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ABSTRACT: In this paper dynamic testing methods on a two span prestressed concrete bridge are exam-
ined to evaluate the ability on damage assessment on civil engineering structures in situ. The testing methods
are based on analysing modal parameters, i.e. the eigenfrequencies and the modeshapes, as well as the calcu-
lation of the corresponding flexibility matrix. Variations on them are shown for different damage states, real-
ised by continuously cutting tendons and loading the bridge with an experimental mass of 245t. Moreover, the
evaluation of nonlinear parameters as the amplitude dependency of the eigenfrequencies is also presented. For
the different damage states cracks are noticed at the different cutting sections. As nonlinear parameter and the
modeshapes do not retrieve clear indications on the damage, the changes of the eigenfrequencies and the
flexibility matrices demonstrate, in contrast, clearly the capability on damage assessment on the investigated

object.

1 INTRODUCTION

Today, the reliability of civil engineering structures,
especially bridges is a crucial issue regarding the
growing amount due to expanding mobility facili-
ties. Nowadays, as the cost for planning and con-
struction are continuously increasing, service guar-
antees and regular inspections get more and more
important to assure the serviceability of the engi-
neering structures. Furthermore, these inspections
encounter difficulties due to the sometimes complex
handing, associated with huge costs. Therefore, re-
search is conducted on several kinds of inspection
techniques to simplify and improve existing testing
procedures and to introduce new methods. Also the
University of Luxembourg studies on this topic, ex-
amining condition control of civil engineering struc-
tures using dynamic and static testing methods. Dy-
namic and static tests have the advantage that they
can easily be set up or implemented for condition
monitoring, but are not always easy to interpret, as
they are influenced by environmental impacts (Peet-
ers et al. 2001). Nevertheless, laboratory results
demonstrate the possible use of the introduced test-
ing methods, as they show the changes of the stiff-
ness of a structure by the retrieved investigated pa-
rameters (Mahowald et al. 2010).

In this paper the dynamic evaluation of an in situ
object is presented. The explored two-span
prestressed box girder bridge is continuously dam-
aged artificially in order to demonstrate the reliabil-

ity of dynamic and static testing methods. The pos-
sibility to conduct these tests is unique; as the bridge
is demolished afterwards, reason of changed urban
planning.

1.1 Description of the bridge

The investigated bridge (Fig. 1), which is called
Champangshiel, was built from 1965 to 1966 and
connects the centre of Luxembourg with the district
Kirchberg. It is a two span prestressed concrete
bridge with different span length (Fig. 2). The length
of the bridge is 102 m, divided into two fields of 65
m and 37 m in length. The superstructure of the
bridge is a prestressed box girder with 32 parabolic,
24 upper straight lined and 20 lower straight lined
subsequently injected tendons (Figs 3-4). The road-
bed has a width of 12.5 m and the box girder of 6.5
m with a height of 2.62 m, as illustrated on Figure 3.
The bridge is made of concrete B450 and the ten-
dons of Steel ASTM A.416 57T. The superstructure
is supported by two abutments and one column
made of reinforced concrete. At the west abutment
(abutment of the large field) is a mobile bearing
made of a steel roll, whereas on the ecast abutment,
the bearing is fixed. Between the superstructure and
the substructure over the pylon an elastomeric sup-
port is placed. In 1987, 56 external prestressed steel
cables were added into the box girder of the large
field due to additional safety (Figs 3-4) (Scherbaum
etal. 2011).
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Figure 2. Longitudinal Section of the bridge with the cutting
sections and the position of the experimental mass.
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Figure 3. Schematic cross section of the bridge with all the ten-
dons.
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Figure 4. Longitudinal section of the bridge showing only the

tendons.

2 TESTING PROCEDURES
2.1 Damage scenarios

In order to validate the presented testing methods for
damage assessment, tests are conducted for different
damage scenarios. Table 1 summarises the different
damage states (intact #0 to the most damaged #4) by
continuously cutting a defined number of tendons at
two different sections of the bridge, as illustrated on
Figure 2.

Figures 5a-5d illustrates schematically the differ-
ent damage scenarios for the selected sections.

These damage states are crucial to evaluate the sen-
sitivity of the test results according the severity of
introduced damage and formation of cracks. This is
achieved by firstly cutting a defined number of ten-
dons and secondly by loading the bridge with an ad-
ditional experimental mass of 245 t, consisting of 38
beam blanks from ArcelorMittal (Fig. 6). One has to
add, that for each damage state, except for #4, the
bridge is loaded with the experimental mass for
static and additional dynamic measurements (data
not shown).

Table 1. Description of the damage scenarios according to the
cutting sections shown on Figure 2.

Damage Cutting tendons Percentage cutting (100%
state equals all tendons in the
defined section)
x=29.25m x=63.5m
#0 Undamaged state 0% 0%
#1 20 straight lined ten- 33.7% 0%
dons in the lower part of
the bridge (x=29.25 m),
(Fig. 5a)
#2 8 straight lined tendons 33.7% 12.6%
in the upper part of the
bridge over the pylon
(x=63.5 m), (Fig. 5b)
#3 56 external tendons, 46.1% 24.2%
(Fig. 5¢)
#4 16 straight lined and 8 46.1% 62.12%
parabolic tendons in the
upper part of the bridge

(x=63.5 m), (Fig. 5d)
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Figure 5d. Damage state #4 for the cutting line at x=63.5 m.
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2.2 Crack formation

Due to the cutting tendons and loading with an ex-
perimental mass of 245 t, cracks are formed for the
different damage scenarios. Table 2 summarises the
appearance of the different cracks, essential for the
validation of the presented test results.

Table 2. Description of the appearance of cracks according the
damage states and loading.

Description Cracks

#1 Shear cracks due to the new anchorage
points of the prestressed cables by cutting
the lower 20 straight lined prestressed ca-
bles (black cracks, dashed line on Figure
7)

#1-loaded #1 + one crack in the girder at the north

side up to 1.5m from the bottom line (dark
grey cracks, solid line on Figure 7) and Im
on the south side at the cutting line of the
lower 20 straight lined tendons

#3 #1-L + growing of the existing cracks and
formation of new cracks at 0.45L (grey
cracks, dashed line on Figure 7) + small
crack between the holes on the upper side
with loading (Fig. 8).

#4 #3 + crack above the pylon (grey cracks,
solid line on Figure 7 and Figure 8)
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Figure 7. Schematic view of the crack appearance at the bottom
plate for the cutting line at x=29.25 m.
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Figure 8. Schematic view of the crack appearance at the top
plate for the cutting line at x=63.5 m.

2.3 Dynamic measurements

For the dynamic tests three different test procedures
with two different exciters are achieved for each
damage scenario. The use of two exciters allows
having a waste force and frequency excitation spec-
trum from 500 N to 10000 N and from 1 Hz to 20
Hz. This is used for the analysis on the excitation
force amplitude dependency of the eigenfrequencies,
which is a non-linear phenomenon. For this, differ-
ent force amplitudes are applied on the bridge: 0.5
kN, 1.25 kN and 2.5 kN for the electromagnetic
shaker, type TIRA and 1.25 kN, 2.5 kN, 5 kN and
10kN for the unbalanced mass exciter, called Netter
vibration system (data with 5 kN and 10 kN excite-
ment for the Netter excitation system is not shown).
The applied force excitations are swept sine func-
tions with a sweep rate of 0.02 Hz/s. For the elec-
tromagnetic shaker for an excitation force of 0.5 kN,
the swept sine runs from 1.25 to 20Hz, for 1.25kN
from 2 to 20Hz and for 2.5kN from 3 to 20Hz, due
to the limits of the electromagnetic shakers for high
excitation forces. For the Netter vibration system
different physical limits exist; here the swept sine
runs for an excitation force of 1.25 kN from 1 to 5
Hz, for 2.5 kN from 1 to 20Hz, for 5 kN from 2.5 to
20 Hz and for 10 kN from 4 to 20Hz. Moreover, an
impact test is done using a 12 Ib modal hammer of
type Dytran 5803A ICP for evaluating statistical
analysis by the University of Li¢ge (Nguyen et al.
2012). The 22 accelerometers of type PCB 393B04
are put on both sides of the bridge in a coarse grid,
as shown on Figure 9 in black. The sample rate for
the force transducers of type HBM U10M and accel-
erometers is 1000Hz. The electromagnetic shaker
and the Netter vibration system is put on the bridge
as illustrated on Figure 9. For the dense measure-
ment grid, the bridge is excited only by the electro-
magnetic shaker with a force of 0.5 kN due to time
limits and to have the widest range of the frequency
spectrum. For this grid, measurements are conducted



by placing the transducers on each position in white
and black on Figure 9. They are shifted five times of
about 2 m (5*20=100 positions) to capture the
movements at all presented positions, needed to ob-
tain proper values to calculate the modeshapes. For
evaluating and visualisation of these, each trans-
ducer position is numbered, beginning in the west
with 1 to 50 in the east. In this paper, exclusively the
Northern line is discussed.

Furthermore, only one dynamic measurement se-
ries per day is achieved due to time reasons, re-
peated for each damage scenario presented on Table
1.
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Figure 9. Experimental setup for the dynamic testing methods:
Black circles: the position of the accelerometers for the coarse
measurement grid. White circles: the additional positions for
the dense measurement grid.

For the evaluation of modal parameters, Mescope
Software is used operating the Global Polynomial
Method to yield the presented modal results.

3 TEST RESULTS

Below the test results for the different measurement
series are presented with first the eigenfrequencies,
followed by the evaluation of the modeshapes as
well as the corresponding calculations of the flexi-
bility matrices and their changes for the different
damage states. For this, one has to add that only the
predominant modes are presented, shown on Figure
10, illustrating the frequency response functions for
the intact state. These eigenfrequencies are also
found for all other damage states and are named
henceforth B1, T2, B3, B4, T4, T5 and T6, where B
stands for bending and T for torsional modes.
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Figure 10. Frequency response functions of the intact state for
the dense measurement grid.
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3.1 Eigenfrequencies

As examples of the changes of the eigenfrequencies
only the first bending mode, named B1, the second
torsional mode (T2) and the fourth bending mode
(B4) are presented in the following. Regarding the
first eigenfrequency on Figure 11, one recognises a
drastic decrease according the damage states. Here
for damage state #1 a diminishing of 3% is identified
compared to the intact state #0. The reason is the ap-
pearance of a first crack in the bottom plate of the
bridge yielding a loss in stiffness. Further, when cut-
ting 8 of the above tendons, i.e. 12.6% of the ten-
dons in the top plate for this damage state #2 (Fig.
5b), no crucial additional cracks are observed. Af-
terwards, for damage state #3 and #4, when cutting
the external and 40% of the above tendons (Figs 5Sc,
d) existing crack expand and more cracks occurred
(Fig. 7), marked by a decrease of the eigenfrequency
by 10% and up to 18% for damage state #3 and #4
respectively, presented on Figure 12.
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Figure 11. First eigenfrequencies (B1) for the different damage
states and different excitation force amplitudes.
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Figure 12. Percentage decrease of the first eigenfrequencies
(B1) for the different damage states and excitation force ampli-
tudes compared to the intact state #0.

In contrast, the changes of the eigenfrequencies of
the second torsional mode T2 do not correlate with
the damage, illustrated on Figures 13-14. Here no in-
formation according the severity on the damage can
be made and the increase in scenario #2 is not un-
derstood.

On the contrary, the eigenfrequencies of the fourth
bending mode (B4) on Figure 15 show also a sig-
nificantly decrease due to damage. Here, for the
evaluation of the percentage decrease on Figure 16
from damage state #1 to the intact state #0, varia-
tions up to 2% are recognised, increased to 6% for
damage state #3 and to 8% for damage state #4.
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Figure 13. Second eigenfrequencies T2 for the different dam-
age states and excitation force amplitudes.
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Figure 14. Percentage decrease of the second eigenfrequencies
(T2) for the different damage states and excitation force ampli-
tudes compared to the intact state #0.
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Figure 15. Fourth eigenfrequencies B4 for the different damage
states and excitation force amplitudes.
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Figure 16. Percentage decrease of the fourth eigenfrequencies
(B4) for the different damage states and excitation force ampli-
tudes compared to the intact state #0.

One can say that for these examples of the eigen-
frequencies and crack formation, damage identifica-
tion is possible regarding the bending modes B1 and
B4, as they show clear variations according the
damage in the bridge, and, therefore, reliable for
damage identification. Nevertheless, regarding the

second torsional mode T2, no significant informa-
tion can be retrieved, making damage assessment us-
ing only the eigenfrequencies ambitious.

3.2 Amplitude dependency of the eigenfrequencies

Now, regarding the excitation force amplitude de-
pendency of the eigenfrequencies for the presented
examples, no pattern according the severity of the
damage can be recognised, shown on Figure 17. For
the first eigenfrequency B1, the amplitude depend-
ency is around -1.5% for the intact state, meaning
from an excitation force of 2.5 kN for the Netter ex-
citement to 0.5 kN for the shaker excitement, in-
creased to 1% for damage state #2 and varying from
-0.5% to 0.5% for damage state #3 and #4. Neither
for the second torsional mode T2 and fourth bending
mode B4 an accurate pattern is noticed, making the
amplitude dependency in this case not reliable for
indications on damage.
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Figure 17. Excitation force amplitude dependency of the first
eigenfrequency for Netter excitement of 2.5 kN to 0.5 kN from
the shaker excitement.

3.3 Modeshapes

The modeshapes of all the evaluated eigenmodes
shown on Figure 10 are presented in this section.
They are, as already introduced in the experimental
part, captured by a dense measurement grid, spaced
at 2 m apart from each transducer position (Fig. 9).
In order to compare each modeshapes from all the
damage states to the intact states, each mode is nor-
malised to Unit Modal Mass (UMM). On Figure 18
the modeshape for the first eigenmode B1 is dis-
played. For this it is difficult to retrieve any informa-
tion out of the presented curves. The changes due to
damage are very small and hard to identify.

In contrast, looking at the second torsional mode
T2 on Figure 19, big variations can be recognised,
but cannot be associated to damage, as the ampli-
tudes are either higher or lower the curve for the in-
tact state. In addition, for the third bending mode B3
on Figure 20, the same behaviour is revealed. Nei-
ther here, especially between transducer positions 20
to 45, is a logical order of the curves recognised,




concluding that no unique pattern can be identified
for these two modes.
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Figure 18. UMM-normalised modeshape of the first bending
mode (B1) for the unloaded bridge.
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Figure 19. UMM-normalised modeshape of the second tor-
sional (T2) mode for the unloaded bridge.

g ¥ 10'3 hode B3

—— M =683Hz | A

— # =6.82Hz

——#FB655Hz |
#3 +=6.78Hz
# =6.7Hz

5 10 15 20 25 30 35 40 45 50
Transducer position

Figure 20. UMM-normalised modeshape of the third bending
mode (B3) for the unloaded bridge.

However, for the fourth bending mode B4 on
Figure 21, the fourth torsional mode T4 on Figure 22
and the fifth torsional mode T5 on Figure 23 varia-

tions to the intact state are clearly identifiable. Here,
around transducer position 7 to 15 for B4 for exam-
ple, differences according the increased damage are
noticed. As well for the fourth torsional mode T4 the
same behaviour can be discovered. For the fifth tor-
sional mode TS5, the changes are even more exposed;
concluding that damage identification for these
modes is possible.
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Figure 21. UMM-normalised modeshape of the fourth bending
(B4) mode for the unloaded bridge.
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Figure 22. UMM-normalised modeshape of the fourth torsional
mode (T4) for the unloaded bridge.

Finally, for the sixth torsional mode (T6), as for
the first bending mode B1, no considerable changes
due to damage are recognised. The mode seems not
be as much affected by the changed stiffness as the
other ones.

Concluding, one can state that some modes, for
example the fourth bending mode B4, as already ob-
served for the eigenfrequencies are more affected by
a changed structure than other modes, like the sec-
ond torsional modes T2, making damage identifica-
tion possible but difficult. However, even regarding
the modes on which damage identification seems
possible, the issue on the localisation of damage re-
mains unsolved.
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sidering only one mode (solid lines). For better visu-
alisation, the sum of all the 7 modes is presented
also on the graphs (dashed line). Here, one can rec-
ognise that the flexibility matrix is determined al-
ready by the first two modes, i.e. the first bending
mode B1 and the second torsional mode T2. This is
due to the fact that according Equation 1 the UMM-
modeshapes are divided by the square of the angular
frequencies, which increase considerably for higher
modes (from 1.8Hz to 18Hz) and, therefore, the im-
pact of the higher modes diminishes in the calcula-
tion of the flexibility matrix.
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Figure 23. UMM-normalised modeshape of the fifth torsional
mode (T5) for the unloaded bridge.
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Figure 24. UMM-normalised modeshape of the sixth torsional
mode (T6) for the unloaded bridge.

3.4 Flexibility matrix

Since a set of modal parameters is yield out of the
measurement data, i.e. normalised modeshapes and
eigenfrequencies, the flexibility matrix can be calcu-
lated with the revealed parameters for each damage
state. This matrix represents the inverse stiffness
matrix and is, therefore, an indication of the loss of
the stiffness due to cracks. It is calculated according
Equation 1, retrieved out of the UMM-normalised
modeshapes ® and the angular eigenfrequencies
w=2T1Tf, where k defines the mode and N the total
number of modes considered in the calculation of
the flexibility matrix. Further, as already emphasised
in the previous sections, also here for the calculation
of the flexibility matrix the 7 predominant modes are
utilised (N=7):

(K™ = Zal@d - (@ = [F] (1)

Figures 25-26 illustrate the diagonal elements of
the flexibility matrices for the intact state #0 and
damage state #4 in the modal decomposition mode,
meaning that the flexibility matrix is calculated con-
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Figure 25. Modal decomposition of each of the seven modes
and of their sum of the diagonal elements of the flexibility ma-
trix for the intact state.
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Figure 26. Modal decomposition of each of the seven modes
and of their sum of the diagonal elements of the flexibility ma-
trix for damage state #4.

To compare the different damage states the flexi-
bility matrices (only the sum for all 7 modes) of all
the scenarios are presented on Figure 27. Variations
according the damage can clearly be seen. Here
around transducer position 15, where the highest
damage occurred (cracks on Figure 7) the biggest
changes are noticed. Damage state #4 shows the
highest value concluding to the biggest loss in stift-



ness, followed by damage state #3 and so forth.
Hence, here the right order according the different
damage states is identified and, moreover, localisa-
tion of damage becomes feasible.
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Figure 27. Diagonal elements of the flexibility matrices for the
unloaded bridge.

3.5 Flexibility difference

Furthermore, for a better visualisation of the
variations of the flexibility matrices, the following
Figure 28 shows the differences of the diagonal ele-
ments of the flexibility matrices according Equation
2, in which dy marks the diagonal elements in each
flexibility matrix for the i-th damage state:

6 = |dy; — dyol (2)

This is a similar technique used in literature (Pandey
et al. 1995, Lenzen 2009) for better localisation of
damage and presenting the changes of the flexibility
matrices. Also here, one can see clear variations
from one damage scenario to the other, as already
observed on Figure 27. With increasing damage,
compared to the intact state, the changes get evident,
making the evaluation of the flexibility matrices a
trustful indicator on the loss of stiffness, i.e. the
formation of cracks.
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Figure 28. Difference of the diagonal elements 6 of the flexibil-
ity matrices for all damage states compared to the intact state
#0.

4 CONCLUSION

The investigation of the dynamic tests reveals a
large amount of information on the different exam-
ined parameters. Here nonlinear, i.e. the excitation
force amplitude dependency, as well as linear pa-
rameters, i.e. the evaluation of the eigenfrequencies
and the modeshapes, are analysed. Regarding
nonlinear parameters, no exact statement on the
condition can be made, since the amplitude depend-
ency does not show any correlation to the damage.

In contrast, for the linear values, the most influ-
enced parameters are the eigenfrequencies and
modeshapes for specific eigenmodes. Regarding the
eigenfrequencies, clear decreases are recognisable
and are conform to the damage introduced into the
bridge. These variations on the eigenfrequencies
identify the changes on the structure, but do not af-
ford localisation considering only this parameter.
Therefore, the analysis of the modeshapes is evalu-
ated for this issue. However, the variations of these
do not retrieve any trustful results on the location of
damage. Changes are evident, but the localisation
regarding the identified modes is difficult. Thus, the
flexibility matrices, calculated from the identified
modal parameters, are analysed to discover the loss
in stiffness. They yield accurate results indicating
and even, in contrast to the eigenfrequencies and
modeshapes, localising damage in the bridge. More-
over, the differences of the diagonal elements of the
flexibility matrices show significantly the location of
damage, concluding that this investigated parameter
is evident according damage and therefore adequate
for further research on damage assessment on civil
engineering structures in situ.
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