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Large deviations theory for noisy nonlinear electronics: CMOS inverter as a case study
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The latest generations of transistors are nanoscale devices whose performance and reliability are limited by
thermal noise in low-power applications. Therefore, developing efficient methods to compute the voltage and
current fluctuations in such nonlinear electronic circuits is essential. Traditional approaches commonly rely on
adding Gaussian white noise to the macroscopic dynamical circuit laws, but do not capture rare fluctuations and
lead to thermodynamic inconsistencies. A correct and thermodynamically consistent approach can be achieved
by describing single-electron transfers as Poisson jump processes accounting for charging effects. But such
descriptions can be computationally demanding. To address this issue, we consider the macroscopic limit, which
corresponds to scaling up the physical dimensions of the transistor and resulting in an increase of the number of
electrons on the conductors. In this limit, the thermal fluctuations satisfy a “large deviations principle”, which
we show is also remarkably precise in settings involving only a few tens of electrons, by comparing our results
with Gillespie simulations and spectral methods. Traditional approaches are recovered by resorting to an ad
hoc diffusive approximation introducing inconsistencies. To illustrate these findings, we consider a low-power
CMOS inverter, or NOT gate, which is a basic primitive in electronic design. Voltage (resp. current) fluctuations
are obtained analytically (semi-analytically) and reveal interesting features.
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I. INTRODUCTION

Since the beginning of the information age, the ever-
growing need for information processing has fueled spec-
tacular progress in computing technology and the associated
semiconductor industry. In a first stage, computing power
grew exponentially due to the miniaturization of the MOS
transistor, which allowed for higher transistor densities in a
chip and higher operation frequencies [1]. However, in the
last two decades, the dissipation of power associated with the
switching of each transistor made it impossible to continue
increasing both the density and the speed. Since then, opera-
tion frequencies have stalled, while the number of transistors
per chip kept increasing. This enabled the development of
multicore architectures and parallel computing schemes, sat-
isfying in this way the demand for more computing power.
This limitation, in addition to the massification of mobile
computing devices, has made power consumption the main
focus in the development of new computing technologies. A
common strategy to reduce power consumption is to reduce
the operation voltage, which however also reduces the max-
imum operation frequency [2]. In some applications where
power consumption is the main concern, and can therefore
be traded for speed and performance, the operation voltage
can be further reduced. In this way, one enters what is known
as the “subthreshold” regime of operation [3], in which pow-
ering voltages can ideally be as low as the thermal voltage
VT = kbT/qe, where qe is the positive electron charge (at room
temperature, VT � 26 mV). However, this trend faces a funda-
mental limitation, due to the unavoidable presence of thermal

noise. A rough estimation shows that the variance in the volt-
age at the node of a circuit scales as σ 2 ∼ kbT/C, where T is
the temperature at which the circuit works and C the capaci-
tance of the node. The typical values of C are proportional to
the scale of the circuit, and in modern fabrication processes
they can be as low as C � 50 aF, and thus σ � 10 mV, which
cannot be neglected in front of VT. Therefore, a rigorous de-
scription of the intrinsic thermal noise in the electronic circuits
used in low-power computing devices is important to study
their reliability and performance [4,5]. More interestingly,
understanding how to control intrinsic thermal noise is also
crucial in the search of alternative computing schemes where
noise is exploited as a resource [6–9].

The description of thermal noise in nonlinear electronic cir-
cuits is commonly done at the phenomenological level, where
the intrinsic noise is modelled using a stationary Gaussian
white noise, added as an external source [10,11]. Although
this description can provide accurate predictions in some ap-
plications, it lacks thermodynamic consistency for nonlinear
circuits [12,13]. This implies that the dynamics could lead to
unphysical stationary states, and also may produce violations
of the second law of thermodynamics [9,14,15]. Moreover,
the thermal noise in MOS transistors is of shot noise nature
(for subthreshold operation), i.e., the power spectral density
(PSD) is proportional to average current, [16–18], and the
Gaussian approximation fails to capture rare fluctuations in
such systems [19]. Recently, thermodynamically consistent
models have been developed to account for thermal shot noise
in nonlinear electronic circuits [9,20]. In this article, we will
be employing the formalism developed in [9]. It is based
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FIG. 1. (a) The usual implementation of a CMOS inverter. (b) Transfer characteristics of the deterministic subthreshold CMOS inverter,
where Vss = −Vdd. Parameters: qe/qT = 0.1,Vdd/VT = 3. (c) Logical symbol for the NOT gate. (d) Jump processes model for the inverter,
where the transport of charges are due to the devices (pMOS and nMOS transistors) between different conductors (represented by different
colors).

on the idea that conduction through the components of the
circuit is due to the transit of excess charges in both forward
and reverse directions, and hence it can be modelled using a
bi-Poissonian process. The Poisson rates are derived from the
I-V curve of the components, constrained by thermodynamic
principles, using the modern theory of stochastic thermody-
namics. Then, this formalism allows to construct a stochastic
model of a given electronic circuit by mapping it to a Markov
jump process. Similar but thermodynamically inconsistent
models have been used before to assess the probability of
soft errors in low-power electronic memory caused by thermal
noise [21,22]. Common methods to compute the statistics of
different dynamical quantities in such models include numer-
ical approaches like the Gillespie simulation of the stochastic
dynamics, or spectral methods based on the diagonalization
of the generator of the Markov jump process. However, these
methods become impractical for large systems and long times.

To tackle the above limitations, we will make use of the
recent developments in large deviations theory to compute
the statistics of observables in the macroscopic regime, by
scaling the physical dimensions of the transistors. Large de-
viations theory deals with the probabilities of rare events,
which asymptotically have an exponentially decaying form
with a large scale parameter, e.g., system size, time of obser-
vation, number of events, etc. [23]. Recently, it has emerged
as a formal framework to characterize fluctuations in both
equilibrium and out-of-equilibrium systems [24–28]. In equi-
librium statistical mechanics, taking the thermodynamic limit
allows having a large deviations perspective as a function of
system size [29,30]. Whereas for out-of-equilibrium systems,
the dynamical aspects are characterized using time-averaged
observables, like empirical current, traffic, etc. The long time
fluctuations of these observables can be computed using
large deviations theory, taking the time of observation as the
scale parameter [24–26]. Another application has been to
understand the macroscopic fluctuations of these dynamical
observables, using the system size as the scale parameter,
analogous to the description in equilibrium systems [27,31–
33]. The noncommutativity of the long time and the large size
limit is an important feature of systems with dynamical phase

transitions, and large deviations theory provides a mathemati-
cal framework to characterize them [34–38].

In this article, we combine the tools of large deviation
theory and stochastic thermodynamics to correctly describe
the voltage and current fluctuations in electronic circuits due
to thermal noise. As a case study, we consider the low-power
CMOS inverter (NOT gate), a basic primitive in electronic
design. After a thermodynamically consistent description of
the inverter, we discuss how the macroscopic limit is naturally
approached in these electronic devices, such that the thermal
fluctuations satisfy a large deviations principle. Crucially, we
show that this limit is reached even in settings involving a few
tens of electrons, by comparing the analytical results with the
Gillespie simulations and spectral methods. In this process,
we also make comparisons with the widespread diffusive ap-
proximations, highlighting its limitations. Finally, we look at
the behavior of mean, variance and the precision of the cur-
rent through the inverter for different parameters, and discuss
the conditions under which one can devise a coarse-grained
effective model.

II. MODEL FOR THE CMOS INVERTER

The CMOS inverter is an implementation of the most ele-
mentary logic gate, the NOT gate. As shown in the Fig. 1(a),
it is composed of a pMOS (top) and an nMOS (bottom) tran-
sistor, with a common gate and drain terminals (with voltages
Vin and Vout, respectively). The circuit is powered by applying
a voltage difference between the source terminals of both
transistors, �V = Vdd − Vss. In each transistor, electric current
flows only between drain and source terminals, due to the
presence of a metal-oxide insulator between the gate terminal
and the bulk in MOSFETs. To achieve high performance logic
designs, these transistors are usually operated in a regime
where they essentially behave as a switch. This regime is
characterized by a value of input voltage Vin > Vth (threshold
voltage), when there is a proper conduction channel (strong
inversion) between source and drain terminals. Whereas, for
low-power applications, these transistors are operated in the
subthreshold regime (|Vin| � Vth) [3]. In this regime, there are
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still small leakage currents in both the transistors due to partial
creation of the conduction channel. These currents have an
exponential dependence on the voltages and hence strongly
depend on the ratio Vin/Vth. We will focus on this mode of
operation of the MOS transistors for understanding the role of
thermal fluctuations in the CMOS inverter.

A CMOS inverter works as follows. When Vin < �V/2, the
conduction through the nMOS transistor is reduced, while it is
enhanced through the pMOS transistor, and hence the output
voltage v quickly relaxes to Vdd. Similarly, for Vin > �V/2,
the situation is reversed, with the output voltage now quickly
relaxing to Vss [Fig. 1(b)]. Here, we model the transistors as
externally controlled conduction channels between conduc-
tors with associated capacitances: Cg (capacitance between the
gate electrode and the bulk) and Co (output capacitance) [see
Fig. 1(d)]. For fixed powering voltages (Vss, Vdd) and input
gate voltage (Vin), the inverter has only one degree of freedom:
the voltage on the output conductor (connected to the drain
terminals of both transistors) Vout ≡ v.

In the symmetric powering case, i.e., Vss = −Vdd, the sub-
threshold current through the pMOS transistor is given as

Ip(v;Vin,Vdd) = I0e(Vdd−Vin−Vth )/(nVT )(1 − e−(Vdd−v)/VT ), (1)

where I0,Vth, and n are the parameters characterizing the
transistor. For such a symmetric case, the current through the
nMOS transistor is In(v;Vin,Vdd) = Ip(−v; −Vin,Vdd). Using
Kirchhoff’s laws, the deterministic dynamics for v in the
CMOS inverter can be obtained as

2Co
dv

dt
= Ip(v;Vin,Vdd) − In(v;Vin,Vdd). (2)

The stationary solution vdet satisfying dv/dt = 0 gives the
transfer characteristics [Fig. 1(b)], and we will study the
deviations from it due to thermal fluctuations. Since volt-
ages and charges have a linear relation, we can equivalently
work in the state space of the output charge qout ≡ q = 2Cov.
The charge transfer between the conductors is modelled as
a bidirectional Poisson process. The associated jump rates
for p/nMOS transistors are λ

p/n
± (q;Vin,Vdd), where, ± cor-

responds to the forward (+) and reverse (−) directions. The
elementary voltage change corresponding to a charge transfer
qe is ve = qe/(2Co). The state of the system at any time is
characterized by the probability distribution P(q, t ) over the
charge in the output conductor. The corresponding master
equation for the stochastic dynamics of q is given by

dt P(q, t ) = [λn
−(q − qe) + λ

p
+(q − qe)]P(q − qe, t )

+ [λn
+(q + qe) + λ

p
−(q + qe)]P(q + qe, t )

− [λn
−(q) + λn

+(q) + λ
p
−(q) + λ

p
+(q)]P(q, t )

(3)

or

dt P(q, t ) =
∑

ρ

λρ (q− �ρqe)P(q− �ρqe, t )− λρ (q)P(q, t ),

where the summation over ρ in the last line is over the forward
and backward processes (±ρ) of all devices, λρ (q) is the
corresponding Poisson rate and �ρ is ±1 based on whether
the process results in the addition/removal of the charge in
the output conductor [see Fig. 1(d)].

The Poisson rates are modelled based on the thermody-
namically consistent formalism developed in [9]. The rates
are obtained from the I-V characteristics of the transistors
[Eq. (1)] along with the thermodynamic constraint of local de-
tailed balance (LDB). The latter condition on the rates of each
device ensures that the system will relax to the equilibrium
state at a temperature T corresponding to the environment
of that device, if all other devices are disconnected from the
circuit. Such a thermodynamic constraint on the dynamics
also implies that the fluctuations of different observables are
constrained through relations like fluctuations theorems [25]
and thermodynamic uncertainty relations [39,40]. In the fol-
lowing we review the basic ingredients of the formalism in [9].

Let us consider first the simple case of a single device
or conductor channel subjected to a fixed voltage bias �Vρ .
This bias is supplied by ideal voltage sources and therefore
it is constant. Under the bi-Poisson modeling assumption, the
average current 〈I〉(�Vρ ) (i.e., the I-V curve) that is estab-
lished in response to the voltage bias must satisfy 〈I〉(�Vρ ) =
qe[λ̃+(�Vρ ) − λ̃−(�Vρ )], where λ̃±(�Vρ ) are the associated
Poisson rates. In this case, the LDB condition imposing ther-
modynamic consistency relates forward and backward rates
as log(λ̃+(�Vρ )/λ̃−(�Vρ )) = βqe�Vρ , where βqe�Vρ is en-
tropy change in the environment corresponding to a single
conduction event. Solving both these conditions, one can ob-
tain the fixed-voltage rates λ̃±(�Vρ ) [21,22]. However, those
rates cannot be directly employed when the device is em-
bedded in an arbitrary circuit, since in that case the voltage
bias across it is different before and after a conduction event
(by an amount of the order of the elementary voltage ve). As
we argue below, thermodynamically consistent rates can be
obtained by evaluating the fixed-voltage rates λ±(�Vρ ) at the
average voltage before and after a jump. To see this, we first
write the correct LDB condition for the pMOS transistor of
the inverter,

log

(
λ

p
+(q)

λ
p
−(q + qe)

)
= −δQp

q→q+qe

kBT
, (4)

where δQp
q→q+qe

=U (q + qe) −U (q) − qeVdd = −qe�Vp(q)
is the energy required to perform the transition q → q + qe

[U (q) = q2/(4Co) + const. is the electrostatic energy of the
circuit]. Using the fact that U (q) is a quadratic function, it
can be shown that δQp

q→q+qe
is related to the average voltage

difference across the device before an after a transition
δQp

q→q+qe
= −qe�Vp(q). Similarly, the LBD condition for

the nMOS transistor is given as

log

(
λn

+(q)

λn−(q − qe)

)
= −δQn

q→q−qe

kBT
. (5)

where δQn
q→q−qe

= U (q − qe) − U (q) + qeVss = −qe�Vn(q)
is the energy required to perform the transition q → q − qe.
Then, one can obtain thermodynamically consistent rates λ

n/p
±

by evaluating the fixed voltage rates λ
n/p
± (�V ) of a given

transistor at the average voltage �Vn/p(q), i.e., λ
n/p
± (q) =

λ̃
n/p
± (�Vn/p).

In the subthreshold operation regime (i.e., Vin < Vth) the
Poisson rates for the pMOS transistor after enforcing the
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correct LDB condition [Eq. (4)] are

λ
p
+(q) = (I0/qe)e(Vdd−Vin−Vth )/(nVT ),

λ
p
−(q) = λ

p
+(q)e−(−q+qe/2)/qT e−Vdd/VT , (6)

and for the nMOS transistor are

λn
+(q) = (I0/qe)e(Vin+Vdd−Vth )/(nVT ),

λn
−(q) = λn

+(q)e−(q+qe/2)/qT e−Vdd/VT , (7)

where we define qT = 2CoVT. The factor e−qe/(2qT ) in the rates
is a consequence of enforcing the LBD condition, and takes
into account charging effects that can be relevant at small
scales and low temperatures [9]. One can also see that the
fixed voltage assumption comes out as a limiting case when
we take qT ∝ Co → ∞. This will be one of the central limits
discussed in more detail in the coming sections.

In the matrix representation, the master equation (3) can be
written as

dt |P(t )〉 = L̂|P(t )〉 (8)

where |P(t )〉 is the probability density vector and L̂ is the
generator of the above Markov process, both defined in the
orthonormal basis, {|q〉}. The generator L̂ can be further de-
composed into diagonal (escape rates) and nondiagonal parts,
such that

L̂ = �̂ − γ̂ , (9)

where γ̂ is a diagonal matrix with escape rates

γ̂ =
∑

q

|q〉〈q|
(∑

ρ

λρ (q)

)
(10)

and �̂(t ) is a matrix where each off-diagonal term is the jump
rate corresponding to that particular transition

�̂ =
∑

q

∑
ρ

|q〉〈q − qe�ρ |λρ (q − qe�ρ ). (11)

Hence, L̂ has a 0 eigenvalue with the left eigenvector 〈1| ≡
(1, 1, ...), i.e., 〈1|L̂ = 0, which is a property of a Markov
generator. The corresponding right eigenvector |Pst〉 gives the
stationary distribution, Pst (q), which is equivalent to solving
dt P(q, t ) = 0 from Eq. (3). The next dominant eigenvalues
provide information about the relaxation behavior of the
dynamics. Therefore, the spectral decomposition of the gen-
erator contains the complete information of the transient and
stationary behavior of the stochastic dynamics.

There are two types of observables in systems described
by Markov jump processes. The first kind are state-like ob-
servables, which are functions A(qt ) of the state of the system
at any given time. Examples of state observables include the
voltage of a conductor, internal energy, etc. The stationary
fluctuations of those observables can be fully captured by
the knowledge of just the stationary distribution Pst (q). The
second kind are jump-like observables, which are functionals
of both the state and the transitions along a stochastic trajec-
tory. These observables capture some dynamical aspects of
the trajectories like currents, entropy production, traffic, etc.,
and hence become important for out-of-equilibrium systems.
The average of such jump observables can again be computed

using just the stationary distribution of the state. However, all
higher moments require the knowledge of the full trajectory,
due to the dependence of the different jumps on the state. In
the following, we will study both kind of observables in the
CMOS inverter.

The CMOS inverter is operated at a voltage bias �V > 0,
and it relaxes to a nonequilibrium steady state (NESS). Being
a one-dimensional system, the stationary state for the CMOS
inverter can be exactly solved by taking dt Pst (q, t ) = 0 from
Eq. (3). As shown in [9], this simplifies to the following
recurrence relation:

Pst (q) = αp + αnγ e−(q−qe )/qT

αn + αpγ eq/qT
Pst (q − qe), (12)

where

αn = e(Vdd+Vin )/nVT , αp = e(Vdd−Vin )/nVT ,

γ = e−(2Vdd+ve )/(2VT ).

This, combined with the normalization condition
∑

q Pst (q) =
1, gives us the exact form for the stationary probability distri-
bution. Hence, the stationary statistics of any state observable
(a function of output charge) and the average of any jump
observable can be exactly computed. For example, the average
steady state current through the pMOS transistor is

〈Ip〉 = qe

∑
q

Pst (q)[λp
+(q) − λ

p
−(q)]. (13)

In the next section, we will first review the large deviation
analysis of the statistics of state observables in the macro-
scopic limit, and solve it in the specific case of the CMOS
inverter. We will compare it with the exact results above
and also with the results obtained from the usual Gaussian
approximation. We will show the limitations of the latter due
to thermodynamic inconsistency. Then, we will consider the
large deviation analysis for the current observables in both the
macroscopic and long time limit.

III. MACROSCOPIC LIMIT AND LARGE DEVIATION
PRINCIPLE FOR STATE OBSERVABLES

For most electronic systems, analytically solving the mas-
ter equation even for the stationary state is not feasible.
One thus has to rely on numerical procedures, like spec-
tral methods (diagonalization of the generator of the master
equation), or stochastic simulation methods using the Gille-
spie algorithm [41]. While the former methods are limited
to low-dimensional state spaces, the latter ones are compu-
tationally intensive. However, analytical progress is possible
by exploiting a low-noise macroscopic limit. In electronic
circuits, this limit arises naturally under an appropriate scaling
of the physical dimensions of the device. Essentially, one
enters the macroscopic regime when the elementary voltage
ve = qe/(2Co) becomes negligible compared to all the other
voltage scales in the system (Vdd and VT in this case). For
example, when one increases the width W of the conduc-
tion channel (Appendix A), both the capacitance Co and the
specific current I0 increase proportionally to W . Therefore,
the elementary voltage ve = qe/(2Co) decreases as W −1 while
the transition rates in the master equation increase as W .
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Since the typical number of charges in the output conductor
scales as Co, it is natural to work with the voltage variable
v ∼ q/(2Co). Taking v−1

e itself as the scale parameter, the
macroscopic limit corresponds to taking ve → 0. We can
hence define rescaled Poisson rates (still dependent of ve) as
ωρ (v, ve) = veλρ (v, ve), such that ωρ (v) ≡ limve→0 ωρ (v, ve)
is well defined.

To study the macroscopic limit, it is convenient to rewrite
the master equation in terms of the scaled rates as

dt P(v, t ) =
∑

ρ

v−1
e [ωρ (v − �ρve, ve)P(v − �ρve)

− ωρ (v, ve)P(v, t )], (14)

and consider its series expansion in powers of the small pa-
rameter ve (Kramers-Moyal/system size expansion) [42]. To
the lowest order in ve we obtain the continuity equation

dt P(v, t ) = −∂v

[∑
ρ

�ρωρ (v)P(v, t )

]

= −∂v[μ(v)P(v, t )] + O(ve) (15)

where we have defined the deterministic drift μ(v) =∑
ρ �ρ ωρ (v). A solution of the equation above is P(v, t ) =

δ(v − x(t )), where x(t ) is given by the dynamics ẋ(t ) =
μ(x(t )). This is just the deterministic dynamics for v in
Eq. (2).

To the next order in ve, we obtain the Fokker-Planck (FP)
equation

∂t P(v, t ) = −∂v

[
μ′(v)P(v, t ) − 1

2∂v (D(v)P(v, t ))
]

(16)

involving a corrected drift term

μ′(v) =
∑

ρ

�ρ[ωρ (v)+ve∂veωρ (v, 0)]

= μ(v) +
∑

ρ

ve�ρ∂veωρ (v, 0) (17)

and the diffusion term

D(v) = ve

∑
ρ

ωρ (v). (18)

Since it is one-dimensional, this equation can be solved ex-
actly, as shown in Appendix B. Equation (16) is equivalent
to the Langevin equations obtained by adding white noise
sources to the deterministic dynamics [Eq. (2)], which is a
common approach for the description of noisy nonlinear sys-
tems [10,11]. However, that approach is thermodynamically
inconsistent. This can be seen by noting that for equilibrium
settings (no powering bias, Vdd = 0) the detailed balance con-
dition is violated, i.e.,

2μ′(v) �= ∂vD(v) − βD(v)∂vU (v) (19)

where U (v) is the energy of the system. As a consequence, the
steady state of the FP equation is not the Gibbs state Peq(v) ∼
e−U (v)/(kBT ). As we will see next, deviations from the correct
equilibrium only occur for large fluctuations. However, these
fluctuations are crucial to properly evaluate the probability of
logical errors induced by thermal noise [5,19].

Thus, the second-order truncation of the master equa-
tion expansion leads to systematic errors for rare events and
also thermodynamic inconsistencies. An alternative method to
study the macroscopic regime is provided by large deviations
(LD) theory. The basis of this theory is the existence of an
asymptotic form for the probability density of any intensive
observable (voltage in this case), capturing the fact that fluc-
tuations decay exponentially with the size of the system. This
is known as the large deviation principle. In our case, this
principle is expressed as the existence of the limit φ(v, t ) ≡
limve→0[−ve log P(v, t )], which leads to the LD ansatz

P(v, t ) = e−v−1
e [φ(v,t )+o(ve )]. (20)

Large deviation theory has been a powerful tool set in sta-
tistical physics, as the quantity φ(v, t ) captures fluctuations
beyond the central limit theorem. In the steady state, the
rate function φ(v) is termed as quasipotential, by analogy
with the Gibb’s state in the equilibrium case. Under the scal-
ing conditions discussed above, we can see that the master
equation accepts the LD ansatz by introducing Eq. (20) into
Eq. (14), while keeping only the dominant terms in ve → 0.
We then obtain the following dynamical equation for the rate
function

dtφ(v, t ) =
∑

ρ

ωρ (v)[1 − e�ρ∂vφ(v,t )]. (21)

Thus, the steady-state quasipotential for the CMOS inverter
satisfies

0 = [ωn
−(v) + ω

p
+(v)](e∂vφ(v) − 1)

+ [ωn
+(v) + ω

p
−(v)](e−∂vφ(v) − 1). (22)

Remarkably, the previous equation can be solved exactly, and
one finds

φ(v) = v2

2VT
+ Vddv

VT
+ VT[Li2(v,Vdd ) − Li2(v,−Vdd )],

(23)
where Li2(v,Vdd ) = Li2(−e(Vdd+v−(2/n)Vin )/VT ) is the poly-
logarithm function of order 2. One also notes that it provides
a thermodynamically consistent picture as in equilibrium
(Vdd = 0), it gives back the correct thermodynamic potential
U (v).

To see the differences between the LD approach and the
FP approach, we can also compute the large deviation rate
function at the FP level. This motivates us to use the ansatz
P(v, t ) � exp ( − v−1

e φFP(v, t )), that when introduced in the
FP equation leads to

−dtφFP(v, t ) = μ(v)∂vφFP(v, t ) + d (v)[∂vφFP(v, t )]2 (24)

where we have defined d (v) = D(v)/(2ve). Note that the drift
term now corresponds to just the deterministic part μ(v) as
the correction term only has a subexponential contribution.
The corresponding steady state rate function is then obtained
by solving 0 = μ(v)∂vφFP(v, t ) + d (v)[∂vφFP(v, t )]2, which
gives

φFP(v) =
∫ [

−μ(v′)
d (v′)

]
dv′. (25)

The explicit form of the rate function φFP(v) is given in
Appendix B.
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FIG. 2. (a) The exact steady-state distribution of output voltage v for the CMOS inverter obtained using the quasipotential given by Eq. (23)
(solid lines) is compared with the histogram from the exact solution [Eq. (12)]. (b) The stationary rate functions, the quasipotential φ and FP
rate function φFP along with the one computed from the exact solution log Pst(v) for an equilibrium and a nonequilibrium case.

All the results obtained so far are compared in Fig. 2. In
Fig. 2(a), we compare the exact stationary distribution for the
output voltage v with the quasipotential solution [Eq. (12)],
for different Vin at fixed powering voltages �V . One can see
that the quasipotential is in good agreement with the exact
solution, even for a finite system size (ve/VT = 0.1).

In Fig. 2(b), we compare the quasipotential with the
stationary rate function from the FP equation φFP for an equi-
librium and a nonequilibrium case. We see that φFP fails to
capture the tails of the distribution, the rare fluctuations in the
output voltage [Eq. (19)]. Thus, in addition to being the ther-
modynamically consistent approach, the LD quasipotential
also captures the tails of the distribution for nonequilibrium
cases.

IV. SPECTRAL METHODS FOR CURRENT STATISTICS

We will now study the statistics of the electric current
through the CMOS inverter. The statistics of jump-like ob-
servables can provide insights into the fluctuations of the
thermodynamic quantities like dissipation, entropy flow, etc.
The full counting statistics of currents have been previously
explored in single electron systems, and have been used to
verify the fluctuation theorems [43,44]. In this section, we
will review the spectral methods to numerically compute the
current statistics for a finite system size, and then use the limit
of long times to characterize the typical fluctuations through
large deviation functions [25,45,46]. In the following section,
we will exploit both the long time limit and the large size limit.

Let us consider the stochastic trajectory {q(t )} to be a
particular realization of the dynamics given by Eq. (8), defined
from some initial time τ = 0 up to a time τ = t . It can be

characterized by the initial state q0 and the sequence of jumps
{ρk} along with their time stamps {τk}, where the index k is
over all jumps. This information is encoded in the trajectory
probability current

jρ (q, t ) =
∑

k

δ[ρ, ρk]δ[q, qtk ]δ(t − tk ) (26)

where qt is the state immediately before the instant t and
δ[x, y] is the Kronecker delta function. Then, the instanta-
neous electric current through a device ρ is defined as iρ (τ ) =
qe
∑

q[ jρ (q, τ ) − j−ρ (q + qe�ρ, τ )]. Other current observ-
ables relevant in electronics like power, entropy production
rate, etc., can be defined similarly.

To compute the statistics of such current observables, it
is useful to define the time-integrated current observable
Nρ (t ) = q−1

e

∫ t
0 dτ iρ (τ ) = ∑

k s(ρk ) where s(ρk ) is the sign
function when ρk = ±ρ, else 0. The statistics of Nρ (t ) can
be characterized by the moment generating function (MGF),
defined as Zρ (ξ, t ) = 〈eξNρ (t )〉. It contains the same amount
of information as the corresponding probability distribution
P(Nρ, t ), but Z (ξ, t ) is usually easier to compute. One can
then recover P(Nρ, t ) by inverting the MGF

P(Nρ, t ) =
∫ π

−π

dξ

2π
Zρ (iξ, t )e−iξNρ . (27)

In the matrix representation, the evolution of Z (ξ, t ) is given
by the “tilted” dynamics

Zρ (ξ, t ) = 〈1|eL̂ξ t |P(0)〉 (28)

where 〈1| ≡ (1, 1, ...), |P(0)〉 is the initial probability vector
and L̂ξ = �̂ξ − γ̂ is the tilted generator with nondiagonal
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elements given by

�̂ξ =
∑

q

∑
ρ ′

|q〉〈q − qe�ρ ′ |λρ (q − qe�ρ ′ )eξs(ρ ′ ).

Note that L̂ξ has an additional weight for the cross (jump)
terms �̂ξ by eξs(ρ ′ ), where s(ρ ′) is the sign function as defined
before. One may also note that L̂ξ cannot be a generator for
any Markov process as it does not preserve normalization, i.e.,
〈1|L̂ξ �= 0.

The tilted dynamics of Eq. (28) can be used to compute
the full counting statistics (FCS) of the integrated current at
any finite time. However, in practice, the exponential matrix
evolution [Eq. (28)] is not always feasible in the macroscopic
limit (large state space) and one also has to be careful with the
truncation of the state space for accurate results. In such cases,
one could still get the dominant behavior of the statistics at
long times by looking at the largest eigenvalue of the tilted
generator L̂ξ . The MGF can be spectrally decomposed as,
Zρ (ξ, t ) = ∑

j c j (ξ )eλ j (ξ )t , where λ j (ξ ) are the eigenvalues

of L̂ξ and the c j (ξ ) are the coefficients of the expansion.
The existence of unique maximal eigenvalue max[λ j] of L̂ξ

(Perron-Frobenius theorem) [47] implies that the MGF satis-
fies

lim
t→∞

log Zρ (ξ, t )

t
= lim

t→∞
1

t
log〈eξNρ (t )〉 = Sρ (ξ ), (29)

where Sρ (ξ ) = max[λ j] is the scaled cumulant generating
function (SCGF) for the integrated current through the device
ρ. This is equivalent to having a large deviation form for
the MGF at long times. The SCGF enjoys a fluctuation sym-
metry Sρ (ξ ) = Sρ (−ξ − βqe�V ), where �V is the potential
difference across the device (Appendix E). The Gärtner-Ellis
theorem implies that the time-intensive empirical current
Īρ (t ) = Nρ (t )/t = i also satisfies a large deviation principle,
where the large scale parameter is t . So asymptotically, the
probability density has an exponential form, P(Īρ (t ) = i) =
e−t[φρ (i)+o(t−1 )], where φρ (i) is the rate function for i. Also,
Sρ (ξ ) is related to φρ (i) by the Legendre-Fenchel transform

Sρ (ξ ) = max
i

[ξ i − φρ (i)]. (30)

This implies that the rate function φρ (i) also satisfies the
following symmetry: φρ (i) − φρ (−i) = −βqei�V , leading us
to a detailed fluctuation theorem for the empirical current Īρ
at long times [44],

lim
t→∞ ln

P(Īρ (t ) = i)

P(Īρ (t ) = −i)
� βqei�V t = i�V

VT
t . (31)

Hence, the fluctuation symmetry in the SCGF provides a ther-
modynamic consistency check for the various approximations
discussed in the next section.

Since the current Īρ depends on the integration time t of the
measurement, the normalized cumulants of the electric current
in physical units, Iρ = qeĪρ , can be obtained from the SCGF
Sρ (ξ ) as follows:〈〈

In
ρ

〉〉
t n−1 = qn

e∂
n
ξ Sρ (ξ )|ξ=0, (32)

where 〈〈In
ρ 〉〉 is the nth cumulant of the current Iρ . The large

deviations principle discussed above is a consequence of tak-
ing the large time limit, and it does not involve taking the

macroscopic limit of the devices. Compared to long-time
Gillespie simulations, the spectral method has the advantage
of computing just the largest eigenvalue of the biased genera-
tor. However, for electronic systems it remains as a numerical
tool, which also becomes expensive in the macroscopic limit.
In the next section, we will show how analytical progress can
be made by first taking the macroscopic limit and then taking
a large time limit for the current statistics.

V. MACROSCOPIC LIMIT AND LARGE DEVIATION
PRINCIPLE FOR CURRENT STATISTICS

The spectral methods for current statistics do not exploit
the macroscopic limit that was introduced in Sec. III for state
observables. As a consequence, they are limited to situations
in which the state space can be truncated to a manageable
number of dimensions, so that the generator of the master
equation can be diagonalized, or at least its dominant eigen-
value can be computed. However, the macroscopic limit can
also be considered for the current statistics using the path
integral representation of the stochastic process. Path integral
tools, first introduced to stochastic systems by Wiener [48],
have been applied to study a wide range of problems in
nonequilibrium systems [42,49–53]. They allow to express
the probability of a given stochastic trajectory in terms of
an action. For a system displaying the macroscopic limit,
the scaling of the action with respect to the scale parameter
implies the emergence of typical trajectories. For example,
in the case of the inverter, the probability of a trajectory
{v(t )} can be expressed using the Martin-Siggia-Rose (MSR)
representation [54–56] as

P[{v(t )}] =
∫

Dp ev−1
e

∫ t
0 dτ [−p(τ )v̇(τ )+H (v(τ ),p(τ ))], (33)

where the argument of the exponential, the action, is ex-
pressed to dominant order in the scale parameter v−1

e in terms
of a Hamiltonian

H (v, p) =
∑

ρ

(e�ρ p − 1)ωρ (v). (34)

In Eq. (33),
∫
Dp is a path integral over all the possible

configurations of the auxiliary field p(t ), playing the role of a
conjugated momentum. The path integral over p is equivalent
to integrating over all the possible jumps histories that gen-
erate the specified trajectory v(t ), which might be different
from the deterministic trajectory. Extremizing the action, one
obtains the typical trajectories, following Hamilton’s equa-
tions of motion in the extended space (v, p):

v̇(τ ) =
∑

ρ

�ρe�ρ p(τ )ωρ (v(τ )), (35)

ṗ(τ ) = −
∑

ρ

(e�ρ p(τ ) − 1)∂vωρ (v(τ )). (36)

Note that setting p(τ ) = 0 in Eqs. (35) and (36), one recovers
the deterministic equation of motion of Eq. (2). At long times
and for any finite boundary conditions, the typical trajectories
must pass extremely close to the fixed point (v∗ = vdet, p∗ =
0), where the phase velocity (v̇, ṗ) → 0. Since the value of
the Hamiltonian H (v∗, p∗) = 0 at the fixed points is zero,
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the stationary state (quasipotential) can be computed from the
trajectories, which nullify the Hamiltonian [i.e., H (v, p) = 0].
The details of the exact derivation of the quasipotential and
the FP approximation from the path integral approach can be
found in the Appendix C 1.

The generating function for current statistics introduced in
the previous section also accepts a path integral representa-
tion. Indeed, again to the dominant order in v−1

e , we have

Zρ (ξ, t ) =
∫

DvDp ev−1
e

∫ t
0 dτ [−p(τ )v̇(τ )+Hξ (v(τ ),p(τ ))]P0(v(0)),

(37)
where P0(v(0)) ∝ e−v−1

e φ0(v0 )+o(v−1
e ) is an initial probability dis-

tribution, and Hξ (v, p) is the biased Hamiltonian

Hξ (v, p) =
∑

ρ

(e�ρ p+s(ρ)ξ − 1)ωρ (v). (38)

The above Hamiltonian is biased by the counting field ξ corre-
sponding to the current observable, similar to that of the tilted
generator [Eq. (28)] introduced in the previous section. The
macroscopic limit ve → 0 can be now exploited to perform
a saddle point approximation of the path integral in Eq. (37),
where only the most probable trajectory (vξ (t ), pξ (t )) for each
value of the bias ξ is considered,

Zρ (ξ, t ) � max
vξ (t ),pξ (t )

ev−1
e

∫ t
0 dτ [−pξ (τ )v̇ξ (τ )+Hξ (vξ (τ ),pξ (τ ))]. (39)

In the previous equation, the optimization must be performed
among all the trajectories {vξ (t ), pξ (t )} extremizing the ac-
tion, or equivalently satisfying the corresponding Hamiltonian
dynamics

v̇ξ = ∂pHξ (v, p) ṗξ = −∂vHξ (v, p) (40)

with boundary conditions

p(0) = ∂

∂v0
φ0(v0), p(t ) = 0. (41)

Solving the above nonlinear coupled equations of motion an-
alytically can be difficult. However, the optimization over all
the trajectories can be avoided if we are only interested in the
current statistics for long integration times t . In that case, the
optimal trajectories are the ones, which pass extremely close
to the fixed points (v∗

ξ , p∗
ξ ) of the biased dynamics generated

by Hξ , in addition to satisfying the boundary conditions. Then,
the kinetic term pv̇ vanishes in the bulk of long trajectories,
and the only time extensive contribution to the integral in
Eq. (39) is simply tHξ (v∗

ξ , p∗
ξ ). In this way, we find that the

scaled cumulant generating function (SCGF) for the current
through a device ρ is given by

Sρ (ξ ) = lim
t→∞

1

t
ln Zρ (ξ, t ) = v−1

e max
v∗

ξ ,p∗
ξ

{Hξ (v∗
ξ , p∗

ξ )}. (42)

This is the central result of the path integral formalism that
will be used in the following. As shown in Appendix E,
the Lebowitz-Spohn fluctuation symmetry Sρ (ξ ) = Sρ (−ξ −
βqe�V ) is satisfied by Eq. (42). Note that the role of the
eigenvalue with the largest real part in the spectral method
is played by the scaled biased Hamiltonian Hξ (v∗

ξ , p∗
ξ )/ve.

In the path integral method discussed above, one first takes
the macroscopic limit ve → 0, and only then the t → ∞ limit

is taken. Whereas in spectral methods, the long time limit
is taken first for any finite system size (which could also
be taken to be large). These two limits not always commute
and may give different insights into the current statistics, for
example in systems with long-lived metastable states. In such
systems, taking the macroscopic limit first leads to ergodic-
ity breaking. Then, the dynamics gets stuck near one of the
metastable states and the distribution for the current is peaked
around the deterministic value corresponding to that state
(Appendix D). In contrast, ergodicity is preserved by taking
the long time limit first for a finite size, and the dynamics
explores the full state space. Then the most probable value
for the integrated current is the average between the values
corresponding to each metastable state (weighted by their
respective lifetimes) [34].

A. Application to the CMOS inverter

We will now apply the central result Eq. (42) to the CMOS
inverter. If one is interested in the statistics of the electric
current through the pMOS transistor Ip, the corresponding
biased Hamiltonian reads

HpMOS
ξ (v, p) = (ep − 1) ωn

−(v) + (e−p − 1) ωn
+(v)

+ (ep+ξ − 1) ω
p
+(v) + (e−p−ξ − 1) ω

p
−(v).

(43)

Similarly, the biased Hamiltonian for the electric current
through the nMOS transistor In, is given as

HnMOS
ξ (v, p) = (ep − 1) ω

p
+(v) + (e−p − 1) ω

p
−(v)

+ (ep−ξ − 1) ωn
−(v) + (e−p+ξ − 1) ωn

+(v).
(44)

These two Hamiltonians are related by the following symme-
try:

HpMOS
ξ (v, p) = HnMOS

ξ (v, p + ξ ). (45)

According to this relation, there is a one-to-one mapping
between the fixed points of the two Hamiltonians, and their
values at the corresponding fixed points match. As a conse-
quence, the currents through both transistors share the same
SCGF, and therefore the same statistics in the long time
limit. This is naturally understood as follows. Conservation
of charge implies that the net number of charges NnMOS and
NpMOS transported by the two transistors during time t can
only differ by the charge fluctuation �q = q(t ) − q(0). At
steady state, �q/t → 0 for long t , since �q is bounded, and
therefore NnMOS/t � NpMOS/t .

To proceed, we need to compute the fixed points of
H (p/n)MOS

ξ (v, p). Since Hξ (v, p) is a convex function of p,
for any fixed value of v, we can uniquely compute the v-
dependent value of p for which v̇ξ = 0, which is called the
nullcline p∗

ξ (v). The nullclines for v̇ξ = ∂pHξ (v, p) of both
devices are given as

p∗
pMOS(v) = 1

2
ln

[
e−ξ ω

p
−(v) + ωn

+(v)

eξ ω
p
+(v) + ωv−(v)

]
,

p∗
nMOS(v) = 1

2
ln

[
ω

p
−(v) + eξ ωn

+(v)

ω
p
+(v) + e−ξ ωn−(v)

]
. (46)
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FIG. 3. ṗξ (v) (in units of τ−1
0 , with τ0 = (qe/I0 ) exp[Vth/(nVT )])

for the nMOS transistor at different values of ξ , with the dominant
fixed point marked in red. One can see that there are three different
roots for ξ = 2, with the leftmost and rightmost roots corresponding
to hyperbolic fixed points. The middle fixed point corresponds to a
center type, which cannot be reached given the boundary conditions.
The leftmost root in each curve is the one maximizing HnMOS

ξ [v∗
ξ , p∗

ξ ].
Parameters: Vdd/VT = 3,Vin/VT = 0.3.

Then the fixed points v∗
ξ , p∗

ξ can be obtained numerically after
injecting the above solution p∗

ξ (v) and finding the roots of the
equation ṗξ (v) = −∂vHξ (v, p∗

ξ (v)) = 0 for each value of ξ .
In Fig. 3, we plot ṗξ (v) for the nMOS current at different
values of ξ . One can see that there can be multiple roots of the
above equation (ξ = 2), but we need to consider only those
fixed points, which satisfy the boundary conditions. Since
the dynamics is Hamiltonian, the fixed points can have only
marginal stability and the only possible types in 2D are center
and hyperbolic fixed points [57]. We can remove the ones of
center type, as they do not satisfy the boundary conditions.
Assuming that the rest of the hyperbolic fixed points are
compatible with the boundary conditions, we choose the one
that maximizes Hξ (v∗

ξ , p∗
ξ ).

B. Diffusive approximation for current statistics

In the path integral formalism, the diffusive approximation
(in which the Poisson noise is approximated by Gaussian
noise) corresponds to expanding the Hamiltonian H (v, p) to
second order in p (see Appendix C 1). This is analogous to
the second-order expansion of the master equation (14) in ve,
leading to the Fokker-Planck equation in Eq. (16). We now
apply that approximation to the biased Hamiltonian giving the
current statistics for the underlying Langevin dynamics. Thus,
expanding Eq. (38) to second order in p, we obtain

HG
ξ (v, p) =

∑
ρ

(es(ρ)ξ − 1)ωρ (v) + p
∑

ρ

�ρ ωρ (v) es(ρ)ξ

+ p2

2

∑
ρ

ωρ (v) es(ρ)ξ + O(p2). (47)

However, the above diffusive approximation breaks the
symmetry in Eq. (45) between the two transistors, and hence
the approximate long time current statistics for the pMOS
and nMOS transistors are different, which is unphysical. Intu-
itively, this is due to the fact that the diffusive approximation
fails to correctly describe large, non-Gaussian fluctuations.
Since only Gaussian fluctuations are expected to be correctly
described, we must only consider the first two terms of the
expansion in ξ of the SCGF. Therefore, the appropriate way to
perform the diffusive approximation for the current statistics
is to expand the biased Hamiltonian Hξ [v, p] to second-order
both in p and ξ . Doing that, we obtain

HG
ξ (v, p) =

∑
ρ

[�ρ p + s(ρ)ξ ] ωρ (v)

+ 1

2

∑
ρ

[�ρ p + s(ρ)ξ ]2 ωρ (v) + o(p2, ξ 2).

(48)

Following the same procedure as before for obtaining the fixed
points, we first get the equations for the nullclines in p for both
devices,

p∗
pMOS(v) = μ(v) − ξ (ω+

p (v) + ω−
p (v))∑

ρ ωρ

p∗
nMOS(v) = μ(v) + ξ (ω+

n (v) + ω−
n (v))∑

ρ ωρ

.

Using the above solutions, we numerically compute the
fixed points of this Hamiltonian to obtain the SCGF. Sim-
ilar to the state observables, the Gaussian approximation
remains thermodynamically inconsistent, as it fails to cap-
ture the fluctuation symmetry Sρ (ξ ) = Sρ (−ξ − βqe�V )
(Appendix C 2).

The SCGF Sρ (ξ ), obtained from the full Hamiltonian
Hξ (v, p) in Eq. (38) or the Gaussian Hamiltonian HG

ξ (v, p)
in Eq. (48), can be transformed to obtain the corre-
sponding rate functions φ(Ip/nMOS = i) for the empirical
currents [via the inverse of the Legendre-Fenchel trans-
form in Eq. (30)]. These two rate functions are compared
in Fig. 4, where we also plot the exact rate function ob-
tained using the spectral method. Similar to the case of
state observables, the large deviation approach captures the
current statistics even for a finite size ve/VT = 0.1. As ex-
pected, we see that the Gaussian approximation correctly
captures the curvature around the most probable value, but
fails to describe the tails since the full distribution is not
Gaussian.

VI. CURRENT STATISTICS FOR THE CMOS INVERTER

Having established the different methods, and discussed
their accuracy and limitations, we will now study the current
statistics of the CMOS inverter for different parameters. We
begin by analyzing the mean value of the current for different
values of the input voltage Vin. In the first place, we note that
the mean value obtained from the SCGF of Eq. (42) is just the
deterministic value. For example, the average current through
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FIG. 4. The rate function φ(i) obtained by taking the Legendre-
Fenchel transform of Sρ (ξ ) given by spectral method (dashed-light
blue), macroscopic limit (solid black), and Gaussian approxima-
tion (solid orange) of the biased Hamiltonian. Parameters: Vdd/VT =
2,Vin/VT = 1, ve/VT = 0.1.

the pMOS transistor computed from Sp(ξ ) is

〈Ip〉 = qe
∂Sp(ξ )

∂ξ

∣∣∣∣
ξ=0

= qe

∂
[
HpMOS

ξ (v∗
ξ , p∗

ξ )/ve
]

∂ξ

∣∣∣∣∣
ξ=0

= qe[λp
+(vdet, 0) − λ

p
−(vdet, 0)] = Ip(vdet ), (49)

where we have used v∗
ξ=0 = vdet, p∗

ξ=0 = 0 are the fixed point
of Hξ=0(v, p), which corresponds to the stationary solution of
the deterministic dynamics [Eq. (2)]. This is correct since the
SCGF was obtained in the limit ve → 0. However, for any
finite value of ve, one can get a more accurate estimate of
the average current by using the steady-state quasipotential

in Eq. (23),

〈Ip〉 =
∫ ∞

−∞
dv

1

N
e−v−1

e φ(v)qe[λp
+(v, ve)− λ

p
−(v, ve)], (50)

where N = ∫
dv exp(−φ(v)/ve) is the normalization con-

stant. Since the quasipotential φ(v) matches the state distribu-
tion even for finite ve (Fig. 2), the average current computed
in this way correctly incorporates contributions of the fluctua-
tions that are not captured by Eq. (49). This also shows that the
convergence of the large deviation approximation done at the
state level differs from that done at the current level. However,
as already mentioned, higher order cumulants of the current at
long times cannot be computed just from the steady state dis-
tribution, and one needs to employ the SCGF. In Fig. 5(a), we
show the average value 〈I〉 through the inverter as a function
of Vin for a fixed Vdd, computed using the different methods
discussed until now. We see that Gillespie simulations and the
spectral methods give the same results, as they should, and
that they also match the average based on the quasipotential
[Eq. (50)]. We also see that there are small deviations between
those results and the large deviations estimation [Eq. (49)] for
small values of Vin, due to finite ve effects. The qualitative
shapes of the curves are easily understood by recalling the
transfer function of the inverter in Fig. 1(b). We see that as we
increase |Vin|, the output voltage approaches one of the two
sources, which minimizes the voltage bias across the more
conductive transistor, and maximizes the voltage bias across
the less conductive transistor. The current is thus dominated
by the less conductive transistor. Since the conductivity of
the (n/p)MOS transistor scales as e±Vin/VT , we see that the
average current through the inverter scales as e−|Vin/VT| and is
maximized at Vin = 0.

We now turn to the analysis of the variance σ 2
I = 〈(I −

〈I〉)2〉. For the case of pMOS transistor, it is obtained from the

FIG. 5. (a) Average current 〈Ip〉 through the pMOS transistor as a function of input voltage Vin/VT at a fixed powering voltage Vdd

(symmetric case). The curves are obtained using the macroscopic limit, quasipotential estimate, and the spectral method, and compared with the
Gillespie simulation results. Parameters: Vdd/VT = 2, ve/VT = 0.1, t/τ0 = 103. (b) The scaled variance (tσ 2

Ip
) of the current through the pMOS

transistor as a function of Vin/VT for the two cases: near equilibrium, Vdd/VT = 0.2 (upper), and far from equilibrium, Vdd/VT = 2 (lower).
For Vdd/VT = 0.2, we also plot the equilibrium macroscopic result σ 2

I t |ve→0,Vdd→0 = 2� [Eq. (52)], to show the similar qualitative behavior.
Parameters: ve/VT = 0.1, t/τ0 = 5 × 103. (c) The precision of current scaled by the entropy production, computed using the macroscopic limit
(solid) and the Gaussian approximation (dashed), is plotted for different powering voltages Vdd/VT, and compared with the TUR bound Eq. (53)
(dotted-black line).
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SCGF at the macroscopic limit as

σ 2
Ip

= q2
e

t

∂2Sp(ξ )

∂ξ 2

∣∣∣∣
ξ=0

= q2
e

t

∂2
[
HpMOS

ξ (v∗
ξ , p∗

ξ )/ve
]

∂ξ 2

∣∣∣∣∣
ξ=0

.

(51)

In Fig. 5(b) we compare the scaled variance σ 2
I t computed in

this way with the spectral method and Gillespie simulations.
We see that the macroscopic result matches well with exact
results, even for system sizes involving just tens of electrons
(Vdd/ve = 0.1), as was the case for state observables. This
confirms the practical value of the large deviations techniques
to compute the current fluctuations in nonlinear electronic
circuits, since Gillespie and spectral methods quickly become
impractical for large state spaces. Close to the equilibrium
(i.e., for low Vdd), the variance is also maximized at Vin = 0,
like the average current. However, we see that for larger values
of Vdd, there are nontrivial features in the variance and that
it is maximized at |Vin| �= 0. The decaying behavior at large
input voltages can be again understood from the fact that the
conduction is dominated by the less conductive transistor. We
can gain intuition about the behavior close to equilibrium in
the following way. Considering first the equilibrium case, one
can show that the variance is given as σ 2

I t = 2 �, where � =
d〈Ip/n〉
d (2Vdd ) |Vdd→0 is the conductivity of the inverter. This result
is a consequence of the fluctuation symmetry in the current
statistics [58]. In the deterministic limit, we can compute this
conductivity for the case of n = 1, obtaining

� = I0

2qeVT
e− Vth

VT

(
cosh

(Vin

VT

)
− sinh

(Vin

VT

)
tanh

(Vin

VT

))
.

(52)
The scaled variance computed using the above equation is
plotted with a dashed line in Fig. 5(b), and one finds a similar
qualitative behavior also for small Vdd.

The nonmonotonous behavior of the variance for large
values of Vdd is harder to describe analytically. However, it
is interesting to note that the nontrivial features (the maxima
away from Vin = 0) do not seem to be particular to the CMOS
inverter, but a general feature of systems composed of two
competing conduction channels affecting the same degree of
freedom, with different timescales. We support this claim by
showing that the same features are analytically reproduced
using a simple and exactly solvable 2-state Markov jump pro-
cess involving two channels, where we vary just the relative
kinetic activity of the channels at fixed channel affinities (see
Appendix F).

A. Thermodynamic uncertainty relations

As shown in the previous section, the large devia-
tions approach preserves the thermodynamic constraints on
the current statistics imposed by the fluctuation symmetry
(Appendix E). Here, we will consider another such con-
straint, the so-called thermodynamic uncertainty relations
(TUR) [39,40,59], in the particular context of the CMOS
inverter. These relations express a fundamental trade-off be-
tween the precision (defined as the ratio between the mean and
the standard deviation) of any current observable and the total
entropy production. For example, for any empirical current

I ≡ Nρ (t )/t in the long time limit, the bound states that

〈I〉2

σ 2
I

� 〈�t 〉
2kB

(53)

where �t is the total entropy production of the system. For
the CMOS inverter, T 〈�t 〉 = 〈Ip/n〉�V t corresponds to the
associated average power dissipation.

In Fig. 5(c), we plot the scaled precision
(precision/entropy production) as a function of Vin for
different powering voltages Vdd. The mean and variance of the
current were computed from the large deviations SCGF and
the Gaussian SCGF, and both satisfy the inequality imposed
by TUR. Since the Gaussian approximation is intended to
work up to the level of variance, it gives a good estimate for
the scaled precision but performs worse as we go far from
equilibrium. We also see that the bound imposed by the TUR
is only approached close to equilibrium, i.e., for low values of
Vdd. This can again be shown using the fluctuation symmetry,
since the equality of the bound is achieved as we take
�V → 0, where both the variance and the average current
become proportional to the conductivity � [58]. We also note
that the precision per entropy production is maximized for
Vin = 0, when the timescales of both conduction channels
match. Similar phenomenology has been observed in other
systems where the kinetic asymmetry between channels leads
to less precise currents [39,60–62]. This general behavior is
also reproduced by our simple 2-state model in Appendix F.

B. Coarse-Grained model for the CMOS inverter

Since electronic circuit engineering works in a top-down
fashion, a complex circuit is designed starting with functional
modules, implemented using elementary components [63].
Even for a simple functional modules like the NOT gate,
computing the current statistics with multiple transistors can
be a challenging task. The difficulty arises as a result of the
correlations between the jumps in different transistors. Here,
we will discuss the conditions under which one can consider a
coarse-grained model of the CMOS inverter, ignoring the de-
tails of individual transistors, while still correctly describing
the current fluctuations.

Under such a coarse-graining procedure, we would model
the charge transfer through the inverter as a single bi-
Poissonian process. The current through the inverter is then
defined using the net charge flow through it at any time
interval t as, I (t ) = �q(t )/t = (qe/t )[N+(t ) − N−(t )], where
N± are the individual Poisson processes with correspond-
ing coarse-grained rates λ±

cg [Fig. 6(a)]. The rates would be
obtained using the average current, 〈I〉(�V ) = 〈�q(t )/t〉 =
qe[λ+

cg(�V ) − λ−
cg(�V )], where �V = Vdd − Vss. For thermo-

dynamic consistency, we will also enforce the local detailed
balance condition log[λ+

cg(�V )/λ−
cg(�V )] = �V/VT. The ad-

vantage of using such an approximate modeling is that all
higher-order cumulants can be obtained just from the mea-
surement of the average current 〈I〉(�V ). For example, the
variance of the coarse-grained inverter can then be computed

as σ 2(I ) = q2
e
t [λ+

cg(�V ) + λ−
cg(�V )] = qe

t 〈I〉 coth(�V/2VT).
In Fig. 6, we plot the scaled variance of the current for

varying input voltage Vin from the coarse-grained estimate and
compare it with the large deviations result. For |Vin/VT| > 1,

155303-11



GOPAL, ESPOSITO, AND FREITAS PHYSICAL REVIEW B 106, 155303 (2022)

FIG. 6. The scaled variance of the current through the pMOS
transistor σ 2

Ip
t , computed from the large deviation techniques (solid)

and the coarse-grained dynamics (dashed), are plotted for different
Vdd/VT. The coarse-grained estimate for the variance is computed us-
ing the average current 〈I〉, using the exact solution of the stationary
distribution [Eq. (13)]. At equilibrium (Vdd = 0), it is computed using
the conductivity [Eq. (52)]. Parameters: ve/VT = 0.1.

the coarse-grained estimate matches well with the exact one.
In this limit, one of the transistors is heavily activated com-
pared to the other. Hence, one can coarse-grain the inverter
to just a single bi-Poissonian process, corresponding to the
slower transistor. But such a procedure fails to capture the lo-
cal minimum at Vin = 0, as the dependence of jumps between
the different devices is neglected in the coarse-grained model.

VII. CONCLUSION & DISCUSSION

In this article, we presented an application of the formal
tools of large deviations theory to correctly compute the volt-
age and current fluctuations in low-power electronic circuits.
As a case study, we considered a low-power CMOS inverter,
or NOT gate, which is a basic primitive in electronic de-
sign. Starting from a single-electron description of the circuit
dynamics, we showed how the macroscopic regime of oper-
ation can be approached by scaling the physical dimensions
of the transistors. In this regime of operation, the thermal
fluctuations satisfied a large deviations principle, which we
employed to describe the fluctuations around the deterministic
dynamics. As shown, this approach goes beyond the limita-
tions of the traditional diffusive approximations to capture the
rarer fluctuations. We finally applied the framework to analyze
the current fluctuations in the CMOS inverter, and compared
our results with the bound of TUR. and also discussed the
conditions under which a coarse-grained effective model for
the NOT gate can capture these fluctuations.

The CMOS inverter studied here is among the simplest
nonlinear electronic circuits, with just a single fixed point
in the deterministic limit. This implies that the dynamics
remains ergodic even when the macroscopic limit is consid-
ered. Hence, the large size limit commutes with the long time
limit for any dynamical observable. It will be interesting to
study more complex electronic circuits, like memories with
multiple fixed points [5], or clocks or oscillators with limit
cycles [64], where the commutativity of these limits may be
broken [34,36].

Our paper shows how the tools of large deviations theory
and stochastic thermodynamics can be applied to a family

FIG. 7. (a) nMOSFET, (b) Circuit symbol for nMOSFET

of electronic systems of high technological relevance. In that
way, we open up a playground to explore fundamental ques-
tions of nonequilibrium statistical physics. At the same time,
our methods could contribute to the search and design of
computing schemes operating in low-power regimes [8,9,65],
where the effects of thermal fluctuations cannot be neglected.
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APPENDIX A: BASICS OF MOSFETs

The n/p metal-oxide semiconductor field effect transistors
(MOSFETs) consist of p/n doped Si-substrate (bulk), with
two heavily doped n/p source (S) and drain (D) regions.
On top of this substrate, an insulating (metal-oxide) layer is
connected to an electrode called the gate (G) terminal. When
a voltage difference is applied across the gate and source ter-
minal, a conduction channel forms as a result of the depletion
layer between the source and drain terminal. Hence, further
application of voltage drop across S and D terminal, causes
current to flow.

The typical design of MOSFETs involves two key di-
mensions [66,67].: the length (L) and the width (W) of the
conduction channel (see Fig. 7). The output capacitance Co,
between the source and drain terminal, scales with these
dimensions as C0 ∝ W/L. Similarly, the specific current char-
acterizing the I-V curve also scales as I0 ∝ W/L. Hence, we
could consider a family of devices with a fixed channel length
(L), such that scaling up the channel width (W) leads to the
required scaling of the elementary voltage ve = qe/(2Co) ∝
W −1 and the rates as λρ ∝ I0 ∝ W. Under such scaling, we
can write the master equation as follows:

dt P(v, t ) =
∑

ρ

v−1
e [ωρ (v − �ρve, ve)P(v − �ρve)

− ωρ (v, ve)P(v, t )]. (A1)
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APPENDIX B: SOLUTION TO THE FOKKER-PLANCK
APPROXIMATION

In this section, we will compute the exact solution to the
Fokker-Planck equation, along with its large deviation rate
function. As shown in Sec. III A, in the limit of ve → 0, one
can truncate the above Kramer-Moyal expansion to obtain the
following Fokker Planck equation,

∂

∂t
P(v, t ) = − ∂

∂v

[
F (v)P(v, t ) − 1

2

∂

∂v
(D(v)P(v, t ))

]

+ o
(
v2

e

)
(B1)

where we define the drift term as F (v) = ∑
ρ �ρ (ωρ (v, 0) +

ve∂veωρ (v, 0)) = μ(v) + ve
∑

ρ �ρ∂veωρ (v, 0) and the diffu-
sion term D(v) = ve

∑
ρ ωρ (v, 0). The steady-state density

can be obtained by setting ∂t P(v, t ) = 0. Assuming the den-
sity decays to 0 as v → ∞, the solution is given by

Pst (v) ∝ exp [−�(v)]
∫ v

−∞
dv′ exp [�(v′)]

D(v′)
. (B2)

In the case of CMOS inverter with Vdd = −Vss & n = 1, we
obtain �(v) as follows:

�(v) =
∫ [

2F (v′) − ∂vD(v′)
D(v′)

]
dv′

= 2VT

ve

⎧⎪⎨
⎪⎩2[e2Vin/VT − 1]

tan−1
[

1+e2Vin/VT +2e(v−Vdd )/VT√
4e2(Vin−Vdd )/VT −(1+e2Vin/VT )2

]
√

4e2(Vin−Vdd )/VT − (1 + e2Vin/VT )2
+ ln(ev/VT + e2Vdd/VT + e(2Vin−v)/VT + e(2Vin+Vdd )/VT )

⎫⎪⎬
⎪⎭. (B3)

As discussed in the main text, one can also use the large devia-
tion ansatz, P(v, t ) � exp ( − v−1

e φFP(v, t )), to obtain the rate
function corresponding to Fokker Planck equation by solving

dtφFP(v, t ) = μ(v)∂vφFP(v) + d (v)[∂vφFP(v)]2, (B4)

where we have defined d (v) = D(v)/(2ve). For the CMOS
inverter, the stationary rate function is given by

φFP(v) =
∫ [

−μ(v′)
d (v′)

]
dv′ = ve�(v). (B5)

This means that the contribution to the steady state from the
integral in Eq. (B2) is subexponential in ve.

APPENDIX C: PATH INTEGRAL APPROACH

In this section, we will briefly review the Martin-Siggia-
Rose (MSR) path integral construction for the Markov jump
processes. Then we will rederive the large deviation results for
the state observables (quasipotential approach) of the CMOS
inverter in the macroscopic limit using the path integral meth-
ods. We will also develop a systematic way of getting the usual
Gaussian approximation for both state and current observables
through the path integral and discuss their limitations. We will

be mainly following the approach developed in [37,54,56,68],
to set up the path integral tools.

For a master equation of the form Eq. (3), one can write
the corresponding “Langevin” type equation for the stochastic
evolution of the charge of the output conductor qt as

q(t + dt ) = q(t ) +
∑

ρ

qe�ρNρ (t ) (C1)

where the summation includes both the forward and reverse
processes (±ρ) of all the devices, Nρ (t ) denotes the cor-
responding number of jumps occurring in time, [t, t + dt )
and �ρ is ±1 based on whether the process adds/removes
a charge from the conductor. The key difference from the
usual Langevin equations is that the noise follows a Poisson
distribution of the form

P(Nρ |q(t )) = (λρ (q(t ))dt )Nρ

Nρ!
e−λρ (q(t ))dt . (C2)

One can then define a trajectory as a time-ordered sequence
of charge on the output conductor, [qt ] = {q(τ ) : 0 � τ � t},
such that q(0) = q0. Dividing the trajectory of length t into
M equal slices of width ti+1 − ti = t/M, one can obtain the
probability of a trajectory [qt ], as follows:

P[qt ] =
M−1∏
i=0

〈
δ

(
q(ti+1) − q(ti ) − qe

∑
ρ

�ρNρ (ti)

)〉
N

P(q0, 0)

=
M−1∏
i=0

〈∫ ∞

−∞

d p(ti+1)

2π
e−ip(ti+1 )(q(ti+1 )−q(ti )−qe

∑
ρ �ρNρ (ti ))

〉
N

P(q0, 0) (C3)

where Nρ (t ) is a Poisson noise with the associated rate λρ (t ). Now taking the limit of M → ∞ and rotating the variables
p(ti ) → ip(ti ), we get the following functional path probability:

P[qt ] =
∫

Dp eAt [qt ,pt ]P(q0, 0) =:
∫

Dp P[qt , pt ] (C4)
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where we have defined the “action” functional At [qt , pt ] as

At [qt , pt ] ≡
∫ t

0

[
−p.q̇ +

∑
ρ

(ep(τ ).�ρqe − 1)λρ (q(τ ))

]
dτ.

(C5)

Hence for each trajectory [qt ], we can associate a path of
the auxiliary “momentum” [p(t )] = {p(τ ) : 0 � τ � t} ac-
counting for the fluctuations needed to create that trajectory.
Identifying the usual Lagrangian structure to the action, one
can also introduce the Hamiltonian function, H (q, p), which
is the characteristic function of the Poisson distribution,

H (q, p) :=
∑

ρ

(ep.�ρqe − 1)λρ (q). (C6)

The Hamiltonian function has a similar structure to the Hamil-
tonian operator defined from the master equation. In the next
section, the role of the [p(t )] as a deterministic momentum
creating the typical Hamiltonian trajectories will be clearer
while taking the macroscopic limit.

1. Quasipotential approach & Gaussian approximation

Even though the path probability has this Hamiltonian
structure, the exact solution of the path integral [Eq. (C4)] is
usually not feasible analytically. Hence, we will discuss how
analytical results can be obtained by taking the macroscopic
limit, where one does a saddle-point approximation. Here,
we will show that these are equivalent to the large deviation
results obtained in Sec. III. Since the action sits on an expo-
nential, the validity of using the saddle point approximation
corresponds to the existence of the large deviation principle.

In the macroscopic limit ve → 0, it is natural to assume
the charge in conductors also scales with size, and hence
the voltage v in the conductor becomes the natural variable.
As discussed before, we define the rescaled Poisson rates
ωρ (v, ve) = veλρ (q), such that limve→0 ωρ (v, ve) ≡ ωρ (v) ex-
ists. The path probability for v with rescaled rates λρ (q) =
v−1

e ωρ (v, ve) is given by

P[vt ] =
∫

Dp ev−1
e

∫ t
0 [−p.v̇+∑

ρ (ep(τ ).�ρ −1)ωρ (v(τ ),ve )]P(v0, 0)

= :
∫

Dp ev−1
e [at [v,p]−φ(v0,0)] (C7)

where we have rescaled ve p → p, and without loss of general-
ity assume a similar exponential scaling for initial distribution,
P(v0, 0) = e−v−1

e φ(v0,0). Extremizing the action δat [v,p]
δv

= 0 =
δat [v,p]

δp , one obtains the typical trajectories, following Hamil-
ton’s equations of motion in the extended space (v, p),

v̇(τ ) =
∑

ρ

�ρe�ρ p(τ )ωρ (v(τ )), (C8)

ṗ(τ ) = −
∑

ρ

(e�ρ p(τ ) − 1)
∂

∂v
ωρ (v(τ )). (C9)

The choice of boundary conditions is guided by the choice of
observables. As seen in the main text, the deterministic dy-
namics correspond to taking the auxiliary momentum, p(τ ) =
0. The fixed point of such dynamics is the steady state value of
voltage vdet computed by solving μ(v) = ∑

ρ �ρωρ (v) = 0.

In most of the applications, one is interested only in the
stationary behavior of the system. In the stationary state, the
leading trajectories are those, which nullify the Hamiltonian,
i.e., the ones that pass extremely close to the fixed point.
In the macroscopic limit, such leading trajectories become
more typical and hence the equivalent condition to obtain the
quasipotential is

H =
∑

ρ

(ep.�ρ − 1)ωρ (v) = 0 (C10)

whose solution provides the auxiliary variable p = p(v), a
function of v. Since the Hamiltonian H[p, v] = 0, the resul-
tant action is just at [v, p] = − ∫ t

0 dτ pv̇ = ∫
dv′ p(v′). One

can also interpret these trajectories as the ones, which take
infinite time to go to the fixed point of dynamics, i.e., vdet, to
a final voltage v. Hence, the stationary distribution Pst (v) is
given as

lim
t→∞〈δ(v(0) − vdet)δ(v(t ) − v)〉 ∼ e−v−1

e

∫ v

vdet
p(v′ )dv′

=: e−v−1
e [φ(v)−φ(vdet )], (C11)

where φ(v) is the quasipotential. In the case of CMOS in-
verter, the quasipotential is obtained by solving

0 = (ep(τ ) − 1)[ωn
−(v) + ω

p
+(v)]

+ (e−p(τ ) − 1)[ωn
+(v) + ω

p
−(v)] (C12)

from which we get the auxiliary variable, p(v) = ∂vφ(v) =
ln[ωn

−(v)+ω
p
+(v)

ω
p
−(v)+ωv+(v)

]. Solving the above equation, we get back the

quasipotential obtained by assuming the large deviation ansatz
in the master equation (23).

Now we will derive the Fokker-Planck equation, obtained
in Sec. III, using the path integral approach. In the limit of
ve → 0, the action may be approximated by truncating it to
o(v2

e ) to obtain the Gaussian approximation of the Poisson
noise. The rescaled action in Eq. (C7) is then given as

at [v, p]

=
∫ t

0
dτ ve

[
p

(∑
ρ

�ρ[ωρ (v) + ve∂veωρ (v)|ve=0] − v̇

)

+ ve

2

∑
p2

(∑
ρ

ωρ (v)

)
+ o

(
v2

e

)]
, (C13)

where we put back the rescaled conjugate field p → ve p, as
done in Eq. (C7). Now taking the Gaussian integral over p,
one obtains the Onsager-Machlup action corresponding to the
Langevin dynamics,

v̇ = F (v) +
√

D(v)η, (C14)

where the drift term is F (v) = ∑
ρ �ρ[ωρ (v, 0) +

ve∂veωρ (v, 0)], the diffusion coefficient is D(v) :=
ve
∑

ρ ωρ (v, 0) and η is the Gaussian white noise with
zero mean and unit variance. Hence, we obtain back the
Langevin dynamics corresponding to the Fokker-Planck
approximation discussed before (Sec. III).

One can also note that the deterministic dynamics is easily
obtained by neglecting even the terms of o(ve) in the action,
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at [v, p] of Eq. (C13), given as

v̇ = μ(v) =
∑

ρ

�ρωρ (v, 0), v(0) = V0, (C15)

where we have assumed P(v, 0) ∼ δ(v − v0). All the informa-
tion of the fluctuations are discarded while taking the p = 0
limit. The fixed point in the corresponding dynamics is also
the deterministic steady solution, calculated using Kirchhoff’s
law [Eq. (15)].

2. Large deviation method for Current Statistics & Gaussian
approximations

In this section, we derive the different diffusive approxi-
mations by expanding the biased action [Eq. (C16)] in ve and
applying the saddle point approximation. We also compare the
resultant SCGF from the different diffusive approximations
with the full Hamiltonian [Eq. (42)]. As shown in Sec. V,
the MGF of the integrated current Nρ

t , in the path integral
representation is given as

Zρ (ξ, t ) = 〈exp(ξNρ )〉

=
∫

DvDpev−1
e

∫ t
0 dτ [−p.v̇+Hξ (v,p)]P(v0, 0) (C16)

where one can now define a biased action aξ
t [v, p] ≡∫ t

0 dτ [−p.v̇ + Hξ (v, p)]. Here, we have the biased Hamilto-
nian, defined as

Hξ (v, p) ≡
∑
ρ ′

(ep.�ρ′+s(ρ ′ )ξ − 1)ωρ ′ (v, ve) (C17)

where s(ρ) is the sign of ρ whose current is being computed,
else 0 for ρ �= ρ ′, and ξ is the counting field associated with
the device current.

The diffusive approximation for the current through a de-
vice ρ can be obtained by expanding the action in Eq. (C16)
up to o(v2

e ). The biased action for the integrated current
through the device ρ in the limit of ve → 0 is then given as

aξ
t [v, p] =

∫ t

0
dτ

[∑
ρ

(es(ρ)ξ − 1)ωρ (v)

+ pve

(∑
ρ

�ρes(ρ)ξ
[
ωρ (v) + v2

e ∂veωρ (v, 0)
] − v̇

)

+ (pve)2

2

∑
ρ

ωρ (v)es(ρ)ξ + o
(
v2

e

)]

Notice that this is just equivalent to expanding the biased
Hamiltonian Hξ (v, p) in p up to o(p2), as shown in the main
text [Eq. (47)]. Comparing it with the previous section, one
can note that we are effectively doing the full current statistics
for the Langevin dynamics of Eq. (C14). After putting pve →
p, we can again extremize the action to get the following

equations of motion:

v̇ =
∑

ρ

[(�ρ + p)es(ρ)ξ ]ωρ (v, 0), (C18)

ṗ = −
∑

ρ

[(1 + p�ρ + p2/2)es(ρ)ξ − 1]
∂

∂v
ωρ (v, 0). (C19)

As seen in the main text, the above diffusive approximation
fails to capture the symmetry of the biased Hamiltonians
[Eq. (45)], thereby becoming nonphysical. A consistent way
of doing the diffusive approximation, respecting the symme-
tries of the system, is to expand the action (Eq. (C16)) in both
p and ξ up to second order. Such an approximation leads to the
Hamiltonian of Eq. (48), and hence captures only the Gaussian
fluctuations in the current.

In Fig. 8(a), we compare the SCGF obtained from the
different approximations for both devices of the CMOS in-
verter. For both the macroscopic approximations with the
complete Hamiltonian [Eq. (38)] and the proper diffusive ap-
proximation [Eq. (48)], the symmetry is satisfied and hence
Sn(ξ ) = Sp(ξ ). Whereas, one can see that the symmetry of
the biased Hamiltonian [Eq. (45)] is broken in the diffusive
approximation of Eq. (47). It is interesting to note that this
diffusive approximation for the pMOS current statistics cap-
tures the macroscopic one for a larger range of counting field
ξ, whereas it performs poorly for the nMOS transistor. This
could be justified by the fact that the approximation of p → 0
fails in the case of the nMOS transistor, even for small values
of the counting field ξ , compared to the pMOS transistor
(Fig. 8(b)]. As with the state observable, the diffusive approxi-
mation is again thermodynamically inconsistent. Both of them
fail to capture the fluctuation symmetry of the SCGF, i.e.,
S(ξ ) = S(−ξ − βqe�V ). This can be seen as none of the dif-
fusive approximations captures the zero of Sξ , corresponding
to the thermodynamic affinity βqe�V .

APPENDIX D: MINIMUM OF RATE FUNCTION
IS THE DETERMINISTIC LIMIT

When we define the large deviation rate function based on
the large size limit, i.e., ve → 0, we are essentially taking the
deterministic limit. Hence, the minimum of the rate function
of the state (quasipotential), and the rate function of any
integrated currents must be at the deterministic value. This
implies that the most probable value even in the stochastic
regime at this limit is the deterministic case. But since the rate
function captures non-Gaussian fluctuations, implies that the
average value of the state/currents could be different from the
deterministic value at finite size.

In the case of state distribution, it is easy to check this from
Eq. (C11), as we showed that the quasipotential has the form

φ(v) =
∫ v

vdet

p(v′)dv′. (D1)

From this it is clear that the minimum of the rate
function/quasipotential is when φ′(v) = p(v) = 0, which is
the deterministic case.
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FIG. 8. (a) The scaled cumulant generating function S(ξ ) for the CMOS inverter, obtained using different approximations. Here, “macro”
is the one computed using the full Hamiltonian, “diffusive” corresponds to the one expanding the action only in p up to second-order, and
the “Gaussian”” to the one where the action is expanded in both p and ξ up to second-order. The curves for diffusive approximations are
cut-off at certain values of ξ , as the fixed points are lost in such approximations. (b) The fixed points p∗, for the nMOS and pMOS transistors,
corresponding to the full Hamiltonian one in Eqs. (C8) and (C9) is compared with the diffusive approximation one in Eqs. (C18) and (C19).
From the values of the fixed points in the macroscopic limit, one can identify the performance of the diffusive approximation for the different
devices. Parameters: Vdd/VT = 3,Vin/Vdd = 0.5, ve/VT = 0.1.

In the case of current statistics, let us first consider the
scaled cumulant generating function, given by

S(ξ ) = −v−1
e Hξ (v∗

ξ , p∗
ξ ) = −v−1

e

∑
ρ

(ep∗
ξ .�ρ+s(ρ)ξ − 1)ωρ (v∗

ξ )

(D2)

where p∗
ξ , v

∗
ξ are optimal fixed points of biased dynamics of

Eq. (42). From Gartner-Ellis theorem, one can identify the
large deviation rate function for current, I (J ), by

I (J ) = max
ξ

{ξJ − S(ξ )} (D3)

where the maximization is equivalent to solving the equation,
J = ∂S/∂ξ |ξ∗ , to obtain the following equation:

J = −v−1
e

∑
ρ

(
∂ p∗

ξ

∂ξ
.�ρ + s(ρ)ξ

)
ep∗

ξ .�ρ+s(ρ)ξωρ (v∗
ξ )

+ (ep∗
ξ .�ρ+s(ρ)ξ − 1)

∂ωρ (v∗
ξ )

∂ξ
. (D4)

Now, the minimum of the rate function is given when ∂I
∂J = 0,

implies

∂ξ ∗(J )

∂J
J + ξ ∗(J ) = ∂S

∂ξ

∣∣∣∣
ξ∗

∂ξ ∗

∂J
, (D5)

ξ ∗(J ) =
(

∂S

∂ξ

∣∣∣
ξ∗

− J

)
∂ξ ∗

∂J
. (D6)

Hence, the value of the counting field at the minimum of rate
function at J̃ , is ξ ∗(J̃ ) = 0. Now putting everything back into
Eq. (D4), we get

J̃ = v−1
e

∑
ρ

(
�ρ

∂ p∗

∂ξ

∣∣∣∣
ξ∗=0

+ s(ρ)

)
ωρ (vdet ) (D7)

where the first term vanishes as vdet is the fixed point
of unbiased dynamics, i.e., v̇ = ∑

ρ �ρωρ (vdet ) = 0. Hence,
we get that the minimum of rate function is at J̃ =
v−1

e

∑
ρ s(ρ)ωρ (vdet ), which is the deterministic solution of

Kirchhoff’s law [Eq. (2)]. This is due to the fact that the
rescaled rate does not have the contribution to the rate due
to the charging effect at the dominant order of ve.

APPENDIX E: PROOF OF FLUCTUATION SYMMETRY
IN THE SCGF

Using the path integral technique, we will show that the
symmetry in the biased Hamiltonian corresponds to the sym-
metry in the scaled cumulant generating function S(ξ ). The
biased Hamiltonian for the statistics of the integrated current
through a device ρ, in the limit of ve → 0 limit, is

Hξ (v, p) =
∑

ρ

ωρ (v)[e�ρ p+s(ρ)ξ − 1]

=
∑

ρ

ω−ρ (v)[e−�ρ p−s(ρ)ξ − 1] (E1)

=
∑

ρ

ωρ (v)[e−�ρ p−s(ρ)ξ+βδQρ (v) − 1]. (E2)

For the CMOS inverter with a single nonequilibrium
force �V , the generalized energy function ψ (q) can be
defined as ψ (q) = U (q) + q�V/2, taking Vss to be the
reference potential [9]. In the large size limit, we can
simplify the first law for a transition ρ at the trajectory
level as δQρ (v) = �ρ

∂
∂v

ψ̃ρ (v) − s(ρ)qe�V , where we have
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FIG. 9. (a) 2-state Markov jump process with 2 channels (with different kinetic activities). (b) Each channel, 1 (red) and 2 (blue), has jumps
due to a bath with an associated thermodynamic affinity, −βF and βF respectively. Hence, there is an average current flow in the steady state
of the system.

used ψ (q) = v−1
e ψ̃ (v) + o(v−2

e ).

Hξ (v, p) =
∑

ρ

ωρ (v)
[
e−�ρ p−s(ρ)ξ+β(�ρ

∂
∂v

ψ̃ρ (v)−s(ρ)qe�V ) − 1
]

= H−ξ−βqe�V

(
v,−p + β

∂

∂v
ψ̃ρ (v)

)
. (E3)

Hence, the Hamiltonian Hξ (v, p) is invariant under transfor-
mation

p → −p + β
∂

∂v
ψ̃ρ (v), ξ → −ξ − βqe�V. (E4)

Assuming we are at the stationary state, we can use the
time reversal transformation, τ → t − τ , along with the above
transformation to obtain the following:

1

t
log Z (ξ, t ) = 1

t
log

∫
Dv

∫
Dp

× exp

[
v−1

e

∫ t

0
dτ (−p.v̇ + Hξ (v, p))

]
Pst (v0) (E5)

= 1

t
log

∫
Dv

∫
Dp exp

[
v−1

e

∫ t

0
dτ

(
−p.v̇− v̇β

∂

∂v
ψ̃ (v)

+ H−ξ−βqe�V

(
v,−p + β

∂

∂v
ψ̃ρ (v)

))]
Pst (vT) (E6)

= 1

t
log Z (−ξ − βqe�V, t ) + o(t−1) (E7)

where in the second line, we applied the transformations and
the resulting subleading terms are the boundary terms due
to stationary distribution and energy function. Hence, taking
the long time limit, we obtain the back fluctuation symme-
try for the scaled cumulant generating function of current,
S(ξ ) = S(−ξ − βqe�V ). Such symmetry can be extended for
any initial distribution if we first take the long time limit and
then apply the macroscopic limit, to avoid issues in case of
ergodicity breaking.

APPENDIX F: 2 STATE MODEL WITH 2 CHANNELS

Consider a system with 2 degenerate states, x ≡ {a, b},
where the dynamics is governed by a Markov jump pro-
cess. Here, the jumps can occur through 2 different channels
{1 & 2}, with associated thermodynamic affinities βF and

−βF respectively [Fig. 9(b)]. This is motivated by the CMOS
inverter where the pMOS and nMOS are in contact with
reservoirs at potential Vdd and −Vdd. Each channel is modelled
as a bidirectional Poisson process, with associated rates λ±

1/2
proportional to their kinetic activity k1/2. The master equa-
tion describing the evolution of the probability vector P(x, t )
for the above model [Fig. 9(a)] is

dt P(x, t ) = L̂P(x, t ) (F1)

where the generator L̂ is given as

L̂ =
[−(λ+

1 + λ−
2 ) (λ−

1 + λ+
2 )

(λ+
1 + λ−

2 ) −(λ−
1 + λ+

2 )

]
. (F2)

Using the local detailed balance condition and choosing the
kinetic constants for the channels as k1 & k2 respectively, we
can define the rates (without loss of generality) as follows:

λ+
1 = k1, λ+

2 = k2, (F3)

λ−
1 = k1e−βF ; λ−

2 = k2e−βF ; (F4)

The stationary state for the above problem is given as

Pst (a) = (λ−
1 + λ+

2 )

λ+
1 + λ−

2 + λ−
1 + λ+

2

,

Pst (b) = (λ+
1 + λ−

2 )

λ+
1 + λ−

2 + λ−
1 + λ+

2

. (F5)

We are interested in understanding the long time current
statistics through a channel when we change the timescale
(activity) of each channel. Hence, we will compute the SCGF
for different relative kinetic activity of the channels, i.e., kr =
k2/k1. We also constrained the rates, such that the timescale
associated with the flux from the bath with higher affinity to
the lower one, τ0 = 1/

√
k1k2, be fixed. In the CMOS inverter,

this constraint is the result of the fact that the input volt-
age (Vin) exponentially activates & suppresses the conduction
through the transistors, i.e., λp/n ∝ e±Vin . The current statistics
through the channel 2 can be obtained using the titled genera-
tor (rescaled by τ0), L̂ξ

L̂ξ = 1√
k1k2

[ −(λ+
1 + λ−

2 ) (λ−
1 + λ+

2 eξ )
(λ+

1 + λ−
2 e−ξ ) −(λ−

1 + λ+
2 )

]
. (F6)
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In the long time limit, the current statistics is given by the eigenvalue with the largest real part of L̂ξ , which is the SCGF. The
exact expression for the SCGF S1(ξ ) is

S2(ξ ) = 1

2
√

kr
[−(1 + e−βF )(1 + kr ) +

√
2e−βF [(1 + kr )2 + (1 − kr )2 cosh (βF ) + 4kr cosh (βF + ξ )]] (F7)

In the such a limit, the current statistics though both the
channels are equal, and hence we can define S(ξ ) ≡ S1(ξ ) =
S2(ξ ). Notice that the fluctuation symmetry S(ξ ) = S(−ξ −
2βF ) is also satisfied. The mean and the scaled variance of
the current, in the units of τ0, are then given as

〈I〉 =
√

kr (1 − e−βF )

(1 + kr)
, (F8)

σ 2(I )t = 2e−2βF
√

kr (2kr + (1 + k2
r ) cosh (βF ))

(1 + eβF )(1 + kr )3
. (F9)

We now use perturbation methods to characterize the be-
havior of the current statistics in the different limits of log(kr ).
Since we are interested in the long time statistics, we need to
perturb the titled generator to compute the largest eigenvalue.
For example, in the case of kr = 1 + ε, where ε → 0, one can
do a perturbation analysis of the tilted generator,

L̂ξ = (L̂1 + L̂2ξ ) + ε

2
(L̂2ξ − L̂1), (F10)

where L̂1 = L1/k1, L̂2ξ = L2ξ /k2 are the scaled generators
corresponding to each channel. Using the traditional pertur-
bation tools, one can obtain the following series expansion for
the SCGF S(ξ ),

S(ξ ) = [−(1 + e−βF ) + e−ξ/2(1 + e−βF−ξ )]

+ (1 + e−2βF ) − eξ (1 + e−2βF−2ξ )

2eξ/2(1 + e−βF−ξ )
ε2 + O(ε3).

(F11)

We find that the first-order contribution to SCGF is 0, and
hence there will be a local extremum for all cumulants of the
current at kr = 1. The scaled variance expanded up to o(ε2) is

σ 2(I )t = 1 + e−βF

4
+ cosh βF − 3

16(1 + eβF )
(kr − 1)2 + O(kr − 1)3.

(F12)

From the above equation, one can notice that the scaled vari-
ance goes from being local maximum (cosh βF < 3) to a local
minimum (cosh βF > 3) at kr = 1.

Now let us look at the limit of | log(kr )| → ∞. In such a
limit, the current statistics of the system will be controlled by
the slower channel. Using this information, the tilted genera-
tor in the case of kr → 0 can be perturbed as follows:

L̂ξ = 1√
kr

(L̂1 + krL̂2ξ ) (F13)

where we have assigned the counting field to the slower
channel 2. Computing the series expansion for the S(ξ ) as

before, one can obtain the following perturbation series for
the variance as, kr → 0,

σ 2(I )t = 2 cosh βF

(1 + eβF )

√
kr + 2(2 − 3 cosh βF )

(1 + eβF )
k3/2

r + O
(
k5/2

r

)
(F14)

where the first term is the contribution to the current from
the slower channel 2 assuming the system has equilibrated
due to the faster channel 1. This implies that the zeroth order
term vanishes as the largest eigenvalue of L̂1 is 0, correspond-
ing to its equilibrium state. Here, we are effectively doing a
timescale separation, such that the population is controlled by
the faster channel and the current statistics is controlled by the
slower channel. Similarly, one can also obtain the perturbation
series for kr → ∞ limit, where we need to tilt the generator
of channel 1 (slower one).

In Fig. 10, we plot the mean, scaled variance, and
precision/cost of the current through a channel with the rel-
ative kinetic activity of the channels kr . In Fig. 10(a), we
see that the mean current is maximum when the timescales
of the channels match. From Eq. (F8), we can see that
〈I〉 ∝ [

√
kr/(1 + kr )], which is the equal to the conductivity

�(1/τ0) = d〈I〉/d (βF )|βF→0 of the system. The decaying
behavior of 〈I〉 with kr is due to the fact that the conduc-
tivity of the full system is controlled by the conductivity
(timescale) of the slower channel, which goes as e−| log(kr )|/2

for | log(kr )| � 1. In Fig. 10(b), we plot the scaled variance
in the long time limit for two cases: near equilibrium case
(βF = 1) and far from equilibrium (βF = 5). Near equi-
librium, the behavior is similar to that of the conductivity
�, which determines the equilibrium variance (as shown in
Sec. VI). Far from equilibrium βF � 1, we see that the
variance is maximized at finite log(kr ), as seen also in the
CMOS inverter. The combination of both these cumulants can
be captured by the precision by cost, which is known to be
bounded from above through the thermodynamic uncertainty
relation (TUR) [Eq. (53)]. We find that the precision per cost
of the current is maximum when both channels are equally
active [Fig. 10(c)]. For this system, the cost corresponds to
the total entropy production �t = 〈I〉(2βF )t , which is just the
average current 〈I〉 times the affinity of the system (2βF ). One
can also see that the performance of the bound deteriorates as
we go far from equilibrium, as the equality for TUR bound
is achieved as we converge to equilibrium. We see that the
key features of the CMOS inverter are all captured by this
simple 2-state model, and hence they are a result of just the
competition between the timescales of the 2 transistors, which
is controlled by Vin.
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FIG. 10. (a) The mean current through channel 1 in the long time limit. (b) The scaled variance of current through channel 1 in the long
time limit. There is an interesting phenomenology that the variance is not maximum when timescales match. Parameter: βF = 5. (c) The
precision of the current scaled by entropy production is maximum when the timescales match. The TUR also becomes tighter, as we decrease
the affinity F .
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