
Towards Transparent Legal Formalization

Tomer Libal1[0000−0003−3261−0180] and Tereza Novotná2

1 American University of Paris, France, University of Luxembourg, Luxembourg
tomer.libal@uni.lu

2 Masaryk University, Brno, Czech Republic

Abstract. A key challenge in making a transparent formalization of a
legal text is the dependency on two domain experts. While a legal expert
is needed in order to interpret the legal text, a logician or a programmer
is needed for encoding it into a program or a formula. Various existing
methods are trying to solve this challenge by improving or automating
the communication between the two experts. In this paper, we follow
a different direction and attempt to eliminate the dependency on the
target domain expert. This is achieved by inverting the translation back
into the original text. By skipping over the logical translation, a legal
expert can now both interpret and evaluate a translation.

Keywords: Legal knowledge base · Annotation editor · Formal repre-
sentation.

1 Introduction

Machine legal reasoning has been around for more than 30 years and various im-
plementations have been developed [3,11,14]. Nevertheless, the authors consider
it safe to claim that legal machine reasoning is still not widely used, despite the
effort invested.

One of the most challenging tasks towards automated legal reasoning is the
ability to encode legislation in a machine readable form [13]. In this step, a
legislation written by law and policy makers needs to be converted into a formal
representation, which can then be read and analyzed by computer programs.

Among the difficulties in obtaining a perfect translation, one can mention:

1. The need to translate a possibly ambiguous legal text into an unambiguous
formal representation.

2. The need to decide on, usually, a specific interpretation of various legal terms,
which are left open in the legislation.

3. The fact that two separate domain experts are needed, one for the target,
formal, domain, and a legal expert capable of interpreting the legislation.

The first two difficulties are hard to overcome, although there is some work
in that direction [15]. On the other hand, there are more than a few approaches
and solutions to the third problem.



2 T. Libal and T. Novotná

One way to bridge the gap between the two domain experts is to facilitate
communications between them. In [2], the problem of bridging between two do-
main experts is likened to the software engineering problem of bridging between
client requirements and software. The agile methodology in software engineering
suggests that short iterations and frequent consultation with the client can help
to close the gap. The methodology described in this paper aims at translating
an intermediate legislation back into text, so the legal expert can communicate
problems back to the logician.

A second way to bridge the gap is described in [9] and is based on the
same legislation editor used in this paper. This methodology, which is based on
another Agile technique called Behavior-driven development3, supports dividing
the work between the two domain experts. The legal expert task is to write legal
”cases” (users stories in Agile), while the logician is still in charge of the legal
formalization process. The interaction between the two is achieved by executing
the cases against the formalized legislation. If a case fails, then the logician must
fix the formalization.

Another way is to introduce a formalization language which is closely related
to the legal text. A popular such language is SBVR [1]. While such languages
greatly facilitate the formalization effort [4], they are usually not expressive
enough to capture the semantics of legal texts, as is attested by the contiguous
search for more expressive languages. Several tools for multi-agent normative
reasoning exists, for example Operetta for constructing normative specifications
4, however our tool is different mainly because of the interaction with the user.

Our solution is different and is based on taking out from the equation one
of the experts. By building on top of a previous work [5], in which a one-to-one
mapping between a legislation and its translation was established, we hope that
a legal expert can execute both the formalization and the evaluation steps.

The work in [5] was concerned with the question of ”How similar is the
translation to the original legislation?”. Existing translations, such as [12] and
[14], are normally very different from the legislation. For example, to obtain the
translation of a sentence of the form (part of the Regulation (EU) 2016/679 -
General Data Protection Regulation, hereinafter as ”GDPR”, Article 13 par. 1):

the controller shall, at the time when personal data are obtained, provide
the data subject with all of the following information:
a) the identity and the contact details of the controller and, where ap-

plicable, of the controller’s representative;
b) the contact details of the data protection officer, where applicable;”

Current approaches will generate two or three different statements, each con-
taining parts of the general conditions and adding new conditions and conclusion.
On the other hand, the extension in [5] to the annotation language described in
[8] enables a one-to-one mapping between the original legislation and its trans-
lation.

3 https://www.agilealliance.org/glossary/bdd/
4 http://www.cs.uu.nl/research/projects/opera/



Towards Transparent Legal Formalization 3

In this paper, we build on the fact that there is a one-to-one mapping between
the legislation and its translation and translate it back into a version of the
original legislation. This last translation also enjoys a one-to-one mapping, which
provides us with the main advantage of the method. The new methodology
requires only a legal expert for asserting the quality of the translation. The expert
is provided with the input and output of each paragraph and can determine if
the translated formalization faithfully represents the specific legal interpretation
of the input text, thus enhancing the transparency of the legal knowledge base.

This paper is organized as follows. In the next section, we present the editor
and describe the additional features which were implemented in order to sup-
port the results of this paper. The third section is dedicated to describing the
methodology and its application to article 7 of the GDPR. We conclude with an
overview of future work and improvements.

2 The legislation editor

This section is adapted from [8].
The legislation editor integrates theorem proving technology into a usable

graphical user interface (GUI) for the computer-assisted formalization of legal
texts and applying automated normative reasoning procedures on these artifacts.
In particular, the system includes

1. a legislation editor that graphically supports the formalization of legal texts
via the use of annotations,

2. means of assessing the quality of entered formalizations, e.g., by automati-
cally conducting consistency checks and assessing logical independence,

3. ready-to-use theorem prover technology for evaluating user-specified queries
wrt. a given formalization, and

4. the possibility to share and collaborate, and to experiment with different
formalizations and underlying logics.

The system is realized using a web-based Software-as-a-service and is avail-
able using a browser. It comprises a GUI that is implemented as a Javascript
browser application, and a NodeJS application on the back-end side which con-
nects to theorem provers, data storage services and relevant middleware. Using
this architectural layout, no further software is required from the user perspec-
tive for using the editor and its reasoning procedures, as all necessary software
is made available on the back end and the computationally heavy tasks are
executed on the remote servers only. The results of the different reasoning pro-
cedures are sent back to the GUI and displayed to the user.

2.1 The Annotation Editor

The annotation editor allows users to create formalizations of legal documents
that can be subsequently used for formal legal reasoning. The general function-
ality of the editor is described in the following.



4 T. Libal and T. Novotná

One of the main ideas of the editor is to hide the underlying logical details
and technical reasoning input and outputs from the user. We consider this es-
sential, as the primary target audience of the tool are legal experts who are
not necessarily logicians. It could greatly decrease the usability of the tool if a
solid knowledge about formal logic was required. This is realized by letting the
user annotate legal texts and queries graphically and by allowing the user to
access the different reasoning functionalities by simply clicking buttons that are
integrated into the GUI.

Another main idea of the editor is to enable a direct annotation of the original
text, without the need to modify it. This property is essential to the core result of
this paper - the ability to regenerate the original text from the annotations, which
can then be compared. It should be noted that many times, legal texts contain
implicit information. For example, the GDPR often talks about the processing
of data, but without always specifying that this is done by a processor. In such
cases, the users need to add the implicit text explicitly in the editor, so it can be
annotated. We encourage the user to put such text in square brackets, in order
to simplify the comparison between the original and the generated text at the
end of the process.

These two properties raise the need for an expressive annotation language,
which can capture not only language properties but also meta-language proper-
ties, such as exceptions and other complex relations. In order to support such a
language the annotations are organized into three layers.

In order to demonstrate the different elements of the editor, we will use
GDPR article 7, paragraph 2 as an example. the full annotation of this paragraph
can be seen in Fig. 1.

The editor employs a hierarchical approach to annotations. At the base,
there are “term” annotations, which are used to mark all relevant entities and
relations. These annotations are assigned specific colors, corresponding to their
entities. Entities normally denote a class of items or people while relations denote
actions or relations between different entities. An example of an entity which can
be seen in Fig. 1 is “give consent”, which corresponds to a relation between a
data subject, a controller and a specific data, processing and time.

On top of the term annotations, there are logical and normative properties,
such as obligations, conditions and negations. These annotations place a specific
context around term annotations, as well as other logical and normative ones. For
example, a term annotation might imply another, in which case the two relate
to each other as a condition and implication. If an annotation is an obligation,
such an annotation should be applied. In Fig. 1, we can see that the relation
between the first two terms and the following five is a condition in which the
conclusion is an obligation. This is obtained by setting each group of the two
groups of terms as a conjunction and setting the relationship between the two
groups as a conditional obligation, where the first part consists of the conditions
and the second consists of the obligation.

Lastly, the editor enables the user to annotate concepts which go beyond
direct logical and normative properties. For example, a sentence might be an



Towards Transparent Legal Formalization 5

exception of another, in which case the two must be bound together, despite the
fact that they may not appear together. Another example is when a sentence
refers to another but requires the replacement of some concepts with others.
The current text requires but a simple use of this feature. In Fig. 1, we can see
that each paragraph is being associated with its specific numbering using the
”Labeling” annotation. Such labels can be used later, for example in exceptions.
More complex examples can be found in the formalization of article 13 of the
GDPR, which is described in [6].

The formalization proceeds as follows: The user selects some text from the
legal document and annotates it, either as a term or as a composite (complex)
statement. In the first case, a name for that term is computed automatically, but
it can also be chosen freely. Different terms are displayed as different colors in the
text. In the latter case, the user needs to choose among the different possibilities,
which correspond to either logical connectives or higher-level sentence structures
called macros. The composite annotations are displayed as a box around the text
and can be done recursively.

Fig. 1. Article 7, par 2: Full annotation

The editor also features direct access to the consistency check and logical
independence check procedures (as buttons). When such a button is clicked, the
current state of the formalization will be translated and sent to the back-end
provers, which determine whether it is consistent resp. logically independent.

User queries are also created using such an editor. In addition to the steps
sketched above, users may declare a text passage as goal using a dedicated
annotation button, whose contents are again annotated as usual. If the query is
executed, the back-end provers will try to prove (or refute) that the goal logically
follows from the remaining annotations and the underlying legislation. This way,
the tool can answer YES/NO questions on whether the goal logically follows the
facts and logical relations of formalized legislation.

A very important feature of the editor is the ability to check the formal-
ization. Often times, formalizations cannot be checked for correctness and can
contain, therefore, many errors and typos5. By clicking the ”Save” button, the

5 Please refer to [5] for more information and examples.



6 T. Libal and T. Novotná

annotations are being converted into a formal structure, which is then being
converted into a legal text, for comparison. This process fails if the structure of
the annotations is incorrect and serves as a kind of ”compiler”.

In the next section, we are going to discuss in more detail the generated legal
text, which can be found under the ”Formalization” tab.

3 Legal Formalization

Formalization of legal text into a machine readable format is a rather complex
process. In such a process, the user inevitably encounters a number of prob-
lems as described in Section 1. In previous research, the authors tackled a few
such difficulties by proposing an approach of interactive legal text formaliza-
tion, where a user or legal expert decides about some of the types of difficulties
based on her expertise in certain legal field [8]. An interpretation of different
statements and terms in a legislation or legal text is generally one of the biggest
problems during automatic formalization. Authors deal with the interpretation
issue in such a manner that legal experts as users solely interpret the legal text
being formalized. Using this approach the editing tool becomes more of a sup-
port tool while formalizing legal text and only depends on the decisions of the
user. This approach is further advantageous because it can flexibly react on the
development of interpretation of a certain legal text in time.

In this article, the authors develop this approach further and tackle another
relevant problem. As described in Section 1, legal formalization using an edit-
ing tool requires knowledge of both law and logic which in most cases requires
the cooperation of a logician and a lawyer. The authors propose a solution in
providing user-friendly output of a formalization of legal text which is easily
comprehensible for lawyers with basic knowledge of logic. This approach aims to
reduce the level of expertise in logic required and assumes that the legal expert
is able to both formalize the legislation and assess the accuracy of the output.

3.1 Article 7 of GDPR

We use GDPR as a representative legislation for the editing tool functioning
presentation. GDPR is one of the most discussed and in many aspects contro-
versial European legislations, which makes it an optimal use case for the purpose
of this study. The GDPR defines the principles of personal data processing and
the conditions of lawfulness of their processing. It also regulates the conditions
for expressing the consent given to the processing of data and the provision of
information and access to personal data. The GDPR is universally binding and
applicable in all Member States of EU. Regarding its universality, uniqueness
and relative strictness in duties and sanctions, it is not surprising that a great
deal of effort is being made to ensure compliance of personal data processing with
the regulation in the private sector and to analyze and interpret the wording of
the legislation in the public and academic sectors. This statement may be also



Towards Transparent Legal Formalization 7

supported by the rich case law concerning GDPR of both the general and Euro-
pean courts and other administrative institutions. The robustness of the GDPR
application then creates the need to simplify and make the legal document ide-
ally accessible to a wide range of citizens and institutions in a transparent and
simple form.

In a current state, the user is capable of formalizing the whole legislation,
which is the recommended way of using the editing tool. Regarding the scope
of this article, we decided to present the formalization of the whole of Article
7 of GDPR - Conditions for consent. For the same reason we do not formalize
the Article in context with the rest of the legislation, however this systematic
formalization could be done following the same methodology.

Consent, in the context of GDPR, is one of the lawful ways of processing
personal data in accordance with Article 6 par. 1 (a) of GDPR and it is one of the
most common ways to lawfully process personal data as it is part of a majority of
services a human can use or buy nowadays. Article 7 states necessary conditions
for the consent of a subject of personal data to be lawful and in accordance with
the European regulation.

The full wording of Article 7 GDPR is:
1. Where processing is based on consent, the controller shall be able to demon-

strate that the data subject has consented to processing of his or her personal
data.

2. If the data subject’s consent is given in the context of a written declaration
which also concerns other matters, the request for consent shall be presented in a
manner which is clearly distinguishable from the other matters, in an intelligible
and easily accessible form, using clear and plain language. Any part of such
a declaration which constitutes an infringement of this Regulation shall not be
binding.

3. The data subject shall have the right to withdraw his or her consent at
any time. The withdrawal of consent shall not affect the lawfulness of processing
based on consent before its withdrawal. Prior to giving consent, the data subject
shall be informed thereof. It shall be as easy to withdraw as to give consent.

4. When assessing whether consent is freely given, utmost account shall be
taken of whether, inter alia, the performance of a contract, including the pro-
vision of a service, is conditional on consent to the processing of personal data
that is not necessary for the performance of that contract.

3.2 Formalization of Article 7 using the legislation editor

The formalization of legal text means the transformation of the text, including
its semantics, into the logical representation. The legislation editor uses the for-
malization performed by the user - legal expert - as an input. The formalization
is performed in the editor using annotations of the text as described in Section
2.1 in the Annotation tab.

The formalization in the legislation editor is based on the annotations of three
categories: terms, connectives and macro concepts. Terms are parts of the text
that the tool recognizes as an entity, entities can appear in the formalization



8 T. Libal and T. Novotná

any number of times. Connectives are logical constructs aimed to catch the
logical relationship among terms. Terms are marked as colored rectangles and
connectives and macros as grey borders in Fig. 1, the same term is always colored
with the same color. Annotations are performed by the expert who marks the
text according to her interpretation of the text and regarding the goal of the
formalization - what kind of questions about the legal text the user wants to
answer.

As it was mentioned in Section 1, the annotations methodology follows hier-
archical order. It is recommended to firstly determine the legal text or parts of
the legal text which user wants to formalize and then to clarify the logical rela-
tionships between the parts of the text. Given the example of Article 7 GDPR,
this article contains 4 paragraphs, all paragraphs relate to the conditions of con-
sent, which is gradually refined, therefore it is possible to start the formalization
of individual paragraphs separately.

Subsequent formalization shall follow a similar trend - firstly determine all
the terms (entities) in the text which the user considers important and mark
them as terms in the Annotation tab. After this step, the user shall mark the
logical relationships among marked terms. During this step, it is again necessary
to annotate the relations hierarchically, i.e to start with external relationships
and gradually move on to internal ones.

Given Article 7 par. 1: 1. Where processing is based on consent, the controller
shall be able to demonstrate that the data subject has consented to processing of
his or her personal data.

This paragraph contains an obligation of a controller to demonstrate the
consent of a specific subject for the processing of his or her personal data if
the processing is based on consent. The essential entities of this paragraph are
6 following: processing, based on consent, controller, to demonstrate, data sub-
ject and consent to processing of personal data. Therefore, we accept these 6
parts of the sentence as terms bearing the meaning of the sentence. We use the
legislation editor annotations scheme to mark all these terms and choose the
term names and variables. Variables follow first-order logic methodology and
they are contained in the brackets behind the term names. They need to start
with upper case letter to be recognized as variables. Variables allow the user
to address specific real-life subjects and objects and reason about them. Let us
take the first term processing. While processing, there is a specific subject and
her personal data to be processed by a specific controller in a specific situation
in time. All these characteristics of processing are changeable depending on the
specific situation, therefore we accept them as variables. When annotating in
the Annotation tab of the tool, we mark first part of the sentence ”Where pro-
cessing” as a term using the ”Term” button as in Fig. 1 and choose the name
processing(Data, Subject, Time, Controller), where the order of variables
is arbitrary, as in Figure 2. We annotate the other 5 terms in the same manner
with the variables as following:

”is based on consent” as term based on consent(Data, Subject, Time,
Controller, Consent, Processing)



Towards Transparent Legal Formalization 9

”the controller” as term controller(Controller)

”shall be able to demonstrate” as term to demonstrate(Controller, Con-
sent)

”that the data subject” as term data subject(Subject) ”has consented to
processing of his or her personal data” as term give consent(Data, Subject,
Time, Controller, Consent, Processing)

Fig. 2. Annotation of a ”Term”

Additionally, we annotate the number of paragraph ”1.” as a label for this
paragraph using the ”Term” button and choosing the name paragraph1. We
do this step in order to be able to use the sentence as a whole later in the situa-
tion, where it is needed to state a specific logical relationship between different
paragraphs. Therefore, there is no need to use variables for this term, since we
are choosing just a name for the paragraph.

”1.” as term paragraph1

This way we divided the first paragraph of Article 7 into different parts
marked as terms in the Annotation tab, all of the marked terms bearing dif-
ferent meaning and having different roles in the sentence. The second step in
formalization using the legislation editor is to define the logical relationships
between the terms in legal text.

As it was mentioned beforehand, during the annotation of logical relation-
ships, it is necessary to proceed from external logical relationships to internal
ones. Practically, annotation of logical relationships is similar to annotation of
the terms. We have to mark the whole text to which we intend to assign a logical
relationship and choose the correct logical relationship from the ”Connectives”
button, which provides several options as we can see in Fig. 3.

First, we have to use the ”Labelling” of the paragraph, which is a macro
concept listed in ”Connectives” as ”Labelling sentences”. This macro concept
accepts the first term in the marked text as a label and the rest as a sentence to
be labelled. In this case, the first marked term is the term paragraph1. This
means that if we need to refer to this paragraph in the future while formalizing of
the regulation, we can use the term paragraph1 as a reference to this paragraph.



10 T. Libal and T. Novotná

Labelling is a usual first step as it delimits the part of a text we will formalize
as a whole.

Fig. 3. The list of Connectives

Secondly, we have to decide on the logical relationship of a paragraph (sen-
tence). This task requires knowledge of legal notions and legal language used
for expressing different legal statements. In the case of the first paragraph of
Article 7, this sentence expresses an obligation of the controller to demonstrate
the consent, however this obligation is conditioned by the first part of sentence,
according to which the processing must be based on a consent for the following
obligation to apply. We can deduce that the obligation of the controller in the
second part of the paragraph is conditioned by the first part of the paragraph.
This situation clearly leads to an implication of obligation, in the ”Connectives”
list in Fig. 3 marked as ”If/Then Obligation”. Therefore, we mark the whole
sentence, except the label paragraph1 as ”If/Then Obligation”.

The first two terms - processing(Data, Subject, Time, Controller) and
based on consent(Data, Subject, Time, Controller, Consent, Process-
ing) are conditions for the obligation of the controller to apply. Thus, we mark
these two terms with another internal logical connective ”And” (as a conjunc-
tion).

The obligation of the controller is expressed in rest of the terms in this para-
graph - controller(Controller), to demonstrate(Controller, Consent), and
data subject(Subject) and give consent(Data, Subject, Time, Controller,



Towards Transparent Legal Formalization 11

Consent, Processing). Similarly, we mark these terms again with the internal
logical connective ”And”.

To summarize this process, we can say that the controller is legally obligated
to demonstrate a consent expressed by the data subject for specific processing
of her personal data, if such processing is based on consent. Full obligation of
Article 7 paragraph 1 is in Fig. 4.

Fig. 4. Annotation of Article 7 par. 1

The legislation editor contains another two important buttons - ”Save” and
”Run consistency check”. We save the formalization of the first paragraph with
the ”Save” button and we check whether our formalization is correct by pressing
the ”Run consistency check” button as in Fig. 4. This feature of the legislation
editor was already described in previous work of the authors, however the issue
tackled in this article is the following: even though the consistency check is
correct, is the user (lawyer) capable of assessing her formalization and deciding
whether it is correct and meaningful from both a legal and logical perspective?

To tackle this issue and simplify this task, we propose a work-in-progress
solution in the Formalization tab in the Legislation Editor.

Fig. 5. Formalization of Article 7 par. 1

The Formalization tab in Fig. 5 offers comparison of the original text and
logical formulae applied to the original text. Furthermore, logical formulae are
provided in such a way that the user can easily understand the logical rela-
tionships and evaluate their correctness. The current presentation displays the
internal logic formulae next to the relevant text. These formulae are denoted in
first-order Deontic logic [7] and variables are implicitly quantified over each of
the whole formulae displayed on the formalization tab. In future versions, this
logical terms will be replaced by their matching entities in a relevant ontology
(see for example, [10]).



12 T. Libal and T. Novotná

It should also be noted that we make a distinction between the formula
used for representing the knowledge, and the formula used for actual reasoning
over the knowledge. Once a theorem prover is being called, the representation
formula is being translated into the prover input logic. Issues such as conditional
obligations, negation-as-failure and others are resolved at this point, depending
on the target theorem prover.

The goal of the methodology of translating the original text into a formula
and then back into text, is that the output is as comprehensible and as similar
as the input, i.e the original legal text in the left part of the Formalization tab.
At the same time, it is necessary to preserve the logical formulae used while
formalizating the text and present them in the output in a compatible way with
the text. To find the right balance of these two goals - to present both the original
text and logical formulae comprehensibly together - is the future work for the
authors of this article, the current setting is just the first attempt on this path.

As we can see in Fig. 5, first the legislation editor shows the label of the
paragraph. Subsequently, it shows the specific part of the original legal text and
the term allocated to this specific part of the text behind together with selected
variables. To clearly distinguish different semantic parts of texts, it lists the
terms on separate rows in the order as in the original text, therefore it preserves
the sequence of the original legal text. Additionally, different terms (different
parts of original text) are connected with logical words representing different
logical relationships.

Specifically, we can first observe the word ”IF” which means that the follow-
ing terms are conditions. These following terms are connected with ”AND”. The
obligation dependent on previous conditions is marked as ”THEN YOU MUST”
and the following terms are the consequences that need to happen in order to
meet the obligation of this part of the regulation. The legal consequences are
again connected with ”AND” to show that all of them need to apply. Detailed
formalization of the first paragraph is in Fig. 6.

Fig. 6. Formalization of Article 7 par. 1 - Formulae

In this case, the comprehensibility is achieved through the indentation, sepa-
ration of the original text and allocated terms and differentiation of connectives
in upper case and terms or original text in lower case. The visual distinction of
logical parts of legal text is another way of presenting the output, although we



Towards Transparent Legal Formalization 13

are aware that in this direction, the legislation editor is limited and we accept
this as a future work issue. Nevertheless, we believe that our approach is the
right first step in the comprehensibility of formalization of legal text.

Regarding paragraph 1 of Article 7, the output is easily comparable with
the input in the left part of the Formalization tab. The check of formalization
is then easily performed by simply reading through the right formalized output
and assessing its legal meaning when comparing to the meaning of the original
text.

Given this formalization methodology, we can proceed with the rest of the
paragraphs in the same manner. In paragraph 2 as we can see in Fig. 1 we used
following terms:

”2.” as term paragraph2

”If the data subject’s consent is given” as term give consent(Data, Sub-
ject, Time, Controller, Consent, Processing)

”in the context of a written declaration which also concerns other matters”
as term written declaration other matters(Data, Subject, Time, Con-
troller, Consent)

”the request for consent shall be presented in a manner which is” as term
request for consent(Data, Subject, Time, Controller, Consent)

”clearly distinguishable from the other matters” as term distinguishable(Data,
Subject, Time, Controller, Consent)

”in an intelligible” as term intelligible(Data, Subject, Time, Controller,
Consent)

”and easily accessible form” as term accessible(Data, Subject, Time,
Controller, Consent)

”using clear and plain language” as term language(Data, Subject, Time,
Controller, Consent)

”Any part of such a declaration” as term written declaration other matters
(Data, Subject, Time, Controller, Consent)

”which constitutes an infringement of this Regulation” as term infringe-
ment

”shall not be binding” as term binding

Subsequently, after labelling the paragraph, we chose two obligations based
on conditions as connectives for the two separate sentences in paragraph 2.
Therefore, we annotated them separately as ”IF/THEN OBLIGATION” con-
nectives, where give consent(Data, Subject, Time, Controller, Consent,
Processing) and written declaration other matters(Data, Subject, Time,
Controller, Consent) are conditions for first implication and the following
terms are consequences. written declaration other matters(Data, Subject,
Time, Controller, Consent) and infringement are conditions for second im-
plication and binding (annotated as a ”NEGATION” first) is a consequence.

The resulting formalization is in Fig. 7.

Again, we can observe two separated implications with obligations starting
with ”IF” statement and continuing with ”THEN YOU MUST”. These two
implications (sentences) are connected with the connective ”AND” as two parts



14 T. Libal and T. Novotná

Fig. 7. Formalization of Article 7 par. 2 - Formulae

of one paragraph labelled as ”paragraph2”. Given the scope of this article, we
are not able to go through the formalization of all the paragraphs step by step,
however we are providing the outputs in Fig. 8 and Fig. 9.

Fig. 8. Formalization of Article 7 par. 3 - Formulae

We used a permission to formalize the first sentence of paragraph 3 as a
right of subject of personal data to withdraw the consent. This permission is
simple, it is not conditioned by any other facts or actions. Similarly, we used
simple obligations without implications for the third and fourth sentences in this



Towards Transparent Legal Formalization 15

Fig. 9. Formalization of Article 7 par. 4 - Formulae

paragraph given that these sentences mean simple obligations non-conditioned
by any precedent facts or actions to apply.

Regarding paragraph 4, we annotated the whole sentence as an obligation
with the implication ”IF/THEN OBLIGATION” given that ”whether assessing
if the consent is freely given” are conditions and considering the necessity of
processing of personal data for the performance of a contract are consequences
that must be met to comply with the GDPR regulation.

3.3 The comprehensibility of formalization - future work

It is evident that our attempt to provide a meaningful and comprehensible for-
malization tool for lawyers to be used without extensive knowledge of first-order
logic and logical reasoning is just a first step to achieve this rather ambitious
task. Our new feature of the legislation editor in the current setting offers only
limited visualization help for lawyers. This feature is based mainly on visual
indentation of different parts of texts (terms and connectives) and hierarchical
sequence of parts of the text. Nevertheless, we assume that the most important
lesson learned is that using as much of the original legal text as possible to
present in the output formulae, together with logical connectives, increases the
comprehensibility significantly. And mainly, it allows the user to compare the
original legal text with the formalized text in logical formulae which makes the
formalization task less time-consuming and more user-friendly. Our legislation
editor can do so because it stores the parts of original text as ”Terms” and al-
though it continues to work only with the annotated terms (or labels), the stored
text is very helpful when the tool presents the output of the formalization to the
user.

As a future work, we intend to achieve higher comprehensibility with better
visualization of the output formulae using graphical features such as colours or
diagrams and connecting the formalized terms to the ontological dictionary. We
believe that enhancing the comprehensibility of output formulae is the main task
to be solved on the way to usable formalization tool for lawyers without further
knowledge of advanced logic.



16 T. Libal and T. Novotná

4 Conclusion

One of the major obstacles for the creation of a formal legal knowledge base,
is the dependency on both target and source domain experts. The target do-
main experts, who are usually logicians or programmers, are most suitable for
encoding knowledge into formulae and programs, but they usually lack a deep
understanding in the legal domain. On the other hand, most legal experts would
find it difficult to follow the legal meaning of a legislation in a completely formal
form. This dependency on two domain experts means that the trust legal experts
can place in a knowledge base is limited.

In this article, we build on our previous research ideas and applications in
legal reasoning and formalization of legal texts in order to make the formalization
process transparent. This is achieved by increasing the confidence of the legal
expert in the formalized knowledge.

Our approach is based on an assumption that if the formalization of legal
text is user-friendly enough and if the output of formalization is comprehensible
enough, the formalization of legal text can be performed by an expert in specific
legal domain without a deeper knowledge of first-order logic. We are trying to
achieve this goal by extending an existing legislation editor with a visualized
output of a formalization.

Using our approach, a lawyer with limited knowledge of first-order logic is
capable of translating certain legal text into formal language using a simple
annotation editor according to his expertise in a legal domain related to this
legal text. The formalization is only dependent on his expert interpretation of
the text. Furthermore, the lawyer is capable of properly checking the formalized
formulae of legal text and eventually, to correct the formalization according to
his best knowledge of interpretation and legal domain.

To demonstrate this approach, we formalize Article 7 of GDPR. We show
the practical use of the legislation editor in the formalization of Article 7 of
GDPR in a step by step manner. Subsequently, we show the visualized output
of the logical formulae as a result of legal text formalization. We argue that the
proposed design of the output formulae is sufficient and comprehensible enough
for a lawyer to assess the logical formulae and compare it to the original plain
legal text and potentially use it to correct the formalization.

This paper describes a very basic prototype with the sole purpose of demon-
strating the approach. In the future, we plan on enhancing the translation back
into legal text so it will be as similar to the original text as possible. For example,
a legal text might use various words to denote an obligation, such as ”must”,
”should” and ”obliged”. All these verbs are currently uniformly being translated
into ”It is an obligation that”. By parsing the original text and extracting the
specific ”obligation” verb, we can increase the similarity of the generated text
to the original.

Another enhancement to the current version would be to create a two-
dimensional display of the legal text. Currently, both the original text and the
generated formula which denote a certain term are appearing in the translation.
In a two-dimensional approach, only the original text would be displayed and



Towards Transparent Legal Formalization 17

the user would have the possibility to see which ontological entity is mapped to
it by clicking on or hovering over it.

5 Acknowledgment

Tereza Novotná acknowledges the support of the ERDF project ”Internal grant
agency of Masaryk University” (No. CZ.02.2.69/0.0/0.0/19\_\0073/0016943).

References

1. Bajwa, I.S., Lee, M.G., Bordbar, B.: Sbvr business rules generation from natural
language specification. In: 2011 AAAI Spring Symposium Series. Citeseer (2011)

2. Bartolini, C., Lenzini, G., Santos, C.: An agile approach to validate a formal repre-
sentation of the gdpr. In: JSAI International Symposium on Artificial Intelligence.
pp. 160–176. Springer (2018)

3. Governatori, G., Shek, S.: Regorous: a business process compliance checker. In:
Proceedings of the fourteenth international conference on artificial intelligence and
law. pp. 245–246 (2013)

4. Johnsen, Å., Berre, A.: A bridge between legislator and technologist-formalization
in sbvr for improved quality and understanding of legal rules. In: International
Workshop on Business Models, Business Rules and Ontologies, Bressanone, Brixen,
Italy. Citeseer (2010)

5. Libal, T.: A meta-level annotation language for legal texts. In: International Con-
ference on Logic and Argumentation. pp. 131–150. Springer (2020)

6. Libal, T.: Towards automated gdpr compliance checking. In: Proceedings of the
workshop on the scientific foundations of Trustworthy AI, integrating learning,
optimisation and reasoning (to appear)

7. Libal, T., Pascucci, M.: Automated reasoning in normative detachment structures
with ideal conditions. In: Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Law. pp. 63–72 (2019)

8. Libal, T., Steen, A.: Nai: the normative reasoner. In: Proceedings of the Seven-
teenth International Conference on Artificial Intelligence and Law. pp. 262–263
(2019)

9. Libal, T., Steen, A.: Towards an executable methodology for the formalization of
legal texts. In: International Conference on Logic and Argumentation. pp. 151–165.
Springer (2020)

10. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., Robaldo, L.: Pronto: Privacy
ontology for legal reasoning. In: International Conference on Electronic Govern-
ment and the Information Systems Perspective. pp. 139–152. Springer (2018)

11. Prakken, H., Wyner, A., Bench-Capon, T., Atkinson, K.: A formalization of argu-
mentation schemes for legal case-based reasoning in aspic+. Journal of Logic and
Computation 25(5), 1141–1166 (2015)

12. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., Lenzini, G.: For-
malizing gdpr provisions in reified i/o logic: the dapreco knowledge base. Journal
of Logic, Language and Information 29(4), 401–449 (2020)

13. Routen, T., Bench-Capon, T.: Hierarchical formalizations. International Journal
of Man-Machine Studies 35(1), 69–93 (1991)



18 T. Libal and T. Novotná

14. Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.:
The british nationality act as a logic program. Communications of the ACM 29(5),
370–386 (1986)

15. Vitali, F., Zeni, F.: Towards a country-independent data format: the akoma ntoso
experience. In: Proceedings of the V legislative XML workshop. pp. 67–86 (2007)


	Towards Transparent Legal Formalization

