l)

.
= snd (Y (cons (fst l) (snd l)))}, which violates (only) the

global restriction, since the argument of X is a strict subterm of an
argument of Y .

The next proposition is easy to verify.

Proposition 2 Pattern systems are FCU systems.
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Before going on to show some properties of these problems, we provide some
motivation behind the restrictions above. The three restrictions are used in
the next section to prove the determinacy of Huet’s pre-unification procedure
over FCU problems. Nevertheless, we do not prove that this result does not
hold when weakening the above restrictions. The local restriction and
global restriction can easily be shown to be required even for very simple
examples. This is not the case for the argument restriction. One alternative
is to weaken the restricted term definition from above to require only one
subterm in the second condition to be restricted: that is, allow terms such as
(cons z nil) as arguments of existential variables. In the following, we will
give a counter-example to this weaker restriction. Still, it should be noted that
the counterexample depends on allowing inductive definitions containing more
than one base case (in particular, we allow for different empty list constructors
nil1 and nil2). When such definitions are not allowed, it may be possible to
prove the results given in this paper for a stronger class of problems.

Example 5 The unification system

〈{X,Y }, {z, z2}, {X (cons z nil1) (cons z nil2)
.
= cons z (Y z2)}, id〉

is unifiable by the following two incompatible substitutions:

1. [Y 7→ λz1.nil1, X 7→ λz1, z2.z1].
2. [Y 7→ λz1.nil2, X 7→ λz1, z2.z2].

3.2 The Existence of Most-general Unifiers

From this section on, an FCU problem will be referred to simply as a system,
unless indicated otherwise.

It is pointed out in [41] that the only “don’t-know” non-determinism in
the general higher-order procedure stems from the choice between the different
applications of (Imitate) and (Project). We prove that fulfilling the three
restrictions in Def. 11 makes these choices deterministic.

We first prove a couple of lemmas.

Lemma 1 If r is a restricted term and Xtn
.
= r is a unifiable equation e,

then there is 0 < i ≤ n such that ti is a subterm of r.

Proof By induction on the structure of the restricted term r. In the base case,
r ∈ Q∀ ∪ bvars(e). We first note that the substitution cannot be an imitation
as r contains only bound variables (those in Q∀ contain variables which are
bound as well). The only way a substitution applied to X can unify with
r is in the case it projects one of the bound variables. In that case, one of
the ti arguments will appear at the head of the result substitution instance.
Since the latter must equal r, then r contains that ti as a subterm. In the
inductive case, r has the form frm where m > 0, f ∈ C ∪Q∀ ∪ bvars(e) and
ri is a restricted term for all 0 < i ≤ m. The unifier must be covered by a
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projection or imitation term. In the former case, the argument above proves
the conclusion. In the latter case, [X 7→ λw.f(X1w) · · · (Xmw)] for m > 0 and
X1, . . . , Xm new free variables. We thus have that (X1tn)

.
= r1 is unifiable

and, by inductive assumption, some ti is a subterm of r1, implying that ti is
a subterm of r.

Lemma 2 Consider the equation t tk
.
= f sn, where t is a restricted term and

f ∈ C ∪ Q∀. If this equation is unifiable then t = f vn−k for restricted terms
vn−k.

Proof Since t is restricted, it does not contain abstractions and existential
variables and since the equation is unifiable, t can be written as f vn−k. Since
t is restricted, all its subterms are restricted as well.

The next two lemmas prove the determinism claim on applications of
(Project) and (Imitate). The first of these lemmas states that applying
different projection substitutions to an equation in an FCU system yield two
systems that cannot both lead to a successful unification.

Lemma 3 Consider the equation X tn
.
= f sm where X does not occur in

f sm. Let i and j be such that 0 < i < j ≤ n and let σ0 = [X 7→ λzn. ziXlzn]
and θ0 = [X 7→ λzn. zjYkzn] be two projection substitutions. Applying these
substitutions yield, respectively, the following two equations:

tiXl tn
.
= f sm (1)

tj Yk tn
.
= f sm (2)

There are no substitutions σ and θ such that σ unifies equation 1 and θ unifies
equation 2.

Proof We assume the existence of two such unifiers and then obtain a contra-
diction. According to Lemma 2, we can rewrite the two equations as

f vm−lXl tn
.
= f sm and f um−k Yk tn

.
= f sm

for restricted terms vm−l and um−k. Without loss of generality, we assume
that l ≥ k. Note also, that since ti 6= tj and ti, tj have f as a head symbol,
m ≥ m− k > 0. We consider two cases:

– All s1, . . . , sm−k are ground terms. In this case and since both equations
are unifiable, we get the equation

f vm−l (Xl−k tn)σ = f sm−k = f um−k (3)

Clearly, k 6= l since otherwise ti = tj which violates the local restriction

from Def. 11. We can now conclude that

(X1 tn)σ = um−l+1 (4)

Since um−l+1 is a restricted term then, according to Lemma 1, there is
0 < k1 ≤ n such that tk1 is a subterm of um−l+1. Since um−l+1 is a
subterm of tj , we get that tk1 is a subterm of tj which contradicts the
local restriction.
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– There is sk1 for 0 < k1 ≤ m−k which contains an occurrence of Z rk2 . This
must occur as a subterm of sk1 as otherwise the subterm Z rk2r

′ where r′

is not a restricted term, violates the argument restriction. Since uk1 is
a restricted term, any subterm of it is restricted as well. Therefore and
as sk1θ = uk1 , we have that there exists a restricted term u′ such that
Z rk2θ = u′. Using Lemma 1, we can conclude that there is 0 < k3 ≤ k2
such that rk3 is a subterm of u′, which is a subterm of uk1 which is a strict
subterm of tj , which violates the global restriction.

The following lemma states that applying an imitation and a projection
substitution to an equation in an FCU system yields two system that cannot
both lead to a successful unification.

Lemma 4 Consider the equation X tn
.
= f sm where X does not occur in

f sm. Let σ0 = [X 7→ λzn.f Xm zn] and θ0 = [X 7→ λzn.zj Yk zn] for some
0 < j ≤ n. Applying these substitutions yield, respectively, the following two
equations:

f Xm tn
.
= f sm (5)

tj Yk tn
.
= f sm (6)

There are no substitutions σ and θ such that σ unifies equation 5 and θ unifies
equation 6.

Proof We assume the existence of the two such unifiers and obtain a contra-
diction. Using Lemma 2, we can rewrite Eq. 6 as:

f vm−k Yk tn
.
= f sm (7)

where v1, . . . , vm−k are restricted terms and strict subterms of tj . Since f is
imitated, it is not a restricted term and f 6= tj which implies that m− k > 0.
Eq. 7 tells us that v1 = s1θ which implies that s1θ is a strict subterm of tj
and a restricted term. On the other hand, we have that X1 tn = s1σ from Eq.
5. We consider two cases:

– s1 is ground. In this case we can use Lemma 1 and the fact that s1 is a
restricted term to conclude that there is 0 < k1 ≤ n such that tk1 is a
subterm of s1. On the other hand, we know that s1 is a strict subterm of
tj and therefore we get that tk1 is a strict subterm of tj , which contradicts
the local restriction..

– If s1 is not ground, it must contain an occurrence Z rl. This occurrence
cannot occur as the subterm Z rlr

′ where r′ is not a restricted term as
it violates the argument restriction. Therefore, Z rl is a subterm of
s1. Since v1 is a restricted term, any subterm of it is restricted as well.
Therefore and as s1θ = v1, we have that there is a restricted term v′ such
that Z rl = v′. Now we use Lemma 1 and get that there is 0 < k1 ≤ l such
that rk1 is a subterm of v′, which is a strict subterm of tj . We get again a
contradiction to the global restriction.
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3.3 The Unification Algorithm

For defining the FC unification algorithm, we need to slightly extend the def-
inition of pruning.

Definition 12 (Covers) A cover for X tn and a restricted term q is a sub-
stitution σ such that (X tn)σ = q.

Note that uniqueness of covers follows from Theorem 5

Example 6 The substitution [X 7→ λz1λz2.cons (fst z1) z2] is a cover for
(X l z) and (cons (fst l) z).

Definition 13 (Pruning) Given an FCU system 〈Q∃, Q∀, S, σ〉 such that
(X tn

.
= r) ∈ S and r contains an occurrence of a restricted term q such that

q 6∈ tn. The result of pruning this system is one of the following three systems.

– If there is a subterm Wsm of r such that q = si for some 0 < i ≤ m, then
return 〈Q∃ ] {W ′} \ {W}, Q∀, Sθ, σ ◦ θ〉 where θ = [W 7→ λzm.W

′z′m−1]

and z′m−1 = zm \ {zi}.
– If there is no cover ρ for Xtn and q, then the algorithm fail.
– Otherwise, return the original system.

Example 7 Given the system

〈{X,Y,W,Z}, {l, w, z}, {X (snd l) z
.
= Y z (fst l),

W (fst l) z
.
= snd (Z w (fst l))}, id〉,

we can apply the following three prunings, σ1 = [Z 7→ λz1, z2.Z
′z2], σ2 =

[Y 7→ λz1, z2.Y
′z1] and σ3 = [X 7→ λz1, z2.X

′z2] and obtain the system
〈{X ′, Y ′,W,Z ′}, {l, w, z}, {X ′ z .

= Y ′ z,W (fst l) z
.
= snd (Z ′ (fst l))}, σ1 ◦

σ2 ◦ σ3〉.

For the next definition, we will use the following replacement operator r |tnzn
to denote the simultaneous replacement of each occurrence ti in r with zi for
0 < i ≤ n. We note that this replacement operator will be used only when
none of the term in the list tn are subterms of another term in that list: as
a result, this replacement operation will be well-defined. Also, replacement
respects the rules of α, β, and η-conversion: in particular, the replacement of
λw.w with the variable u in the expression (f (λx.x) (λy.y)) yields (f u u),
where f is a constructor.

Definition 14 (Algorithm for FCU Systems) The rules of an algorithm
for the unification of FCU systems is given in Table 3 where before the ap-
plication of rules (3) and (5), we apply exhaustively first rule (1) and then
pruning.
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(0) 〈Q∃, Q∀, S ] {t
.
= t}, σ〉→ 〈Q∃, Q∀, S, σ〉

(1) 〈Q∃, Q∀, S ] {λx.s
.
= λx.t}, σ〉→ 〈Q∃, Q∀ ] {x}, S ] {s

.
= t}, σ〉

(2) 〈Q∃, Q∀, S ] {ftn
.
= fsn}, σ〉→ 〈Q∃, Q∀, S ] {t1

.
= s1, . . . , tn

.
= sn}, σ〉

where f ∈ C ]Q∀
(3) 〈Q∃ ] {X}, Q∀, S ] {Xtn

.
= fsm}, σ〉→ 〈Q∃, Q∀, Sθ, σ ◦ θ〉

where f ∈ C, X 6∈ fvars(fsm) and θ = [X 7→ λzn.fsm |tnzn ]
(4) 〈Q∃ ] {X}, Q∀, S ] {Xtn

.
= Xsn}, σ〉→ 〈Q∃ ] {W}, Q∀, Sθ, σ ◦ θ〉

where W 6∈ Q∃, tn 6= sn, θ = [X 7→ λzn.Wzrk ] and

rk = {i | 0 < i ≤ n ∧ ti = si}
(5) 〈Q∃ ] {Y }, Q∀, S ] {Xtn

.
= Y sm}, σ〉→ 〈Q∃, Q∀, Sθ, σ ◦ θ〉

where X 6= Y , θ = [Y 7→ λzm.Xzφ(m)] and φ is a permutation (see

Lemma 11) such that φ(j) = i if ti = sj for 0 < i ≤ n and 0 < j ≤ m
Table 3 An algorithm for FCU problems

〈{X,Y }, ∅, {λl1λl2.X (fst l1) (fst (snd (l1)))
.
= λl1λl2.snd (Y (fst l2) (fst l1))}, id〉

→(1)×2 〈{X,Y }, {l1, l2}, {X (fst l1) (fst (snd (l1)))
.
= snd (Y (fst l2) (fst l1))}, id〉

→prun 〈{X,Y ′}, {l1, l2}, {X (fst l1) (fst (snd (l1)))
.
= snd (Y ′ (fst l1))}, [Y 7→ λz1λz2.Y ′z2]〉

→(3) 〈{Y ′}, {l1, l2}, {snd (Y ′ (fst l1))
.
= snd (Y ′(fst l1))},

[Y 7→ λz1λz2.Y ′z2, X 7→ λz1λz2.snd (Y ′z1)]〉
→(0) 〈{Y ′}, {l1, l2}, ∅, [Y 7→ λz1λz2.Y ′z2, X 7→ λz1λz2.snd (Y ′z1)]〉

Table 4 An example of a reduction on an FCU

〈{F}, {sum, n}, {(λj. add (project j) (project j))
.
= (λj. F (project j))}, id〉

→(1) 〈{F}, {sum, n, j}, {(add (project j) (project j))
.
= (F (project j))}, id〉

→(3) 〈{}, {sum, n, j}, ∅, {F 7→ λz.(add z z)}〉
Table 5 An example of a reduction on an FCU, adapted from [18]

Example 8 The quantified equation

∃X∃Y λl1λl2.X (fst l1) (fst (snd l1))
.
= λl1λl2.snd (Y (fst l2) (fst l1))

is proved using the rewriting for FCU systems, as illustrated in Table 4.

One can also find examples of FCU problems in the libraries of proof as-
sistants. The bigop library of the Coq proof assistant [10] contains various
occurrences of FCU instances. Since the proof assistant, so far, has not imple-
mented FCU, it cannot resolve such lemmas and constructors are sometimes
being stripped away manually1 in order for pattern unification to be applica-
ble [42].

The following example from Coq and Elpi is adapted from [18].

Example 9 The unification problem from [18]

∃F.(sum n (λj. add (project j) (project j))
.
= (sum n (λj. F (project j)))

is proved using the rewriting for FCU systems, as illustrated in Table 5, where
the first rewriting step (2) is elided.

1 See, for example, (rewrite - (big mkord (fun => ) G)) in the bigop library.
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Example 10 To illustrate the FCU algorithm on flexible-flexible unification
problems, we first introduce the f be a constructor of two arguments. The
equation

λuλv. X (f u v) (f v u) = λuλv. X (f v u) (f u v)

is solved by using rule (4) to produce the substitution X 7→ λw1λw2. W . The
equation

λuλv. X (f u v) (f v u) = λuλv. Y (f v u) (f u v)

is solved by using rule (5) to produce the substitution Y 7→ λw1λw2. X w2 w1.

By dropping the requirement that terms are in η-long form, this algorithm
can also work with terms that are untyped: the algorithm only requires ap-
plying η-expansion enough so that terms in an equation have bindings of the
same length (see [27, Section 9.3]). It is the presence or absence of constructors
and bound variables that matters in this algorithm and not the types of those
constructors and variables. Rich typing can, of course, be imposed to disallow
unifiers that might be over-generated when one considers the untyped case.

4 Correctness of the Algorithm

The unification algorithm transforms systems by the application of substitu-
tions and by the elimination of equations. We prove next that the application
of rules of the algorithm in Def. 14 on FCU problems results in FCU problems
as well.

Lemma 5 Given an FCU problem, then the application of rules from Def. 14
results in an FCU problem.

Proof Removing equations from the system clearly preserves the restrictions
of FCU problems. This result is also immediate when applying substitutions
as the only change to the arguments of the variables in the problem is to
eliminate them.

The following lemma states that projected arguments of variables on one
side of the equation must always match arguments on the other side.

Lemma 6 Let Xtn
.
= r be an equation such that r contains an occurrence

of Y sm where r 6= Y sm and let σ be a unifier of this equation such that
σY = λzm.s. Then, for each bound variable zi with a free occurrence in s for
0 < i ≤ m, there is 0 < j ≤ n such that si = tj.

Proof We prove by induction on the number of bound variables with free
occurrences. If s does not contain such a bound variable, then the lemma
holds vacuously. Assume s contains a free occurrence of zi for 0 < i ≤ m
and that there is no 0 < j ≤ n such that si = tj . In case there is more
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than one such occurrence in s, choose this occurrence to be in a minimal such
subterm, i.e. zi occurs in a subterm zivk such that all occurrences of z ∈ zm
in vk fulfill the requirement that there is tj = z for some 0 < j ≤ n. Let

(λzm.zivk)(sm) = siv′k. Since r 6= Y sm and the argument restriction, we

have that Y sm @ r. Since (Xtn)σ = rσ, we get that siv′k @ (Xtn)σ. Since si
is a restricted term, we get that there is 0 < j ≤ n such that either

– siv′k v tj . By the minimality assumption, if v′k contains a restricted term,
then it must be equal to some tl (0 < l ≤ n) and therefore, that tl @ tj ,
which contradicts the local restriction. Therefore, since tj is a re-
stricted term, k = 0. We obtain that si v tj and since si 6= tj by as-
sumption, we get, again, a contradiction to the global restriction.

– tj v si. Again, since si 6= tj , we get a contraction to the global restriction.

We now prove, for each rule in the FCU algorithm, a relative completeness
result. We start by the non-unifiability of problems with a positive occur check.

Lemma 7 Let 〈Q∃, Q∀, S ∪ {Xtn
.
= fsm}, σ〉 be a system such that X occurs

in sm, then the system is not unifiable.

Proof Assume it is unifiable by θ and θX = λzn.s. Consider two cases:

– s does not contain any occurrence of a variable zi for 0 < i ≤ n. Let #t
be the number of occurrences of symbols from C in t. Then, #((Xtn)θ) =
#(θX) ≤ #(smθ) < #((fsm)θ) and we get a contradiction to (Xtn)θ =
(fsm)θ.

– In case s contains such an occurrence and let Xqn be the occurrence in
sm. According to Lemma 6, we know that for all occurrences of zi in s for
0 < i ≤ n, there is an index 0 < j ≤ n such that tj = qi. Let ρ be the
mapping between indices defined as above such that ρ(i) = j. Let rk be
the set of indices 0 < i ≤ n which occur in s for some k ≤ n. Let p′ be the
non-trivial position of Xqn in fsm and let p be the maximal position of a
zi in s for i ∈ rk. This means we have qi at position p′ ◦ p in (fsm)θ and
since tρ(i) = qi and (Xtn)θ = (fsm)θ, we get that tρ(i) occurs at position
p′ ◦ p in (Xtn)θ. Since tρ(i) is a restricted term, there is an occurrence of
zρ(i) in s at position p′ ◦ p, in contradiction to the maximality of p.

Lemma 8 Given a system 〈Q∃, Q∀, S, ρ} where Xtn
.
= r ∈ S and assuming

we apply pruning in order to obtain system 〈Q∃, Q∀, S′, ρ′} as defined in Def.
13, then, if S is unifiable by substitution σ, then there is a substitution σ′,
such that σ = θ ◦ σ′, for some substitution θ. If S is not unifiable, then S′ is
not unifiable.

Proof Assume we apply pruning as in Def. 13. Let q be the restricted term
appearing in the equation according to the definition. The rule is applicable
only if there is such an occurrence q. Otherwise, S = S′ and θ = id. We
consider the two cases in the lemma:
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– there is a subterm Y sm of r such that q = si for 0 < i ≤ m. If S is not
unifiable, then assume S′ is unifiable by σ′ and since S′ = Sθ, we get that
S is unifiable by θ ◦σ′, a contradiction. Assume the system is unifiable and
let σY = λzm.s. Then, according to Lemma 6, either there is 0 < j ≤ n,
such that tj = si, which contradicts the assumption, or s does not contain
an occurrence of si. In the second case, by taking σ′ = σ|V(S)\{Y }[W 7→
λzrm−1

.Y zmσ] where zm \ z′m−1 6⊆ Q∀, we get that Y smσ = Wsrm−1
σ′ =

Y smθ ◦ σ′.
– If there is no such cover, then there is no substitution which unifies this

equation.

Lemma 9 Given a system 〈Q∃, Q∀, S, ρ〉 where Xtn
.
= s ∈ S and X does not

occur in s and assuming we apply the substitution θ as defined in rule (3) in
Table 3. Then, if σ is a unifier of S, then there is σ′ such that σ = θ ◦ σ′.

Proof We prove by induction on the structure of s. Note that two base cases
are also defined in the last two cases below for m = 0.

– s = Y sm for 0 ≤ m. In this case, mutual pruning will ensure that we have
Xtk = Y tφ(k) for φ defined as in rule (5) in Table 3 and k ≤ n,m. The rest
of the proof is similar to the proof of Lemma 11.

– s = tism for some 0 < i ≤ n and 0 ≤ m and therefore θX = λzn.zis′m
for some s′m. Assume applying (Project) with the substitution θ′ =
λzn.ziXmzn as defined in Def. 4. After applying (Bind) and possibly also
several (Simpl), we get the problem, since X cannot occur in s,

S′θ′ ∪ {X1tn
.
= s1, . . . , Xmtn

.
= sm} (8)

Since, by assumption, Xtn
.
= tism is unifiable and ti is a restricted term,

it follows, using an argument similar to the one in the proof of Lemma 3,
that also each of the Xjtn

.
= sj is unifiable by some σoj for 0 < j ≤ m. By

following lemmas 3 and 4, we have that applying any other projection or
imitation to Xtn

.
= tism will render it non-unifiable. By using Corollary 1,

we have that σoj can be extended into a unifier σj of S′θ′ ∪ {Xjtn
.
= sj}

for all 0 < j ≤ m and σ = θ′ ◦ σ1 ◦ . . . ◦ σm. By applying the induction
hypothesis, we get that there are substitutions σ′j unifying S′θ′ ∪ {Xjtn

.
=

sj} for all 0 < j ≤ m such that σj = θj ◦ σ′j for θjXj = λzn.s
′
j . I.e. that

σ = θ′◦θ1◦σ′1◦. . .◦θm◦σ′m. Since each σj is a unifier of the above equations
and σ is a unifier of S, we get that for each m ≥ j′ > j, σ′j′ ≤ σ′j |dom(σ′j′ ).
From this, together with the fact that the domain and range of each σ′j do
not contain variables from the domain of each θj′ for 0 < j < j′ ≤ m, we
get that σ = θ′ ◦ θ1 ◦ . . .◦ θm ◦σ′1 ◦ . . .◦σ′m. On the other hand, by applying
θ, we get the problem

S′θ ∪ {s′1
.
= s1, . . . , s

′
m
.
= sm} (9)

But, since θ = θ′ ◦ θ1 ◦ . . . ◦ θm, we just need to choose σ′ = σ′1 ◦ . . . ◦ σ′m
and we have σ = θ ◦ σ′.
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– s = fsm for 0 ≤ m and therefore θX = λzn.fs′m. Assume applying
(Imitate) with the substitution θ′ = λzn.fXmzn. After applying (Bind)

and a (Simpl), we get the problem, since x cannot occur in s,

S′θ′ ∪ {X1tn
.
= s1, . . . , Xmtn

.
= sm} (10)

From here we follow as before and use again Corollary 1 and Lemma 4.

Lemma 10 Given a system 〈Q∃, Q∀, S′ ∪ {Xtn
.
= Xsn}, ρ〉 and assuming we

apply the substitution θ as defined in rule (4) in Table 3. Then, if the system
is unifiable by a substitution σ, then there is σ′ such that σ = θ ◦ σ′.

Proof Assume that σX = λzn.s, we first prove that there is no occurrence zi
in s such that there is 0 < j ≤ k where i = rj and ti 6= si. Assume on the
contrary, then (Xtn)σ = (Xsn)σ which implies that ti = si. Now we can define
σ′ = σ|V(S)\{X}[W 7→ λzrk .σXzn] where zn \ zrk 6⊆ Q∀ are new variables.

Lemma 11 Given a system 〈Q∃, Q∀, S′∪{Xtn
.
= Y sm}, ρ〉 where X 6= Y and

assuming we apply the substitution θ as defined in rule (5) in Table 3. Then, if
the system is unifiable by a substitution σ, then there is σ′ such that σ = θ◦σ′.

Proof First note that since we apply pruning beforehand (in a symmetric way),
n = m and φ is indeed a permutation. Assume, without loss of generality,
that σX = λzn.s. We know that for each occurrence zi in s for 0 < i ≤ n,
si = tφ(i). By choosing σ′ = σ|V(S)\{Y }, we get that (Y sm)σ = (Xsφ(m))σ =
(Xsφ(m))σ

′ = (Y sm)(θ ◦ σ′). Therefore, σ = θ ◦ σ′.

Theorem 3 (Termination) Given a system 〈Q∃, Q∀, S, σ〉, the algorithm in
Def. 14 always terminates.

Proof Let the tuple m = 〈m1,m2〉 where m1 is the size of the set Q∃ and m2

is the number of all symbols except
.
= in S. Consider its lexicographical order,

it is clear that m is well founded. We show that it decreases with every rule
application of the algorithm:

– rules (0), (1) and (2) decrease m2 and do no increase m1.
– rule (3) decreases m1.
– rule (4) decreases m2 and does not increase m1.
– rule (5) decreases m1.
– pruning decreases m2 and does not increase m1.

Theorem 4 (Completeness) Let 〈Q∃, Q∀, S, id〉 be a system with unifier σ.
There is a sequence of rule applications in Def. 14 resulting in 〈Q′∃, Q′∀, ∅, θ〉
such that θ ≤ σ.

Proof Since the algorithm terminates and since it has a rule application for
each unifiable equation, we obtain at the end the above system. Lemmas 7, 8,
9, 10 and 11 then give us that for any unifier σ of S, there is a substitution σ′

such that σ = θ ◦ σ′. Therefore, θ ≤ σ.
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The next theorem is an easy corollary of the completeness theorem.

Theorem 5 (Most-general unifier) Given a system 〈Q∃, Q∀, S, id〉, if the
algorithm defined in Def. 14 terminates with system 〈Q′∃, Q′∀, ∅, σ〉, then σ is
an mgu of S.

Proof Since the algorithm in Def. 14 is deterministic, then we can use Theorem
4 in order to prove that σ is an mgu.

The next theorem is proved by simulating the algorithm in Def. 14 using
the procedure in Def. 4.

Theorem 6 (Soundness) Given a system 〈Q∃, Q∀, S, id〉 and assuming there
is a sequence of rule applications in Def. 14 resulting in 〈Q′∃, Q′∀, ∅, θ〉, then θ
is a unifier of S.

Proof It is obvious we can simulate each of the rules (0), (1), (2) and (3)
using the procedure in Def. 4. We get the required result by using Theorem
5. For rules (4), (5) and the first case of pruning, assume there is another
substitution ρ such that ρ unifies the problem and ρ 6< θ. This can only
happen if ρX = λzn.W ′rk′ such that rk ⊆ r′k′ . Lemma 10 states that there is
no unifier ω and a substitution γ such that ω = ρ ◦ γ. Since the second case of
pruning results in failure, we are done.

5 Discussion and Extensions of FC Unification

Hamana [19] has remarked on the strong similarity between FCU and DSP
problems, when restricted to the second-order case. In this section we discuss
this similarity and compare the two fragments. This comparison allows us to
discuss possible extensions to FCU which are strictly stronger than the one
defined in Sec. 3. We will also discuss the developments with regard to FCU
which have taken place in the last 4 years (2016-2020).

5.1 A Comparison of FCU and DSP

FCU and DSP differ on the following points:

1. FCU problems are unification problems while DSP are matching problems.
2. FCU problems are higher-order while DSP are restricted to second-order.
3. The set of DSP restricted terms strictly contains the set of second-order

(FCU) restricted terms.
4. DSP matching problems are deterministic without the global restriction

defined for FCU systems, while FCU problems are not.

When considering these 4 points, it seems appropriate to compare the two
fragments over the following 2 properties:

1. Matching vs. unification
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2. Second-order vs. higher-order terms

In fact, the first point was already discussed by Hamana in [19]. According
to which, Yokoyama, Hu and Takeichi have given an example of a unification
problem over DSP terms which admits two incompatible unifiers [48]2

Example 11 Let C = {fst} and Q∀ = {l1, l2}. The DSP problem

{X (fst l1) (fst l2)
.
= fst (Y l2 l1)}

admits the two incompatible unifiers [Y 7→ λz1, z2.z1, X 7→ λz1, z2.z2] and
[Y 7→ λz1, z2.z2, X 7→ λz1, z2.z1].

This example is not an FCU problem since the arguments of Y are strict
subterms of those of X, which violates the global restriction. We will
further discuss an extension of FCU to the second-order case in the next
section.

We will come back to the question whether this condition is the only one
required when moving from matching problems to unification ones. We can
now shift our attention to the second point of comparison – second-order vs.
higher-order terms – and note our strictly more restrictive definition of terms
(see Def. 10) than DSP terms (see Def. 8).

Proposition 7 A second-order (FCU) restricted term is a DSP restricted
term but not vice versa.

Proof Let t be a second-order (FCU) restricted term. According to the induc-
tive definition in Def. 10, there is at least one position p such that t|p ∈ Q∀,
which is exactly the requirement of DSP terms. Conversely, the following is a
DSP term but not a second-order (FCU) term (cons z nil).

Can DSP terms be extended to higher-order? Yokoyama et at. have ex-
tended their fragment to higher-order matching [47]. Their fragment has the
same restrictions as in the second-order case and depends on the standard
higher-order definition of the subterm relation. 3

Example 12 Let C = {nil} and Q∀ = {fun}. The third-order problem

{X (fun nil) fun
.
= (fun nil)},

admits the incompatible matchers [X 7→ λz1, z2.z1] and [X 7→ λz1, z2.(z2 nil)].
This problem, however, is not in the higher-order DSP fragment, since the sec-
ond argument of X is a subterm of the first one.

2 We could not find the example in the English version of the paper and refer to the one
mentioned by Hamana in [19].

3 Hamana, in private discussions, has described another class discussed by Yokoyama et
al. [48], which is restricted to linear second-order terms but is more permissive with regard
to the arguments of second-order variables.
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In the introduction to this paper, we have noted three properties which
are admitted by the pattern unification algorithm and which are desirable
in extensions of it: decidability, determinism and type-freeness. In [46], only
the first two requirements were desired. This is, of course, appropriate since
type-freeness plays no role in second-order terms. Clearly, since our restricted
terms do not admit abstractions in the arguments of higher-order variables,
type-freeness makes sense only if we do not restrict those arguments to be in
η-extended form. In our presentation, we require those arguments to be, in
fact, in η-normal forms (as are the arguments in [47]). In a similar way to
[47], the above example is also not an FCU problem, since we have the same
subterm restriction.

This example might hint that DSP problems can be used for unification,
if the additional global restriction is added. The following example shows
that this is not the case, already in second-order.

Example 13 Let C = {nil0, nil1, cons} and Q∀ = {w}. The second-order
problem

{X (cons w nil0) (cons w nil1))
.
= (cons w Y ))},

admits the two incompatible unifiers [X 7→ λz1, z2.z1, Y 7→ nil0] and [X 7→
λz1, z2.z2, Y 7→ nil1].

We now discuss an extension to FCU which is based on the observations
in this section.

5.2 Second-order FCU

Previously we have discussed Hamana’s second-order fragment [19], which re-
stricts FCU to the second-order case. One might conjecture that we can ex-
tend second-order FCU to DSP restricted terms. The unification problem in
Example 13 involves DSP terms which are not FCU, since it contains constant
symbols in leaf positions. Since this problem is not deterministic, it serves as
a counterexample to this conjecture.

This example shows that as long as restricted arguments allow for subterms
not containing bound variables, such as nil1 and nil2 in the above example,
these arguments can be projected and determinism might be lost. One can
now ask if the FCU restricted terms can be relaxed in the second-order setting
in another way. In fact, the above example is prevented if we add the following
further restriction

Definition 15 (local and global restrictions) Let the abstract projection
operator (apo) be defined as following. Given a restricted term t, apo(t) re-
places all subterms not containing a bound variable (from Q∀ ∪ bvars) with
the new constant ε. Then, local restriction and global restriction are
defined not over the restricted terms but over their abstract projections. We
define problems of this variant of FCU, restricted to the second-order case, as
FC2 problems.
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Example 14 Example 13 is not an FC2 unification problem since the abstract
projections of the arguments of X, (cons w nil0) and (cons w nil1), are both
(cons w ε) and violate the local restriction.

Does this fragment strictly contain the FCU one?

Proposition 1 A second-order (FCU) restricted terms is a FC2 restricted
term but not vice versa.

Proof Consider the following problem, which is FC2 but not FCU . Let C =
{nil0, cons} and Q∀ = {w}, The second-order problem {X (cons w nil0))

.
=

(cons w Y ))} is an FC2 problem but not FCU , since there is a constant at a
leaf position.

We can now move forward and prove that the unification problem of FC2

terms is deterministic. The key to this argument is the observation as to why
restricted terms play a role in ensuring the determinism of unification, which
can be found in the proof of lemmas 3, 4 and the auxiliary lemmas.

Proof (Adaptation of Lem. 3 to FC2 terms) In the second-order case, the
proof is much simpler. Each of the projections projects first order terms, so
equations 1 and 2 become

ti
.
= fsm (11)

tj
.
= fsm (12)

where ti and tj are not subterms of each other, do not contain free variables
and each contain at least one variable from Q∀. We proceed by finding a
contradiction. Let p be the first position in the abstract projections of ti and
tj such that the symbol at this position differs between the two terms or equal
to ε. Clearly, this means that fsm|p must be a variable Y vk where k ≥ 0, We
prove by considering different cases

– ti|p (or tj |p) contains a variable from Q∀ ∪ bvars. In this case, we get a
violation to global restriction in a similar way to the one in in the
proof of Lem. 3.

– Otherwise, both positions must be equal to ε and we get a violation of
local restriction.

Proof (Adaptation of Lem. 4 to FC2 terms) This proof is also simpler in the
second-order case, since the equations 5 and 6 become

fXmtn
.
= fsm (13)

tj
.
= fsm (14)

Since tj does not contain free variables, it can be written as

fvm
.
= fsm (15)

Since, tj is a restricted term, there is 0 < l ≤ m such that vl contains a bound
variable. We again proceed by considering different cases.
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Fragment SO matching HO matching SO unification HO unification
DSP X X X X
FC2 X X X ?
FC X X X X

Table 6 A summary of the properties of the three fragments discussed in this section

– sl is ground. We obtain that there is 0 < k ≤ n such that tk is a subterm
of tj , in a similar way to the proof of Lem. 4, which violates the local

restriction.
– Otherwise, sl contains a variable and we get again a violation to global

restriction in a similar way to the proof of Lem. 4.

We leave proving this extension to HO FCU as a future work.
We have already proved, in this section, that the DSP fragment is strictly

bigger than the FCU2 one, which is strictly bigger than the second-order FCU
one. Table 6 summarizes the determinism results of this section, as well as of
[46] and [48]. DSP corresponds to the fragment defined by Yokoyama et al.,
FC is the functions as constructors fragment discussed in this paper while
FC2 is the extension of the restricted terms discussed in this section. The X
symbol denotes that the specific matching/unification problem is deterministic
and terminating over the specific fragment, while ‘X’ denotes the existence of
a counter example. If the answer is unknown, the corresponding cell is denoted
by ‘?’. ‘HO’ and ‘SO’ denote higher-order and second-order, respectively. In
order to clarify further, we stress that the FC2 restriction is more general
than that of FCU and we have therefore managed to show its termination
and determinism for the second-order case only.

6 Conclusion

We have described an extension of pattern unification called function-as-
constructor unification. Such unification problems typically show up in situa-
tions where functions are applied to bound variables and where such functions
are treated as term constructors (at least during the process of unification).
We have shown that the properties that make first-order and pattern unifica-
tion desirable for implementation—decidability and the existence of mgus for
unifiable pairs—also holds for this class of unification problems.

The current trend in higher-order theorem proving is to apply deterministic
unification algorithms as often as possible to help reduce the search space. To
the best of our knowledge Hamana’s system SOL [21] is the only system that
has implemented the algorithm described in this paper [20].

The need to check for the subterm relation between different arguments
of variables makes this algorithm less efficient than pattern unification. Nev-
ertheless, the possibility to preserve completeness while using a deterministic
algorithm is advantageous. One place where such an approach is essential is
when one is looking for a complete set of higher-order unifiers, instead of
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pre-unifiers. One of the systems which have taken this approach is the Zipper-
position theorem prover [45], where FCU is mentioned as a desirable “oracle”
for solving fragments.

Another possible extension of the work is to improve its complexity. The
current algorithm, like the one in [27] and the first-order unification algorithms
which are used in practice, is of exponential complexity. We want to follow the
work of Qian [44] and prove that FCU is of linear complexity.

An interesting question is how the algorithm presented in this paper com-
pares to other higher-order unification algorithms, such as the one in [45],
when operating on the FC fragment. Clearly, such a comparison is unfair to
the more general algorithms, which, as we have seen above, actually use ded-
icated unification algorithms to tackle decidable fragments. One thing which
stands out, though, is the application of pruning, which is deterministic in our
algorithm and is non-deterministic in, for example, [45].
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