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Abstract
In many high-dimensional prediction or classification tasks, complementary data on the features are available, e.g. prior
biological knowledge on (epi)genetic markers. Here we consider tasks with numerical prior information that provide
an insight into the importance (weight) and the direction (sign) of the feature effects, e.g. regression coefficients from
previous studies. We propose an approach for integrating multiple sources of such prior information into penalised
regression. If suitable co-data are available, this improves the predictive performance, as shown by simulation and
application. The proposed method is implemented in the R package transreg (https://github.com/lcsb-bds/transreg,
https://cran.r-project.org/package=transreg).
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Background
For many biomedical prediction or classification studies, there is a
previous study with a similar target and a similar high-dimensional
feature space, e.g. hundreds of micrornas (mirnas), thousands
of genes, or millions of single-nucleotide polymorphisms (snps).
Given a trained model from a previous study, we could use it to
obtain predicted values or predicted probabilities for the study of
interest, but these predictions are only reliable if the two studies
have the same target, the same features, and the same population.
However, we expect the feature-target effects from two studies to
be strongly correlated in more situations: slightly different targets
(e.g. disease status vs disease stage), slightly different features
(e.g. imperfectly overlapping feature space, different measurement
technique), slightly different populations (e.g. hospitalised vs non-
hospitalised patients), or even different modelling approaches (e.g.
simple regression vs multiple regression). As it is challenging to
estimate feature-target effects in high-dimensional settings, it might
be advantageous to use results from previous studies as prior
information for the study of interest.

Consider two prediction or classification problems, each one
with a target vector and a feature matrix (samples in the rows,
features in the columns). Suppose that both feature matrices cover
the same features (each column in the first matrix corresponds
to a column in the second matrix). In two special cases, the two
problems reduce to a single problem: (i) If both problems have the
same target and concern samples from the same population, they
are in essence one ‘single-target’ problem (combine target vectors
and feature matrices by rows, respectively), potentially with batch

effects. (ii) If both problems concern the same samples, they are
in essence one ‘multi-target’ problem (combine target vectors by
columns, feature matrices are the same). In other cases, however,
we might be in a transfer learning setting (Table 1).

In such settings - two or more regression problems with
related targets and matched features - it might be possible
to transfer information from one problem to another. Transfer
learning, in contrast to multi-target regression and seemingly
unrelated regressions, addresses related regression problems not
for the same but for different samples. If the regression problems
are sufficiently related to each other, we expect their regression
coefficients to be correlated (positively or negatively). When fitting
the regression model of interest, we could therefore account for the
estimated regression coefficients from the other model. Transferring
information on the importance and the direction of the feature
effects, we could potentially increase the predictive performance.

Jiang et al. (2016) proposed the prior lasso to account for
prior information in high-dimensional predictive modelling. Their
method involves a preprocessing step and a weighting step. In the
preprocessing step, the prior information is used to predict the
target from the features. They present a solution for one set of
prior effects from a closely related study (multiplying the feature
matrix by the prior effects), but extensions to multiple sets of prior
effects or loosely related studies may be feasible. Let y represent
the target and let ŷprior represent the fitted values based on the
prior information. In the weighting step, they minimise the penalised
combined likelihood L(x,y;β) + ηL(x, ŷprior;β) − ρ(λ;β) with
respect to the coefficients β, where η ≥ 0 (balance) and λ ≥ 0
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(regularisation). If the balancing hyperparameter η is larger than
zero, the prior predictions ŷprior influence the estimation of the
parameters β.

Dhruba (2021) proposed a transfer learning method based on
distribution mapping. Even if features or targets follow different
distributions in two data sets, it is possible to build a predictive
model using the first data set and make predictions for the second
data set. Requiring matched features and targets in the source data
set and unmatched features and targets in the target data set,
their method transfers (i) features from the target to the source
domain and (ii) predictions from the source to the target domain.
By contrast, we consider transfer learning settings with matched
features and targets in the target data set.

Tian and Feng (2022) proposed and implemented transfer
learning for ridge and lasso regression. Their transfer learning
algorithm involves two steps: (i) Estimating common coefficients
for the target data set and the transferable source data sets (ω̂).
(ii) Estimating the deviations from the common coefficients to the
target coefficients (δ̂). Both steps together lead to the estimated
target coefficients (β̂ = ω̂ + δ̂). Before applying their transfer
learning algorithm, Tian and Feng (2022) apply a transferable source
detection algorithm to exclude source data sets that are too different
from the target data set. This avoids that non-transferable sources
render the common coefficients misleading for the target data set
(‘negative transfer’). In the case of lasso regularisation in the two
steps, there is sparsity in the common estimates as well as in the
deviations from the common estimates to the target estimates (and
thereby also in the target estimates).

The method from Tian and Feng (2022) requires not only the
target data set but also the source data set(s). However, data
protection regulations or restrictive data sharing policies might
prevent researchers from accessing a source data set, or the available
storage or processing capacity might be insufficient for analysing
massive source data sets. Although federated transfer learning (Liu
et al., 2020) enables the joint analysis of related data sets without
sharing them, it is often not practically feasible for biomedical
researchers to set up corresponding collaborative analyses with
multiple data holders. There is therefore a need for transfer learning
methods that require neither direct nor indirect access to the source
data but only to the complementary data (co-data) derived from
the source data. Such methods allow us to exploit publicly available
summary statistics from external studies, e.g. p-values and effect
sizes from a genome-wide association study (gwas), to increase the
predictive performance in the study of interest.

We propose a two-step transfer learning method, modelling with
and without co-data in the first step and combining different models
in the second step. Unless the source and target data sets are very
similar, the coefficients from the source data set(s) will not fit well
to the target data set. We therefore propose to calibrate these
coefficients - preserving their signs and their order - so that they
can be transferred from the source data set(s) to the target data
set. Additionally, we also estimate the coefficients directly from the
target data set, ignoring the co-data. The calibrated coefficients from
the source data set(s) as well as the estimated coefficients from the
target data set allow us to predict the outcome from the features.
Finally, we combine the linear predictors from the models with
and without co-data and calculate either predicted values (linear
regression) or predicted probabilities (logistic regression).

Kawaguchi et al. (2021) proposed a related transfer learning
method. This method penalises (i) the differences between the
coefficients and weighted sums of the prior effects (one difference
for each feature) and (ii) the weights for these weighted sums
(one weight for each set of prior effects), possibly with two
different penalties (e.g. ridge and lasso). It not only allows for

high-dimensional data (i.e. more features than samples) but also
for high-dimensional co-data (i.e. more sets of prior effects than
samples). When the unknown feature effects are non-linearly related
to an important source of prior effects, however, this method might
leave room for improvement.

In a related transfer learning setting, prior information is
only available on the importance but not on the direction of the
feature effects, i.e. with complementary data consisting of prior
weights rather than prior effects. In the generalised linear model
framework, the weighted lasso (Bergersen et al., 2011), the feature-
weighted elastic net (Tay et al., 2022), and penalised regression
with differential shrinkage (Zeng et al., 2021) account for prior
weights in the penalty function, through feature-specific penalty
factors or feature-specific regularisation parameters. Adaptive
group-regularised ridge regression (van de Wiel et al., 2016) is not
only applicable to categorical co-data but also to numerical co-
data (prior weights), by the means of creating groups of features
from numerical co-data and forcing the group-penalties to be
monotonically decreasing. An extension from van Nee et al. (2021)
makes this approach even more suitable for numerical co-data. For
single sources of co-data, it might be possible to extend these
methods to prior information on the importance as well as the
direction of feature effects by imposing sign constraints on the
coefficients. Prior weights have not only been exploited in regression
analysis, e.g. co-data moderated random forests (te Beest et al.,
2017) adapt the sampling probabilities of the features to the prior
weights.

Method
Model
Suppose one target and p features are available for n samples, with
many more features than samples (p ≫ n). We index the samples
by i in {1, . . . , n} and the features by j in {1, . . . , p}. Our aim is
to estimate the generalised linear model

E[yi] = h
−1

β0 +

p∑
j=1

βjxij

 .

For any sample i, the model expresses the expected value of its
target (yi) as a function of its features (xi1, . . . , xip). The link
function h(·) depends on the family of distributions for the target
(Gaussian: identity, binomial: logit, Poisson: log). In the linear
predictor, β0 represents the unknown intercept, and βj represents
the unknown slope of feature j (i.e. the effect of the feature on the
linear predictor of the target). Given the estimated intercept β̂⋆

0 and
the estimated slopes {β̂⋆

1 , . . . , β̂
⋆
p}, we could predict the target of

previously unseen samples:

ŷi = h
−1

β̂
⋆
0 +

p∑
j=1

β̂
⋆
jxij

 .

Co-data
Suppose m sources of co-data are available, indexed by k in
{1, . . . ,m}, with many fewer sources than samples (m ≪ n). Let
zjk indicate the prior effect from source k for feature j. Our method
is designed for quantitative co-data that provide an insight into the
importance (absolute value) and the direction (sign) of the feature
effects. Each set of prior effects (−1 ≤ z◦k ≤ 1) is assumed to be
positively correlated with the true coefficients (cor(z◦k,β) > 0).
For any source of co-data, the prior effects may be re-scaled (not
re-centred), for example to the interval from −1 to +1. In other
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Table 1. Abstract representation of the data set of interest (without asterisk, black) and an additional data set (with asterisk, grey).
Single-target learning (left): same targets, same features∗, different samples (from one population). Multi-target learning (centre): different
targets, same features∗, same samples. Transfer learning (right): same or different targets, matched features∗, different samples (from one or
two populations). ∗Partially overlapping feature spaces are also possible. See, for example, Rauschenberger and Glaab (2021) for multi-target
learning or Section 2.8 for transfer learning.
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words, the proposed method is invariant under multiplication of the
prior effects by a positive scalar (z → c × z where c > 0). We
explain in the next section why this is important.

It might seem trivial to also allow for co-data that only provide
an insight into the importance but not the direction of the feature
effects (i.e. prior weights instead of prior effects). Each set of prior
weights (0 ≤ z◦k ≤ 1) is assumed to be positively correlated
with the true absolute coefficients (cor(z◦k, |β|) > 0). To obtain
prior effects, one might want to assign the signs of the Spearman
correlation coefficients between the target and the features to the
prior weights. However, marginal effects and conditional effects can
have opposite signs. If we wanted to extend our approach to prior
weights, we would have to discover the signs inside the calibration
procedure (see below), which would be related to high-dimensional
regression with binary coefficients (Gamarnik and Zadik, 2017).

Base-learners with co-data
Suppose we are in a transfer learning setting with two prediction or
classification problems. For simplicity, we assume that the features
do not differ in scale between the two problems. For illustration, we
consider two artificial situations (where we would not use transfer
learning in practice): (i) If both problems concern the same target
on the same scale and the samples come from the same population,
we could use the estimated regression coefficients from one problem
to make predictions for the other problem. (ii) If the two problems
concern the same target on different scales, we could also recycle
the estimated regression coefficients, but we would have to adjust
for the different scales.

When transferring estimated regression coefficients from one
problem to another problem, it might not only be necessary to
change their scale but it might also be beneficial to change their
shape. For example, it might be that for one problem weak and
strong effects matter, while for the other problem only strong
effects matter. We should therefore also be able to make differences
between small coefficients more or less important than those between
large coefficients. We propose two calibration methods, namely
exponential and isotonic calibration, to adapt the prior information
to the data. For each source of co-data k, both calibration methods
estimate the model

E[yi] = h
−1

αk +

p∑
j=1

γjkxij

 ,

where the calibrated prior effects {γ̂1k, . . . , γ̂pk} depend on
the initial prior effects {z1k, . . . , zpk}. The difference between
exponential and isotonic calibration is how the former depend on
the latter.

• exponential calibration: Let γjk = θksign(zjk)|zjk|τk , for j

in {1, . . . , p}, where the factor θk and the exponent τk are
non-negative real numbers (θk ≥ 0 and τk ≥ 0). We first fit
one simple non-negative regression for different values of τk (i.e.
estimate αk and θk given τk), and then optimise τk. Once
θk and τk have been estimated, the initial prior effects zjk

determine the final prior effects γ̂jk = θ̂ksign(zjk)|zjk|τ̂k , for
all j in {1, . . . , p}. The estimated factor θ̂k and the estimated
exponent τ̂k allow the model to change the scale and the shape of
the prior effects. For example, θ̂k = 0 sets them to zero, |θ̂k| < 1

makes them smaller, |θ̂k| > 1 makes them larger, τ̂k = 0 sets
them to the same value, τ̂k < 1 makes (absolutely) large ones
more similar, and τ̂k > 1 makes (absolutely) small ones more
similar. If one or more sets of prior effects might be negatively
associated with the true coefficients, we could remove the non-
negativity constraints from the simple regressions (allowing θ̂k <

0 to invert the signs of the prior effects).
• isotonic calibration: We estimate {γ1k, . . . , γpk} under the

constraint that the signs of the initial prior effects zjk determine
the signs of the final prior effects γ̂jk (i.e. γ̂jk = 0|zjk = 0,
γ̂jk ≥ 0|zjk > 0, γ̂jk ≤ 0|zjk < 0) and under the constraint
that the order of the initial prior effects determines the order
of the final prior effects (i.e. γ̂jk ≥ γ̂lk|zjk ≥ zlk, γ̂jk ≤
γ̂lk|zjk ≤ zlk), for all j and l in {1, . . . , p}. If one or more
sets of prior effects might be negatively associated with the true
coefficients, we could fit each model with these constraints and
the inverted constraints, and then select the better fit.

To make optimisation more efficient, we rewrite the sign-
and order-constrained problem as a sign-constrained problem
(see Table 4 in the Appendix). For each source of co-data, we
order the columns of the feature matrix by increasing values
of the prior effects. Suppose the first q columns correspond to
negative prior effects and the last p − q columns correspond
to non-negative prior effects. We take the cumulative sum of
the feature columns from left to right for the former (columns
1 to q) and from right to left for the latter (columns p to
q + 1). We then estimate the coefficients on the left under
non-positivity constraints, and those on the right under non-
negativity constraints. Formally, the model equals

E[yi] = h
−1

αk +

p∑
j=1

δjkwij

 ,

where wij =
∑j

l=1 xi(l) and δjk ≤ 0 for j in {1, . . . , q}, and
wij =

∑p
l=j xi(l) and δjk ≥ 0 for j in {q + 1, . . . , p}, with

the subscript within brackets indicating the order of the prior
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effects. The linear predictor of the sign-constrained model, i.e.
αk +

∑p
j=1 δjkwij , is equivalent to the linear predictor of the

order-constrained model, i.e. αk +
∑p

j=1 γ(j)kxi(j), because

q∑
j=1

δjkwij =

q∑
j=1

δjk

(
j∑

l=1

xi(l)

)

=

q∑
j=1

 q∑
l=j

δlk

 xi(j)

=

q∑
j=1

γ(j)kxi(j) ,

p∑
j=q+1

δjkwij =

p∑
j=q+1

δjk

 p∑
l=j

xi(l)


=

p∑
j=q+1

 j∑
l=q+1

δlk

 xi(j)

=

p∑
j=q+1

γ(j)kxi(j) .

After estimating the coefficients of the sign-constrained model by
maximum likelihood, we therefore estimate those of the order-
constrained model by γ̂(j)k =

∑q
l=j δ̂lk for j in {1, . . . , q} and

γ̂(j)k =
∑j

l=q+1 δ̂lk for j in {q + 1, . . . , p}.

While exponential calibration involves three unknown parameters,
namely the intercept αk, the factor θk and the exponent τk, isotonic
calibration involves 1+p unknown parameters, namely the intercept
αk and the slopes γk = {γ1k, . . . , γpk}, for each set of co-data.
Figure 1 shows the difference between exponential and isotonic
calibration in several empirically assessed scenarios.

After calibration, we pre-assess the utility of each set of co-data.
To do this, we calculate the residuals (depending on the family
of distributions) between the fitted and the observed targets. We
suggest to retain a set of co-data only if the residuals are significantly
smaller than those of the intercept-only model (one-sided Wilcoxon
signed-rank test) at the nominal 5% level (p-value ≤ 0.05).

Base-learners without co-data
We also fit the model without any co-data. We estimate the
coefficients by maximising the penalised likelihood:

β̂ = argmax
β

{L(x;β)− ρ(λ;β)} ,

where L(x,β) is the likelihood and ρ(λ;β) is the penalty.
The likelihood depends on the family of distributions (Gaussian,
binomial, Poisson), and the penalty can be the ridge (L2) or
the lasso (L1) penalty. The penalty shrinks the squared (ridge)
or absolute (lasso) slopes {β1, . . . , βp} towards zero (without
penalising the intercept β0). We denote the estimated intercept by
β̂0 and the estimated slopes by {β̂1, . . . , β̂p}.

Cross-validation
We split the samples into ten folds to perform 10-fold internal cross-
validation. In each iteration, we fit the models to nine included folds
and predict the target for the excluded fold.

Let the n ×m matrix Ĥ(0,cv) represent the feature-dependent
part of the cross-validated linear predictors from the models with co-
data. Specifically, the entry in row i (sample) and column k (source

of co-data) equals

η
(0,cv)
ik = 0× α̂

−κ(i)
k +

p∑
j=1

γ̂
−κ(i)
jk xij ,

where the superscript −κ(i) indicates that the (ignored) intercept
αk and the slopes γjk for j in {1, . . . , p} are estimated without
using the fold of sample i, as in Rauschenberger and Glaab (2021).

The models without any co-data do not only have 1+p unknown
parameters, namely the intercept β0 and the slopes {β1, . . . , βp},
but also the unknown hyperparameter λ. In each iteration, we
fit this model for a decreasing sequence of 100 values for the
regularisation parameter λ, indexed by l in {1, . . . , 100}, using
the computationally efficient approach from Friedman et al. (2010,
glmnet).

Accordingly, let the n × 100 matrix Ĥ(1,cv) represent the
cross-validated linear predictors from the model without co-data.
Specifically, the entry in row i (sample) and column l (regularisation
parameter) equals

η
(1,cv)
il = β̂

−κ(i),l
0 +

p∑
j=1

β̂
−κ(i),l
j xij ,

where the superscripts −κ(i) and l indicate that the intercept β0

and the slopes {β1, . . . , βp} are estimated without using the fold of
sample i and given the regularisation parameter λl.

To optimise the predictive performance of the co-data
independent model, we would select the λ that minimises the cross-
validated loss (λmin). As we base our predictions not only on
the co-data independent model but also on the co-data dependent
model(s), λmin might be too small. The reason is that the co-data
might be informative to the extent that the co-data independent
model requires more penalisation. We could let the meta-learner
select the optimal λ from the whole sequence, but this might
render the inclusion and exclusion of co-data dependent models
unstable. Our ad-hoc solution is to include the optimal regularisation
parameter for the co-data independent model (λmin) and a slightly
larger one (λ1se). The latter is given by the one-standard-error rule,
which increases λ until the cross-validated loss equals its minimum
plus one standard error.

We concatenate Ĥ(0,cv) with the columns of Ĥ(1,cv) that
correspond to λmin and λ1se to obtain the n × (m + 2) matrix
Ĥ(cv). The first m columns correspond to the models with co-data,
and the last two columns correspond to the model without co-data.

Meta-learner
We combine the base-learners with and without co-data by stacked
generalisation (Wolpert, 1992), on the level of the linear predictors
(Rauschenberger et al., 2021). In the meta-layer, we regress the
target on the cross-validated linear predictors from the base-layer:

E[yi] = h
−1

(
ω0 +

m+2∑
k=1

ωkĤ
(cv)
ik

)
.

Leaving the intercept unrestricted (−∞ < ω0 < +∞) but imposing
the lower bound zero on the slopes (ω1 ≥ 0, . . . , ωm+2 ≥ 0), we
estimate these coefficients under lasso regularisation. Due to the
feature selection property of the lasso, a source of co-data can be
excluded (ω̂k = 0) or included (ω̂k > 0), where k in {1, . . . ,m}.
Similarly, the models without co-data can be excluded (ω̂k = 0) or
included (ω̂k > 0), where k = m + 1 for the model with λmin and
k = m+2 for the model with λ1se. The estimated slopes function as
weights for the co-data dependent models (ω̂1, . . . , ω̂m) and for the
co-data independent models (ω̂m+1, ω̂m+2). Thus, we do not only
select sources but also weight them according to their relevance.
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Fig. 1. Final prior effects γ (y-axis) against initial prior effects z (x-axis), under exponential calibration (red) and isotonic calibration (blue). The black
line corresponds to perfect calibration (γ = β). We simulated the feature matrix X from a standard Gaussian distribution (n = 200, p = 500) and the
initial prior effects z from a trimmed standard Gaussian distribution (trimmed below the 1% and above the 99% quantile). We set the true coefficients
to (1) β = z, (2) β = sign(z)

√
|z|, (3) β = sign(z)z2, (4) β = I[z > 0]z, (5) β = I[z > 1], or (6) β = −I[z ≤ 0]

√
|z| + I[z > 0]z2. And we simulated

the response vector y from Gaussian distributions with the means η and the variance Var(η), where η = Xβ. While exponential calibration performs
slightly better in the first three scenarios (top), isotonic calibration performs much better in the last three scenarios (bottom).

Interpretation
The coefficients β̂min and β̂1se give insight into the feature-
target effects estimated without co-data, with β̂min,j and β̂1se,j

representing the effect of feature j, where j in {1, . . . , p}. The
coefficients ω̂ give insight into the importance of the sources of co-
data, with ω̂k representing the importance of source k, where k in
{1, . . . ,m}. For a previously unseen sample i, the predicted value
is:

ŷi = h
−1

(
ω̂0 +

m+2∑
k=1

ω̂kĤik

)
= h

−1

β̂
⋆
0 +

p∑
j=1

β̂
⋆
jxij

 ,

where β̂
⋆
0 = ω̂0 + ω̂m+1β̂min,0 + ω̂m+2β̂1se,0

and β̂
⋆
j =

(
m∑

k=1

ω̂kγ̂jk

)
+ ω̂m+1β̂min,j + ω̂m+2β̂1se,j .

(1)

Thus, the estimated effect for a feature (β̂⋆
j ) is a weighted sum

of estimated coefficients with co-data (γ̂j1, . . . , γ̂jm) and the
estimated coefficients without co-data (β̂min,j , β̂1se,j).

Sparse models (few non-zero coefficients) are often considered
to be more interpretable than dense models (many non-zero
coefficients). While the original coefficients are dense (

∑p
j=1 I[β̂j ̸=

0] = p) or sparse (
∑p

j=1 I[β̂j ̸= 0] ≪ p) depending on the
choice between ridge and lasso regularisation, the weights may
contain some zeros due to significance filtering or lasso regularisation
(
∑m+2

k=1 I[ω̂k ̸= 0] ≤ m + 2). As soon as one set of dense prior

effects is selected, however, the combined coefficients also become
dense (

∑p
j=1 I[β̂⋆

j ̸= 0] ≲ p). This means that the feature selection
property of the lasso is not maintained. We should therefore choose
between ridge and lasso regularisation (i) to make the model without
co-data more predictive or interpretable (ii) or to make the model
with co-data more predictive (iii) but not to make the model with
co-data more interpretable.

Extension
In some applications, prior information might be available and
reliable for some features but missing or unreliable for other features.
Note that a missing prior effect can be interpreted as an unreliable
prior effect of zero. Although the base-learners with co-data might
still be predictive, the meta-learner (weighted average of the base-
learners with and without co-data) might be not more predictive
than the base-learner without co-data. The reason is that the
meta-learner assigns the same weight to all prior effects, rather
than more weight to available and reliable prior effects and less
weight to missing or unreliable prior effects. We therefore propose
an alternative approach for applications with partially informative
sources of co-data.

In the following, we use the term ‘meta-features’ for the cross-
validated linear predictors from the base learners with co-data. Each
meta-feature - one column of the n×mmatrix Ĥ(0,cv) - corresponds
to one source of co-data. In the meta-layer, we regress the target on

Page 22 of 32Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

6 Rauschenberger et al.

the meta-features and the base-features:

E[yi] = h
−1

β0 +
m∑

k=1

ωkĤ
(0,cv)
ik +

p∑
j=1

βjxij

 ,

with non-negativity constraints for the weights for the meta-features
(ω1 ≥ 0, . . . , ωm ≥ 0) but without constraints for the intercept
(β0) and the slopes for the base-features (β1, . . . , βp).

We estimate the weights for the meta-features and the slopes for
the base-features using penalised maximum likelihood:

{ω̂, β̂} = argmax
{ω,β}

{L(x;ω,β)− ρ(λ;β)} ,

where L(x;ω,β) is the likelihood and ρ(λ;β) is the penalty. We
do not penalise the weights for the meta-features (m ≪ n) but
only the slopes for the base-features (p ≫ n). The more sources of
co-data are available, the more it becomes necessary to penalise
their weights. But then the weights ω and the slopes β might
need differential penalisation, for example a lasso penalty for the
meta-features (selection of sources) and a ridge penalty for the
base-features (many small effects). To make this computationally
efficient, we would need a fast cross-validation procedure for
multiple penalties (cf. van de Wiel et al., 2021) with non-negativity
constraints (meta-features) and mixed lasso and ridge penalisation
(meta-features vs base-features). This extension is therefore only
applicable in settings with few sources of co-data.

The predicted value for a previously unseen sample i is

ŷi = h
−1

β̂0 +

m∑
k=1

ω̂kĤ
(0)
ik +

p∑
j=1

β̂jxij


= h

−1

β̂
⋆
0 +

p∑
j=1

β̂
⋆
jxij

 ,

where β̂
⋆
0 = β̂0

and β̂
⋆
j =

(
m∑

k=1

ω̂kγ̂jk

)
+ β̂j .

(2)

As the coefficients β are shrunk towards zero but the coefficients
ω are not penalised, the combined coefficients β⋆ are shrunk towards
a weighted sum of the calibrated prior effects (γ̂ω̂). When the
regularisation parameter tends to infinity (λ → ∞), the estimated
deviations from this weighted sum approach zero (β̂ → 0) and
the combined estimates approach this weighted sum (β̂⋆ → γ̂ω̂).
Lasso regularisation ensures sparsity in the deviations from the
calibrated prior effects (

∑p
j=1 I[β̂j ̸= 0]≪ p) - in contrast to ridge

regularisation - but not in the combined coefficients (
∑p

j=1 I[β⋆
j ̸=

0] ≲ p). As the combined coefficients may deviate more from
unreliable than from reliable calibrated prior effects, this extension
is suitable for partially informative co-data. As opposed to ‘standard
stacking’, we refer to this extension as ‘simultaneous stacking’.
Algorithm 1 includes the pseudo-code for both approaches.

Simulation
We performed two simulation studies to compare the predictive
performance between our transfer learning method and the one from
Tian and Feng (2022). In contrast to the method from Tian and
Feng (2022), which requires the feature-target effects in the target
and the source data set(s) to be positively correlated and on the
same scale (i.e. βtarget ≈ βsource), our method also allows for
negatively correlated effects and for effects on different scales (i.e.

βtarget ≈ c × βsource). Although it is possible to overcome this
restriction by inverting the target (Gaussian: ysource → −ysource,
binomial: ysource → 1−ysource), by re-scaling the target (Gaussian:
ysource → 1/c× ysource), or by inverting or re-scaling the features
(Xsource → c × Xsource), we believe it is more user-friendly to
directly allow for negative correlations and different scales. To ensure
a fair comparison between the two methods, we simulate positively
correlated effects on the same scale. Furthermore, although the
method from Tian and Feng (2022) is in theory also suitable for
mixed response types, the current version of the related R package
glmtrans requires the source data set(s) and the target data set
to have the same response type (Gaussian, binomial, Poisson). We
therefore always simulate the same response type in the source and
target domains. In addition, we also compared our method with the
one from Kawaguchi et al. (2021, xrnet).

External simulation
We use the simulation approach from Tian and Feng (2022). In
each iteration, we call the function glmtrans::models with the
arguments (1) family of distributions: family="gaussian" (default)
or family="binomial", (2) source or target data sets: type="all"
(default), (3) difference between source and target coefficients: h=5
(default) or h=250, (4) number of source data sets: K=5 (default), (5)
sample size for target data set: n.target=100 (default), (6) sample
size for each source data set: n.source=150 (default), (7) number of
non-zero coefficients: s=15 (default) or s=50, (8) number of features:
p=1 000 (default), number of transferable source data sets: Ka=1,
Ka=3 or Ka=K=5 (default).

The simulation from Tian and Feng (2022) involves the following
steps:

• Features: The correlation between features i and j is set to
Σij = 0.5|i−j|, where i and j in {1, . . . , p}. Let Σ represent
the correlation matrix and let Σ = R⊺R represent its Cholesky
decomposition, where R is an upper triangular matrix. For
the target data set (n0 = 100) and each source data set
(n1 = ... = n5 = 150), the n0 × p matrix X0 = E0R and the
nk × p matrices Xk = EkR for k in {1, . . . , 5} represent the
features, where the n0 × p matrix E0 and the nk × p matrices
Ek contain Gaussian noise.

• Coefficients: Let βj represent the effect of feature j, for j in
{1, . . . , p}, and denote the p-dimensional coefficient vectors by
β0 for the target data set and {β1, . . . ,β5} for the source
data sets. For the target data set, the first s elements are set
to βj = 0.5 (causal) and the last p − s elements are set to
βj = 0 (non-causal). For transferable source data sets, the first
s elements are set to βj = 0.5 + (−1)zjh/p and the last p− s

elements are set to βj = (−1)zjh/p, where zj is a realisation
of zj ∼ Bernoulli(0.5). For non-transferable source data sets,
the first s elements are set to βj = (−1)zj2h/p (non-causal),
the next s elements are set to βj = 0.5 + (−1)zj2h/p (causal),
and the last p − 2s elements are a random sample of s causal
and p − 3s non-causal elements generated in the same way.
To obtain a non-transferable source, it would be sufficient to
randomly select causal elements rather than inverting causal and
non-causal elements (indices 1 to 2s).

• Targets: In the Gaussian case, the target vector is the n-
dimensional vector y0 = X0β0 + ϵ0 for the target data
set, and the n-dimensional vector yk = 0.5 + Xkβk + ϵk

for the source data sets, where the n-dimensional vectors
{ϵ0, . . . , ϵ5} contain Gaussian noise. In the binomial case,
let p0 = 1/(1 + exp (−X0β0)) for the target data set and
pk = 1/(1 + exp(−0.5 − Xkβk)) for the source data sets.
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Algorithm 1 Pseudo-code for the proposed transfer learning method with standard stacking (left) and simultaneous stacking (right).
Sub-procedures (italicised) are explained below.
Require: y (target, n× 1 vector), X (features, n× p matrix), Z (prior effects, p×m matrix)
Ensure: β̂⋆ (estimated intercept and slopes, (p + 1)× 1 vector)

initialise n× 1 vector fold with values from 1 to 10

# base-learners

for k from 1 to m do
γ̂k ← Exp/Iso-Calibrate(y,X,Z[, k])

end for
{λbase

min , λbase
1se } ← Ridge/Lasso-CV(y,X, fold)

{β̂min, β̂1se} ← Ridge/Lasso-Fit(y,X, {λbase
min , λbase

1se })

# cross-validation

initialise empty n× (m + 2) matrix Ĥ(cv)

for all i from 1 to 10 do
ytrain ← y[fold ̸= i]

Xtrain ← X[fold ̸= i, ]

Xtest ← X[fold = i, ]

for k from 1 to m do
γ̂

−κ(i)
k ← Exp/Iso-Calibrate(ytrain,Xtrain,Z[, k])

Ĥ(cv)[fold = i, k]← Xtestγ̂
−κ(i)
k

end for
β̂

−κ(i)
min ← Ridge/Lasso-Fit(ytrain,Xtrain, λmin)

Ĥ(cv)[fold = i, k + 1]← Xtestβ̂
−κ(i)
min

β̂
−κ(i)
1se ← Ridge/Lasso-Fit(ytrain,Xtrain, λ1se)

Ĥ(cv)[fold = i, k + 2]← Xtestβ̂
−κ(i)
1se

end for

# meta-learner

λmeta
min ← Lasso-CV(y, Ĥ(cv), fold)∗

ω̂ ← Lasso-Fit(y, Ĥ(cv), λmeta
min )∗

∗with ω̂ non-negative

# combination

β̂⋆ ← Sta-Combine(ω̂; γ̂1, . . . , γ̂m; β̂min, β̂1se)

initialise n× 1 vector fold with values from 1 to 10

# base-learners

for k from 1 to m do
γ̂k ← Exp/Iso-Calibrate(y,X,Z[, k])

end for

# cross-validation

initialise empty n×m matrix Ĥ(cv)

for all i from 1 to 10 do
ytrain ← y[fold ̸= i]

Xtrain ← X[fold ̸= i, ]

Xtest ← X[fold = i, ]

for k from 1 to m do
γ̂

−κ(i)
k ← Exp/Iso-Calibrate(ytrain,Xtrain,Z[, k])

Ĥ(cv)[fold = i, k]← Xtestγ̂
−κ(i)
k

end for
end for

# meta-learner

λmeta
min ← Ridge/Lasso-CV(y, [Ĥ(cv)|X], fold)∗

[ω̂|β̂]← Ridge/Lasso-Fit(y, [Ĥ(cv)|X], λmeta
min )∗

∗with ω̂ unpenalised and non-negative

# combination

β̂⋆ ← Sim-Combine(ω̂; γ̂1, . . . , γ̂m; β̂)

• Exp/Iso-Calibrate†: Performs exponential or isotonic calibration (Section 2.3). Requires target vector, feature matrix, and
prior effects. Ensures calibrated prior effects.

• Ridge/Lasso-CV†: Tunes the hyperparameter of ridge or lasso regression by k-fold cross-validation. Requires target vector,
feature matrix, and fold identifiers. Ensures optimal regularisation parameter.

• Ridge/Lasso-Fit†: Estimates the parameters of ridge or lasso regression. Requires target vector, feature matrix, and
regularisation parameter. Ensures estimated coefficients.

• Sta/Sim-Combine: Combines estimated parameters from standard stacking (Equation 1) or simultaneous stacking (Equation
2). Requires estimated parameters from base-learners and meta-learner. Ensures combined estimates.

†Note: The procedures Exp/Iso-Calibrate, Ridge/Lasso-CV and Ridge/Lasso-Fit depend on the family of distributions (Gaussian vs
binomial), but they also require choices (exponential vs isotonic, ridge vs lasso).

The n-dimensional vectors {y0, . . . ,y5} are the target vectors,
with each element following a Bernoulli distribution with the
probability given by {p0, . . . ,p5}.

Internal simulation
The simulation from Tian and Feng (2022) uses the same effect
size for all causal features and a decreasing correlation structure
with a fixed base. We therefore designed our own data-generating
mechanism (i) to simulate different effect sizes for different causal
features (βj ∈ R instead of βj ∈ {0, 0.5}) and (ii) to vary the

strength of correlation between features (σij = ρx
|i−j| instead of

σij = 0.5|i−j|).
Our simulation involves the following steps:

• Features: Setting the mean of feature i to µi = 0, the variance
of feature i to σii = 1, and the covariance between features
i and j to σij = ρ|i−j|

x , for all i and j in {1, . . . , p},
we simulate multiple feature matrices from the multivariate
Gaussian distribution with mean vector µ and covariance matrix
Σ, namely the n0 × p feature matrix X0 for the target data
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set, and the n1/2/3× p feature matrices {X1,X2,X3} for the
source data sets (n0 = 100, n1 = n2 = n3 = 150, p = 500).

• Coefficients: Setting the mean and the variance for data set k to
µk = 0 and σkk = 1, for all k in {0, 1, 2, 3}, and the covariance
between data sets k and l to σkl = 0 if either k or l equals
1, or to σkl = ρβ if both k and l are in {0, 2, 3}, we simulate
two p× 4 matrices from the multivariate Gaussian distribution
with mean vector µ and covariance matrix Σ, namely B1

and B2. We define the coefficients as B = B1I[B2 >

ϕ−1(1 − π)], where ϕ is the Gaussian cumulative distribution
function and π equals 0.2 (dense) or 0.05 (sparse), and denote
the p-dimensional coefficient vectors by β0 for the target data
set and by {β1,β2,β3} for the source data sets. While one
set of coefficients is non-transferable (β1), we transform the
transferable sets of coefficients with β2 → sign(β2)|β2|

2 and
β3 → sign(β3)

√
|β3|.

• Targets: For the target data set, we compute z0 = X0β0

and standardise z0 to obtain z∗
0 . For the source data sets, we

proceed similarly to obtain {z∗
1 , z

∗
2 , z

∗
3}. The simulated targets

equal yk = h−1(
√
wz∗

k +
√
1− wϵk), where h(·) is a link

function and ϵk follows a standard Gaussian distribution, for
k in {0, . . . , 3}. Given 0 ≤ w ≤ 1, we have Var(

√
wz∗

k +√
1− wϵk) = wVar(z∗

k) + (1− w)Var(ϵk) = 1. While h(·) is
the identity link in the Gaussian case, it is the logit link in the
binomial case, where the simulated probabilities are rounded
to simulated classes. We set the signal-to-noise ratio to 4:1
(w = 0.8).

Simulation results
In addition to the target data set, the method from Tian and Feng
(2022, glmtrans) requires the source data sets, while our method
(transreg) and the method from Kawaguchi et al. (2021, xrnet)
require the prior effects derived from the source data sets. Since
these methods have different requirements, we first simulate the
source data sets (for glmtrans) and then derive the prior effects from
the simulated source data sets (for xrnet and transreg). As prior
effects, we use the estimated coefficients from penalised regression
on the source data sets. We choose the type of regularisation
for all methods subject to the simulation setting, namely ridge
regularisation for dense settings (glmtrans: α = 0; xrnet and
transreg: αsource = αtarget = 0) and lasso or lasso-like elastic
net regularisation for sparse settings (glmtrans: α = 1; xrnet and
transreg: αsource = 0.95, αtarget = 1). The idea of the lasso-like
elastic net regularisation is to render the prior information more
stable.

In each simulation setting, we simulate 100 training samples and
10 000 testing samples (hold-out) for the target data set. Tables 2
and 3 show the predictive performance for the testing data in the
external and internal simulation, under exponential and isotonic
calibration. We observe that transfer learning (with glmtrans,
xrnet, or transreg) often leads to a significant improvement with
respect to standard penalised regression (with glmnet). Concerning
the proposed method, this holds for the two different calibration
approaches and the two different stacking approaches. These
simulation studies do not show that the proposed transfer learning
method outperforms other transfer learning methods. The advantage
of the proposed method as compared to the method from Tian and
Feng (2022, glmtrans) is that it does not require the source data
but only the prior effects derived from the source data, and the
advantage as compared to the method from Kawaguchi et al. (2021,
xrnet) is that it allows for non-linear relationships between the prior
effects and the true effects. While the method from Kawaguchi et al.
(2021, xrnet) shrinks the coefficients towards a linear function of the

prior effects, the proposed method adapts the prior effects to the true
effects through exponential or isotonic calibration.

Applications
External applications
First, we consider an adapted version of the application on
cervical cancer from van de Wiel et al. (2016). The aim is
to transfer information from a methylation study with biopsy
samples to another methylation study with self-collected samples
in order to better discriminate between low-grade and high-grade
precursor lesions. Specifically, we transfer the signs of the effect
sizes and the p-values from the source data set to the target
data set (n = 44 samples, p = 9 491 features). We then
examine whether this prior information increases the predictive
performance of ridge regression, which is more predictive than
lasso regression in this application. Next to our transfer learning
method (transreg) and the one from Kawaguchi et al. (2021,
xrnet), we consider the co-data learning methods from Tay et al.
(2022, fwelnet) and van Nee et al. (2021, ecpc). While the
former exploit information on the importance and direction of
the effects (co-data: −sign(coef) log10(p-value)), the latter only
exploit information on their importance (co-data: − log10(p-value)).
After 10 repetitions of 10-fold cross-validation, we observe that
the proposed method (not with exponential but with isotonic
calibration) often increases the predictive performance of ridge
regression (transreg.exp.sta: 0/10, transreg.exp.sim: 4/10,
transreg.iso.sta: 7/10, transreg.iso.sim: 10/10, fwelnet:
7/10, ecpc: 5/10, xrnet: 3/10). We also observe that exploiting
information on the importance as well as the direction of the effects
(transreg) can be more beneficial than exploiting information on the
importance of the effects only (fwelnet, ecpc), as can be seen in the
mean change in cross-validated logistic deviance (transreg.exp.sta:
+6.56%, transreg.exp.sim: +0.43%, transreg.iso.sta: −2.50%,
transreg.iso.sim: −9.25%, fwelnet: −0.12%, ecpc: −1.52%,
xrnet: +2.59%). The relatively poor performance of the competing
transfer learning method (xrnet) might be caused by a non-
linear relationship between the prior effects (transformed p-values)
and the true effects. Here, isotonic calibration outperforms
exponential calibration, and simultaneous stacking outperforms
standard stacking. A potential explanation for the large difference
in performance between exponential and isotonic calibration is that
positive effects might be more important than negative effects
in this application, for a biological reason (methylation increases
the probability of cancer) and a statistical reason (effects of
overexpression are easier to detect than those of underexpression).
While exponential calibration behaves symmetrically for negative
and positive prior effects, isotonic calibration can shrink negative
prior effects towards zero.

Second, we consider an adapted version of the application on
pre-eclampsia from Tay et al. (2022). Measurements of p = 1 125

plasma proteins are available for n = 166 patients at multiple time
points (48 × 2 + 8 × 3 + 20 × 4 + 74 × 5 + 16 × 6 = 666). The
aim is to transfer information from late time points (gestational
age > 20 weeks) to early time points (gestational age ≤ 20

weeks). We repeatedly split the patients into one source data set
and one target data set. Patients with only late time points are
always in the source data set, and other patients are randomly
allocated to the source and the target data set. (Note that this
application is somewhat artificial, as it might be better to drop
transfer learning in favour of using all earliest time points in the
regression of interest.) Using the source data set, we estimate two
logistic regression models under ridge regularisation, once using

Page 25 of 32 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

https://CRAN.R-project.org/package=glmtrans
https://CRAN.R-project.org/package=transreg
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=glmtrans
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=transreg
https://CRAN.R-project.org/package=glmtrans
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=transreg
https://CRAN.R-project.org/package=glmtrans
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=transreg
https://CRAN.R-project.org/package=glmtrans
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=transreg
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=glmtrans
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=transreg
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=ecpc
https://CRAN.R-project.org/package=ecpc
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=transreg
https://CRAN.R-project.org/package=ecpc
https://CRAN.R-project.org/package=ecpc
https://CRAN.R-project.org/package=xrnet
https://CRAN.R-project.org/package=xrnet


For Peer Review

Penalised regression with multiple sources of prior effects 9

Table 2. Predictive performance in external simulation. In each setting (row), we simulate 10 data sets, calculate the performance metric
(mean-squared error for numerical prediction, logistic deviance for binary classification) for the test sets, express these metrics as percentages
of those from prediction by the mean, and show the mean and standard deviation of these percentages. Settings: number of transferable source
data sets (Ka), differences between source and target coefficients (h), dense setting with ridge regularisation (s = 50, α = 0) or sparse setting
with lasso regularisation (s = 15, α = 1), family of distribution (‘gaussian’ or ‘binomial’). These parameters determine (i) the mean Pearson
correlation among the features in the target data set (ρ̄x) and (ii) the maximum Pearson correlation between the coefficients in the target
data set and the coefficients in the source data sets (max(ρ̂β)). Methods: regularised regression (glmnet), competing transfer learning methods
(glmtrans , xrnet), proposed transfer learning method (transreg) with exponential/isotonic calibration and standard/simultaneous stacking.
In each setting, the colour black (grey) highlights methods that are more (less) predictive than regularised regression without transfer learning
(glmnet), asterisks (daggers) indicate methods that are significantly more (less) predictive at the 5% level (one-sided Wilcoxon signed-rank
test), and an underline highlights the most predictive method.

transreg
Ka h α family ρ̄x max(ρ̂β) glmnet glmtrans xrnet exp.sta exp.sim iso.sta iso.sim
1 5 0 gaussian 0.01 1.00 73.2±3.0 43.9±9.2* 47.1±1.8* 32.2±3.2* 30.9±2.8* 24.5±3.6* 23.4±3.3*
3 5 0 gaussian 0.01 1.00 73.2±3.0 33.5±6.5* 29.3±2.4* 18.1±2.5* 16.7±2.0* 13.5±2.0* 12.7±1.6*
5 5 0 gaussian 0.01 1.00 73.2±3.0 24.0±3.7* 22.6±1.5* 14.2±1.7* 13.2±1.7* 10.6±1.0* 10.0±0.9*
1 250 0 gaussian 0.01 0.40 73.2±3.0 31.8±9.4* 63.8±3.6* 54.8±6.0* 57.8±6.5* 49.5±6.9* 50.0±7.3*
3 250 0 gaussian 0.01 0.42 73.2±3.0 33.3±8.2* 51.4±4.7* 46.5±7.9* 47.0±9.2* 39.4±6.5* 37.6±7.5*
5 250 0 gaussian 0.01 0.43 73.2±3.0 33.3±5.0* 43.4±3.4* 40.0±6.3* 39.2±7.3* 32.7±4.4* 30.0±4.7*
1 5 1 gaussian 0.01 1.00 17.3±3.8 12.5±1.4* 14.6±1.7 12.2±1.9* 14.7±1.9* 11.0±1.6* 11.6±1.6*
3 5 1 gaussian 0.01 1.00 17.3±3.8 10.5±0.7* 11.5±0.6* 10.8±0.6* 11.7±1.6* 9.8±0.5* 9.9±0.6*
5 5 1 gaussian 0.01 1.00 17.3±3.8 10.0±0.4* 11.0±0.6* 10.5±0.5* 11.1±1.3* 9.6±0.3* 9.8±0.4*
1 250 1 gaussian 0.01 0.24 17.3±3.8 22.2±13.4† 17.6±4.1 14.7±3.4* 17.8±4.8 14.7±3.4* 18.2±5.0
3 250 1 gaussian 0.01 0.27 17.3±3.8 19.8±6.7† 17.7±3.6† 14.7±3.4* 18.4±4.8 14.8±3.4* 18.7±5.5†
5 250 1 gaussian 0.01 0.27 17.3±3.8 19.8±6.7† 17.5±3.6 14.8±3.3* 19.0±4.6 14.7±3.5* 21.3±6.6†
1 5 0 binomial 0.01 1.00 91.5±1.5 91.0±4.2 84.5±1.0* 82.4±5.6* 82.7±5.4* 77.8±3.7* 78.5±4.7*
3 5 0 binomial 0.01 1.00 91.5±1.5 85.9±3.7* 75.9±2.9* 69.8±3.6* 70.0±3.8* 66.7±3.7* 66.6±4.5*
5 5 0 binomial 0.01 1.00 91.5±1.5 79.9±2.4* 70.8±2.9* 63.1±3.8* 63.2±3.9* 61.2±3.0* 62.2±5.7*
1 250 0 binomial 0.01 0.41 91.5±1.5 92.0±5.0 91.1±2.0 89.4±2.9* 90.2±3.0 88.3±3.2* 88.7±3.0*
3 250 0 binomial 0.01 0.42 91.5±1.5 89.7±4.3 86.5±4.2* 86.3±4.6* 87.8±4.5* 84.0±7.5* 84.2±5.6*
5 250 0 binomial 0.01 0.43 91.5±1.5 85.3±3.5* 83.0±3.2* 84.3±4.8* 85.9±5.5* 79.4±4.4* 79.0±5.0*
1 5 1 binomial 0.01 1.00 80.4±8.2 77.8±12.2 77.1±8.4 71.4±5.8* 73.0±4.0* 70.3±5.2* 72.4±5.0*
3 5 1 binomial 0.01 1.00 80.4±8.2 70.5±12.5* 69.5±11.8* 67.9±5.7* 70.8±10.3* 64.7±4.8* 64.4±5.1*
5 5 1 binomial 0.01 1.00 80.4±8.2 59.5±2.5* 64.4±4.2* 65.7±6.4* 65.5±9.6* 62.7±4.5* 61.8±4.2*
1 250 1 binomial 0.01 0.25 80.4±8.2 82.1±8.7† 82.4±9.9† 81.5±9.2 81.5±9.1 81.2±7.2 82.4±10.1†
3 250 1 binomial 0.01 0.26 80.4±8.2 80.5±9.3 82.0±8.8† 80.7±8.8 81.3±9.5 79.2±8.3 82.7±11.2
5 250 1 binomial 0.01 0.27 80.4±8.2 78.9±9.4* 84.6±15.5 80.3±8.3 83.4±8.8† 79.4±10.7 86.3±16.8†

the early time points and once using all time points. For each
patient, all time points are assigned to the same cross-validation
fold, and the weight is split evenly among the time points. We
then use the two sets of estimated regression coefficients as co-
data for the target data set. In the regression for the target data
set, we only include the earliest time point of each patient. Using
10-fold cross-validation, we estimate the predictive performance
of ridge regression with and without transfer learning. After
repeating source-target splitting and cross-validation 10 times, we
observe that transfer learning tends to decrease the cross-validated
logistic deviance (transreg.exp.sta: 8/10, transreg.exp.sim:
7/10, transreg.iso.sta: 7/10, transreg.iso.sim: 9/10, fwelnet:
5/10, ecpc: 6/10, xrnet: 10/10). It is more beneficial to share
information not only on the importance but also the direction
of the effects, according to the mean change in cross-validated
logistic deviance (transreg.exp.sta: −2.61%, transreg.exp.sim:
−4.29%, transreg.iso.sta: −3.67%, transreg.iso.sim: −8.33%,
fwelnet: +0.04%, ecpc: −6.87%, xrnet: −12.12%). Simultaneous
stacking again outperforms standard stacking, but exponential and
isotonic calibration show a similar performance. In this application,
where the prior effects are probablyiot close to the true effects,
the competing transfer learning method (xrnet) outperforms the
proposed one.

For both applications, Figure 2 shows the change in predictive
performance from modelling without to modelling with prior
information.

Internal application
In this application, we transfer information from a meta-analysis of
genome-wide association studies on Parkinson’s disease (pd-gwas,
Nalls et al., 2019) to the Luxembourg Parkinson’s study (luxpark,
Hipp et al., 2018). The aim is to classify samples into Parkinson’s
disease (pd) patients and healthy controls based on single-nucleotide
polymorphisms (snps).

At the time of our study, the luxpark data set included
genotyping and clinical data of 790 pd cases and 766 healthy
controls. dna samples were genotyped using the NeuroChip array
(Blauwendraat et al., 2017). Quality control steps of genotyping
data were conducted according to the standard procedures reported
previously (Pavelka et al., 2022). Missing genotyping data were
imputed using the reference panel from the Haplotype Reference
Consortium (release 1.1) on the Michigan Imputation Server (Das
et al., 2016) [rrid:id_017579], with a filter for imputation quality
(r2 > 0.3).

As common snps exhibit weak effects on pd, the sample size
is likely insufficient to train a highly predictive model. However,
publicly available summary statistics from the largest-to-date pd-
gwas (with around 38 000 cases and 1 400 000 controls from
European ancestry) (Nalls et al., 2019) might serve as prior
information on the snp effects. For each snp, these summary
statistics are the combined results from simple logistic regression of
the pd status on the snp, namely the estimated slope (logarithmic
odds ratio), its standard error, and the associated p-value.
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Table 3. Predictive performance in internal simulation. In each setting (row), we simulate 10 data sets, calculate the performance metric
(mean-squared error for numerical prediction, logistic deviance for binary classification) for the test sets, express these metrics as percentages
of those from prediction by the mean, and show the mean and standard deviation of these percentages. Settings: correlation parameter for
features (ρx), correlation parameter for coefficients (ρβ), dense setting with ridge regularisation (π = 30%, α = 0) or sparse setting with
lasso regularisation (π = 5%, α = 1), family of distribution (‘gaussian’ or ‘binomial’). These parameters determine (i) the mean Pearson
correlation among the features in the target data set (ρ̄x) and (ii) the maximum Pearson correlation between the coefficients in the target
data set and the coefficients in the source data sets (max(ρ̂β)). Methods: regularised regression (glmnet), competing transfer learning methods
(glmtrans , xrnet), proposed transfer learning method (transreg) with exponential/isotonic calibration and standard/simultaneous stacking.
In each setting, the colour black (grey) highlights methods that are more (less) predictive than regularised regression without transfer learning
(glmnet), asterisks (daggers) indicate methods that are significantly more (less) predictive at the 5% level (one-sided Wilcoxon signed-rank
test), and an underline highlights the most predictive method.

transreg
ρx ρβ α family ρ̄x max(ρ̂β) glmnet glmtrans xrnet exp.sta exp.sim iso.sta iso.sim
0.95 0.60 0 gaussian 0.08 0.32 46.1±7.3 48.5±6.3 45.2±7.0* 45.2±7.6* 45.4±7.1 45.1±7.5* 44.5±6.8*
0.99 0.60 0 gaussian 0.32 0.32 33.2±4.8 33.2±6.4 32.6±4.4* 32.2±4.6* 32.5±4.4* 32.1±4.7* 32.0±4.1*
0.95 0.80 0 gaussian 0.08 0.54 45.1±6.7 47.9±11.1 42.0±6.4* 43.7±7.1* 43.3±6.9* 43.8±7.1* 41.9±6.5*
0.99 0.80 0 gaussian 0.32 0.54 32.5±4.8 31.8±4.2 31.1±4.7* 32.0±4.8* 31.6±4.7* 31.6±4.7* 30.4±3.9*
0.95 0.99 0 gaussian 0.08 0.89 44.1±5.1 42.2±5.6 37.3±4.4* 40.9±5.3* 37.6±4.5* 40.1±5.7* 38.8±5.7*
0.99 0.99 0 gaussian 0.32 0.89 31.0±5.1 29.4±2.1 27.6±3.0* 30.4±5.3 28.4±3.8* 29.8±4.8* 29.1±3.9*
0.95 0.60 1 gaussian 0.08 0.27 37.7±6.8 39.1±7.2 37.9±6.6 37.3±7.2 38.0±7.3 37.4±7.0 41.5±6.4†
0.99 0.60 1 gaussian 0.32 0.27 28.5±2.4 29.9±3.5† 29.1±3.4 28.8±2.5 29.0±2.7 28.7±2.7 28.7±2.5
0.95 0.80 1 gaussian 0.08 0.45 37.5±4.8 37.4±5.0 36.9±5.2 35.7±4.2* 36.8±4.7 35.9±4.7* 39.5±5.4†
0.99 0.80 1 gaussian 0.32 0.45 29.9±2.4 29.9±2.8 29.5±3.4 29.1±2.5 29.4±3.3 29.1±2.8 29.6±3.8
0.95 0.99 1 gaussian 0.08 0.87 38.0±6.4 33.0±5.7* 34.5±7.9* 34.8±8.2* 34.1±6.8* 34.0±7.6* 35.2±8.0
0.99 0.99 1 gaussian 0.32 0.87 30.2±4.4 29.5±4.5 29.2±4.6 29.4±4.8 29.1±4.2* 28.6±3.5* 29.4±4.4
0.95 0.60 0 binomial 0.08 0.32 77.1±4.5 81.2±6.1† 76.7±4.4 76.8±4.8 76.1±5.0 77.7±4.8 77.7±5.2
0.99 0.60 0 binomial 0.32 0.32 65.5±4.7 67.0±5.9 65.0±4.7 63.7±4.8* 65.3±4.4 63.8±4.8* 64.0±4.9
0.95 0.80 0 binomial 0.08 0.54 74.9±4.4 81.2±10.7† 73.5±5.1* 75.0±5.7 73.9±5.6 74.7±4.7 73.5±5.4*
0.99 0.80 0 binomial 0.32 0.54 64.3±3.6 64.7±4.6 61.8±4.7* 63.2±4.5* 63.7±5.0 63.0±4.7* 63.6±5.1
0.95 0.99 0 binomial 0.08 0.89 75.4±5.0 74.8±4.7* 69.5±4.2* 72.4±6.5* 71.5±6.3* 71.7±4.9* 71.4±4.8*
0.99 0.99 0 binomial 0.32 0.89 62.4±5.0 61.8±5.0 58.1±4.6* 61.0±6.7 58.9±6.7* 60.4±6.2* 59.6±5.0*
0.95 0.60 1 binomial 0.08 0.27 76.5±6.0 75.8±3.9 75.7±4.1 75.8±5.8 76.5±4.9 75.9±5.4 75.9±2.3
0.99 0.60 1 binomial 0.32 0.27 61.2±4.4 61.5±4.9 63.4±6.8† 63.1±5.6† 62.2±5.7 62.7±5.4† 61.5±4.6
0.95 0.80 1 binomial 0.08 0.45 78.2±10.5 76.6±10.2 76.3±9.8 75.0±6.0 77.1±9.0 75.2±6.1 77.9±6.6
0.99 0.80 1 binomial 0.32 0.45 64.9±4.9 64.8±5.6 65.5±2.9 66.3±6.7 64.4±5.2 65.2±6.0 65.5±4.3
0.95 0.99 1 binomial 0.08 0.87 80.1±6.0 73.3±5.7* 70.7±6.3* 69.2±4.5* 68.8±6.8* 70.1±5.2* 69.3±5.3*
0.99 0.99 1 binomial 0.32 0.87 63.2±5.1 62.9±4.7 61.2±5.6* 62.7±6.1 61.1±5.7* 61.8±5.8 61.2±6.2*

Importantly, the luxpark cohort was not part of the pd-gwas,
meaning that the prior information comes from independent data.
As the luxpark cohort and the pd-gwas cohorts have a similar
ethnic background, the prior information might allow us to increase
the predictive performance.

The two lists of snps - from the luxpark genotyping data (target
data set) and the pd-gwas summary statistics (source data set) - are
partially overlapping. snp data are high-dimensional and strongly
correlated. From each block of snps in the target data set (250 kb
window), we retain the most significant one and those that are in
weak pairwise linkage disequilibrium with it (r2 < 0.1). Next, we
only retain the snps appearing also in the source data set. These two
filtering steps together reduce the dimensionality in the target data
set from around 18 million snps to 196 018 snps. We code the snp
data for dominant effects, with 0 meaning no alternate allele (0/0)
and 1 meaning one or two alternate alleles (0/1 or 1/1).

It seems that the results from the source data set are informative,
because 5.80% of the p-values are nominally significant at the 0.05

level (11 377 out of 196 018), 77 are significant at a false discovery
rate of 5% (Benjamini-Hochberg), and 35 are significant at a family-
wise error rate of 5% (Holm-Bonferroni). As snps with a low minor
allele frequency might have large effect sizes but insignificant p-
values, we base the prior effects not on the estimated coefficients
(β̂) but on the signed logarithmic p-values (−sign(β̂) log10(p)).
For each snp, we compared the reference and the alternate alleles
between the two data sets: (i) If both data sets have the same

reference allele and the same alternate allele, the signed logarithmic
p-value from the source data set becomes the prior effect for the
target data set. (ii) If the reference allele of each data set is the
alternate allele of the other data set (swapped alleles), we invert the
sign of the signed logarithmic p-value. (iii) And if the two data sets
have two different sets of alleles (multiallelic snp), we set the prior
effect to zero.

Rather than using the 196 018 snps for predictive modelling in
the target data set, we also filter them based on their significance in
the source data set (which is already a type of transfer learning). For
each cut-off in {5×10−2, 5×10−3, . . . , 5×10−10}, we exclude all
snps above and include all snps below. This means that for the target
data set, we retain a specific number of the most significant snps
from the source data set. For each significance cut-off, we compare
three modelling approaches:

• Uninformed approach: We use logistic regression with ridge or
lasso penalisation to model the pd status based on the included
snps. All included snps are treated equally, irrespective of their
estimated effect in the source data set.

• Naïve transfer learning: After calculating for each sample the
sum across the signed logarithmic p-values from the source data
set multiplied by the snps from the target data set, we fit a
simple logistic regression of the pd status on this sum.
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Fig. 2. Change in predictive performance in external applications due to prior information. Percentage change in cross-validated logistic deviance
(y-axis) from ridge regression (with glmnet) to other methods (x-axis), for 10 repetitions of 10-fold cross-validation. A negative value (blue) indicates an
improvement, and a positive value (red) indicates a deterioration, based on the metric ’logistic deviance’. Top: application on cervical cancer. Bottom:
application on pre-eclampsia. From left to right: co-data learning methods (fwelnet, ecpc), competing transfer learning method (xrnet), proposed transfer
learning method (transreg) with exponential/isotonic calibration and standard/simultaneous stacking.

• Transfer learning: The proposed transfer learning approach uses
the signed logarithmic p-values from the source data set as prior
effects for the target data set.

Figure 3 shows the predictive performance of modelling with
estimated effects (uninformed approach), with prior effects (naïve
transfer learning), or with both (transfer learning). We obtained
the results with repeated nested cross-validation (10 repetitions,
10 external folds, 10 internal folds), using the same folds for all
methods. If the significance cut-off is very strict, leading to a small
number of significant snps, transfer learning does not improve the
predictive performance of ridge and lasso regression. In these low-
dimensional settings with many fewer snps than samples, prior
information on the snps is not helpful. But otherwise transfer
learning does improve the predictive performance of ridge and lasso
regression. This holds for all four flavours of the proposed transfer
learning method (exponential vs isotonic calibration, standard vs
simultaneous stacking), but isotonic calibration works considerably
better than exponential calibration and simultaneous stacking works
marginally better than standard stacking.

Depending on the significance cut-off determining the number of
significant snps, the performance of naïve transfer learning can be

as high as the one of transfer learning with isotonic calibration. In
these cases, the prior effects are predictive to the extent that it is
not even necessary to estimate any effects. An explanation for the
high performance of naïve transfer learning might be (i) the large
sample size in the source data set for testing the marginal effects
of the snps together with (ii) the linkage disequilibrium clumping
leading to a selection of relatively independent snps.

Discussion
We proposed a two-step transfer learning method for exploiting
estimated coefficients from related studies to improve the predictive
performance in the study of interest. First, we adapt the prior
effects from the source data sets to the target data set, either with
exponential or isotonic calibration. While exponential calibration
is more robust to outliers (only three free parameters), isotonic
calibration is more flexible (only maintains order of prior effects). We
expect the former to be superior if the prior effects are close to the
true effects, and the latter to be superior if there is no exponential
relationship. Second, we combine the calibrated prior effects with
information from the observed data, based on two variants of
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Fig. 3. Predictive performance in internal application. Mean cross-validated area under the roc curve (auc) from 10 times 10-fold cross-validation
(y-axis) against p-value cutoff (x-axis) for regression without (solid line) and with (dashed lines) transfer learning (bright blue: standard stacking, dark
blue: simultaneous stacking), under either ridge (left) or lasso (right) regularisation and either exponential (top) or isotonic (bottom) calibration. The
numbers within brackets indicate the dimensionality, and the dotted line is for naïve transfer learning. While auc = 0.5 represents random classification,
auc = 1.0 represents perfect classification. Given 766 controls and 790 cases, a random classifier achieves an auc above 0.524 in 5% of the cases.

stacked generalisation. While the first variant (standard stacking)
is more suitable if there are many sources of co-data (‘averaging
calibrated prior effects and estimated effects’), the second variant
(simultaneous stacking) is more suitable if there is one source of
co-data with partially unreliable or partially missing prior effects
(‘shrinking combined effects towards calibrated prior effects’).

The proposed transfer learning method allows for multiple
sources of prior information. It does not require the source data
set(s) but only the prior effects derived from the source data
set(s). The proposed sequential transfer learning method has a
competitive predictive performance with the less flexible parallel
transfer learning method from Tian and Feng (2022, glmtrans).
In the case of closely related tasks, accounting for prior effects
with transfer learning seems to be more beneficial than accounting
for prior weights with the co-data methods from Tay et al. (2022,
fwelnet) and van Nee et al. (2021, ecpc). And in the case of
non-linearly related prior effects, the proposed method seems to
outperform the one from Kawaguchi et al. (2021, xrnet). We
therefore believe that the proposed method could tackle many
biomedical predictions problems with one or more sets of prior
effects.

In some applications, only one type of prior information derived
from the source data sets is available. In other applications, multiple
types of prior information are available (or the source data sets
themselves). Then we can choose from multiple types of prior
information. If the source and target data sets have the same feature
space, estimated coefficients from penalised regression might be a
reasonable choice. If the feature spaces are different, however, it
is problematic that (i) lasso regression erratically selects among
correlated features and (ii) ridge regression distributes weight among
correlated features. This means that the presence or absence of
additional correlated features in the source data sets might change
the prior information on the features of interest. The same problem
arises under contamination of a subset of features (van de Wiel et al.,
2016). We therefore expect that signed logarithmic p-values from
pairwise testing (−sign(β̂) log10(p)) will often be more informative
than estimated coefficients from multiple regression (β̂).
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data: van de Wiel et al., 2016). Data for the application on pre-
eclampsia are available from Erez et al. (2017), in the supporting file

‘pone.0181468.s001.csv’. For the application on Parkinson’s disease,
the source data are available from Nalls et al. (2019), in the online
file ‘nallsEtAl2019_excluding23andMe_allVariants.tab’, and the
target data are available upon request (request.ncer-pd@uni.lu).
Information on reproducibility is also available on a frozen page (doi:
10.17881/hczj-3297).
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the co-data under sign and order constraints, i.e. estimate γ(1),k, . . . , γ(p),k for x(1), . . . , x(p) under γ̂(j),k ≤ 0|j ≤ p, γ̂(j),k ≥ 0|j > p, and
γ̂(1),k ≤ . . . ≤ γ̂(p),k. This in turn can be solved by (iii) estimating the effects of the combined features under sign constraints, i.e. estimate
δ1, . . . , δp for w1, . . . , wp under δ̂j ≤ 0|j ≤ p and δ̂j ≥ 0|j > p. Our algorithm receives the original features and the prior effects (i), orders
the features by the prior effects (ii), combines the features (iii), estimates the effects of the combined features (iii), calculates the estimated
effects of the ordered features (ii), and returns the estimated effects of the original features (i).
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(ii) x◦,(1) x◦,(2) · · · x◦,(q−1) x◦,(q)

(iii) w◦,1 =

x◦,(1)

w◦,2 =

x◦,(1) + x◦,(2)
· · · w◦,q−1 =

x◦,(1) + · · ·+ x◦,(q−1)

w◦,q =

x◦,(1) + · · ·+ x◦,(q)

(iii) δ̂1,k δ̂2,k · · · δ̂q−1,k δ̂q,k

(ii) γ̂(1),k =

δ̂1,k + · · ·+ δ̂q,k

γ̂(2),k =

δ̂2,k + · · ·+ δ̂q,k
· · · γ̂(q−1),k =

δ̂q−1,k + δ̂q,k

γ̂(q),k =

δ̂q,k

(i) γ̂1,k γ̂2,k · · · γ̂q−1,k γ̂q,k

(i) x◦,q+1, zq+1,k x◦,q+2, zq+2,k · · · x◦,p−1, zp−1,k x◦,p, zp,k

(ii) x◦,(q+1) x◦,(q+2) · · · x◦,(p−1) x◦,(p)

(iii) w◦,q+1 =

x◦,(q+1) + · · ·+ x◦,(p)

w◦,q+2 =

x◦,(q+2) + . . . + x◦,(p)
· · · w◦,p−1 =

x◦,(p−1) + x◦,(p)

w◦,p =

x◦,(p)

(iii) δ̂q+1,k δ̂q+2,k · · · δ̂p−1,k δ̂p,k

(ii) γ̂(q+1),k =

δ̂q+1,k

γ̂(q+2),k =

δ̂q+1,k + δ̂q+2,k
· · · γ̂(p−1),k =

δ̂q+1,k + · · ·+ δ̂p−1,k

γ̂(p),k =

δ̂q+1,k + · · ·+ δ̂p,k

(i) γ̂q+1,k γ̂q+2,k · · · γ̂p−1,k γ̂p,k
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