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Abstract—This letter investigates the employment of vector-
perturbation (VP) precoding to convey simultaneously informa-
tion and energy in multiple-user multiple-input single-output
(MU-MISO) downlink channel. We show that the conventional
VP in addition to the information capacity benefits that provides
to linear channel inversion techniques, it enhances the harvested
energy at the receivers due to the extended symbol constellation.
To further boost harvesting performance, a modified VP tech-
nique (named VP-EH) is proposed that designs the VP integer
offsets such as to maximize the delivered power. The proposed
scheme incorporates an integer least square problem to find the
closest lattice point to a point which is given by a Rayleigh
quotient optimization problem. Finally, a convex combination
between conventional VP and VP-EH is proposed to achieve a
trade-off between maximizing information or energy. Theoretical
and simulations results validate that VP is a promising technique
to simultaneously convey information and energy in MU-MISO
systems.

Index Terms—Vector perturbation, wireless power transfer,
SWIPT, sphere encoder, average harvested power.

I. INTRODUCTION

S IMULTANEOUS wireless information and power transfer
(SWIPT) is a new communication paradigm that exploits

the dual use of radio-frequency (RF) signals to ensure com-
munication and energy sustainability in low power devices.
Over the last few years, it has attracted a tremendous attention
from the academia/industry and its potential benefits have been
studied from different perspectives (e.g., fundamental limits,
networking, prototyping etc) and communication scenarios
[1]. Specifically, a scenario of high practical interest is the
integration of SWIPT in multiuser multiple-input single-output
(MU-MISO) downlink systems, where a multiantenna access
point (AP) aims to transfer simultaneously information/energy
to single-antenna terminals. Existing solutions consider linear
precoding schemes that mainly employ channel inversion
at the transmitter side (e.g., zero-forcing (ZF)) [2] or non-
linear information theoretic approaches that refer to dirty-
paper coding (DPC) and suffer from a higher complexity [3].

A fundamental weakness of the linear channel inversion
techniques is that their associated MU-MISO capacity does
not scale as the number of antennas and users increase
simultaneously [4]. To overcome this limitation, non-linear
vector-perturbation (VP) techniques perturb the user data by
integer offsets and resolve capacity scaling through modulo
operation at the receivers [5]. VP is based on lattice theory
and its encoding process is equivalent to determine the closest
lattice point to a given point; the associated searching refers
to sphere encoding and thus the complexity decreases in
comparison to DPC [6], [7]. Despite its efficiency, VP has been
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overlooked in the literature mainly due to the higher complex-
ity in comparison to conventional channel inversion schemes.
However, recent advances in electronics/hardware significantly
reduce its implementation cost and VP becomes a promising
solution for the upcoming communication systems. On the
other hand, the perturbation of user data by integer offsets
increases the individual power of the transmitted symbols (i.e.,
the transmitted lattice point conveys more power than this one
in the original constellation) which in combination to the VP
power scaling factor enhance the total received power at the
terminals; this property is promising for SWIPT applications.

Motivated by the above observations, this is the first paper
that unlocks the potential benefits of VP in SWIPT MU-MISO
systems. We show that conventional VP due to the constella-
tion extension and the associated power scaling, increases the
harvested energy at the receivers and outperforms ZF in terms
of both information and energy transfer. In addition, a modified
VP scheme is proposed (named VP-EH), which designs the
integer offsets to further boost the energy harvesting (EH)
performance. Specifically, the proposed scheme adjusts the
VP offsets by determining the closest lattice point to the
solution of a Rayleigh quotient optimization problem aiming
to maximize EH. Theoretical results validate that VP-EH
outperforms conventional VP in terms of average EH while
exhibits asymptotically an exponential symbol error rate (SER)
decay. Finally, a SWIPT-based VP scheme is introduced which
elaborates a convex combination of the two extreme policies
(VP and VP-EH) to control the trade-off between maximizing
information transfer and/or maximizing EH.

II. SYSTEM MODEL

We consider an MU-MISO donwnlink setup consisting of
a single AP equipped with M antennas and K ≤ M single-
antenna users [5]. The received signals at the K users can
be represented by an equivalent multiple-input multiple-output
(MIMO) channel i.e.,

yyy = HHHxxx+nnn, (1)

where HHH ∈ CK×M is the channel matrix with elements
hk,m ∼ CN (0, 1) representing the flat frequency fading
channel between the m-th transmit antenna and the k-th user;
xxx is the transmit signal vector with ‖xxx‖2 = P , where P is the
transmitted power; nnn ∈ CK×1 ∼ CN (0, σ2IIIK) is the additive
white Gaussian noise (AWGN) vector. To generate the trans-
mitted signal, the AP employs channel inversion precoding
with FFF = HHHH(HHHHHHH)−1 (ZF) or FFF = HHHH(HHHHHHH +αIIIK)−1

(regularized ZF), where α ≥ 0 is a regularization parameter;
for simplicity, we consider conventional ZF in our analysis,
without loss of generality. In addition, according to the prin-
ciples of VP, the AP perturbs the user data uuu = [u1, · · · , uK ]T
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by an integer offset vector τlll, where τ ∈ R+ and lll ∈
ZK+jZK ; uk ∈ B, where B denotes the symbol constellation
set. The transmitted signal can be written as

xxx =

√
P

γ
FFF (uuu+ τlll), (2)

where γ = ‖FFF (uuu+ τlll)‖2 is the transmit power scaling factor.
By considering ZF precoding, the received signal vector is
given by

yyy = HHHxxx+nnn =

√
P

γ
(uuu+ τlll) +nnn. (3)

Although practical SWIPT architectures split/orthogonalize
the resources to convey information and energy (e.g., power
splitting, time-switching) [1], here (for simplicity), we assume
an ideal SWIPT architecture that allows to extract informa-
tion/energy from the same signal without losses1. For the
information transfer, the signal is multiplied by the factor√
γ/P to eliminate the effect of the transmit power scaling

and then is driven to a modulo τ operator to remove the
perturbation vector [4]. The received signal at the k-th receiver
is given by

yk =

√
γ

P
yk (mod τ) = uk + wk, (4)

where wk =
√
γ/Pnk is the equivalent AWGN component.

On the other hand, by using a linear energy harvesting model,
the total harvested power2 is given by

Q =
P‖uuu+ τlll‖2

γ
,
‖uuu′‖2

γ
. (5)

It is worth noting that the harvested power for the k-th user
is given by qk = |uk + τ lk|2/γ. From (5), it can be seen that
VP has a double effect on the energy harvesting; it affects the
denominator through the transmit scaling factor as well as the
nominator through the VP integer offset.

A. Conventional VP precoding

The conventional VP scheme designs the perturbation vector
to minimize the transmit power scaling factor i.e.,

lll0 = arg min
lll′∈ZK+jZK

γ

= arg min
lll′∈ZK+jZK

‖FFF (uuu+ τlll′)‖2

= arg min
lll′∈ZK+jZK

‖FFFuuu− (−FFFτlll′)‖2. (6)

The above formulation is an integer least square (ILS) problem
and is equivalent to finding the closest lattice point to a given
point. Although the ILS problem is NP-hard, sphere decoding3

(SD) is an efficient systematic search that can solve it in
polynomial time. It is worth noting that several algorithms
have been proposed in the literature to implement SD; in this

1The extension of the proposed scheme to practical SWIPT architectures
is a straightforward extension.

2We assume a normalized transmission time and therefore the notions of
energy and power become equivalent and can used interchangeably.

3Since the SD is applied at the transmitter side, the process is well-known
as sphere encoder in the literature [5], [7].

work, we adopt the well-known Schnorr-Euchner (SE) scheme
which is based on recursive tree searching without loss of
generality [7]. If zzz = FSE(L,yyy,AAA) denotes the SE algorithm
that solves the standard ILS problem i.e., arg minx ‖yyy −AAAzzz‖
with dimension size L, the conventional VP scheme in (6) can
be represented as [7]

lll0 = FSE(K,FFFuuu,−FFFτ). (7)

III. A SWIPT-BASED VP PRECODING SCHEME

The conventional VP scheme has been designed for in-
formation transfer and achieves a performance close to the
Shannon capacity in MU-MISO downlink systems [4], [5]. In
SWIPT systems, although it significantly affects/boosts EH at
the receivers (see (5)), this aspect is not taken into account in
the design. In this section, we fill this gap and we investigate
a VP scheme that controls the delivered power at the users.

In the first step of the SWIPT-based VP scheme, we relax
the assumption that the AP transmits perturbated user data
(belonging in B) and investigate a transmit vector uuuEH that
maximizes the total received power Q; for this case, the
transmitted signal becomes xxxEH =

√
PFFFuuuEH/‖FFFuuuEH‖. More

specifically, we introduce the following optimization problem

uuuEH = arg max
uuu,‖uuu‖=1

‖uuu‖2

uuuHFFFHFFFuuu

= arg max
uuu,‖uuu‖=1

uuuHuuu

uuuH(HHHHHHH)−1uuuH

= arg min
uuu,‖uuu‖=1

uuuH(HHHHHHH)−1uuuH

uuuHuuu
. (8)

Since the matrix HHHHHHH is Hermitian, the formulation in (8)
is a (standard) Rayleigh quotient [8]; if HHHHHHH = VVVΛΛΛVVV H

is the eigenvalue decomposition of the matrix HHHHHHH , where
VVV = [vvv1, . . . , vvvK ] ∈ CK×K , VVV VVV H = VVV HVVV = IIIK and
ΛΛΛ = diag(λ1, . . . , λK) with λ1 ≥ λ2 ≥ . . . λK ≥ 0,
the optimal solution of problem (8) is uuuEH = vvv1 (i.e., the
eigenvector corresponding to the largest eigenvalue4) which
gives Q = Pλ1 . We note that any scaled version of the
vector uuuEH i.e., cuuuEH with c ∈ C is a solution of (8) without
affecting the maximum value of the total harvested power Q.

Although the vector cuuuEH maximizes the total received
power at the receivers, it does not take into account the fact
that the user data uuu are predefined and take values in the
symbol constellation set B. By using the degree of freedom
of the offset perturbation vector τlll, we perturb the user data
in such a way that the perturbed data (lattice point) are as
close as possible to cuuuEH; it is worth noting that the scaling
factor c offers an extra degree of freedom to minimize the
distance between these two points. This searching problem
can be formulated as a modified ILS and is given by

lllEH = arg min
lll′∈ZK+jZK ,c∈C

‖uuu+ τlll′ − cuuuEH‖2. (9)

The problem in (9) can be solved in two steps. In the first
step, we compute c that minimizes (9) for a given perturbation

4The minimum eigenvalue of the matrix (HHHHHHH)−1 is the maximum
eigenvalue of the matrix HHHHHHH .
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vector lll′ and then we solve a standard ILS problem by
using the conventional SE algorithm. Specifically, by denoting
ξ(lll′) = minc∈C ‖uuu+τlll′−cuuuEH‖2, the problem in (9) is written
as

lllEH = arg min
lll′∈ZK+jZK

ξ(lll′). (10)

Since ξ(lll)′ is an unconstrained scalar optimization problem,
the derivative of the objective function is equal to zero in the
optimal point. Therefore, we have

∂‖uuu+ τlll′ − cuuuEH‖2

∂c
= 0⇒ c =

(uuu+ τlll′)HuuuEH

‖uuuEH‖2
. (11)

Plugging (11) into (10) and after some manipulations, we have

lllEH = arg min
lll′∈ZK+jZK

‖ZZZuuu− (−ZZZτ)lll′‖

= FSE (K,ZZZuuu,−ZZZτ) , (12)

where ZZZ = IIIK − uuuEHuuu
H
EH

‖uuuEH‖2 = IIIK − uuuEHuuu
H
EH with ‖uuuEH‖2 = 1.

The above modified VP scheme (called VP-EH) maximizes
the delivered power but does not take into account the perfor-
mance of information transfer in the design process; on the
other hand, conventional VP has the opposite focus. Inspired
by these two extreme policies that concentrate either on the
information or the energy transfer, we provide a new VP
scheme (called VP-SWIPT) that achieves a trade-off between
them. To control this trade-off, we introduce the convex
combination between the two extreme lattice operation points
i.e., δδδ = FFF (uuu+ τlll0)η +FFF (uuu+ τlllEH)(1− η), where η ∈ [0 1]
is a design parameter that represents a desired operation point
at the linear segment between the two extreme lattice points.
Then, for a specific value of η, we search for a lattice point that
is the closest to this operation point. Specifically, we consider
the following ILS problem which is solved through appropriate
parameterization of the SE algorithm

lllSW = arg min
lll′∈ZK+jZK

‖(FFFuuu− δδδ)− (−FFFτ)lll′‖2

= FSE (K,FFFuuu− δδδ,−FFFτ) . (13)

It is worth noting that the values η = 0 and η = 1 correspond
to the VP and the VP-EH scheme, respectively.

IV. PERFORMANCE ANALYSIS

In this section, we study theoretically the performance of
the proposed VP-based schemes.

A. Conventional VP precoding

We study the conventional VP in terms of average harvested
power. Due to the complexity associated with the integer
values of lll, we investigate a tractable approximation/bound.
Specifically, we have

EVP = E(qk) = E
(
|ũk|2

γ

)
≈ E(|ũk|2)

E(γ)
. (14)

Due to the symmetry between the real and the imaginary parts,
the nominator can be written as

E(|ũk|2) = E(|uk + τ l0,k|2) =
∑
u′∈B

∑
l′∈Z+jZK

P(u′, l′)|u′ + τ l′|2

= 2
∑

u′
r∈<(B)

l′r=1∑
l′r=−1

P(u′r, l
′
r)(u

′
r + τ l′r)

2, (15)

where the notation R(·) denotes the real part of a variable or
set, u′r = R(u′), l′r = R(l′), P(u′r, l

′
r) is the joint distribution

of the variables u′r (transmitted symbol - real part) and l′r
(associated integer perturbation offset - real part). We note
that that the perturbation offset takes values in a small set
i.e., {−1, 0, 1} and the joint distribution has an anti-symmetry
property; this observation has been discussed in [10] (through
numerical studies) and validated here as well (Section V, Table
I). On the other hand, by using the seminal result in [9], the
denominator is approximated by the following lower bound

E(γ) ≥ KΓ(K + 1)1/K

(K + 1)π
τ2 det(FFFHFFF )1/K

=
KΓ(K + 1)1/K

(K + 1)π
τ2 det(HHHHHHH)−1/K

=
KΓ(K + 1)1/K

(K + 1)π
τ2

K−1∏
m=0

Γ(M − 1
K −m)

Γ(M −m)
, (16)

where Γ(·) denotes the gamma function. In the following
proposition, we compare (qualitative comparison) the VP
scheme with the conventional ZF scheme in terms of SWIPT;
it is worth noting that the information transfer performance of
the VP scheme is well known in the literature and therefore
is not further discussed [5].

Proposition 1. The VP precoding scheme outperforms con-
ventional ZF in terms of both information and power transfer.

Proof. See Appendix A.

B. VP-EH precoding

The EH performance of the VP-EH scheme approximates
the performance of the ideal scenario where the AP transmits
energy signals i.e., uuuEH (without the constraint of B). By
following the discussion in Section III, the harvested power
at the k-th user is written as

EEH ≈
PE(λ1)

K
=
P

K

∫ ∞
0

(1− Fλ(x))dx, (17)

where Fλ(x) is the cumulative distribution function (CDF) of
the maximum eigenvalue of a complex Wishart matrix, written
as [11, Sec. III.A]

Fλ(x) = φdet(AAA(x)), (18)

where the elements of the matrix AAA(x) and the constant φ are
given respectively by

Ai,j(x) =

∫ x

0

tM+K−i−j exp(−t)dt

= γ(M +K − i− j + 1, x), (19)

and

φ = 1/

K∏
i=1

(M − i)!(K − i)!, (20)

where γ(s, x) =
∫ x
0
ts−1 exp(−t)dt in the lower incomplete

gamma function.
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Fig. 1. SER performance versus transmit power P ; M = K = 2, σ2 = 1,
η = 0.8, 4-QAM, τ = 4.

Then, we study the information transfer performance of the
VP-EH scheme. By using the approximation (uuu + τlllEH) ≈
cuuuEH, we have γ = ‖FFF (uuu + τlllEH)‖2 ≈ ‖cFFFuuuEH‖2 =
‖cFFFvvv1‖2 = |c|2vvvH1 VVVΛΛΛ−1VVV Hvvv1 = |c|2λK ; therefore, the
information transfer branch can be simplified to the following
equivalent channel model i.e.,

yk = uk + |c|
√
λK
P
nk, (21)

where λK is the minimum eigenvalue of the complex Wishart
matrix HHHHHHH . The equivalent channel in (21) can be used to
study the asymptotic behaviour of the VP-EH scheme as it is
stated in following proposition.

Proposition 2. The outage probability of the EH-based VP
scheme is proportional to exp(−KP ) (exponential decay).
Since the conventional VP exhibits a diversity gain equal to
M , the VP-EH scheme outperforms conventional VP asymp-
tomatically in both information and energy transfer.

Proof. See Appendix B

It is worth noting that the above behaviour is observed in the
high signal-to-noise ratio (SNR) regime; the outage probability
decays exponentially with a rate of decay 1 − exp(−K).
For the low and intermediate SNRs (which is the regime of
practical interest), the conventional VP outperforms VP-EH in
terms of outage probability.

C. VP-SWIPT precoding

The VP-SWIPT scheme is a convex combination of the VP
and VP-EH schemes and therefore provides a performance
between them. The performance depends on the parameter η
(in a non-linear way) as well as the density of the lattice
(which provides the closest transmitted vector uuu + τlllSW);
numerical results in the next section demonstrate the non-
linear relationship of the VP-SWIPT with the VP/VP-EH
schemes.

V. NUMERICAL RESULTS & DISCUSSION

Computer simulations are carried-out to evaluate the per-
formance of the proposed schemes. Our basic setting assumes
M = K = 2, 4-QAM with τ = 4, σ2 = 1, and η = 0.8.
Table I shows the joint probability distribution of perturbation
for the considered setup and validates our discussion in (15).
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Fig. 3. (a) SER versus η, (b) Average harvested power versus η; P = 25
dB; M = K = 2, σ2 = 1, 4-QAM, τ = 4.

Fig. 1 depicts the SER performance versus the transmit
power for the VP-based schemes considered; the ZF scheme
and the transmission of energy signals uuuEH are used as per-
formance benchmarks. The VP scheme provides the best SER
performance in the SNR regime of interest and ensures full
diversity in comparison to ZF scheme. On the other hand, the
VP-EH scheme follows an exponential decay and outperforms
ZF at high SNRs; the slopes of the curves validate the
asymptotic gain of the VP-EH scheme against the conventional
VP scheme (Proposition 2). It can be also shown that the the
VP-SWIPT scheme provides a performance between VP and
VP-EH schemes and approximates VP at high SNRs.

Fig. 2 compares the VP schemes in terms of average
harvested power. It can be observed that the VP-EH scheme
approximates the performance of the EH benchmark (trans-
mission of uuuEH) while providing a gain of 2.5 dB and 7 dB
in comparison to VP and ZF schemes, respectively. The VP-
SWIPT provides a performance between the two extreme poli-
cies, which is inline with the information transfer observations
in Fig. 1. Our curves validate also our theoretical derivations
in (14) and (17).

Fig. 3 focuses on the VP-SWIPT scheme and studies the
impact of the parameter η. It can be seen that VP-SWIPT
scheme provides an information/energy performance between
the two extreme policies (VP and VP-EH) by following a
non-linear dependency with η. Finally, Fig. 4 deals with the
EH performance for a setup with M = K = 4 and 16-
QAM; the observations follow the discussion of Fig. 2 but we
can observe a higher gain for the VP-EH mainly due to the
higher modulation (i.e., 4.5 dB against VP and 10 dB against
ZF). Our theoretical and simulation results validate that VP
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TABLE I
JOINT PROBABILITY DISTRIBUTION OF PERTURBATION

P(l0,k = x, uk = y); M = K = 2, 4-QAM.

uk

l0,k −1 0 +1

−1 0.0098 0.3972 0.0915

+1 0.0915 0.3972 0.0098

introduces a new degree of freedom to control information
and energy transfer and significantly outperforms conventional
linear counterparts; it is a powerful tool for SWIPT MU-MISO
systems.

APPENDIX

A. Proof of Proposition 1

We note that VP is equivalent to ZF for the case where
lll = 000K (with 000K denoting the zero vector). The VP scheme
is based on the minimization of the power scaling factor γ
and therefore outperforms ZF in terms of information transfer
(i.e., sum-capacity, diversity etc); this has been proven in
several previous works [4], [5]. As for the power transfer,
the VP scheme achieves a harvested power Q which is larger
or equal to the ZF scheme. Specifically, the denominator in
(5) follows the discussion of the information transfer i.e.,
γVP ≤ γZF; for the nominator, we focus on the case with
a non-zero perturbation vector (lk 6= 0). By assuming a
N -QAM modulation with maximum and minimum absolute
values |cmax| and |cmin| respectively, a minimum distance in
the constellation ∆ and τ = 2|cmax| + ∆ (similar to [5, eq.
9]), we have

|uk + τ lk| ≥ ||cmin| − τ | = |cmax|+
√
N

2
∆ > |cmax| (22)

⇒ ‖uuu+ τlll‖2 > ‖uuu‖2 ⇒ QVP =
‖uuu+ τlll‖2

γVP
> QZF =

‖uuu‖2

γZF
.

(23)

By considering all the possible values of lk ∈ Z + jZ, we
prove that E(QVP) ≥ E(QZF).

B. Proof of Proposition 2

We study the asymptotic performance of the EH-based VP
precoding scheme by using the outage probability metric.
Specifically, by using the equivalent channel in (21), the outage
probability can be written as

Pout = P(log2(1 + SNR) < r) = P
(

P

|c|2λK
< 2r − 1

)

= P
(
λK>

P

|c|2(2r − 1)

)
=φ det

(
BBB

(
P

|c|2(2r − 1)

))
,

(24)

where r is the requested spectral efficiency, the expression
in (24) is given in [11, Sec. III.A] and Bi,j(x) = Γ(M +
K− i− j+1, x) with Γ(s, x) =

∫∞
x
ts−1 exp(−t)dt denoting

the upper incomplete gamma function. Since Γ(s, x) = (s −
1)! exp(−x)

∑s−1
m=0

xm

m! [12, 8.354.4] for s ∈ Z, we can write

Pout = φ
∑
κ∈p

sgn(κ)

K∏
i=1

(M+K−i−κi)! exp

(
− P

|c|2(2r − 1)

)

×
M+K−i−κi∑

m=0

1

m!

(
P

|c|2(2r − 1)

)m
.
= φ exp(−KP )

∑
κ∈p

sgn(κ)

K∏
i=1

(M +K − i− κi)!

×
M+K−i−κi∑

m=0

Pm

m!
∝ exp(−KP ), (25)

where p = {κ = (κ1, . . . , κK)} is the set of K! permutations
of (1, . . . ,K), sgn(κ) is the signature of the permutation
κ, and the notation .

= denotes asymptotic expression when
P →∞. It is worth noting that |c|2 is a random variable; how-
ever, we can show that is bounded and therefore is considered
as a constant asymptotically i.e., |c| = |(uuu + τlllEH)HuuuEH| ≤
‖u + τlllEH‖‖uuuEH‖ = ‖uuu + τlllEH‖ ≤ ‖uuu‖ + τ‖lllEH‖ < ∞ since
elements in uuu, lllEH are finite.
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