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A: DERIVATION OF EQS. (10) AND (11)

To find temperatures Tc,u and Tc,d in Eq. (8) in main text, we solve self-consistently the energy balance equations
at each Ohmic contact, namely Jc,u = Jc

out,u and Jc,d = Jc
out,d. According to Eqs. (8) and (9) from main text, the

heat currents on the left hand side of balance equations are given by quantum heat fluxes

Jc,u =
πT 2

c,u

12
, Jc,d =

πT 2
c,d

12
. (S-1)

Now, using the scattering matrix, Û(ω), from Eq. (6) and Eqs. (8), (9) of main text, the outgoing fluxes are given by

Jc
out,u =

1

2

∫
dω

2π
|C(ω)|2 [Sin,u(ω)− S0(ω)] +

1

2

∫
dω

2π
|B(ω)|2 [Sin,d(ω)− S0(ω)]

+
1

2

∫
dω

2π
|A(ω)|2 [Sc,u(ω)− S0(ω)] +

1

2

∫
dω

2π
|B(ω)|2 [Sc,d(ω)− S0(ω)] ,

(S-2)

and

Jc
out,d =

1

2

∫
dω

2π
|B(ω)|2 [Sin,u(ω)− S0(ω)] +

1

2

∫
dω

2π
|C(ω)|2 [Sin,d(ω)− S0(ω)]

+
1

2

∫
dω

2π
|B(ω)|2 [Sc,u(ω)− S0(ω)] +

1

2

∫
dω

2π
|A(ω)|2 [Sc,d(ω)− S0(ω)] ,

(S-3)

where Sl,α(ω) = ω/(1−e−ω/Tl,α) is given by equilibrium spectral density in Eq. (8) from main text and S0(ω) = ωθ(ω).
Next, using the property of scattering matrix, |A(ω)|2+2|B(ω)|2+|C(ω)|2 = 1 the above expressions take the following
forms

Jc
out,u =

πT 2
in,u

12
+

1

2

∫
dω

2π
|B(ω)|2 [Sin,d(ω)− Sin,u(ω)] +

1

2

∫
dω

2π
|A(ω)|2 [Sc,u(ω)− Sin,u(ω)] +

1

2

∫
dω

2π
|B(ω)|2 [Sc,d(ω)− Sin,u(ω)] ,

(S-4)

and similarly

Jc
out,d =

πT 2
in,d

12
+

1

2

∫
dω

2π
|B(ω)|2 [Sin,u(ω)− Sin,d(ω)] +

1

2

∫
dω

2π
|A(ω)|2 [Sc,d(ω)− Sin,d(ω)] +

1

2

∫
dω

2π
|B(ω)|2 [Sc,u(ω)− Sin,d(ω)] .

(S-5)

Finally, using the balance equations, Jc,u = Jc
out,u and Jc,d = Jc

out,d mentioned above and introducing the dimensionless
variable of integration, z = ωτc we arrive to systems of coupled equations given in Eq. (10) of main text,

πT 2
c,u

12
=
πT 2

in,u

12
+ JBin,d

in,u

(λ) + JAc,u
in,u

(λ) + JBc,d
in,u

(λ),

πT 2
c,d

12
=
πT 2

in,d

12
+ JBin,u

in,d

(λ) + JAc,d
in,d

(λ) + JBc,u
in,d

(λ).

(S-6)
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The functions on the right hand side of above equations are given by

J il,α
k,β

(λ) = π[T 2
l,α · Ii(λ, τcTl,α)− T 2

k,β · Ii(λ, τcTk,β)]/12,

Ii(λ, a) =
6

(πa)2

∫ ∞
0

dzzgi(z, λ)

exp(z/a)− 1
, i = A,B,

(S-7)

where gA(z, λ) = |iz + λ2 − 1|2/|(z + i)2 + λ2|2, gB(z, λ) = λ2z2/|(z + i)2 + λ2|2. This is the Eq. (11) from main text.

B: HEATING EFFECTS

In the case of λ = 1, from Eq. (11) of main text, we have gA(z, λ = 1) = gB(z, λ = 1) = 1/(z2 + 4) and the
asymptotics of the integral in Eq. (11) of main text have the simple form

Ii(λ = 1, a) =
6

(πa)2

∫ ∞
0

dzz

ez/a − 1

1

z2 + 4
'

{
1/4− (πa)2/40, a� 1,

3/2πa, a� 1.
(S-8)

Substituting these asymptotics into Eq. (10) from the main text, we further obtain the final results for the temperatures
Tc,u and Tc,d in Eq. (12) of the main text.

In the case of weak coupling, λ� 1, one can substitute the expansion of amplitudes of scattering matrix gA(z, λ�
1) ≈ [1− 4λ2z2/(1 + z2)2]/(1 + z2) and gB(z, λ� 1) ≈ λ2z2/(1 + z2)2 into Eq. (11) from main text and get

IA(λ� 1, a) ' IA(λ = 0, a)− 4λ2 · δIA(λ = 0, a), and IB(λ� 1, a) ' λ2 · δIB(λ = 0, a), (S-9)

where the asymptotics of integrals on the right hand side are given by

IA(λ = 0, a) =
6

(πa)2

∫ ∞
0

dzz

ez/a − 1

1

1 + z2
'

{
1− 2(πa)2/5, a� 1,

3/πa, a� 1,
(S-10)

δIA(λ = 0, a) =
6

(πa)2

∫ ∞
0

dzz

ez/a − 1

z2

(1 + z2)3
'

{
2(πa)2/5, a� 1,

3/2πa, a� 1,
(S-11)

δIB(λ = 0, a) =
6

(πa)2

∫ ∞
0

dzz

ez/a − 1

z2

(1 + z2)2
'

{
2(πa)2/5, a� 1,

3/8πa, a� 1.
(S-12)

Substituting the above asymptotics in the case of max{τcTl,α} � 1 (a� 1) into Eq. (10) from the main text, one
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obtains the following system of equations



πT 2
c,u(λ)

12
−
πT 2

in,u

12
= λ2

[
πT 2

in,d

12

2(πτcTin,d)2

5
−
πT 2

in,u

12

2(πτcTin,u)2

5

]

+
πT 2

c,u(λ)

12

[
1− 2(πτcTc,u(λ))2

5
− 4λ2

2(πτcTc,u(λ))2

5

]
−
πT 2

in,u

12

[
1− 2(πτcTin,u)2

5
− 4λ2

2(πτcTin,u)2

5

]
+ λ2

[
πT 2

c,d(λ)

12

2(πτcTc,d(λ))2

5
−
πT 2

in,u

12

2(πτcTin,u)2

5

]
,

πT 2
c,d(λ)

12
−
πT 2

in,d

12
= λ2

[
πT 2

in,u

12

2(πτcTin,u)2

5
−
πT 2

in,d

12

2(πτcTin,d)2

5

]

+
πT 2

c,d(λ)

12

[
1− 2(πτcTc,d(λ))2

5
− 4λ2

2(πτcTc,d(λ))2

5

]
−
πT 2

in,d

12

[
1− 2(πτcTin,d)2

5
− 4λ2

2(πτcTin,d)2

5

]
+ λ2

[
πT 2

c,u(λ)

12

2(πτcTc,u(λ))2

5
−
πT 2

in,d

12

2(πτcTin,d)2

5

]
,

(S-13)

The solution of these equations for max{τcTl,α} � 1 is given by Eq. (13) from the main text.

In the opposite regime, min{τcTl,α} � 1, one can obtain the result which is non-perturbative in λ. Namely, by
calculating the integrals in this regime (a� 1) we get the following asymptotic results

IA(λ, a) = a

∫ ∞
0

dz
z/a

ez/a − 1

z2 + (λ2 − 1)2

z4 + 2(λ2 + 1)z2 + (λ2 − 1)2
= [a→∞]

' a
∫ ∞
0

dz
z2 + (λ2 − 1)2

z4 + 2(λ2 + 1)z2 + (λ2 − 1)2
= a · FA(λ), FA(λ) =

π

4
(2− λ2),

(S-14)

and similarly

IB(λ, a) = a

∫ ∞
0

dz
z/a

ez/a − 1

z2λ2

z4 + 2(λ2 + 1)z2 + (λ2 − 1)2
= [a→∞]

' a
∫ ∞
0

dz
z2λ2

z4 + 2(λ2 + 1)z2 + (λ2 − 1)2
= a · FB(λ), FB(λ) =

πλ2

4
.

(S-15)

After the substitution of Eq. (S-14) and (S-15) into Eq. (10) from the main text, the system of equations to find the
temperatures of Ohmic contacts takes the form

πT 2
c,u(λ)

12 =
πT 2

in,u

12 +
[
πT 2

in,d

12
6

πτcTin,d
− πT 2

in,u

12
6

πτcTin,u

]
· FB(λ)

+
[
πT 2

c,u

12
6

πτcTc,u
− πT 2

in,u

12
6

πτcTin,u

]
· FA(λ) +

[
πT 2

c,d

12
6

πτcTc,d
− πT 2

in,u

12
6

πτcTin,u

]
· FB(λ),

πT 2
c,d(λ)

12 =
πT 2

in,d

12 +
[
πT 2

in,u

12
6

πτcTin,u
− πT 2

in,d

12
6

πτcTin,d

]
· FB(λ)

+
[
πT 2

c,d

12
6

πτcTc,d
− πT 2

in,d

12
6

πτcTin,d

]
· FA(λ) +

[
πT 2

c,u

12
6

πτcTc,u
− πT 2

in,d

12
6

πτcTin,d

]
· FB(λ).

(S-16)

As a first approximation, we choose the solution at λ = 0, namely, we substitute Tc,u = Tin,u and Tc,d = Tin,d into
the right hand side. Therefore, only the first term on the right hand side survives, and we get the final solution at
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min{τcTl,α} � 1

πT 2
c,u(λ)

12
=
πT 2

in,u

12
+

3λ2

2

[
πT 2

in,d

12

1

πτcTin,d
−
πT 2

in,u

12

1

πτcTin,u

]
,

πT 2
c,d(λ)

12
=
πT 2

in,d

12
+

3λ2

2

[
πT 2

in,u

12

1

πτcTin,u
−
πT 2

in,d

12

1

πτcTin,d

]
.

(S-17)

This result is provided in Eq. (14) of main text.

C: THERMAL DRAG CURRENT

In this section we provide the calculation of outgoing heat current in down passive circuit in case of λ � 1 and
Tin,d = 0 and τcTin,u � 1. Using the definition of heat current Eq. (9) in main text one has

Jd =
1

2

∫
dω

2π

[
|B(ω)|2(Sin,u(ω)− S0(ω)) + |A(ω)|2(Sin,d(ω)− S0(ω))

]
+

1

2

∫
dω

2π

[
|B(ω)|2(Sc,u(ω)− S0(ω)) + |C(ω)|2(Sc,d(ω)− S0(ω))

]
,

(S-18)

where S0(ω) = ωθ(ω) ground state contribution, Sin,u(ω) = ω/(1 − e−ω/Tin,u), Sin,d = S0(ω), Sc,u(ω) = ω/(1 −
e−ω/fc,u(λ)Tin,u), Sc,d(ω) = ω/(1 − e−ω/fc,d(λ)Tin,u) and according to Eq. (13) from main text fc,u(λ) = 4

√
1 + 3λ2,

fc,d(λ) =
4
√

2λ2. Introducing the dimensionless integration variable y = ω/Tin,u, we write the heat current as a sum
of four terms

J = J1 + J2 + J3 + J4, (S-19)

where in the leading order with respect to τcTin,u � 1 they read

J1 =
T 2
in,u

2

∫
dy

2π

(λτcTin,u)2y2

τ4c T
4
in,uy

4 + 2τ2c T
2
in,uy

2(1 + λ2) + (1− λ2)2

[
y

1− e−y
− yθ(y)

]
'
T 2
in,u

2
(λτcTin,u)2

∫
dy

2π
y3
[

1

1− e−y
− θ(y)

]
,

(S-20)

J2 = 0, (S-21)

J3 =
T 2
in,u

2

∫
dy

2π

(λτcTin,u)2y2

τ4c T
4
in,uy

4 + 2τ2c T
2
in,uy

2(1 + λ2) + (1− λ2)2

[
y

1− e−y/fc,u(λ)
− yθ(y)

]
= (fc,u(λ)→ 1) '

T 2
in,u

2
(λτcTin,u)2

∫
dy

2π
y3
[

1

1− e−y
− θ(y)

]
,

(S-22)

J4 =
T 2
in,u

2

∫
dy

2π

[
1 + (τcTin,uy)2

]
(τcTin,uy)2

τ4c T
4
in,uy

4 + 2τ2c T
2
in,uy

2(1 + λ2) + (1− λ2)2

[
y

1− e−y/fc,d(λ)
− yθ(y)

]
'
T 2
in,u

2
(τcTin,u)2 [fc,d(λ)]

4
∫

dy

2π
y3
[

1

1− e−y
− θ(y)

]
= ([fc,d(λ)]

4 ' 2λ2)

' T 2
in,u(λτcTin,u)2

∫
dy

2π
y3
[

1

1− e−y
− θ(y)

]
.

(S-23)

Thus the sum of four terms gives the result presented in Eq. (16) of the main text

Jd =
T 2
in,u

π
(λτcTin,u)2

∫
dyy3

[
1

1− e−y
− θ(y)

]
︸ ︷︷ ︸

2π4/15

=
8λ2(πτcTin,u)2

5
JQ, (S-24)

where JQ = πT 2
in,u/12.
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D: NOISE OF THERMAL CURRENT FOR BALLISTIC CHANNEL

Using the definition (9) of the heat flux in the main text, we get the following expression for the noise power of
thermal current

SQ(ω) = (Rq/2)2
∫
dteiωt

[
〈j2(t)j2(0)〉 − 〈j2(t)〉〈j2(0)〉

]
. (S-25)

According to Wick’s theorem 〈j2(t)j2(0)〉 = 〈j2(t)〉〈j2(0)〉 + 2〈j(t)j(0)〉〈j(t)j(0)〉, since each current operator is the
combination of bosonic creation and annihilation operators. Subtracting the second term we get

SQ(ω) = (R2
q/2)

∫
dteiωt〈j(t)j(0)〉2. (S-26)

Next, using the FDT in Eq. (8) of the main text, we calculate the above expression explicitly

SQ(ω) = (R2
q/2)

4∏
i=1

∫
dωi

(2π)4

∫
dtei(ω−ω1−ω3)t〈j(ω1)j(ω2)〉〈j(ω3)j(ω4)〉 =

1

2

∫
dω1

2π
S(ω − ω1) · S(ω1)

=
1

2

∫
dω1

2π

ω − ω1

1− e−(ω−ω1)/T
· ω1

1− e−ω1/T
=
T 3

2

∫
dy

2π

ω
T − y

1− e− ωT +y
· y

1− e−y
.

(S-27)

By introducing the dimensionless variable x = y − ω/2T and performing the integral with respect to x we obtain

SQ(ω) =
T 3

4π

∫
dx

ω
2T − x

1− ex− ω
2T
·

x+ ω
2T

1− e−(x+ ω
2T )

=
ω

48π
[(2πT )2 + ω2][1 + coth(ω/2T )]. (S-28)

It is worth mentioning that the non-symmetrized noise is given by SQ(ω)/2+SQ(−ω)/2. Because of the quadratic term
ω2 in square brackets the finite frequency noise at zero temperature T = 0 does not vanish: SQ(ω) = ω3sgn(ω)/24π.
Finally, taking the limit ω → 0 in Eq. (S-28) we arrive to Eq. (18) from the main text.

E: NOISE OF THERMAL DRAG CURRENT

Similar calculations as in Sec. B can be done for the noise of heat current in the case of λ → 1 and λ � 1 at
Tin,d = 0 and τcTin,u � 1. Let demonstrate this for strong and weak coupling parameter λ. In both cases the result
consists of 16 terms according to Eq. (19) and due to the fact that the incoming vector Jin(ω) in Eq. (6) of main text
consists of 4 elements.

In the case of λ → 1, the spectral functions are given by Sin,u(ω) = ω/(1 − e−ω/Tin,u), Sin,d(ω) = ωθ(ω) and

Sc,u(ω) = Sc,d(ω) = ω/(1 − e−
√
2ω/Tin,u), since Tc,d = Tc,u = Tin,u/

√
2. Now we calculate 16 terms at τcTin,u � 1

regime. They are given by

11)
1

2

∫
dω

2π
[−ωθ(−ω)]ωθ(ω)

1

[4 + (ωτc)2]
2 = 0, (S-29)

12)
1

2

∫
dω

2π
[−ωθ(−ω)]

ω

1− e−ω/Tin,u

1

[4 + (ωτc)2]
2 = (y = ω/Tin,u) =

T 3
in,u

2

∫
dy

2π

−y2θ(−y)

1− e−y
1

[4 + (τcTin,u)2 · y2]2︸ ︷︷ ︸
'1/42

'
T 3
in,u

2

1

2π

1

42

∫
dy
y2θ(y)

ey − 1
,

(S-30)

13)
1

2

∫
dω

2π
[−ωθ(−ω)]

ω

1− e−ω/Tc,d

1

4 + (ωτc)2

[
1− 3

4 + (ωτc)2

]
= (y = ω/Tin,u, Tc,d = Tin,u/

√
2) =

T 3
in,u

2

∫
dy

2π

−y2θ(−y)

1− e−
√
2y

1

4 + (τcTin,u)2 · y2

[
1− 3

4 + (τcTin,u)2 · y2

]
︸ ︷︷ ︸

'1/42

'
T 3
in,u

2

1

2π

1

42

∫
dy

y2θ(y)

e
√
2y − 1

,
(S-31)
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14) the result is the same as in case of 13), namely '
T 3
in,u

2

1

2π

1

42

∫
dy

y2θ(y)

e
√
2y − 1

, (S-32)

21) = 12), (S-33)

22)
1

2

∫
dω

2π

ω

eω/Tin,u − 1

ω

1− e−ω/Tin,u

1

[4 + (ωτc)2]
2 = (y = ω/Tin,u) =

T 3
in,u

2

∫
dy

2π

y2

(ey − 1)(1− e−y)

1

[4 + (τcTin,u)2 · y2]
2︸ ︷︷ ︸

'1/42

'
T 3
in,u

2

1

2π

1

42

∫
dy

y2

(ey − 1)(1− e−y)
,

(S-34)

23)
1

2

∫
dω

2π

ω

eω/Tin,u − 1

ω

1− e−
√
2ω/Tin,u

1

4 + (ωτc)2

[
1− 3

4 + (ωτc)2

]
= (y = ω/Tin,u) =

T 3
in,u

2

∫
dy

2π

y2

(ey − 1)(1− e−
√
2y)

1

4 + (τcTin,u)2 · y2

[
1− 3

4 + (τcTin,u)2y2

]
︸ ︷︷ ︸

'1/42

'
T 3
in,u

2

1

2π

1

42

∫
dy

y2

(ey − 1)(1− e−
√
2y)

,

(S-35)

24) the result is the same as in case of 23), namely '
T 3
in,u

2

1

2π

1

42

∫
dy

y2

(ey − 1)(1− e−
√
2y)

, (S-36)

31) = 13), (S-37)

32) = 23), (S-38)

33)
1

2

∫
dω

2π

ω

e
√
2ω/Tin,u − 1

ω

1− e−
√
2ω/Tin,u

[
1− 3

4 + (ωτc)2

]2
= (y = ω/Tin,u) =

T 3
in,u

2

1

2π

∫
dy

y2

(e
√
2y − 1)(1− e−

√
2y)

[
1− 3

4 + (τcTin,u)2 · y2

]2
︸ ︷︷ ︸

'1/42

'
T 3
in,u

2

1

2π

1

42

∫
dy

y2

(e
√
2y − 1)(1− e−

√
2y)

,
(S-39)

34) = 33), (S-40)

41) = 14), (S-41)

42) = 24), (S-42)

43) = 34), (S-43)
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44) = 33). (S-44)

Summing up all above 16 terms we get the result for zero frequency noise given in Eq. (20) of mian text

Sout,d(0) = (3I/2π2)Sin,u(0), (S-45)

where Sin,u(0) = SQ and the dimensionless prefactor is given by

I =

∫
dy

16
P (y)P (−y) ≈ 2.5782, (S-46)

where P (y) = y/(1 − e−y) + yθ(y) + 2y/(1 − e−
√
2y) and θ(y) is the Heaviside step function. To remind,

√
2 in the

integrand of I originates from Ohmic contact temperatures Tc,u = Tc,d = Tin,u/
√

2.
In the case of λ � 1, the spectral functions are given by Sin,u(ω) = ω/(1 − e−ω/Tin,u), Sin,d(ω) = ωθ(ω) and

Sc,d(ω) = ω/(1 − e−ω/fc,d(λ)Tin,u) and Sc,u(ω) = ω/(1 − e−ω/fc,u(λ)Tin,u). Here the pre-factors are obtained from
Eq. (13) of main text at Tin,d = 0

fc,d(λ) =
4
√

2λ2, fc,u(λ) =
4
√

1− 2λ2. (S-47)

Introducing the dimensionless variable of integration y = ω/Tin,u in Eq. (19) of main text we calculate all 16 terms
step by step and keep only the leading terms with respect to λ� 1 and τcTin,u � 1. Namely,

11)
1

2

∫
dω

2π
[−ωθ(−ω)]ωθ(ω)[...] = 0, (S-48)

12)
T 3
in,u

2

1

2π

∫
dyy2θ(y)

ey − 1

(λτcTin,uy)2
[
(τcTin,uy)2 + (1− λ2)2

]
[(τcTin,uy)4 + 2(1 + λ2)(τcTin,uy)2 + (1− λ2)2]

2 '
T 3
in,u

2

1

2π
(λτcTin,u)2

∫
dyy4θ(y)

ey − 1
,

(S-49)

13)
T 3
in,u

2

1

2π

∫
dyy2θ(y)

ey/fc,d(λ) − 1

(τcTin,uy)2
[
1 + (τcTin,uy)2

] [
(τcTin,uy)2 + (1− λ2)2

]
[(τcTin,uy)4 + 2(1 + λ2)(τcTin,uy)2 + (1− λ2)2]

2

'
T 3
in,u

2

1

2π
(τcTin,u)2 [fc,d(λ)]

5
∫
dyy4θ(y)

ey − 1
= ([fc,d(λ)]

5 ' 2
4
√

2λ2
√
λ) '

T 3
in,u

2

1

2π
(τcTin,u)22

4
√

2λ2
√
λ

∫
dyy4θ(y)

ey − 1

∝ λ2
√
λ, (this is sub-leading correction, thus we ignore this term),

(S-50)

14)
T 3
in,u

2

1

2π

∫
dyy2θ(y)

ey/fc,u(λ) − 1

(4λcTin,uy)2
[
(τcTin,uy)2 + (1− λ2)2

]
[(τcTin,uy)4 + 2(1 + λ2)(τcTin,uy)2 + (1− λ2)2]

2

'
T 3
in,u

2

1

2π
(λτcTin,u)2 [fc,u(λ)]

5
∫
dyy4θ(y)

ey − 1
= ([fc,u(λ)]

5 → 1) '
T 3
in,u

2

1

2π
(λτcTin,u)2

∫
dyy4θ(y)

ey − 1
,

(S-51)

21) = 12), (S-52)

22)
T 3
in,u

2

1

2π

∫
dyy2

(ey − 1)(1− e−y)

(λτcTin,uy)4

[(τcTin,uy)4 + 2(1 + λ2)(τcTin,uy)2 + (1− λ2)2]
2

'
T 3
in,u

2

1

2π
(λτcTin,u)4

∫
dyy6

(ey − 1)(1− e−y)
∝ λ4, (this is the sub-leading correction, thus we ignore this term),

(S-53)
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23)
T 3
in,u

2

1

2π

∫
dyy2

(ey − 1)(1− e−y/fc,d(λ))
(λτcTin,uy)2

[
1 + (τcTin,uy)2

]
(τcTin,uy)2

[(τcTin,uy)4 + 2(1 + λ2)(τcTin,uy)2 + (1− λ2)2]
2

'
T 3
in,u

2

1

2π
(λτcTin,u)2(τcTin,u)2

∫
dyy6

(ey − 1)(1− e−y/fc,d(λ))
= (1/(1− e−y/fc,d(λ))→ θ(y))

'
T 3
in,u

2

1

2π
(λτcTin,u)2(τcTin,u)2

∫
dyy6θ(y)

(ey − 1)

∝ λ2(τcTin,u)4, (this is the sub-leading correction, thus we ignore this term),

(S-54)

24)
T 3
in,u

2

1

2π

∫
dyy2

(ey − 1)(1− e−y/fc,u(λ))
(λτcTin,uy)4

[(τcTin,uy)4 + 2(1 + λ2)(τcTin,uy)2 + (1− λ2)2]
2

'
T 3
in,u

2

1

2π
(λτcTin,u)4

∫
dyy6

(ey − 1)(1− e−y/fc,u(λ))
= (1/(1− e−y/fc,u(λ))→ 1/(1− e−y))

'
T 3
in,u

2

1

2π
(λτcTin,u)4

∫
dyy6

(ey − 1)(1− e−y)
∝ λ4, (this is the sub-leading correction, thus we ignore this term),

(S-55)

31) = 13), (this is the sub-leading correction, thus we ignore this term), (S-56)

32) = 23) (this is the sub-leading correction, thus we ignore this term), (S-57)

33)
T 3
in,u

2

1

2π

∫
dyy2

(ey/fc,d(λ) − 1)(1− e−y/fc,d(λ))
(τcTin,uy)4[1 + (τcTin,uy)2]2

[(τcTin,uy)4 + 2(1 + λ2)(τcTin,uy)2 + (1− λ2)2]
2

'
T 3
in,u

2

1

2π
(τcTin,u)4[fc,d(λ)]7

∫
dyy6

(ey − 1)(1− e−y)
= ([fc,d(λ)]7 ' 2

4
√

8λ3
√
λ)

'
T 3
in,u

2

1

2π
(τcTin,u)42

4
√

8λ3
√
λ

∫
dyy6

(ey − 1)(1− e−y)

∝ λ3
√
λ, (this is the sub-leading correction, thus we ignore this term),

(S-58)

34)
T 3
in,u

2

1

2π

∫
dyy2

(ey/fc,d(λ) − 1)(1− e−y/fc,u(λ))
(λτcTin,uy)2[1 + (τcTin,uy)2](τcTin,uy)2

[(τcTin,uy)4 + 2(1 + λ2)(τcTin,uy)2 + (1− λ2)2]
2

'
T 3
in,u

2

1

2π
(λτcTin,u)2(τcTin,u)2

∫
dyy6θ(y)

ey − 1

∝ λ2(τcTin,u)4, (this is the sub-leading correction, thus we ignore this term),

(S-59)

41) = 14), (S-60)

42) = 24), this is the sub-leading correction, thus we ignore this term, (S-61)

43) = 34), this is the sub-leading correction, thus we ignore this term, (S-62)
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44)
T 3
in,u

2

1

2π

∫
dyy2

(ey/fc,u(λ) − 1)(1− e−y/fc,u(λ))
(λτcTin,uy)4

[(τcTin,uy)4 + 2(1 + λ2)(τcTin,uy)2 + (1− λ2)2]
2

= (fc,u(λ) ' 1) '
T 3
in,u

2

1

2π
(λτcTin,u)4

∫
dyy6θ(y)

(ey − 1)(1− e−y)

∝ λ4(τcTin,u)4, (this is the sub-leading correction, thus we ignore this term).

(S-63)

Summing up all the leading 4 terms we get the following equation

Sout,d(0) = 4
T 3
in,u

2

1

2π
(λτcTin,u)2

∫ ∞
0

dyy4

ey − 1︸ ︷︷ ︸
24ζ(5)

= 4
T 3
in,u

2

1

2π
(λτcTin,u)224ζ(5). (S-64)

Now approximating ζ(5) ≈ 1.0369 and taking into account that Sin,u(0) = πT 3/6 we get Eq. (22) from main text,
namely Sout,d(0) = (3λ2K/2)(τcTin,u)2Sin,u(0).


