Faster and Cheaper Energy Demand Forecasting at
Scale

Fabien Bernier, Matthieu Jimenez, Maxime Cordy, Yves Le Traon
University of Luxembourg
first.last@uni.lu

Abstract

Energy demand forecasting is one of the most challenging tasks for grids operators.
Many approaches have been suggested over the years to tackle it. Yet, those still
remain too expensive to train in terms of both time and computational resources,
hindering their adoption as customers behaviors are continuously evolving.

We introduce Transplit, a new lightweight transformer-based model, which sig-
nificantly decreases this cost by exploiting the seasonality property and learning
typical days of power demand. We show that Transplit can be run efficiently on
CPU and is several hundred times faster than state-of-the-art predictive models,
while performing as well.

1 Introduction

Energy demand forecasting is of utmost importance for grid operators and energy producers to ensure
the stability of their service. Over the past decades, many approaches to provide the most accurate
forecasting have been suggested [[L0]. In the recent years, approaches based on transformers models
have started to be explored, but the cost to train them at scale, in a context where frequent retraining
is a norm rather than an exception, hinders their adoption [4} 3]. Indeed recent events (e.g. climate
change, remote working, energy prices) have highlighted that the way we consume electricity is in
constant evolution and models need to be regularly retrained to adapt to new contexts. This makes
previously suggested methods hardly applicable and therefore calls for cheaper and faster models.

Hence, we introduce Transplit, a transformer-based approach trained to recognize typical days
of consumption from various profiles, that requires less computation time and resources, while
conserving state-of-the-art performances. To validate our approach, we compare it against 4 related
state-of-the-art transformers based approaches on two different datasets of electricity consumption:
a publicly available one and another from our industrial partner CREOS (Luxembourg’s national
grid operator), that cannot be shared for privacy reasons. Overall, we observe that our approach
performances are in line with the best approaches, while being 380 to 940 times faster to train on a
single CPU, without relying on dedicated resources such as GPU, allowing it to run on significantly
cheaper platforms.

2 Forecasting Energy Demand

Load forecasting is essential for electricity grid management and security, with applications ranging
from peak prediction, incident prevention, to maintenance planning. It usually involves to forecast the
energy demand of a household or a neighborhood in kWh over a given period of time (from minutes
to months) based on historical data. Early on, Machine Learning approaches have been suggested [2],
but their application remained limited by the amount of available data and computing power, which
is not an issue anymore with the development of smartgrid and the recent increase in computing
capability. Among ML-based approaches, we distinguish two categories.

Has it Trained Yet? Workshop at the Conference on Neural Information Processing Systems (NeurIPS 2022).

convolution filters

input vector convolution filters
vk

‘\“ F1 output vector VK (same weights)

M N

A M
input signal X< fA\/f V F?
\

V
AN © | —

| | y
’ A 3 lement-wise
"""""""""" convolution NN | € A M
period size product WA YPARY 3 product ’f‘/\lv N/\\z\
d ' awa
WY \/N\. P R /

,,,,,,,,,,,,,,,, /v"\\ 5

F AWAY ‘/\/\\

period size

output signal
k

9ZIS

2 | A A
X /\/

Xewjos

u

(a) The Slice2Vec process. (b) The Vec2Slice process.

Figure 1: The SVS module is composed of two layers which share the same weights.

Approaches falling in the first one consist in training one model per household. This was usually
achieved by models such as random forests, SVMs, or linear regressions [11][3]], but more recently
neural networks based approaches started to be suggested. Neural Prophet (2021) [[15] for example
has been applied to electric load forecasting [[14] with interesting results, as well as Deep Probabilistic
Koopman models [9]. Although these approaches perform well, the number of models to train for a
grid rapidly becomes too expensive to deploy.

On the opposite, approaches from the second category rely on a single model which generalizes
different behaviors of the demand time series, discerns consumers’ profiles and prolong their demand
curve according to their shape and other factors. Those approaches are usually less costly, but also
less precise. LSTMs [3] have been widely used in this context [12]][18] and are still the subject of
recent load forecasting research [7]][[18]].

Yet, with the development of transformers [[L6], approaches such as LogTrans [8]], Reformer [6],
Informer [19] and lastly Autoformer [17] started to appear with better accuracy and efficiency.
These approaches all derived from the original work differ in their inner attention mechanism that is
modify to lower the computation complexity. Still, these models are not entirely applicable to energy
demand forecasting as they require high computation power and considerable time to train, which is
problematic when models need to be retrained often. There is therefore a need for a much lighter
model, requiring less computational power and time, with at least similar performances.

3 Proposed approach

In this regards, we introduce Transplit, a lightweight load forecasting model. To design it, we started
from an observation on a fundamental difference between most of language models and time series
models, which also impacts their efficiency.

3.1 Chunking time series

Whereas language models perform well by tokenizing input text [[13]] instead of splitting it character by
character, current time series models process every single input as a vector. As electrical consumption
data is seasonal, we propose to embed each season — in our case study, the time series is split into
days. The encoding and decoding parts are achieved by learning a vocabulary of daily consumptions.
Our solution then consists in reasoning in blocks of consumption days rather than single values.

3.1.1 Slice2Vec

As described in Figure Slice2Vec takes a sequence X € R, where L = m x T is the input
sequence length which is a multiple of a period T'. X is split into m periods of size T', that we denote

(Xk)ke{l,...,m,}
For each X%, we define a vector V* with the following convolution product:

Vie{l,...,n}, V¥ =X F 1)

!Concretely, if the period 7" is one day, then X" is the k*" day of the input.

| | | | :
| |
I\ Il | [}
] o o ;()
Al

Wi VA A

ndays as input

SVS
Slice2Vec

Embedding
(dense layer)

SVS
Vec2Slice

@

m days prediction

Figure 2: Model architecture of Transplit: (1) the input consumption is split into days; (2) Slice2Vec
converts each day into a vector and passes it to the transformer (3) that forecasts vectors (4) which
are converted to daily consumptions with Vec2Slice.

where n is the chosen size for the vectors, Vi’€ is the it" coefficient of V*, and F* is a convolution
filter of size 7. Since X* and F* have the same size, the convolution product is also equivalent to the
sum of their term-wise product.

3.1.2 Vec2Slice

In order to transform a vector V'* back in a T-sized slice of time series called Y, the filters F* are
weighted according to the coefficients of V%, then summed:

?

as illustrated in Figure The slices Y are concatenated to form the output Y. It is important to
underline that Vec2Slice is not the inverse function of Slice2Vec: Vec2Slice(Slice2Vec(X)) # X.

Vec2Slice shares the filters weights with Slice2Vec. The filters are therefore used twice: to recognize
the input and to match the shape of the expected output.

3.2 Transplit

From these two components, we propose Transplit, a new load forecasting model based on the
original transformer [16] with simple full attention mechanisms. The architecture of the model is
presented in figure 2]

4 Evaluation

4.1 Criteria

Transplit is designed to (req. 1) maintain state-of-the-art performances for load forecasting, while
(req. 2) being lighter and faster, in terms of number of parameters and training time.

To validate these two requirements, we compare Transplit with 4 state-of-the-art approaches: Auto-
former (2021) [17]], Informer (2021) [19], Reformer (2020) 6] and a vanilla Transformer architecture
(2017) [l16]]. Classical models such as LSTMs are disregarded as it has been shown that transformers
perform better for load forecasting [[17, 19} 16]. The assessment is done on two forecasting ranges: 7
days and 30 days. We use two datasets and two performance metrics, and also measure training time
taken by using a GPU and only using a CPU (without multiprocessing).

4.2 [Experimental setting

We evaluate those approaches on 2 datasets of household’s hourly consumption expressed in kWh.
The first one, denoted IND, is provided by the Luxembourg’s national grid operator and encompasses
the consumption of 6010 households over 2 years (2020-2021). The second one ECL[1]] is an open
dataset containing the consumption of 321 households over 3 years (2012-2014).

ECL IND
7 days 30 days 7 days 30 days
MSE MAE MSE MAE | MSE MAE MSE MAE
Transplit 0.584 0.178 0.688 0.189 | 0.177 0.189 0.202 0.205
Autoformer 0.577 0.153 0.736 0.174 | 0.185 0.210 0.204 0.217
Informer 268 0376 271 0387 | 0201 0.213 0.226 0.231
Reformer 1.28 0262 1.79 0313 | 0.172 0.185 0.205 0.207
Transformer 0.781 0.197 0918 0.213 | 0.177 0.191 0.203 0.207

Table 1: Error metrics for the ECL and IND datasets

Transplit Autoformer Informer Reformer Transformer
of parameters 183,616 10,505,217 11,306,497 5,782,529 10,518,529
ECL: train. with GPU 3m02s 4h16m 1h53m 4h13m 2h51m
IND: train. with GPU 21m13s 1d 12h15m 19h37m 20h56m 1d 9h00m

ECL: train. with CPU 2m47s 1d 18h01m 17h11m 1d 13h49m 1d 3h01Im
IND: train. with CPU 32m05s 20d 21h59m 8d 13h21m 18d 19h47m 13d 10h42m

Table 2: Number of trainable parameters and training time for each model, dataset and infrastructure
used, for a 720 — 720 values forecast.

We set ratios of training / validation / testing to respectively 70 / 10 / 20%, based on the timeline. We
feed the models with inputs of 720 values (30 days).

We configure all baseline approaches according to the recommendation from their authors for the
ECL dataset. Regarding Transplit, we set 7' = 24 hours and 512 filters for the SVS module and use 1
encoder and 1 decoder, with a vector size (d,oqde;) of 64.

While the training data is standardized, we reverse it at the output in the testing phase to reflect the
loss with the original scale in kWh. Further details are available on our repositor

4.3 Results

Results for both datasets are presented in Table[I] Although there is no significant improvement,
Transplit succeeds in keeping the performance of state-of-the art time series transformer models.

The key element of Transplit is its lightness: what is important to distinguish is the time taken to
train these models, shown in Table@} We observe that Transplit took 21 minutes to learn the 6010
consumers profiles of the IND dataset using a GPU, and is then 102 times faster than the Autoformer.

Another big advantage for Transplit is that using a CPU instead of a GPU doesn’t significantly slow
down the model’s computation time, as processing smaller sequences implies smaller operations, and
data still has to be cached in the GPU, which can take a lot of time in total. The non-necessity of
GPU to efficiently run the model allows it to be used on less expensive infrastructures, while being
faster and conserving good forecasting performances.

5 Conclusion

We have seen that Transplit remains in line with state-of-the-art time series deep learning models that
are able to generalize consumption profiles and predict a detailed state of the grid in terms of electric
load, while being several hundreds of times faster and lighter.

It opens up the possibility to run a deep-learning predictive model globally at a lower cost, as only
one CPU is enough to keep Transplit efficient, making it possible to run it locally. This finally offers
the possibility to update the model regularly with new data. Yet, Transplit might be ineffective to
predict non-seasonal time series, but could be extended to seasonal signals in general.

https://github.com/serval-uni-lu/transplit

https://github.com/serval-uni-lu/transplit

Acknowledgment

The authors would like to thank Yves Reckinger and Robert Graglia from Creos Luxembourg S.A.
for their support and valuable feedback.

References

[1] Electrical consumption load. https://archive.ics.uci.edu/ml/datasets/
ElectricitylLoadDiagrams20112014.

[2] Hesham Alfares and Nazeeruddin Mohammad. Electric load forecasting: Literature survey and
classification of methods. International Journal of Systems Science - 1JSySc, 33, 01 2002.

[3] Alfonso Gonzalez-Briones, Guillermo Herndndez, Juan M. Corchado, Sigeru Omatu, and
Mohd Saberi Mohamad. Machine learning models for electricity consumption forecasting: A
review. In ICCAIS’19, 2019.

[4] H.S. Hippert, C.E. Pedreira, and R.C. Souza. Neural networks for short-term load forecasting:
areview and evaluation. IEEE Transactions on Power Systems, 16(1), 2001.

[5] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8),
1997.

[6] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer, 2020.

[7] Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long- and short-term
temporal patterns with deep neural networks. In SIGIR ’18, 2018.

[8] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. In NIPS’19, volume 32, 2019.

[9] Alex Mallen, Henning Lange, and J. Nathan Kutz. Deep probabilistic koopman: Long-term
time-series forecasting under periodic uncertainties, 2021.

[10] Isaac kofi Nti, Adebayo Adekoya, Owusu Nyarko-Boateng, and Moses Teimah. Electricity load
forecasting: a systematic review. Journal of Electrical Systems and Information Technology, 7,
09 2020.

[11] A. Parrado-Duque, S. Kelouwani, K. Agbossou, S. Hosseini, N. Henao, and F. Amara. A
comparative analysis of machine learning methods for short-term load forecasting systems. In
SmartGridComm’21, 2021.

[12] Andrew Pulver and Siwei Lyu. Lstm with working memory. In IJCNN’17, 2017.

[13] Phillip Rust, Jonas Pfeiffer, Ivan Vulié, Sebastian Ruder, and Iryna Gurevych. How good is
your tokenizer? on the monolingual performance of multilingual language models. In ACL’21,
August 2021.

[14] Md Jamal Ahmed Shohan, Md Omar Faruque, and Simon Y. Foo. Forecasting of electric load
using a hybrid Istm-neural prophet model. Energies, 15(6), 2022.

[15] Oskar Triebe, Hansika Hewamalage, Polina Pilyugina, Nikolay Laptev, Christoph Bergmeir,
and Ram Rajagopal. NeuralProphet: Explainable Forecasting at Scale, 2021.

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS’17,2017.

[17] haixu wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting. In NIPS’21, 2021.

[18] Bailin Yang, Shulin Sun, Jianyuan Li, Xianxuan Lin, and Yan Tian. Traffic flow prediction
using Istm with feature enhancement. Neurocomputing, 332, 2019.

[19] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai
Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In
AAAI'21,2021.

https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014

	Introduction
	Forecasting Energy Demand
	Proposed approach
	Chunking time series
	Slice2Vec
	Vec2Slice

	Transplit

	Evaluation
	Criteria
	Experimental setting
	Results

	Conclusion

