
1 INTRODUCTION 

Today, the reliability of civil engineering structures, 
especially bridges is a crucial issue regarding the 
growing amount due to expanding mobility facili-
ties. Nowadays, as the cost for planning and con-
struction are continuously increasing, service guar-
antees and regular inspections get more and more 
important to assure the serviceability of the engi-
neering structures. Furthermore, these inspections 
encounter difficulties due to the sometimes complex 
handing, associated with huge costs. Therefore, re-
search is conducted on several kinds of inspection 
techniques to simplify and improve existing testing 
procedures and to introduce new methods. Also the 
University of Luxembourg studies on this topic, ex-
amining condition control of civil engineering struc-
tures using dynamic and static testing methods. Dy-
namic and static tests have the advantage that they 
can easily be set up or implemented for condition 
monitoring, but are not always easy to interpret, as 
they are influenced by environmental impacts (Peet-
ers et al. 2001). Nevertheless, laboratory results 
demonstrate the possible use of the introduced test-
ing methods, as they show the changes of the stiff-
ness of a structure by the retrieved investigated pa-
rameters (Mahowald et al. 2010). 

In this paper the dynamic evaluation of an in situ 
object is presented. The explored two-span 
prestressed box girder bridge is continuously dam-
aged artificially in order to demonstrate the reliabil-

ity of dynamic and static testing methods. The pos-
sibility to conduct these tests is unique; as the bridge 
is demolished afterwards, reason of changed urban 
planning. 

1.1 Description of the bridge 
The investigated bridge (Fig. 1), which is called 
Champangshiel, was built from 1965 to 1966 and 
connects the centre of Luxembourg with the district 
Kirchberg. It is a two span prestressed concrete 
bridge with different span length (Fig. 2). The length 
of the bridge is 102 m, divided into two fields of 65 
m and 37 m in length. The superstructure of the 
bridge is a prestressed box girder with 32 parabolic, 
24 upper straight lined and 20 lower straight lined 
subsequently injected tendons (Figs 3-4). The road-
bed has a width of 12.5 m and the box girder of 6.5 
m with a height of 2.62 m, as illustrated on Figure 3. 
The bridge is made of concrete B450 and the ten-
dons of Steel ASTM A.416 57T. The superstructure 
is supported by two abutments and one column 
made of reinforced concrete. At the west abutment 
(abutment of the large field) is a mobile bearing 
made of a steel roll, whereas on the east abutment, 
the bearing is fixed. Between the superstructure and 
the substructure over the pylon an elastomeric sup-
port is placed. In 1987, 56 external prestressed steel 
cables were added into the box girder of the large 
field due to additional safety (Figs 3-4) (Scherbaum 
et al. 2011). 
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Figure 1. Picture of the bridge in winter 2010. 
 

 
Figure 2. Longitudinal Section of the bridge with the cutting 
sections and the position of the experimental mass. 
 

 
Figure 3. Schematic cross section of the bridge with all the ten-
dons. 
 

 
Figure 4. Longitudinal section of the bridge showing only the 
tendons. 

2 TESTING PROCEDURES 

2.1 Damage scenarios 
In order to validate the presented testing methods for 
damage assessment, tests are conducted for different 
damage scenarios. Table 1 summarises the different 
damage states (intact #0 to the most damaged #4) by 
continuously cutting a defined number of tendons at 
two different sections of the bridge, as illustrated on 
Figure 2. 

Figures 5a-5d illustrates schematically the differ-
ent damage scenarios for the selected sections. 

These damage states are crucial to evaluate the sen-
sitivity of the test results according the severity of 
introduced damage and formation of cracks. This is 
achieved by firstly cutting a defined number of ten-
dons and secondly by loading the bridge with an ad-
ditional experimental mass of 245 t, consisting of 38 
beam blanks from ArcelorMittal (Fig. 6). One has to 
add, that for each damage state, except for #4, the 
bridge is loaded with the experimental mass for 
static and additional dynamic measurements (data 
not shown). 

 
Table 1. Description of the damage scenarios according to the 
cutting sections shown on Figure 2. 
Damage 
state 

Cutting tendons Percentage cutting (100% 
equals all tendons in the 
defined section)

x=29.25 m x=63.5 m
# 0 Undamaged state 0% 0%
# 1 20 straight lined ten-

dons in the lower part of 
the bridge (x=29.25 m), 
(Fig. 5a)

33.7% 0%

# 2 8 straight lined tendons 
in the upper part of the 
bridge over the pylon 
(x=63.5 m), (Fig. 5b) 

33.7% 12.6%

# 3 56 external tendons, 
(Fig. 5c)

46.1% 24.2%

# 4 16 straight lined and 8 
parabolic tendons in the 
upper part of the bridge 
(x=63.5 m), (Fig. 5d) 

46.1% 62.12%

 

 
Figure 5a. Damage state #1 for the cutting line at x=29.25 m. 
 

  
Figure 5b. Damage state #2 for the cutting line at x=63.5 m. 
 

 
Figure 5c. Damage state #3 for the cutting line at x=63.5 m. 
 

 
Figure 5d. Damage state #4 for the cutting line at x=63.5 m. 



 
Figure 6. Experimental mass, after loading with 31 of 38 beam 
blanks. 

2.2 Crack formation 
Due to the cutting tendons and loading with an ex-
perimental mass of 245 t, cracks are formed for the 
different damage scenarios. Table 2 summarises the 
appearance of the different cracks, essential for the 
validation of the presented test results. 

 
Table 2. Description of the appearance of cracks according the 
damage states and loading. 

Description Cracks 
#1 Shear cracks due to the new anchorage 

points of the prestressed cables by cutting 
the lower 20 straight lined prestressed ca-
bles (black cracks, dashed line on Figure 
7) 

#1-loaded  #1 + one crack in the girder at the north 
side up to 1.5m from the bottom line (dark 
grey cracks, solid line on Figure 7) and 1m 
on the south side at the cutting line of the 
lower 20 straight lined tendons 

#3 #1-L + growing of the existing cracks and 
formation of new cracks at 0.45L (grey 
cracks, dashed line on Figure 7) + small 
crack between the holes on the upper side 
with loading (Fig. 8).  

#4 #3 + crack above the pylon (grey cracks, 
solid line on Figure 7 and Figure 8) 
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Figure 7. Schematic view of the crack appearance at the bottom 
plate for the cutting line at x=29.25 m. 
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Figure 8. Schematic view of the crack appearance at the top 
plate for the cutting line at x=63.5 m. 

2.3 Dynamic measurements 

For the dynamic tests three different test procedures 
with two different exciters are achieved for each 
damage scenario. The use of two exciters allows 
having a waste force and frequency excitation spec-
trum from 500 N to 10000 N and from 1 Hz to 20 
Hz. This is used for the analysis on the excitation 
force amplitude dependency of the eigenfrequencies, 
which is a non-linear phenomenon. For this, differ-
ent force amplitudes are applied on the bridge: 0.5 
kN, 1.25 kN and 2.5 kN for the electromagnetic 
shaker, type TIRA and 1.25 kN, 2.5 kN, 5 kN and 
10kN for the unbalanced mass exciter, called Netter 
vibration system (data with 5 kN and 10 kN excite-
ment for the Netter excitation system is not shown). 
The applied force excitations are swept sine func-
tions with a sweep rate of 0.02 Hz/s. For the elec-
tromagnetic shaker for an excitation force of 0.5 kN, 
the swept sine runs from 1.25 to 20Hz, for 1.25kN 
from 2 to 20Hz and for 2.5kN from 3 to 20Hz, due 
to the limits of the electromagnetic shakers for high 
excitation forces. For the Netter vibration system 
different physical limits exist; here the swept sine 
runs for an excitation force of 1.25 kN from 1 to 5 
Hz, for 2.5 kN from 1 to 20Hz, for 5 kN from 2.5 to 
20 Hz and for 10 kN from 4 to 20Hz. Moreover, an 
impact test is done using a 12 lb modal hammer of 
type Dytran 5803A ICP for evaluating statistical 
analysis by the University of Liège (Nguyen et al. 
2012). The 22 accelerometers of type PCB 393B04 
are put on both sides of the bridge in a coarse grid, 
as shown on Figure 9 in black. The sample rate for 
the force transducers of type HBM U10M and accel-
erometers is 1000Hz. The electromagnetic shaker 
and the Netter vibration system is put on the bridge 
as illustrated on Figure 9. For the dense measure-
ment grid, the bridge is excited only by the electro-
magnetic shaker with a force of 0.5 kN due to time 
limits and to have the widest range of the frequency 
spectrum. For this grid, measurements are conducted 



by placing the transducers on each position in white 
and black on Figure 9. They are shifted five times of 
about 2 m (5*20=100 positions) to capture the 
movements at all presented positions, needed to ob-
tain proper values to calculate the modeshapes. For 
evaluating and visualisation of these, each trans-
ducer position is numbered, beginning in the west 
with 1 to 50 in the east. In this paper, exclusively the 
Northern line is discussed. 

Furthermore, only one dynamic measurement se-
ries per day is achieved due to time reasons, re-
peated for each damage scenario presented on Table 
1. 

 

 
Figure 9. Experimental setup for the dynamic testing methods: 
Black circles: the position of the accelerometers for the coarse 
measurement grid. White circles: the additional positions for 
the dense measurement grid. 
 

For the evaluation of modal parameters, Mescope 
Software is used operating the Global Polynomial 
Method to yield the presented modal results. 

3 TEST RESULTS 

Below the test results for the different measurement 
series are presented with first the eigenfrequencies, 
followed by the evaluation of the modeshapes as 
well as the corresponding calculations of the flexi-
bility matrices and their changes for the different 
damage states. For this, one has to add that only the 
predominant modes are presented, shown on Figure 
10, illustrating the frequency response functions for 
the intact state. These eigenfrequencies are also 
found for all other damage states and are named 
henceforth B1, T2, B3, B4, T4, T5 and T6, where B 
stands for bending and T for torsional modes. 

 

 
Figure 10. Frequency response functions of the intact state for 
the dense measurement grid. 

3.1 Eigenfrequencies 
As examples of the changes of the eigenfrequencies 
only the first bending mode, named B1, the second 
torsional mode (T2) and the fourth bending mode 
(B4) are presented in the following. Regarding the 
first eigenfrequency on Figure 11, one recognises a 
drastic decrease according the damage states. Here 
for damage state #1 a diminishing of 3% is identified 
compared to the intact state #0. The reason is the ap-
pearance of a first crack in the bottom plate of the 
bridge yielding a loss in stiffness. Further, when cut-
ting 8 of the above tendons, i.e. 12.6% of the ten-
dons in the top plate for this damage state #2 (Fig. 
5b), no crucial additional cracks are observed. Af-
terwards, for damage state #3 and #4, when cutting 
the external and 40% of the above tendons (Figs 5c, 
d) existing crack expand and more cracks occurred 
(Fig. 7), marked by a decrease of the eigenfrequency 
by 10% and up to 18% for damage state #3 and #4 
respectively, presented on Figure 12. 

 

 
Figure 11. First eigenfrequencies (B1) for the different damage 
states and different excitation force amplitudes. 
 

 
Figure 12. Percentage decrease of the first eigenfrequencies 
(B1) for the different damage states and excitation force ampli-
tudes compared to the intact state #0. 
 
In contrast, the changes of the eigenfrequencies of 
the second torsional mode T2 do not correlate with 
the damage, illustrated on Figures 13-14. Here no in-
formation according the severity on the damage can 
be made and the increase in scenario #2 is not un-
derstood. 

On the contrary, the eigenfrequencies of the fourth 
bending mode (B4) on Figure 15 show also a sig-
nificantly decrease due to damage. Here, for the 
evaluation of the percentage decrease on Figure 16 
from damage state #1 to the intact state #0, varia-
tions up to 2% are recognised, increased to 6% for 
damage state #3 and to 8% for damage state #4. 
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Figure 13. Second eigenfrequencies T2 for the different dam-
age states and excitation force amplitudes. 
 

 
Figure 14. Percentage decrease of the second eigenfrequencies 
(T2) for the different damage states and excitation force ampli-
tudes compared to the intact state #0. 

 

 
Figure 15. Fourth eigenfrequencies B4 for the different damage 
states and excitation force amplitudes. 
 

 
Figure 16. Percentage decrease of the fourth eigenfrequencies 
(B4) for the different damage states and excitation force ampli-
tudes compared to the intact state #0. 
 

One can say that for these examples of the eigen-
frequencies and crack formation, damage identifica-
tion is possible regarding the bending modes B1 and 
B4, as they show clear variations according the 
damage in the bridge, and, therefore, reliable for 
damage identification. Nevertheless, regarding the 

second torsional mode T2, no significant informa-
tion can be retrieved, making damage assessment us-
ing only the eigenfrequencies ambitious. 

3.2 Amplitude dependency of the eigenfrequencies 

Now, regarding the excitation force amplitude de-
pendency of the eigenfrequencies for the presented 
examples, no pattern according the severity of the 
damage can be recognised, shown on Figure 17. For 
the first eigenfrequency B1, the amplitude depend-
ency is around -1.5% for the intact state, meaning 
from an excitation force of 2.5 kN for the Netter ex-
citement to 0.5 kN for the shaker excitement, in-
creased to 1% for damage state #2 and varying from 
-0.5% to 0.5% for damage state #3 and #4. Neither 
for the second torsional mode T2 and fourth bending 
mode B4 an accurate pattern is noticed, making the 
amplitude dependency in this case not reliable for 
indications on damage. 
 

 
Figure 17. Excitation force amplitude dependency of the first 
eigenfrequency for Netter excitement of 2.5 kN to 0.5 kN from 
the shaker excitement. 

3.3 Modeshapes 

The modeshapes of all the evaluated eigenmodes 
shown on Figure 10 are presented in this section. 
They are, as already introduced in the experimental 
part, captured by a dense measurement grid, spaced 
at 2 m apart from each transducer position (Fig. 9). 
In order to compare each modeshapes from all the 
damage states to the intact states, each mode is nor-
malised to Unit Modal Mass (UMM). On Figure 18 
the modeshape for the first eigenmode B1 is dis-
played. For this it is difficult to retrieve any informa-
tion out of the presented curves. The changes due to 
damage are very small and hard to identify. 

In contrast, looking at the second torsional mode 
T2 on Figure 19, big variations can be recognised, 
but cannot be associated to damage, as the ampli-
tudes are either higher or lower the curve for the in-
tact state. In addition, for the third bending mode B3 
on Figure 20, the same behaviour is revealed. Nei-
ther here, especially between transducer positions 20 
to 45, is a logical order of the curves recognised, 
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concluding that no unique pattern can be identified 
for these two modes. 

 

 
Figure 18. UMM-normalised modeshape of the first bending 
mode (B1) for the unloaded bridge. 
 

 
Figure 19. UMM-normalised modeshape of the second tor-
sional (T2) mode for the unloaded bridge. 

 

 
Figure 20. UMM-normalised modeshape of the third bending 
mode (B3) for the unloaded bridge. 

 
However, for the fourth bending mode B4 on 

Figure 21, the fourth torsional mode T4 on Figure 22 
and the fifth torsional mode T5 on Figure 23 varia-

tions to the intact state are clearly identifiable. Here, 
around transducer position 7 to 15 for B4 for exam-
ple, differences according the increased damage are 
noticed. As well for the fourth torsional mode T4 the 
same behaviour can be discovered. For the fifth tor-
sional mode T5, the changes are even more exposed; 
concluding that damage identification for these 
modes is possible. 

 
Figure 21. UMM-normalised modeshape of the fourth bending 
(B4) mode for the unloaded bridge. 

 

 
Figure 22. UMM-normalised modeshape of the fourth torsional 
mode (T4) for the unloaded bridge. 

 
Finally, for the sixth torsional mode (T6), as for 

the first bending mode B1, no considerable changes 
due to damage are recognised. The mode seems not 
be as much affected by the changed stiffness as the 
other ones. 

Concluding, one can state that some modes, for 
example the fourth bending mode B4, as already ob-
served for the eigenfrequencies are more affected by 
a changed structure than other modes, like the sec-
ond torsional modes T2, making damage identifica-
tion possible but difficult. However, even regarding 
the modes on which damage identification seems 
possible, the issue on the localisation of damage re-
mains unsolved. 



 
Figure 23. UMM-normalised modeshape of the fifth torsional 
mode (T5) for the unloaded bridge. 

 

 
Figure 24. UMM-normalised modeshape of the sixth torsional 
mode (T6) for the unloaded bridge. 

3.4 Flexibility matrix 
Since a set of modal parameters is yield out of the 
measurement data, i.e. normalised modeshapes and 
eigenfrequencies, the flexibility matrix can be calcu-
lated with the revealed parameters for each damage 
state. This matrix represents the inverse stiffness 
matrix and is, therefore, an indication of the loss of 
the stiffness due to cracks. It is calculated according 
Equation 1, retrieved out of the UMM-normalised 
modeshapes Φ and the angular eigenfrequencies 
ω=2πf, where k defines the mode and N the total 
number of modes considered in the calculation of 
the flexibility matrix. Further, as already emphasised 
in the previous sections, also here for the calculation 
of the flexibility matrix the 7 predominant modes are 
utilised (N=7): 

ሾܭሿିଵ ൌ ∑ ሼΦ௞ሽே
௞ୀଵ · ଵ

ఠೖ
మ ሼΦ௞ሽ் ൌ ሾܨሿ   (1) 

Figures 25-26 illustrate the diagonal elements of 
the flexibility matrices for the intact state #0 and 
damage state #4 in the modal decomposition mode, 
meaning that the flexibility matrix is calculated con-

sidering only one mode (solid lines). For better visu-
alisation, the sum of all the 7 modes is presented 
also on the graphs (dashed line). Here, one can rec-
ognise that the flexibility matrix is determined al-
ready by the first two modes, i.e. the first bending 
mode B1 and the second torsional mode T2. This is 
due to the fact that according Equation 1 the UMM-
modeshapes are divided by the square of the angular 
frequencies, which increase considerably for higher 
modes (from 1.8Hz to 18Hz) and, therefore, the im-
pact of the higher modes diminishes in the calcula-
tion of the flexibility matrix. 

 

 
Figure 25. Modal decomposition of each of the seven modes 
and of their sum of the diagonal elements of the flexibility ma-
trix for the intact state. 
 

 
Figure 26. Modal decomposition of each of the seven modes 
and of their sum of the diagonal elements of the flexibility ma-
trix for damage state #4. 
 

To compare the different damage states the flexi-
bility matrices (only the sum for all 7 modes) of all 
the scenarios are presented on Figure 27. Variations 
according the damage can clearly be seen. Here 
around transducer position 15, where the highest 
damage occurred (cracks on Figure 7) the biggest 
changes are noticed. Damage state #4 shows the 
highest value concluding to the biggest loss in stiff-



ness, followed by damage state #3 and so forth. 
Hence, here the right order according the different 
damage states is identified and, moreover, localisa-
tion of damage becomes feasible. 

 

 
Figure 27. Diagonal elements of the flexibility matrices for the 
unloaded bridge. 

3.5 Flexibility difference 
Furthermore, for a better visualisation of the 

variations of the flexibility matrices, the following 
Figure 28 shows the differences of the diagonal ele-
ments of the flexibility matrices according Equation 
2, in which d#i marks the diagonal elements in each 
flexibility matrix for the i-th damage state: 

ߜ ൌ  |݀#௜ െ ݀#଴|             (2) 

This is a similar technique used in literature (Pandey 
et al. 1995, Lenzen 2009) for better localisation of 
damage and presenting the changes of the flexibility 
matrices. Also here, one can see clear variations 
from one damage scenario to the other, as already 
observed on Figure 27. With increasing damage, 
compared to the intact state, the changes get evident, 
making the evaluation of the flexibility matrices a 
trustful indicator on the loss of stiffness, i.e. the 
formation of cracks. 

 
Figure 28. Difference of the diagonal elements δ of the flexibil-
ity matrices for all damage states compared to the intact state 
#0. 

4 CONCLUSION 

The investigation of the dynamic tests reveals a 
large amount of information on the different exam-
ined parameters. Here nonlinear, i.e. the excitation 
force amplitude dependency, as well as linear pa-
rameters, i.e. the evaluation of the eigenfrequencies 
and the modeshapes, are analysed. Regarding 
nonlinear parameters, no exact statement on the 
condition can be made, since the amplitude depend-
ency does not show any correlation to the damage. 

In contrast, for the linear values, the most influ-
enced parameters are the eigenfrequencies and 
modeshapes for specific eigenmodes. Regarding the 
eigenfrequencies, clear decreases are recognisable 
and are conform to the damage introduced into the 
bridge. These variations on the eigenfrequencies 
identify the changes on the structure, but do not af-
ford localisation considering only this parameter. 
Therefore, the analysis of the modeshapes is evalu-
ated for this issue. However, the variations of these 
do not retrieve any trustful results on the location of 
damage. Changes are evident, but the localisation 
regarding the identified modes is difficult. Thus, the 
flexibility matrices, calculated from the identified 
modal parameters, are analysed to discover the loss 
in stiffness. They yield accurate results indicating 
and even, in contrast to the eigenfrequencies and 
modeshapes, localising damage in the bridge. More-
over, the differences of the diagonal elements of the 
flexibility matrices show significantly the location of 
damage, concluding that this investigated parameter 
is evident according damage and therefore adequate 
for further research on damage assessment on civil 
engineering structures in situ. 
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